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ABSTRACT
Endocrine disrupting chemicals (EDCs) pose a public health risk through disruption of normal biological
processes. Identifying toxicoepigenetic mechanisms of developmental exposure-induced effects for EDCs,
such as phthalates or bisphenol A (BPA), is essential. Here, we investigate whether maternal exposure to
EDCs is predictive of infant DNA methylation at candidate gene regions. In the Michigan Mother-Infant
Pairs (MMIP) cohort, DNA was extracted from cord blood leukocytes for methylation analysis by
pyrosequencing (n = 116) and methylation changes related to first trimester levels of 9 phthalate
metabolites and BPA. Growth and metabolism-related genes selected for methylation analysis included
imprinted (IGF2, H19) and non-imprinted (PPARA, ESR1) genes along with LINE-1 repetitive elements.
Findings revealed decreases in methylation of LINE-1, IGF2, and PPARA with increasing phthalate
concentrations. For example, a log unit increase in SDEHP corresponded to a 1.03 [95% confidence
interval (CI): ¡1.83, ¡0.22] percentage point decrease in PPARA methylation. Changes in DNA methylation
were also inversely correlated with PPARA gene expression determined by RT-qPCR (r = ¡0.34, P = 0.02),
thereby providing evidence in support of functional relevance. A sex-stratified analysis of EDCs and DNA
methylation showed that some relationships were female-specific. For example, urinary BPA exposure was
associated with a 1.35 (95%CI: ¡2.69, ¡0.01) percentage point decrease in IGF2 methylation and a 1.22
(95%CI: ¡2.27, ¡0.16) percentage point decrease in PPARA methylation in females only. These findings
add to a body of evidence suggesting epigenetically labile regions may provide a conduit linking early
exposures with disease risk later in life and that toxicoepigenetic susceptibility may be sex specific.
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Introduction

Endocrine disrupting chemicals (EDCs) are ubiquitous in mod-
ern society due to their widespread use in consumer products
(e.g., food and beverage containers), personal care products
(e.g., lotion), and medical supplies (e.g., plastic tubing). Phtha-
lates and bisphenol A (BPA) are two of the most commonly
studied EDCs, and both human and animal studies suggest
these chemicals can disrupt normal biological processes [1].
BPA can impact endocrine function by acting as an estrogenic
[2] and anti-androgenic compound [3]. In addition, BPA and
some phthalates can alter the thyroid hormone balance [4],
which can contribute to metabolic dysfunction in adults [5].
While exposure at any life stage may be impactful, the develop-
ing human fetus is particularly vulnerable to EDC exposure as
this is a critical period of rapid growth, and perturbations dur-
ing this time can have lasting effects on disease susceptibility
[6]. To date, the exposure-induced phenotypes reported in the
literature, with regard to BPA and phthalates, have been incon-
sistent with the direction of association differing by population,
age, and sex [7]. Nevertheless, multiple cohort studies have

found that prenatal exposures to these toxicants are associated
with growth-related outcomes [8–11]. A growing body of ani-
mal data bolsters these epidemiological findings. Specifically,
studies in rodents have demonstrated that perinatal exposure
to BPA is associated with persistent changes in body weight,
food intake or preference, and hormone levels [12–16]. There-
fore, with a global obesity epidemic as a backdrop, it is impera-
tive to identify aberrant exposure-induced programing events
that have the potential to shape metabolic outcomes later in life.

Epigenetic modifications such as DNA methylation are mitot-
ically heritable alterations capable of modulating gene expression
without changing the underlying DNA sequence [17]. As such,
DNA methylation is at the interface of genetics and the fetal
environment with the ability to act as an adaptive layer of regu-
latory control for gene expression and retrotransposon repres-
sion [18,19]. Further, evidence suggests that toxicoepigenetic
changes can occur in response to BPA and phthalates [20].
Using the viable yellow agouti mouse model, we have demon-
strated that perinatal BPA exposure alters coat color distribution
with associated shifts in DNA methylation profiles in the
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offspring [21,22]. Observations from human cohort studies sug-
gest BPA can influence epigenetic programming of fetal liver
enzymes [23] and imprinted genes [24]. Interestingly, perinatal
BPA-induced epigenetic effects are commonly sex specific [25]
and linked to DNA methylation changes at a number of loci
including genes involved in liver beta oxidation [26], energy
homeostasis [27], and growth and metabolism [24,28]. Maternal
exposure to phthalates averaged across pregnancy has been
found to be inversely associated with methylation profiles of
retrotransposons Alu and LINE-1 in a population of Mexican-
American children [29]. Studies with the ELEMENT Mexico
City birth cohort also found maternal phthalate exposure in the
third trimester is associated with altered methylation of H19
[24], which is involved in body composition and growth [30].
Given the growing evidence demonstrating the toxicoepigenetic
potential of EDCs along with the potential developmental contri-
bution to metabolic-related disease risk, there exists a clear need
to identify molecular biomarkers of exposure. Identification of
EDC sensitive epigenetic biomarkers will aid in elucidating the
developmental origins of metabolic diseases. Therefore, using a
biologically accessible source of surrogate DNA and RNA, the
goal of this study was to determine whether first trimester
maternal exposures to EDCs are predictive of newborn DNA
methylation and whether DNA methylation is associated with
gene expression levels at growth and metabolism-related candi-
date regions.

Methods

Study population

Women were recruited between 2010 and 2015 during their
first trimester of pregnancy as part of the Michigan Mother
Infant-Pairs (MMIP) project, an ongoing birth cohort. Prospec-
tive participants were informed of the study during their first
prenatal visit at a University of Michigan clinic, and were eligi-
ble if they were 18 years of age or older, conceived naturally,
and had a singleton pregnancy. Women provided spot urine
and venous blood samples during their first trimester prenatal
visit (8–14 weeks). Infant cord blood was collected at time of
birth. The University of Michigan Medical School Institutional
Review Board approved this study, and all women provided
written informed consent prior to participation.

Phthalate metabolite and BPA measurement

Spot urine samples were collected into polypropylene urine col-
lection containers, aliquoted into glass vials, and frozen at ¡80�C
until analysis. Urinary BPA (56 out of the cohort of 116) and
nine phthalate metabolites (109 out of the cohort of 116), com-
prising monoethyl phthalate (MEP), mono-n-butyl phthalate
(MnBP), monoisobutyl phthalate (MiBP), monobenzyl phthalate
(MBzP), mono-3-carboxypropyl phthalate (MCPP), mono-2-
ethylhexyl phthalate (MEHP), mono-2-ethyl- 5-hydroxyhexyl
phthalate (MEHHP), mono-2-ethyl-5-oxohexyl phthalate
(MEOHP), and mono-2-ethyl-5-carboxypentyl phthalate
(MECPP), were measured at NSF International in two batches
(Ann Arbor, MI) using isotope dilution–liquid chromatography–
tandem mass spectrometry (ID–LC–MS/MS) as previously

described [31]. Summary measures for parent compounds di-(2-
ethylhexyl) phthalate (SDEHP) and dibutyl phthalate (SDBP)
for each sample were calculated by dividing their respective indi-
vidual metabolite concentrations by their molar mass and sum-
ming them. The SDEHP measure comprised MEHP, MEHHP,
MEOHP, and MECPP, while the SDBP measure comprised
MnBP and MiBP. Specific gravity (SG) was measured using a
handheld digital refractometer (Atago Co., Ltd., Tokyo, Japan) at
the time of sample analysis. Values below the limit of detection
(LOD) were replaced with LOD/x2. While the maternal partici-
pants recruited in the second half of the MMIP study had total
urinary BPA measured at NSF International, the participants in
the first half of the study had unconjugated plasma BPA (n = 60
out of the cohort of 116) measured in plasma at the Wadsworth
Center (Albany, NY) as previously described [32]. Plasma BPA
processing was performed following collection and analysis meth-
ods developed and validated by four independent laboratories
[33]. The geometric mean and standard deviation for BPA con-
centrations measured in the two matrices were similar (Table 1);
however, because no subject had both matrices analyzed, we have
no way of doing a head-to-head comparison. Therefore, plasma
BPA and urinary BPA were considered distinct exposure meas-
urements and not one combined exposure measurement.

Data collection for covariates and potentially confounding
variables

The infant’s sex, gestational age, and birth weight as well as
maternal pre-pregnancy weight, height, and age were taken
from the medical records. Maternal pre-pregnancy weight and
height were used to calculate maternal body mass index (BMI).
Self-reported ethnicity, maternal smoking status, as well as
household income were collected via survey.

DNA isolation and methylation analysis

Infant cord blood was collected into Paxgene Blood DNA and
RNA tubes (PreAnalytix) at the time of birth and stored at
¡80�C until processing. Total genomic DNA was isolated using
the Paxgene Blood DNA kit. Genomic DNA was bisulfite con-
verted using the EZ-96 DNA Methylation Kit (Zymo). Briefly,
sodium bisulfite was added to approximately 500 ng of genomic
DNA, converting unmethylated cytosines to uracil, which are
replaced with thymine during PCR; methylated cytosines
remain unchanged [34]. For this study, we selected imprinted
(IGF2, H19) and non-imprinted (PPARA, ESR1) genes along
with LINE-1 repetitive elements as potential candidate regions
of epigenetic lability. Given its prevalence across the genome,
LINE-1 can be used as a surrogate for global DNA methylation
levels [35]. Apart from LINE-1, all of the other interrogated
genes play a role in metabolism, growth, or development.
Insulin-like growth factor II (IGF2) and H19 are well-charac-
terized imprinted genes, in which parent-of-origin monoallelic
expression is involved in the regulation of body composition
and growth [30,36–38]. PPARA is a non-imprinted gene that
encodes the peroxisome proliferator-activated receptor alpha
(PPAR-a) protein, a nuclear receptor that regulates fatty acid
metabolism [39–41]. ESR1 is a non-imprinted gene that enco-
des estrogen receptor alpha (ER-a), a transcription factor
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involved in regulation of energy homeostasis [42]. The gene-
specific PCR and pyrosequencing primers and conditions for
the target regions are listed in Supplemental Table 1. PCR
amplification was performed after bisulfite conversion using
HotStarTaq master mix (Qiagen), forward primer (50 pmol),
and reverse biotinylated primer (50 pmol) in a 30 ml reaction.
PCR fragments were analyzed by gel electrophoresis or auto-
mated capillary electrophoresis using the Qiaxcel Advanced
System (Qiagen). DNA methylation quantification of CpG sites
was performed using pyrosequencing on a PyroMark ID instru-
ment (Qiagen). To determine percent methylation, PyroMark
software calculated the fraction of methylated cytosines (%mC)
among the total sum of methylated and unmethylated cyto-
sines. For quality assurance, all pyrosequencing plates included
0, 50, and 100% methylated bisulfite converted human control
DNA (Qiagen), as well as at least one no DNA template con-
trol. A subset of the samples from every 96-well plate was run
in technical duplicate to calculate a coefficient of variation
(CV) and if the average %CV was greater than 5% the plate was
repeated.

Real-time quantitative PCR (RT-qPCR)

RNA was extracted from whole cord blood samples using
the Paxgene Blood RNA kit (PreAnalytix). RNA concentra-
tion and purity were checked using a NanoDrop 2000 spec-
trophotometer (Thermo Scientific, Wilmington, DE).
Complementary DNA (cDNA) synthesis was performed on
1 mg RNA template for each sample with the Bio Rad
iScript cDNA Synthesis kit (Hercules, CA) according to

manufacturer’s instructions. Each cDNA sample was diluted
1:2 and added to a mixture of gene-specific forward and
reverse primer, nuclease-free water, and iQ SYBR Green
Supermix followed by 2-step PCR + melt detection on a
Bio-Rad CFx96 system (Hercules, CA) using the following
parameters: one cycle of 95�C for 3 minutes, followed by 45
cycles of [95�C for 10 seconds, 55�C for 30 seconds, plate
read], and finally one cycle of 95�C for 10 seconds. The
melt curve for each plate was 65�C - 95�C; 5�C increment
for 5 seconds, with plate read at each temperature. For RT-
qPCR analysis, individual samples were run in triplicate for
PPARA and three housekeeping genes [Beta-actin (B-actin),
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and
Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase
Activation Protein Zata (YWHAZ)]. In addition to house-
keeping genes, an inter-plate control and genomic DNA
control were included to improve quality assurance and
facilitate the calculation of relative expression using the
2¡DDCt method [43]. The gene-specific primer sets used and
their respective literature sources are listed in Supplemen-
tary Table 2. Primer pair specificity for all designed primers
was checked using the NCBI Primer-BLAST online tool
(https://www.ncbi.nlm.nih.gov/tools/primer-blast/).

Statistical methods

DNA methylation analysis was conducted using the average
methylation value for all measured CpGs for each candidate
gene. To adjust for heterogeneity in variance, BPA and phthal-
ate were ln-transformed prior to regression analysis. The

Table 1. Population statistics.

n % mean (SD) min max

Child’s Sex Male 62 53
Female 54 47

Race/Ethnicity Non-Hispanic White 103 89
Hispanic 3 3
African American 2 2
Multiracial 1 1
Native American 1 1
Asian 4 3
Pacific Islander 2 2

Gestational age (days) 116 278 [7] 252 292
Birth weight (g) 116 3510 (445) 2270 4685
Maternal pre-pregnancy BMI 110 25.28 19.05 48.41
Maternal age (years) 116 31 [4] 22 42
Maternal smoking Did not smoke during pregnancy 94 81

Did smoke during pregnancy 10 9
Missing 12 10

Family income ($) <49,999 28 24
50,000 - 99,999 44 38
>100,000 41 35
Missing 3 3

Specific gravity 109 1.02 (0.01) 1.00 1.03
Bisphenol A (BPA) (ng/ml)a Urine 56 0.57 (4.72) 0.04 4.76

Plasma 60 0.78 (5.47) 0.14 96.43
Phthalates (ng/ml)a Monobenzyl phthalate (MBzP) 109 3.49 (3.78) 0.25 78.8

Mono(3-carboxypropyl) phthalate (MCPP) 109 1.58 (4.18) 0.35 351.85
Monoethyl phthalate (MEP) 109 22.03 (4.14) 1.28 1598.00

SPhthalates (nMol)a SDEHP Metabolites 109 0.09 (0.11) 0.005 0.75
SDBP Metabolites 109 0.08 (0.09) 0.002 0.43

DNA methylation (%) LINE1 113 79.97 (3.22) 69.59 92.24
H19 109 55.60 (4.94) 45.75 84.82
IGF2 102 47.85 (3.68) 38.78 61.76
ESR1 92 4.31 (0.96) 0.00 7.42
PPARA 100 17.29 (2.66) 9.29 24.98

aPhthalates and BPA are presented as geometric mean (SD).
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distribution of ln-transformed EDCs was examined across cate-
gories of sociodemographic and perinatal characteristics using
simple linear regression for continuous variables and ANOVA
with post-hoc Tukey HSD for categorical variables to identify
potential confounders. To adjust for urine dilution in linear
regression analyses, urinary SG was included as a covariate in
models using continuous urinary EDC variables, as we have
done previously [31]. In fully adjusted models, the child‘s sex,
maternal pre-pregnancy body mass index (BMI) and maternal
age were included as potential confounders based on a priori
expectations informed by previous studies and current litera-
ture. This method of analysis was used to evaluate the relation-
ship between EDC exposure and DNA methylation. Other
covariates that were considered included household income
and smoking status. When income was included in the model,
the effect sizes did not change appreciably (>10%) and there-
fore was not included in the final model. Similarly, smoking
status was not included because the majority of women were
non-smokers. The results of the multivariable linear regression
model for DNA methylation are presented as an absolute per-
centage point change in DNA methylation outcome [95% con-
fidence interval (CI)] per log unit increase in continuous EDC
value. PPARA relative expression values were log-normally dis-
tributed and ln-transformed. Spearman’s rank correlation test
was used to evaluate the relationship between PPARA methyla-
tion and PPARA gene expression. Given that the literature
suggests EDC-induced effects may be sexually dimorphic, sex-
stratified associations between exposure and methylation
outcomes were also investigated.

Results

Demographics, exposure distribution, and DNA
methylation

Table 1 summarizes maternal and infant population charac-
teristics, maternal first trimester EDC levels, and infant
cord blood DNA methylation. Women in the present analy-
sis represent 116 participants in the MMIP cohort study.
This population of women was 31 years of age on average,
mostly white, slightly overweight, and non-smoking. The
average infant birth weight and gestational age was 3510
grams and 39.7 weeks, respectively. Overall, EDC measure-
ments varied widely across this population. Plasma BPA
had a wider range (0.14 to 96.43 ng/ml) relative to urinary
BPA (0.04 to 4.76 ng/ml), while the geometric means were

comparable [0.57 ng/ml (SD 4.72) and 0.78 ng/ml (5.47),
respectively]. Measured levels of MBzP, MCPP, and MEP
ranged from 0.25 to 78.8 ng/ml, 0.35 to 351.85 ng/ml, and
1.28 to 1,598.00 ng/ml, respectively. After conversion to the
sum of their phthalate metabolites, the geometric mean of
SDEHP and SDBP were similar [0.09 nMol (SD 0.11) and
0.08 nMol (0.09), respectively]. The inter-individual varia-
tion across CpG loci for each of the candidate genes [ESR1
(4 sites), PPARA (2 sites), H19 (4 sites), IGF2 (3 sites), and
LINE-1 (4 sites)] was consistent; therefore, average methylation
level across CpGs for each gene was used in all analysis. The
mean DNA methylation of LINE-1, ESR1, IGF2 PPARA, and
H19 was 79.97 (SD 3.22), 4.31 (0.96), 47.85 (3.68), 17.29 (2.66),
and 55.60 (4.94), respectively. The mean DNA methylation of
LINE-1, ESR1, IGF2 or PPARA did not significantly vary by
infant sex (D relative to males, P value for t test; D = ¡0.07, P =
0.91; D = ¡0.13, P = 0.52; D = 1.32, P = 0.08; D = 0.22, P =
0.68, respectively). However, the mean DNA methylation of H19
was 2.53 percentage points higher (P = 0.01) in females relative
to males.

Maternal EDC levels are related to cohort-wide infant DNA
methylation

Several significant relationships were observed between mater-
nal first trimester EDC levels and infant DNA methylation pro-
files, adjusting for child’s sex, maternal pre-pregnancy BMI,
maternal age, and urinary SG (Table 2). Interestingly, all of the
significant associations were observed for phthalate metabo-
lites, and these associations were all negative. For instance, a
log unit increase in MCPP was associated with a 0.60 (95%CI:
¡1.14, ¡0.06) percentage point decrease in LINE-1 methyla-
tion and a 0.83 (95%CI: ¡1.52, ¡0.15) percentage point
decrease in IGF2 methylation. Similarly, MBzP, MCPP and
SDEHP were each negatively associated with PPARA methyla-
tion. For example, a log unit increase in SDEHP corresponded
to 1.03 (95%CI: ¡1.83, ¡0.22) percentage point decrease in
PPARA methylation with similar associations observed for
MBzP and MCPP (Table 2). Similar to the direction of effect
for the urinary phthalate metabolites, there was a borderline
significant inverse relationship between urinary BPA and ESR1
methylation [¡0.38 (95%CI: ¡0.78, 0.01)]. However, BPA
measured in either urine or plasma was largely not associated
(P > 0.05) with all other candidate gene nor LINE-1
methylation.

Table 2. Absolute change in infant DNA methylation per log unit increase in maternal EDC exposure.

LINE1 H19 IGF2 PPARA ESR1

b 95%CI P value b 95%CI P value b 95%CI P value b 95%CI P value b 95%CI P value

MBzP 0.12 t0002¡0.49, 0.73 0.7 0.44 t0002¡0.55, 1.44 0.38 ¡t00020.34 t0002¡1.13, 0.45 0.4 t0002¡0.62 t0002¡1.22, t0002¡0.02 0.04� 0.03 t0002¡0.20, 0.26 0.79
MCPP t0002¡0.60 t0002¡1.14, t0002¡0.06 0.03� t0002¡0.42 t0002¡1.34, 0.50 0.36 t0002¡0.83 t0002¡1.52, t0002¡0.15 0.02� t0002¡0.83 t0002¡1.38, t0002¡0.28 0.004� t0002¡0.02 t0002¡0.23, 0.19 0.85
MEP t0002¡0.14 t0002¡0.65, 0.37 0.59 t0002¡0.08 t0002¡0.90, 0.74 0.85 t0002¡0.51 t0002¡1.13, 0.10 0.1 0.17 t0002¡0.32,0.66 0.49 0.13 t0002¡0.05, 0.32 0.15
SDEHP t0002¡0.61 t0002¡1.43, 0.21 0.14 0.53 t0002¡0.83, 1.90 0.44 t0002¡0.98 t0002¡2.12, 0.17 0.09 t0002¡1.03 t0002¡1.83, t0002¡0.22 0.01� t0002¡0.07 t0002¡0.53, 0.22 0.69
SDBP t0002¡0.64 t0002¡1.35, 0.08 0.079 0.02 t0002¡1.15, 1.18 0.98 t0002¡0.24 t0002¡1.53, 0.68 0.61 t0002¡0.02 t0002¡0.75, 0.70 0.95 0.1 t0002¡0.17, 0.37 0.47
Plasma
BPA

0.19 t0002¡0.34, 0.72 0.48 0.34 t0002¡0.06, 0.75 0.097 t0002¡0.02 t0002¡0.59, 0.56 0.95 0.11 0.34, 0.56 0.63 0.08 t0002¡0.06, 0.22 0.28

Urine
BPA

0.55 t0002¡0.11, 1.22 0.1 1.08 t0002¡0.51, 2.67 0.18 t0002¡0.22 t0002¡1.22, 0.77 0.65 0.05 t0002¡0.65, 0.75 0.88 t0002¡0.38 t0002¡0.78, 0.01 0.05

�P<0.05, adjusted for specific gravity, maternal BMI, maternal age and child’s sex.
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Infant methylation patterns are correlated with candidate
gene expression

Due to the observed hypomethylation in infant PPARAmethyl-
ation with increasing concentrations of several maternal
phthalate metabolites, RT-qPCR was performed to determine if
PPARA methylation corresponded with altered levels of gene
expression. A subset of MMIP cohort RNA samples (n = 50)
was available for expression analysis and also had a DNA meth-
ylation value that met stringent quality assurance standards.
Figure 1 depicts a plot of the unadjusted DNA methylation and
gene expression data along with the associated r and P values
for the Spearman Rank Correlation Test. DNA methylation lev-
els at PPARA inversely correlate with PPARA gene expression
(r = ¡0.34, P = 0.02).

Sex-stratified analysis reveals sex-specific EDC effects

In sex-stratified analyses sex-specific BPA-related effects were
observed for multiple gene regions. Urinary BPA was associ-
ated with a 1.35 (95%CI: ¡2.69, ¡0.01) percentage point
decrease in IGF2 methylation and a 1.22 (95%CI: ¡2.27,
¡0.16) percentage point decrease in PPARA methylation in

females (Table 3a) but not males (Table 3b). Female-specific
inverse associations were also observed between MEP and IGF2
as well as MCPP and ESR1 (Table 3a). In contrast to the
female-specific inverse associations, plasma BPA and urinary
BPA in males tended to be positively related to LINE-1 and
ESR1 (plasma BPA only), but these relationships were only
borderline significant (Table 3b).

Discussion

Recently, considerable emphasis has been placed on determin-
ing the contribution of early life exposures to the rising tide of
obesity [44]. However, there have been few epidemiological
studies focused on assessing the epigenetic impact of exposures
to EDCs in early pregnancy within the context of growth and
metabolic programming. This may in part be due to the diffi-
culty of recruiting women in the first trimester of pregnancy
and highlights a unique feature of the MMIP cohort. Since
EDCs can profoundly impact developmental pathways during
critical windows of development and potentially lead to adult
disease, identifying differential epigenetic profiles that act not
only as biomarkers of exposure but also as potential markers of
disease susceptibility is of great importance.

Figure 1. Correlation between PPARA gene expression and PPARA DNA methylation in infant cord blood. The unadjusted data are plotted, and the associated r and p val-
ues for the Spearman Rank Correlation Test are in upper right. Here, we show that PPARA expression is inversely correlated with PPARA methylation.
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Using a hypothesis driven candidate gene approach focused
on genes related to growth and development as well as the
repetitive element, LINE-1, we observed hypomethylation of
LINE-1, IGF2, and PPARA with increasing phthalate concen-
trations. Two individual phthalate metabolites (MBzP and
MCPP) as well as the sum of DEHP metabolites were inversely
associated with PPARA methylation, and DNA methylation
was inversely correlated with PPARA gene expression, provid-
ing evidence of functional relevance. Additionally, a sex-
stratified analysis of EDCs and DNA methylation showed that
some relationships, including the association of urinary or
plasma BPA with methylation, were female-specific.

The negative relationship observed between PPARA methyl-
ation and SDEHP is particularly notable. In addition to being
one of the most commonly identified EDCs in the US popula-
tion [45], observed changes in DNA methylation and expres-
sion in adult rats resulting from in utero SDEHP exposure
have raised speculation that the PPAR pathway, and specifically
PPARA, may participate in epigenetic disruption [46]. The
findings from the present study support this hypothesis, as
human PPARA promoter was inversely associated with
SDEHP levels. Moreover, epigenetic modification in this region
was also correlated with PPARA expression in infant cord
blood DNA. Given that PPARA is a master regulator of lipid
metabolism in the liver and predominant PPAR subtype in this
organ [47], the identification of a functionally relevant region
measured in a surrogate easily obtainable matrix would be
extremely valuable as a biomarker, provided it reflects the pro-
file of the liver. Other studies have found that rats perinatally
exposed to BPA displayed increased PAPRA activation in the
liver [48], but this group did not evaluate PPARA expression
simultaneously in blood. Moving forward, studies investigating
PPARA expression should consider investigating matched tis-
sue specimens (e.g., liver and a bioavailable tissue) as well as
address the issue of cellular heterogeneity, which we did not

account for here. Together, these future studies will aid in
determining the biological relevance of our findings.

Our findings in a human birth cohort characterized for
EDC levels in maternal first trimester urine and blood adds
to a relatively sparse, but growing, body of data on prenatal
phthalate-induced epigenetic effects [20]. The finding that
MCPP had a consistent negative impact on 3 of the 5 can-
didate loci evaluated, including methylation patterns of the
imprinted gene IGF2 is consistent with the findings of
impact from phthalate exposure. A study with 196 women
from the Boston, MA area found first trimester MCPP had
an impact on epigenetic patterns of imprinted genes IGF2
and H19 in the placenta [49]. When the sum of all phtha-
lates or the sum of low molecular weight phthalates were
considered, both were found to be inversely associated with
IGF2 DMR methylation [49]. Findings from the present
study also revealed an inverse relationship between MCPP
and methylation of LINE-1 repetitive elements. Aberrant
repetitive element methylation patterns can impact genome
stability and gene expression [50], and previous reports
have suggested these repetitive loci are targets of develop-
mental phthalate exposure. For instance, increasing concen-
trations of MEP in early and late pregnancy in the
CHAMACOS cohort were found to be inversely associated
with Alu methylation in infant cord blood [29]. Zhao et al.
found that maternal third trimester levels of SDEHP were
inversely associated with LINE-1 measured in DNA col-
lected from pooled samples from 4 within individual pla-
cental biopsies [51]. Solomon et al. were recently the first
to assess epigenome-wide effects in humans from prenatal
phthalate exposure. Using the Infinium 450K BeadChip
they identified 27 differentially methylated regions (DMRs)
in infant cord blood of which more than half of the DMRs
were associated with SDEHP and some DMRs were found
in genes involved in endocrine function [52]. Taken

Table 3b. Absolute change in infant DNA methylation per log unit increase in maternal EDC exposure (males).

LINE1 H19 IGF2 PPARA ESR1

b 95%CI P value b 95%CI P value b 95%CI P value b 95%CI P value b 95%CI P value

MBzP 0.42 ¡0.41, 1.26 0.31 ¡0.05 ¡1.03, 0.94 0.93 0.01 ¡0.80, 0.82 0.98 ¡0.77 ¡1.58, 0.04 0.06 0.08 ¡0.33, 0.49 0.7
MCPP ¡0.41 ¡1.05, 0.24 0.21 ¡0.16 ¡0.98, 0.66 0.69 ¡0.18 ¡0.85, 0.48 0.58 ¡0.44 ¡1.20, 0.31 0.25 0.05 ¡0.28, 0.39 0.75
MEP ¡0.02 ¡0.69, 0.64 0.95 ¡0.06 ¡0.82, 0.70 0.88 0.27 ¡0.36, 0.89 0.4 0.44 ¡0.18, 1.05 0.16 0.22 ¡0.09, 0.53 0.16
SDEHP ¡0.83 ¡2.00, 034 0.16 0.02 ¡1.40, 1.44 0.98 ¡0.07 ¡1.27, 1.13 0.9 ¡0.79 ¡1.97, 0.39 0.18 ¡0.32 ¡0.93, 0.29 0.29
SDBP ¡0.50 ¡1.46, 0.47 0.31 ¡0.83 ¡1.93, 0.27 0.13 0.04 ¡0.87, 0.95 0.92 0.3 ¡0.68, 1.29 0.54 0.2 ¡0.26, 0.65 0.39
Plasma
BPA

0.55 ¡0.02, 1.11 0.06 0.42 ¡0.08, 0.91 0.09 ¡0.01 ¡0.50, 0.47 0.97 ¡0.15 ¡0.70, 0.40 0.59 0.18 ¡0.003, 0.37 0.05

Urine BPA 0.6 ¡0.04, 1.24 0.07 0.74 ¡0.17, 1.64 0.11 0.59 ¡0.37, 1.55 0.21 0.21 ¡0.46, 0.88 0.51 ¡0.46 ¡1.05, 0.13 0.12
�P<0.05 only when stratified; adjusted for specific gravity, maternal BMI, maternal age.

Table 3a. Absolute change in infant DNA methylation per log unit increase in maternal EDC exposure (females).

LINE1 H19 IGF2 PPARA ESR1

b 95%CI P value b 95%CI P value b 95%CI P value b 95%CI P value b 95%CI P value

MBzP ¡0.07 ¡0.99, 0.85 0.88 0.94 ¡0.81, 2.70 0.28 ¡0.56 ¡2.03, 0.92 0.45 ¡0.36 ¡1.30, 0.58 0.44 ¡0.11 ¡0.30, 0.08 0.26
MCPP ¡0.88 ¡1.84, 0.07 0.07 ¡0.55 ¡2.38, 1.28 0.55 ¡1.75 ¡3.11, ¡0.39 0.01 ¡1.12 ¡2.00, ¡0.25 0.01 ¡0.23 ¡0.42, ¡0.04 0.02�

MEP ¡0.24 ¡1.05, 0.56 0.54 ¡0.16 ¡1.70, 1.38 0.83 ¡1.32 ¡2.39, ¡0.24 0.02� ¡0.29 ¡1.08, 0.50 0.46 0.02 ¡0.14, 0.18 0.81
SDEHP ¡0.76 ¡2.05, 0.52 0.24 0.99 ¡1.42, 3.4 0.41 ¡1.86 ¡4.09, 0.37 0.1 ¡0.84 ¡2.14, 0.46 0.2 ¡0.16 ¡0.48, 0.16 0.32
SDBP ¡0.91 ¡2.03, 0.20 0.11 0.75 ¡1.37, 2.88 0.48 ¡0.45 ¡2.24, 1.33 0.61 ¡0.18 ¡1.30, 0.94 0.75 ¡0.13 ¡0.37, 0.12 0.31
Plasma
BPA

¡5.40 ¡2.21, 1.14 0.51 ¡1.19 ¡1.40, 1.01 0.74 ¡0.10 ¡2.13, 1.94 0.92 0.8 ¡0.32, 1.92 0.15 ¡0.05 ¡0.32, 0.22 0.7

Urine
BPA

¡0.46 ¡1.60, 0.67 0.41 ¡0.19 ¡3.48, 3.09 0.9 ¡1.35 ¡2.69, ¡0.01 0.05� ¡1.22 ¡2.27, ¡0.16 0.03� 0.11 ¡0.15, 0.36 0.38

�P<0.05 only when stratified; adjusted for specific gravity, maternal BMI, maternal age.
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together, the prenatal epigenomic landscape, from gene to
genome-wide, appears to be sensitive to several different
phthalates or phthalate mixtures.

Because it is well known that EDCs can have sexually dimor-
phic phenotypic effects, we also performed a sex-stratified anal-
ysis for DNA methylation. Interestingly, we found female-
specific EDC-induced effects, which were consistently negative.
Sex-specific BPA-induced epigenetic effects have been observed
previously in human cohorts [24] and rodent models [26–28].
In some instances the sexually dimorphic BPA-induced epige-
netic changes have been linked to metabolic phenotypes. For
example, Anderson et al. showed that BPA-induced epigenetic
effects in female mice mediated metabolic outcomes including
body weight and body fat [53]. Although the sex-specific find-
ings from the present study should be considered preliminary
in view of the small sample size, they highlight the need to
include both sexes in animal and human studies when evaluat-
ing EDC-related effects.

A logistical challenge for epidemiological studies is precisely
capturing and quantifying environmental exposures. Relating
infant cord blood DNA methylation changes to maternal EDC
levels in spot urine sample is one limitation of our study. How-
ever, while urinary EDC concentrations may vary throughout
pregnancy [54,55], it has been suggested that a single urinary
measurement may reasonably represent several months of
maternal exposure and thus potential fetal exposure [56]. By
contrast, a major strength of our study is the exposure assess-
ment of EDCs in the first trimester of pregnancy as this is a
critical window of sexual differentiation and a period when per-
turbation of normal and necessary epigenetic patterns is partic-
ularly impactful. Due to the number of comparisons made, we
note that the possibility of chance findings in our assessment of
the effect of early EDC exposures on candidate gene DNA
methylation cannot be ruled out. Finally, the potential biologi-
cal relevance of such small changes in DNA methylation to off-
spring health outcome remains to be elucidated; a recent
review of literature suggests that such small epigenetic changes
during critical windows of differentiation have the potential to
induce short and long term gene expression changes [57].

Conclusion

Results from this study further contribute to a growing body of
evidence suggesting that in utero exposure to EDCs can perturb
normal biological functions via the epigenome. The epigeneti-
cally labile regions described here, along with others yet to be
identified, may act as biomarkers of disease susceptibility if
they are linked to childhood or adult phenotypes in subsequent
studies. There is a great need to discover such biomarkers and
exploit them in an effort to break the cycle of intergenerational
obesity and metabolic disorders.
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