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Medical countermeasure stockpiles in the United States are designed to support healthcare workers and the public

during public health emergencies; they include supplies of personal protective equipment (PPE). As part of typical PPE

manufacturing processes, appropriate test methods are used to ensure that the devices provide adequate protective

performance. At the time of manufacture, performance is often measured and weighed against an objective standard

of quality, resulting in a pass or fail attribute being assigned to individual PPE items and thence to production lots.

Incorporating periodic performance testing for stockpiled PPE can ensure that they maintain their protective qualities

and integrity over time while in storage. There is an absence of guidance regarding how to design quality assurance

programs for stockpiled PPE. The applicability of the Lot Quality Assurance Sampling (LQAS) approach to stockpiled

PPE was examined in a previous study that compared and contrasted different sample sizes in recovering the true

percentage of defective units in large lots in the LQAS framework. The current study carries this line of inquiry forward

by integrating PPE degradation over time and comparing different sampling time intervals in recovering the true

underlying degradation rate. The results suggest that product degradation is more easily detected when tested at shorter

time intervals and for higher degradation rates. They further suggest that sampling interval groupings can be made based

on the proficiency with which they recover the true underlying degradation rate.
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In the United States, stockpiles of medical supplies
and equipment at the federal, state, and local levels were

created with funding and initiatives associated with the
Public Health Security and Bioterrorism Preparedness and
Response Act of 2002.1 Since then, large volumes of per-
sonal protective equipment (PPE) have been acquired. PPE
such as respirators, surgical gowns, and gloves are intended

to protect healthcare and emergency responders from the
hazards of caring for individuals with contagious diseases
and contain the spread of such diseases.2-4 Predictions of
the amount of PPE and the rate at which it will be needed
during a public health emergency suggest that PPE con-
sumption will exceed the amount of product that manu-
facturers can produce.3,5-14 Therefore, millions of units of
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PPE are stored across the country in readiness for rapid
response in facility-level and public health (local, state,
federal) stockpiles.

While it is reasonable to assume that PPE provided
through the normal supply chains will give the promised
protection, component materials may degrade while in a
stockpile.15-22 An example is the commonly stockpiled
N95 filtering facepiece respirator (FFR), recommended for
protection against a variety of hazards that may be faced
during public health emergencies. Most N95 FFRs incor-
porate filtering media embedded with electrostatic charges.
The embedded electrostatic charge may dissipate during
extended stockpiling, thereby potentially decreasing the
filtration efficiency.21,23-25 Thus, stockpiled N95 FFRs, as
well as other PPE, may degrade to an unacceptable level
while in the stockpile, at a rate influenced by variations
inherent in varying designs, materials of construction,
materials used in packaging, and stockpile storage condi-
tions.

Given the likelihood of long-term storage, the potential
for degradation, and the possible lack of control over
storage conditions, many PPE manufacturers provide shelf-
life and expiration guidelines. However, when stored in a
suitable environment, stockpiled products may be effective
well beyond their labeled expiration dates, and develop-
ment of a suitable shelf-life extension program would be
beneficial.

Unsubstantiated stockpile testing schemes may prove
unnecessarily expensive. In addition to the costs of per-
forming the tests and the PPE used in the testing, over-
testing without careful sampling plan design may lead to
discarding an excessive number of relatively good lots due
to sampling variation.26

In a previous study, we examined the applicability of a
Lot Quality Assurance Sampling (LQAS) approach to
stockpiled PPE and posited it as a mechanism to manage
the quality of stockpiled PPE over time and potentially
realize a PPE-specific shelf-life extension program.27 Given
the potential stability of PPE when stored in a suitable
environment, our previous article compared and contrasted
different sample sizes in terms of their ability to accurately
estimate a fixed true quality level over a restricted number of
samples. However, in light of the potential for PPE to
degrade over time, true levels of lot quality can be dynamic
and a potentially moving target. Identifying stockpiled PPE
that are degrading, and accurately identifying the rate of
degradation, may be a desirable component to a stockpiled
PPE LQAS. For example, degradation of numerous models
and lots in a localized area in the stockpile may indicate
localized storage conditions that are less than adequate.
Additionally, identification of unacceptable levels of deg-
radation in a single model and/or a single lot can allow for
targeted recycling, thereby limiting waste.

Therefore, questions remain regarding how often sam-
pling should be done in order to detect degradation pro-
cesses and to estimate the rate at which the PPE is

degrading. The current study addresses this missing piece
by integrating PPE degradation over time and comparing
the consistency of different sampling time intervals in re-
covering the simulated degradation rate. The primary re-
search questions of the current study are:

1. Can repeated performance testing of PPE samples
detect degradation in stockpiled PPE?

2. Do the trends seen over repeated sampling accurately
reflect the rate of degradation?

3. Do different time intervals of repeated performance
testing differ in terms of the proficiency with which
they recover the degradation rate?

Methods

Computer Simulation
The research questions posed were answered through a
series of statistical simulations. The study used a computer
simulation to ‘‘create’’ batches of stockpiled PPE over the
course of their lifetime with known quality levels at each
stage in their life cycle. It also allows for the simulated PPE
samples to be sampled to determine if the parameters that
were ‘‘created’’ can be recovered. This technique makes it
possible to vary applicable quality parameters (ie, the actual
percent of passing units in a lot and the rate at which that
percent declines as degradation occurs over time) and create
real-life stockpile contexts. A common desktop mathe-
matical software package, R version 3.5.0, was used to
conduct the simulation and analyze the results.28 The steps
taken in the simulation are briefly summarized in Figure 1.

In order to integrate PPE degradation over time, lots or
batches of stockpiled PPE were created and tracked over the
course of their lifetime. Lots over time were simulated
through the use of sets containing the total number of PPE
items out of lots of 100,000 that would pass a performance
test. A set for each degradation parameter was generated,
containing entries for the true number of passing units
every month over a 100-year lifespan. At year zero, all PPE
in each lot were considered to have ‘‘passed’’ an applicable
performance test (eg, the tests used by NIOSH for respi-
rator certification or the tests designated by the FDA for
clearing surgical or isolation gowns). At subsequent times, a
proportion of the lot was set to ‘‘fail’’ the performance test.
In total, 9 different linear degradation rates were simulated
in which a fixed number of additional units become de-
fective each year. These rates were 0.01%, 0.05%, 0.1%,
0.25%, 0.5%, 1.0%, 2.0%, 5.0%, and 10% and corre-
sponded to an additional 10, 50, 100, 250, 500, 1,000,
2,000, 5,000, and 10,000 units becoming defective every
year. The choice of using a linear degradation model was
made for conceptual simplicity. Exponential degradation
was also modeled as a comparison, but other forms of
nonlinear degradation could have been selected instead.
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Once these series of sets were created to represent the
PPE lots with known degradation rates over the course of
their lifetime, it was then possible to collect random sam-
ples from them over time. Sampling time intervals of 1
month, 3 months, 6 months, 9 months, 1 year, 2 years, 3
years, 4 years, 5 years, and 10 years were examined. Al-
though some of the time intervals examined are not likely to

be selected for use in actual stockpiles, they were chosen for
comparison purposes. A fixed sample size of 32 PPE units
was selected to be used for each sample. As such, 32 random
numbers from the lot of 100,000 (representing single units
of PPE) were selected from each designated time point with
replacement. The sample fail rate was then computed ac-
cording to Equation 1:

Figure 1. Simulation Steps

Figure 2. An example linear regression over 10 years for yearly sampling intervals and 1.0% linear degradation rate
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p̂ ¼ x

n
, (1)

where p̂ is the observed sample fail rate, x is the number of
PPE items that failed in the sample, and n represents the
sample size (ie, the total number of PPE items contained in
each sample—in this case, 32). A linear regression of the
sample fail rates for each time interval was computed for
each simulated lot. This process was iterated 150 times.
Thus, 150 distinct trials were conducted for each parameter
in the study, and trends across these trials could be used for
the analysis designed to answer the research questions.

Results

Detecting and Determining Degree
of Degradation
In response to the first research question posed, concerning
the utility of periodic testing, the results of the simulation
suggest that repeated performance testing of PPE samples
can detect degradation in stockpiled PPE, but it depends on
the time interval of repeated testing along with the mag-
nitude of the degradation. In order to examine this research
question, linear regressions were performed on sample re-
sults over a 15-year period. For each individual trial, the
percent of PPE passing for each sample was used as the
dependent variable, and time was used as the independent
variable. The standardized regression coefficients, or slopes
of the fitted lines, directly measured the predicted degra-
dation rate. Because each lot was simulated to degrade over
time, the measured pass rate would be expected to decrease
in consecutive samples, and a negative regression slope
should result. A negative regression slope in any given trial
of repeated testing, therefore, suggests that the simulated
degradation was detected. A slope of zero, or a positive
slope, would denote a trial in which there was no detection
of any degradation—even though degradation did exist.
This does not necessarily mean that no defective units were
found, but rather that linear regression did not find a
consistent increase in defective units over time. These
failures to detect the applied degradation could be con-
sidered ‘‘false negatives’’—in other words, testing did not
discern the decrease in the quality of the lot. If the entire lot
were tested at each time, the regression slope would recover
the degradation rate applied to the lot. For smaller samples,
variability due to sampling will affect the accuracy of the
recovered slope. Figure 2 provides an illustration of one of
the regressions derived from the study in which a negative
standardized regression coefficient was found.

Table 1 reports the number of trials out of 150 in which
sampling failed to detect degradation for specific sampling
intervals, denoted by the rows, and the true linear degra-
dation rate, denoted by the columns. This table clearly
shows that degradation is detected more often as the sam-

pling interval gets smaller and the true degradation rate
increases.* For the degradation rates of 2% and higher, each
of the sampling intervals was able to ‘‘see’’ the lot degra-
dation through sample-to-sample trends in every trial.
When degradation was very low, it was undetectable by
most sampling intervals. For example, the 0.01% degra-
dation was not detected in some trials for each of the
sampling intervals studied. This is partially a symptom of
the duration of time examined. The 0.01% annual degra-
dation lot results in an additional 10 failing units every year
for the 100,000-item lot. At the end of the regression pe-
riod—15 years—the 0.01% annual degradation results in
only 150 failing items in the entire lot after 15 years, a
0.15% failure or 99.85% pass rate in the lot after aging.
Hence, the lack of degradation detection is not automati-
cally concerning for this low degradation rate considering
the very small amount of degradation over just 15 years.

*Several variations to the simulation, which are not reported,
were performed as robustness checks. In one, an initial stockpile
percent passing of 80% was used instead of the assumption that
all PPE would pass testing at time zero. Such an assumption is
slightly biased toward ‘‘detection’’ through finding a negative
slope due to the first sample’s being fixed at 32/32 passes. The
heteroscedasticity resulting from the impossibility of sampling
higher than 100% passing was mostly avoided by lowering the
initial percent passing far enough to allow room for sampling
variability above the true pass percent. As expected, the trials in
which no degradation was detected were more numerous across
the board in this simulation. Also of note, breaking down no
degradation detected into standardized regression coefficients of
zero and positive values, the 80% initial percent passing simu-
lation resulted in many more positive values, but fewer zero
values. However, the same patterns of detection regarding the
effect of sampling intervals and degradation rates were still
strongly shown.

In another variation to the simulation, the sample size taken at
any given time point was adjusted (2, 6, 12, 18, 24, 48, 72, 96,
120, and 240) for each sampling interval (1 month, 3 months, 6
months, 9 months, 1 year, 2 years, 3 years, 4 years, 5 years, and
10 years) so that the total number of individual units sampled
would be equal over the examined period of time, regardless of
sampling interval. In this version, the degradation was still de-
tected more often as the true degradation rate increased, but the
relationship between detection and the sampling intervals dis-
appeared. This suggests that the timing of sampling may be less
important than the number of samples tested over the period,
although more frequent sampling would presumably be better for
detecting sudden changes in the overall quality of a lot not seen in
the constant linear degradation rates simulated. It should also be
considered that changing the individual sampling sizes in this
version of the simulation confounds the sampling intervals with
the effects of different inherently discrete probability distributions
associated with sampling different sizes. For example, when only
2 samples are taken monthly, there are only 3 possible outcomes:
0%, 50%, and 100% pass rate. There are 241 possible outcomes
for the corresponding sample size for the 10-year interval in this
simulation.
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Worth considering, however, is the potential impact of
degradation rates that some sampling intervals effectively
recover while others do not. For example, a linear annual
degradation rate of 0.25% results in an additional 250 PPE
items failing each year from the lot. Over the course of the
15-year period, this adds up to 3,750 defective PPE items
out of the lot. Depending on the type of PPE and the
intended use, this level of degradation can be consequential.
Therefore, it may be important to consider that the linear
regression on annual sampling detected this level of deg-
radation in 98% of the trials, with only 3 false negatives out
of 150 trials, as seen in Table 2. This can be compared to
89% of the trials when samples are taken every 2 years (17
false negatives out of 150 trials) and 79% of the trials when
sampling is done every 4 years (with 32 false negatives).

Table 2 presents linear regressions over the first 5 years
(instead of 15 as seen in Table 1). As with the 15-year
period shown in Table 1, degradation is detected more
often with smaller sampling intervals and higher true deg-
radation rates. But with less data gathered over time and
higher true pass percentages at the end of the period, it is
not surprising that the number of trials in which no deg-
radation was detected generally increased for each sampling

interval considered. Still, a sampling interval of 1 year and a
linear degradation rate of 1%, both values in the middle of
the ranges examined, resulted in just 6 out of 150 trials
failing to detect degradation, or a 96% detection success
rate. It should also be noted that degradation cannot be
detected on a 5-year period for the 10-year sampling in-
terval, since this interval includes only the initial sample set,
with no testing of degraded samples.

Having shown that degradation can be detected through
repeated sampling of PPE stockpiles, it follows to examine
how well the degradation rates recovered through sample-
to-sample trends conform to the specified rates. Table 3
contains the mean standardized regression coefficients for
regressions performed over a 10-year period across 150
trials for each sampling interval and linear degradation rate.
The values are all close to the true degradation rate simu-
lated for each lot. In practical terms, when using repeated
testing as a component of a stockpiled PPE LQAS, this
finding suggests that the sample-to-sample trends seen (ie,
the difference in the proportion passing from sample to
sample) can be used to estimate the underlying degradation
rate with some degree of confidence. Higher confidence can
be placed in sampling intervals that consistently recovered

Table 1. Number of times simulation did not detect degradation (the ‘‘false negatives’’ described in the text)
in 150 trials over 15 years for various sampling intervals and true linear degradation rates

Degradation Rate

Sampling Interval –0.01% –0.05% –0.1% –0.25% –0.5% –1% –2% –5% –10%

1 month 16 0 0 0 0 0 0 0 0
3 months 59 3 0 0 0 0 0 0 0
6 months 84 20 6 1 0 0 0 0 0
9 months 107 31 10 1 0 0 0 0 0
1 year 122 46 16 3 0 0 0 0 0
2 years 133 72 46 17 0 0 0 0 0
3 years 136 84 49 14 2 0 0 0 0
4 years 134 113 90 32 6 1 0 0 0
5 years 142 103 74 16 5 0 0 0 0
10 years 144 127 110 73 35 5 0 0 0

Table 2. Number of times simulation failed to detect degradation in 150 trials over 5 years for various
sampling intervals and true linear degradation rates

Degradation Rate

Sampling Interval –0.01% –0.05% –0.1% –0.25% –0.5% –1% –2% –5% –10%

1 month 105 33 9 0 0 0 0 0 0
3 months 132 80 54 9 3 1 0 0 0
6 months 139 103 75 31 13 1 0 0 0
9 months 146 122 105 62 44 6 4 0 0
1 year 146 125 100 56 23 6 0 0 0
2 years 147 139 121 95 53 23 3 0 0
3 years 149 141 137 118 104 61 21 1 0
4 years 149 143 132 112 77 32 12 1 0
5 years 146 134 123 100 62 29 7 0 0
10 years 150 150 150 150 150 150 150 150 150
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Table 3. Mean standardized regression coefficients in 150 trials over 10 years for various sampling intervals
and true linear degradation rates

Degradation Rate

Sampling Interval –0.01% –0.05% –0.1% –0.25% –0.5% –1% –2% –5% –10%

1 month –0.01% –0.05% –0.10% –0.26% –0.49% –0.99% –1.99% –4.98% –10.00%
3 months –0.01% –0.05% –0.11% –0.26% –0.49% –0.98% –2.02% –4.97% –9.97%
6 months –0.01% –0.06% –0.09% –0.25% –0.48% –1.03% –2.03% –4.98% –10.02%
9 months –0.01% –0.05% –0.11% –0.25% –0.49% –1.04% –2.02% –4.97% –10.03%
1 year –0.01% –0.05% –0.10% –0.24% –0.47% –1.01% –1.96% –4.94% –9.96%
2 years –0.01% –0.05% –0.10% –0.24% –0.55% –1.03% –2.06% –5.03% –10.01%
3 years –0.01% –0.05% –0.10% –0.23% –0.52% –0.89% –1.94% –5.09% –10.07%
4 years –0.02% –0.05% –0.08% –0.23% –0.57% –0.98% –1.96% –4.95% –9.92%
5 years 0.00% –0.05% –0.09% –0.24% –0.47% –1.06% –1.95% –5.00% –10.00%
10 years –0.01% –0.05% –0.09% –0.23% –0.49% –0.99% –2.07% –4.96% –10.00%

Table 4. Pairwise comparisons of the regression coefficient variances across 150 trials of different sampling intervals.
Groupings of intervals with visually similar features are separated with dashed lines

Degradation Rate Sampling Interval

P Value from Levene’s Test for Difference in Variance
Within Regression Coefficients Across 150 Trials

1 month 3 months 6 months 9 months 1 year 2 years 3 years 4 years

0.25% 1 month — — — — — — — —
3 months <0.01 — — — — — — —

6 months <0.01 <0.01 — — — — — —
9 months <0.01 <0.01 0.08 — — — — —
1 year <0.01 <0.01 <0.01 0.35 — — — —

2 years <0.01 <0.01 <0.01 <0.01 0.02 — — —
3 years <0.01 <0.01 <0.01 <0.01 <0.01 0.32 — —
4 years <0.01 <0.01 <0.01 <0.01 <0.01 0.07 0.18 —
5 years <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.41 0.08

1% 1 month — — — — — — — —
3 months <0.01 — — — — — — —

6 months <0.01 <0.01 — — — — — —
9 months <0.01 <0.01 0.18 — — — — —
1 year <0.01 <0.01 <0.01 0.81 — — — —

2 years <0.01 <0.01 <0.01 <0.01 <0.01 — — —
3 years <0.01 <0.01 <0.01 <0.01 <0.01 0.40 — —

4 years <0.01 <0.01 <0.01 <0.01 <0.01 0.02 <0.01 —
5 years <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.24

5% 1 month — — — — — — — —
3 months <0.01 — — — — — — —

6 months <0.01 <0.01 — — — — — —
9 months <0.01 <0.01 0.65 — — — — —
1 year <0.01 <0.01 <0.01 0.02 — — — —

2 years <0.01 <0.01 <0.01 <0.01 <0.01 — — —
3 years <0.01 <0.01 <0.01 <0.01 <0.01 0.32 — —

4 years <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.03 —
5 years <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.23

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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degradation across the simulated degradation rates (shown
in Tables 1 and 2).

The third research question posed was whether different
time intervals of repeated sampling differ in terms of the
consistency with which they recover the true lot degrada-
tion rate. The answer to this research question is ‘‘yes’’:
Time intervals did differ in terms of the consistency with
which they estimated the degradation rate in the lot.
Greater consistency (ie, lower variance in the estimated
degradation rate) would imply more confidence in the
predicted degradation rate.

Table 4 reports the results of pairwise comparisons of the
variances for the standardized regression coefficients taken
from regressions over the first 10-year period for 150 trials
of each sampling interval and linear degradation rates of
0.25%, 1.0%, and 5.0%. An informal visual inspection of
the table suggested that rough groupings of testing time
intervals displayed similar characteristics. Based on the
pairwise comparisons of the variance in regression coeffi-
cients, the following time interval groupings emerged:
Group 1: 6 months, 9 months, and 1 year; Group 2: 2 years
and 3 years; and Group 3: 4 years and 5 years. These

Figure 3. An example linear regression over 10 years for 6-month sampling intervals applied to an underlying exponential rate of
5.0%

Table 5. Number of times simulation failed to detect degradation in 150 trials over 15 years
for various sampling intervals and true nonlinear degradation rates

Degradation Rate

Sampling Interval –0.01% –0.05% –0.1% –0.25% –0.5% –1% –2% –5% –10%

1 month 20 0 0 0 0 0 0 0 0
3 months 48 8 1 1 0 0 0 0 0
6 months 86 18 9 1 0 0 0 0 0
9 months 109 25 10 2 0 0 0 0 0
1 year 116 36 20 4 0 0 0 0 0
2 years 131 77 40 11 3 0 0 0 0
3 years 131 80 52 20 3 1 0 0 0
4 years 140 107 73 30 9 1 0 0 0
5 years 138 97 73 23 6 0 0 0 0
10 years 146 131 108 67 38 6 0 0 0
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groupings are more pronounced in the 1.0% and 5.0%
degradation rate contexts and suggest that there are simi-
larities in consistency among the time intervals within the
same group. They also suggest that some gains in reliability
can be expected as the group number decreases. Omitted
from the table, the time intervals of 1 month, 3 months,
and 10 years produced unique reliability patterns and were
not amenable to grouping with other time intervals.

Additional Analysis
As discussed, the primary research questions were answered
using PPE lots that degrade in a linear fashion. Given the
possibility that PPE degradation can be nonlinear, an ex-
ponential function was also used to set the degradation
curve over time, and linear regressions were performed to
predict a rate of degradation. Figure 3 depicts the results of
this process for a particular trial.

Tables 5 and 6 report the same results as Tables 2 and 3,
but with exponential degradation rates. The similar results
suggest that degradation can still be detected and that
similar patterns in sampling intervals hold for nonlinear
degradation.

Discussion

The fundamental purpose of stockpile quality assurance is
to detect potential problems with the stored supplies arising
from degradation, ideally before users are put at risk.
Stockpile quality assurance programs must balance econ-
omy with the need for quality assurance. Over-testing can
also lead to excessive discarding of relatively good PPE lots
due to random sampling variability and, thus, can prove
expensive and potentially wasteful, in both the costs of
performing the tests and the number of PPE units used in
the tests.

By contrast, in a well thought out quality assurance pro-
cess, the costs associated with the early disposal and frequent

replacement of stockpiled equipment can be balanced
against the costs of testing, while providing adequate ev-
idence that stockpiled equipment will provide the ex-
pected level of protection when needed. The current study
has shown that well-designed periodic testing schemes can
detect degrading product in stockpiles before tolerable
limits are exceeded, allowing better replacement planning
in stockpile management.

With appropriate care, a stockpile quality tracking
scheme—incorporating both current and prior testing
results—could provide continued assurance of stockpile
performance, improving confidence and economy over a
single sample of LQAS testing results. The simulation
presented here shows the ability of one such evaluation
protocol. In many cases, trends observed in quantitative test
results could be incorporated into continuing stockpile
evaluations. Simulations such as the ones presented here
could incorporate observed real-world degradation rates to
further refine sampling rates and criteria. For instance,
criteria could be developed to identify lots with testing
results that significantly differ from the average, potentially
allowing identification of poor storage conditions or other
issues. A wide variety of PPE would need to be covered by a
comprehensive stockpile monitoring protocol, and our
work demonstrates that it is possible to develop such
guidelines.

Conclusions

In this article and our previously published article,27 we
sought to provide evidence to determine if stockpiled PPE
quality can be reasonably estimated by testing a single
sample, to determine if repeated sampling can detect deg-
radation, and to provide some initial guidance to stockpile
managers in choosing between possible sample sizes and
sampling intervals as they consider testing stockpiled PPE.
The current study focused on determining the reliability
of different time intervals in recovering rates of PPE lot

Table 6. Number of times simulation failed to detect degradation in 150 trials over 5 years for various
sampling intervals and true nonlinear degradation rates

Degradation Rate

Sampling Interval –0.01% –0.05% –0.1% –0.25% –0.5% –1% –2% –5% –10%

1 month 105 33 10 2 0 0 0 0 0
3 months 135 96 52 11 1 0 0 0 0
6 months 142 106 74 35 17 4 0 0 0
9 months 146 124 100 72 36 3 0 0 0
1 year 144 123 110 63 18 4 0 0 0
2 years 147 137 118 95 56 23 4 0 0
3 years 147 148 137 114 93 57 31 0 0
4 years 148 146 131 116 74 52 10 0 0
5 years 148 140 130 102 73 26 6 0 0
10 years 150 150 150 150 150 150 150 150 150
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degradation. It was found that degradation can be seen
through trends in repeated sampling over time. Time in-
tervals, other than 1 month, 3 months, and 10 years, were
broken into groups in terms of how reliably the actual
degradation rates were predicted. Group 1—6 months, 9
months, and 1 year—was comprised of intervals that were
similar and had the best reliability in recovering the true
degradation rates, while Group 2 had less reliability and
Group 3 had the least.

It is recognized that stockpile resource availability, the
volume of PPE at individual stockpiles, and the number of
lots per manufacturer/model can vary widely, and these
parameters may heavily influence the time interval options
appropriate for individual stockpiles. As such, the conclu-
sions provided are not recommendations or guidelines,
but rather information and tools to help inform stockpile
managers when developing plans for testing the quality of
their stockpiles. It is also recognized that the administration
of an LQAS for stockpiled PPE can be costly and time
consuming. However, the alternative—replacing massive
amounts of expired, unused, and potentially good quality
PPE—will be even more costly in many cases.
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