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Abstract
Background  Biases may exist in the limited 
longitudinal data focusing on work-related injuries 
among the ageing workforce. Standard statistical 
techniques may not provide valid estimates when the 
data are time-varying and when prior exposures and 
outcomes may influence future outcomes. This research 
effort uses marginal structural models (MSMs), a class 
of causal models rarely applied for injury epidemiology 
research to analyse work-related injuries.
Methods  7212 working US adults aged ≥50 years, 
obtained from the Health and Retirement Study sample 
in the year 2004 formed the study cohort that was 
followed until 2014. The analyses compared estimates 
measuring the associations between physical work 
requirements and work-related injuries using MSMs and 
a traditional regression model. The weights used in the 
MSMs, besides accounting for time-varying exposures, 
also accounted for the recurrent nature of injuries.
Results  The results were consistent with regard to 
directionality between the two models. However, the 
effect estimate was greater when the same data were 
analysed using MSMs, built without the restriction for 
complete case analyses.
Conclusions  MSMs can be particularly useful for 
observational data, especially with the inclusion of 
recurrent outcomes as these can be incorporated in the 
weights themselves.

Introduction
US workers, aged ≥55 years are estimated to 
account for 25% of the workforce by 2020.1 This 
ageing workforce not only experiences a high risk 
for injuries but, compared with younger workers, 
are at an even higher risk for experiencing more 
severe outcomes as a result of such injuries.2–4 
However, there is limited research pertaining to 
work-related injuries among ageing workers using 
a longitudinal study design.5 Additionally, the 
existing efforts may be limited from several biases. 
Common biases include information bias related 
to self-reported information, recall and misclas-
sification. Other sources include those associated 
with confounding and loss to follow-up.6–10 With 
the exception of randomised controlled trials, 
causal associations between relevant exposures and 
outcomes may be difficult to establish as the associ-
ations may be affected by existing biases.11 12

While several injury epidemiology researchers 
have used strategies to assess and manage 

information bias,13–15 few have appropriately 
accounted for confounding and censoring in longi-
tudinal research efforts. This is because longitudinal 
studies contain time-varying covariates which may 
simultaneously be confounders and intermediates; 
analysis techniques that condition on past exposure 
and confounder history fail to account for such 
joint effects.16–18 Although some longitudinal injury 
epidemiology studies have discussed selection bias 
resulting from loss to follow-up, researchers have 
primarily based their conclusions from comparisons 
between those who were retained in the study and 
those who were censored in terms of exposures of 
interest.6 9 There appears to be a dearth of injury 
epidemiology research that has accounted for such 
censoring, using statistical models.

Relevant to confounding, most research efforts 
have used strategies that control for such variables. 
However, a marginal approach enables the creation 
of weights that balance each substratum of covari-
ates.12 16 17 Through a weighting technique and 
projection, causal inferences can then be drawn from 
data in which both the exposures and the censoring 
may depend on exposure history, other covariates 
and the outcome itself.19 The marginal structural 
models (MSMs) are a class of causal models that 
use this weighting technique (inverse probability-of-
treatment or exposure weights (IPW)) to provide 
valid estimates of the effect of time-varying expo-
sures on the outcome of interest.12 16 18 20 21 These 
IPW estimators are known to be more efficient 
than the naive estimators.16 17 20–24 It is important 
to note that IPW can appropriately adjust both 
for confounding and selection bias, resulting from 
time-varying exposures—given the assumptions 
of consistency, exchangeability, positivity and no 
misspecification of the model used to estimate the 
weights.20

While MSMs have been used in traditional epide-
miological research for modelling health outcomes 
for several years,17 25 they have been rarely used for 
analysing work-related injuries. Only one previous 
study26 could be identified that examined the asso-
ciation between work-related injuries and job loss. 
However, the authors did not compare estimates 
between MSMs and traditional models. The current 
study, therefore, appears to be among the first that 
demonstrates the use of MSMs for analysing work-
related injuries as the outcome.

Injuries, which are recurrent in nature, are 
among outcomes that could also be risk factors for 
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Figure 1  Directed acyclic graph representing the association between exposure of interest, the outcome and other variables with two time points 
as an example.

future injuries, exposures and other covariates, as well. The aim 
of this research effort was to demonstrate how MSMs can be 
used to analyse data pertaining to work-related injuries among 
the ageing US workforce. This research also demonstrates how 
previous outcomes, that is, work-related injuries, that may occur 
at multiple time points or are recurrent,13 can be used to generate 
final weights. Additionally, this research effort demonstrates an 
approach in which the final analysis is not restricted to complete 
cases, as that used when dealing with chronic outcomes.18

Methods

Sample and study design
The baseline study cohort consisted of ageing US workers, aged 
50 years and above, who responded by self-report to the Health 
and Retirement Study (HRS) survey in the year 2004, a survey 
replenishment year. The HRS is a publicly available, biennial and 
nationally representative, multistage area probability sample of 
US households that has been active since 1992.27 28 There were 
a total of 20 129 primary HRS respondents in the year 2004 
(wave 7), from which this study selected a cohort of 7212 ageing 
adults who, in the year 2004, were aged ≥50 years and were 
working for pay. This cohort of 7212 adults was then followed 
prospectively until the year 2014, the most recent HRS inter-
view wave for which data had been made available at the time of 
the analyses. At each study wave, following the baseline, persons 
who were no longer working for pay were excluded from the 
main analyses. Note that the probability of being censored due 
to other reasons, for example, dropping was accounted for using 
the weights.

Study variables
Outcome: Work-related injury: HRS defines work-related inju-
ries as ‘any injuries at work that required special medical atten-
tion or treatment or interfered with your work activities’. Those 
who reported having a work-related injury were further asked 
about the number or counts of such events.

Exposures: Demographic factors: information was obtained 
about the respondents’ age, gender, race, ethnicity, education, 
marital/partner status, whether born in the USA or not, and 
household income and assets. Health-related factors: infor-
mation pertaining to alcohol consumption (number of drinks 
consumed per week), smoking behaviour, presence of diagnosed 
chronic physical and mental health conditions (high blood pres-
sure, diabetes, heart problems, lung disease, stroke, arthritis 
and psychiatric problems), and presence of depression-related 

symptoms (acute depression) in the 2 weeks prior to the inter-
view was obtained.

Work-related characteristics: during each interview wave, 
these included: work category (US Census-based masked cate-
gories); total hours worked in primary and second jobs, if any; 
work status assessed as full-time, part-time, and partly-retired; 
having a second job; tenure in the current workplace; and any 
previous history of work-related injuries. Physical work require-
ment, ascertained as, ‘does your current job require high physical 
effort?’ was the primary exposure of interest. This was measured 
on a Likert scale, ranging from all/almost all of the time to none/
almost none of the time. The associations between physical work 
requirement and injuries3 29 30 were then estimated using MSMs 
and a traditional regression model, that is, generalised estimating 
equations (GEEs).31 The physical work requirement variable was 
re-categorised as a binary variable. Those who reported that their 
workplaces entailed physical effort requirements all/almost all, 
most, and some of the time were identified as being employed in 
workplaces with high physical work requirements. Conversely, 
workplaces identified as having low physical requirements were 
those that identified such requirements as none/almost none of 
the time.

Missing exposure information was imputed by carrying infor-
mation from the last wave forward.

Analyses
MSMs were fit to estimate the effect of physical work require-
ments on work-related injuries. To accomplish this, person-
specific and wave-specific exposure and censoring weights were 
first estimated.16 17 A directed acyclic graph (DAG)11 was devel-
oped a priori to facilitate the process (figure 1). DAGs have previ-
ously been used for occupational safety and health research8 32 
and also in the case of time-varying covariates.18

In the figure, the exposure of interest, that is, physical work 
requirement (outcome for the person and wave-specific weight 
models), is denoted by the letter ‘A’ and the integers 0 (repre-
senting the year 2004), and 1 (year 2006) are examples of two 
survey time points. Note that, this is just for illustration and the 
actual data consisted of four more survey waves, that is, years 
2008–2014. Next, A0 represents physical work requirements 
at time point 0 and A1 at time point 1. Job category (Z0 and 
Z1) is shown separately for demonstration purposes to guide 
the reader, whereas all other variables, including injuries, are 
indicated by variables L0 and L1. Note that in the DAG, the 
outcome, that is, work-related injuries, is a time-varying variable 
itself and is represented along with variables in cluster L (L0, 
and L1). Separate censoring weights were also obtained and the 
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Table 1  Dummy table representing the wave-specific weights for 
one person

ID year Physical effort Injury events
Final stabilised 
weight (SWij)

1 2004 0 0 0.99

1 2006 0 1 0.92

1 2008 0 0 0.93

1 2010 0 0 0.93

1 2012 . 0 .

1 2014 1 0 1.08

ID, Person identifier.

variables, C0 and C1, denote wave-specific censoring variables. 
As shown, all the variables presented in the DAG demonstrate 
temporality from left to right; those that come earlier, in time, 
are presented on the left in the DAG.

At each survey wave, physical work requirements and censoring 
were regressed on a fixed baseline and time-varying covariate 
history, using logistic regression models to estimate predicted 
probabilities.18 For each study participant, at each survey wave, 
both an inverse probability person-specific and wave-specific 
exposure (Wx

ij) and censoring weight (Wc
ij), accounting for those 

who dropped out or died, were estimated. Respectively, these 
weights accounted for the measured confounders and selec-
tion bias that may have been created by the participants’ expo-
sures20 22 and the outcome, that is, work-related injuries.

Stabilised exposure (SWx
ij) and censoring weights (SWc

ij) were 
then achieved by inclusion of a numerator while creating weights, 
which maintained the original sample size in the weighted data 
and reduced the variance.12 16 22 33 34 The numerator used was the 
probability of a participant receiving his or her own exposure, 
irrespective of other exposures.17 22 As there were extremes, the 
stabilised weights were progressively truncated by resetting the 
values that were greater than p (100 p) percentile to the value of 
p (100 p) percentile. The decision to use truncated or original 
weights was made based on the bias–variance tradeoff.22

The final step was, to run a weighted repeated measures regres-
sion model, that is, weighted GEEs,31 using the above-mentioned 
stabilised weights. Previous researchers21 22 25 35 had estimated 
the final weight (SWij) to be used in the weighted GEE model by 
obtaining a product of the individual wave-specific weights, that 
is, SWij=SWx

ij X SWc
ij. However, these studies modelled a chronic 

outcome and, thus, were interested in estimating the effect that 
the cumulative exposure history had on these outcomes. Inju-
ries, however, can be recurrent and previous injuries may not 
only affect future injury experiences but may also affect other 
exposures. Therefore, the original person-and wave-stabilised 
weights were used; a product of the weights was not obtained. 
Accordingly, if a final product of weights was used in this case, 
the estimates could only be calculated for the last wave because 
injury information for all other waves would already be incor-
porated in the final product of weights. Table  1 is a dummy 
table representing final wave-specific weights for one person. As 
noted, in the table, the person with ID 1 will not have a weight in 
the year 2012 because the exposure information was missing. If 
the final weight used was a product of the wave-specific weights 
for this person, the person shown in the dummy table would 
have had a missing weight. Accordingly, the final weight would 
be 0.99*0.92*0.93*0.93*.*1.08=‘.’. Therefore, there would 
have been a final weight only for those who had an observation 

at each time point. In other words, the final analyses would only 
be a complete case analysis.18 However, retaining each of the 
individual person-specific and wave-specific weights does not 
require the analyses to be limited to complete cases.

Finally, the results from traditional GEEs were compared 
with those from MSMs and conclusions were drawn. In both 
models, injury counts (number of injury-related events) were the 
outcome of interest and a negative binomial error distribution 
was used. Incident rate ratios (IRRs) and corresponding 95% CIs 
were accordingly estimated.

Results
At baseline, that is, in the year 2004 from the total sample of 
7212 ageing adults in the study, 5% (n=397) sustained at least 
one work-related injury; 53% of those injured were women, 77% 
were White/Caucasian and 89% were Non-Hispanic. The char-
acteristics of the study cohort are presented in table 2. Further 
details on the study cohort have been published, previously.35

The mean unstabilised weight was 2.07 (median=1.15, 
SD=3.73, range=189.59), whereas the mean stabilised weight 
was 1.00 (median=0.99, SD=0.21, range=13.13). To assess the 
amount of confounding, unstabilised and stabilised weights were 
visually compared. As shown in table  3, the stabilised weight 
distribution included extreme weights; therefore, progressive 
weight truncation was considered.

Extreme weights were then progressively truncated and 
evaluated with regard to the bias that may be created by trun-
cation and the precision that could be increased by doing the 
same (table 4). The mean weight, the minimum and maximum 
weights, and the change in the point estimate affected by the 
truncation were also evaluated to select the final set of weights 
to be used in the model. Table 4 shows that truncation had little, 
if any, effect on the point estimates and the 95% CI. Therefore, 
the original weights were retained, without truncation.

The adjusted MSM (table  4) demonstrated that the risk of 
experiencing a work-related injury, among those whose jobs 
had high, compared with low, physical work requirements, was 
almost three times greater (incidence rate ratios (IRR): 2.62, 
95% CI 2.14 to 3.20). In comparison, the estimates obtained 
from the GEEs were similar in size (strength) and precision (95% 
CI) (adjusted IRR: 2.09, 95% CI 1.67 to 2.62 (data not shown)). 
For these analyses, the traditional (unweighted) GEEs were 
adjusted for the same variables as the MSMs and both accounted 
for within-person and within-household correlations.

Discussion
This research effort applied MSMs for repeated-measures data 
to estimate the potential causal association between exposures 
of physical work requirements and work-related injuries. It is 
important to note that, while this research effort characterised 
the exposure of interest, that is, physical work requirement as 
a binary or dichotomous variable, MSMs can also be used for 
ordinal or continuous exposures.36

MSMs were used because traditional statistical (unweighted) 
regression models like the GEEs may be inappropriate in the 
presence of time-varying covariates that are affected by previous 
exposure levels and other covariates.21 The observed estimates 
from both the GEEs and MSMs were similar in terms of strength 
and direction. However, the MSMs, which take the time-varying 
nature of the covariates into account, produced a larger estimate 
of the injury risk compared with the GEEs. Unlike the results 
obtained in this study, previous research efforts21 37 have shown 
that the effect estimates could be considerably different between 
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Table 2  Baseline demographic, other personal and work-related 
characteristics among the uninjured and injured sample at the baseline 
(n=7212)

Exposures
Uninjured
n (%)

Injured
n (%)

Age categories (years)

 � 50–60 3892 (56.9) 226 (63.3)

 � 60–70 2255 (33.0) 107 (30.0)

 � ≥70 years and above 612 (9.0) 21 (5.9)

Gender

 � Men 3375 (49.3) 168 (47.1)

 � Women 3465 (50.7) 189 (52.9)

Race

 � White/Caucasian 5490 (80.3) 275 (77.0)

 � Black/African American 945 (13.8) 54 (15.1)

 � Other 403 (5.9) 28 (7.8)

Ethnicity

 � Hispanic 594 (8.7) 38 (10.6)

 � Non-Hispanic 6245 (91.3) 319 (89.4)

Birthplace

 � US born 6097 (89.1) 322 (90.2)

 � Born elsewhere 722 (10.6) 34 (9.5)

Education

 � Left high school/GED 1166 (17.0) 77 (21.6)

 � High-school graduate 1954 (28.6) 115 (32.2)

 � Some college 1698 (24.8) 95 (26.6)

 � College and above 2020 (29.5) 70 (19.6)

Marital status

 � Married/partnered 5165 (75.5) 245 (68.6)

 � Separated/divorced/ widowed 1439 (21.0) 98 (27.4)

 � Never married 232 (3.4) 14 (3.9)

Total household assets ($)

 � ≤63 500 3731 (54.6) 239 (67.0)

 � >63 500 3109 (45.5) 118 (33.1)

Alcohol consumption (drinks/week)

 � None 4031 (58.9) 226 (63.3)

 � 1–5 2715 (39.7) 122 (34.2)

 � ≥6 79 (1.2) 6 (1.7)

Chronic physical health conditions

 � 0 2216 (32.4) 90 (25.2)

 � 1 2305 (33.7) 124 (34.7)

 � ≥2 2319 (34.0) 143 (40.1)

Acute depression

 � No 3437 (50.2) 134 (37.5)

 � Yes 3117 (45.6) 207 (58.0)

Work category

 � Managerial 1016 (14.8) 38 (10.6)

 � Professional/technical 1314 (19.2) 52 (14.6)

 � Sales 718 (10.5) 27 (7.6)

 � Clerical/administrative 1105 (16.1) 40 (11.2)

 � Healthcare 174 (2.5) 27 (7.6)

 � Protection service 121 (1.8) 11 (3.1)

 � Household/building cleaning service and 
food preparation service

271 (4.0) 16 (4.5)

 � Personal service 438 (6.4) 26 (7.3)

 � Mechanical/repair 202 (2.9) 12 (3.4)

 � Farming/forestry/fishing 200 (2.9) 18 (5.0)

 � Construction/extraction 222 (3.2) 20 (5.6)

 � Precision production 184 (2.7) 9 (2.5)

Continued

Exposures
Uninjured
n (%)

Injured
n (%)

 � Operators: machine, transportation 815 (11.9) 57 (16.0)

Work status

 � Full-time 4391 (64.2) 270 (75.6)

 � Part-time 966 (14.1) 45 (12.6)

 � Partly retired 1483 (21.7) 42 (11.8)

Work tenure (years)

 � ≤5 2966 (43.4) 128 (35.8)

 � >5 3486 (56.2) 229 (64.1)

Work-requirement factors: does your job require…

 � Excessive physical effort

  �  All/almost all the time 1136 (16.6) 98 (27.4)

  �  Most of the time 822 (12.0) 64 (17.9)

  �  Some of the time 1799 (26.3) 95 (26.6)

  �  None/almost none of the time 2255 (33.0) 64 (17.9)

Missing values are not shown.

Table 2  Continued

Table 3  Percentiles (quantiles) for unstabilised and stabilised 
weights

Level Unstabilised weight Stabilised weight

100% Max 190.59 13.27

99% 17.95 1.72

95% 7.69 1.19

90% 3.41 1.11

75% Q3 1.27 1.04

50% Median 1.15 0.99

25% Q1 1.08 0.95

10% 1.05 0.90

5% 1.03 0.76

1% 1.02 0.46

0% Min 1.00 0.14

MSMs and alternative traditional techniques and could also be 
in the opposite direction. It is possible that such a difference was 
not observed between the two models because ageing compared 
with younger workers may be less likely to change jobs and may 
be engaged in jobs with the same physical work requirements 
over the study period. However, future researchers who may use 
this methodology for different occupational settings and popu-
lations may see results similar to those shown in the literature.

This study used a ‘repeated measures’ MSMs approach, 
suggested by previous researchers.18 This approach ultimately 
enabled estimating the overall risk for injuries over the entire 
study period as the individual person-specific and wave-specific 
weights were used in their original state without estimating a 
final product. The use of a final product of weights for each 
person may be more meaningful when the outcome is non-
recurrent, like AIDS.17

The interpretation of the study findings should be done 
in light of the assumptions including that information on 
the self-reported physical effort requirements were accurate, 
and that the measured covariates were sufficient to adjust 
for confounding and selection bias due to censoring. Unfor-
tunately, these assumptions cannot be tested.21 Specifically, 
the assumption that the baseline and time-varying covariates 
are sufficient to control for confounding at each survey wave 
is important to make causal inferences from the estimates.18 
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Table 4  Bias–variance tradeoff in Marginal Structural Models: 
truncation percentiles, relative mean estimated weights, and incident 
rate ratios with 95% CIs

Truncation 
percentiles

Estimated weights

*Risk of experiencing a 
work-related injury event 
among those in jobs with high, 
compared with low, physical 
work requirements

Mean (SD)
Minimum/
Maximum IRR (95% CI)

0, 100 1.00 (0.21) 0.20/13.27 2.62 (2.14 to 3.20)

1, 99 1.00 (0.15) 0.46/1.72 2.62 (2.15 to 3.20)

5, 95 0.99 (0.09) 0.76/1.19 2.57 (2.10 to 3.14)

10, 90 0.99 (0.06) 0.90/1.11 2.52 (2.05 to 3.10)

*Adjustment for fixed baseline (age, gender, race, education) and time-varying 
covariates (work category, previous physical effort requirements, chronic physical 
health conditions, acute depression and previous injury experiences) is done by 
weighting.
IRR, incidence rate ratio.

However, extensive consideration included a wide range of 
covariates that could have affected the association between 
physical work requirements and injuries (figure 1). The posi-
tivity assumption was not violated in this research effort as the 
study cohort involved only working adults. The probability 
of receiving the exposure, that is, physical work requirements 
was non-zero for all levels of time-varying covariates. The 
last assumption was that the exposure and censoring models 
were correctly specified. However, it is important to note 
that similar assumptions are required by traditional statis-
tical models, as well and, when time-varying data are present, 
MSMs are less restrictive than the traditional models. Even in 
point-exposure studies, the stated assumptions are required to 
make causal interpretations.17

The major advantage of using MSMs is that they enable 
causal inferences in situations where conventional randomisa-
tion and censoring assumptions are violated. In other words, 
the MSMs are useful when previous exposures and other vari-
ables affect future exposures and censoring.19 Therefore, in 
the present study, controlling for the time-varying covariates 
using the traditional GEEs could not be causally interpreted 
as the overall effect of physical work-requirement factors on 
injury events.

Other alternative techniques like time-varying Cox models 
and Propensity Score models may also condition on time-varying 
covariates that may be intermediates between the exposures of 
interest and the outcome. Additionally, in situations where time-
varying covariates may be affected by unmeasured confounders, 
the former techniques may also induce collider-stratification 
bias. On the other hand, IPW estimators control for time-varying 
confounding without risk of collider-stratification bias and, also, 
account for bias due to informative censoring.38 MSMs however 
are less useful when the exposure varies dynamically and not at 
discrete time points. In such situations, other models like the 
structural nested models may be more appropriate. Yet, MSMs 
are easier to implement and are computationally more straight-
forward because they are structurally similar to traditional 
regression models.20

Conclusions
MSMs are an intuitively useful tool for analysing complex 
epidemiological data, especially time-varying data that are not 
dynamically varying. A major advantage of using these models 

is their resemblance to standard regression models.36 MSMs can 
be particularly useful when dealing with recurrent outcomes like 
injuries as these can be incorporated in the wave-specific weights 
themselves. This research effort importantly also demonstrates 
the use of MSMs, without restriction of complete case anal-
yses to analyse recurrent outcomes like injuries by structuring 
the data using a long format and retaining each of the person-
specific and wave-specific weights that were ultimately used in 
the final weighted GEE model.

What is already known about his subject?

►► Limited research efforts focusing on work-related injuries 
among the ageing workforce have included longitudinal 
analyses.

►► The existing analytical techniques that have addressed time-
varying injury-related data may have several biases.

►► Marginal structural models (MSMs) can provide valid 
estimates of the effect of time-varying exposures on the 
outcome of interest. However, these have been rarely used in 
injury epidemiology research.

What this study adds?

►► When analysing recurring outcomes such as injuries, MSMs 
can be used to account for the time-varying nature of the 
outcome.

►► This research effort further demonstrates the importance 
of structuring data to avoid limitations associated with 
complete case analysis.

How might this impact on policy or clinical practice in the 
foreseeable future?

►► Researchers conducting analyses involving recurrent 
outcomes, not limited to injuries, can benefit from the 
approach discussed in this research effort.
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