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A B S T R A C T

Background: Chemical biomarker concentrations are driven by complex interactions between chemical use
patterns, exposure pathways, and toxicokinetic parameters such as biological half-lives. Criteria to differentiate
legacy from current exposures are helpful for interpreting variation in age-based and time trends of chemical
exposure and identifying chemicals to which children are highly exposed. A systematic approach is needed to
study temporal trends for a wide range of chemicals in the US population.
Objectives: Using National Health and Nutrition Examination Survey (NHANES) data on measured biomarker
concentrations for 141 chemicals from 1999 to 2014, we aim to 1) understand the influence of temporal de-
terminants, in particular time trends, biological half-lives, and restriction dates on age-based trends, 2) sys-
tematically define an age-based pattern to identify chemicals with ongoing and high exposure in children, and 3)
characterize how age-based trends for six Per- and Polyfluoroalkyl Substances (PFASs) are changing over time.
Methods: We performed an integrated analysis of biological half-lives and restriction dates, compared dis-
tributions of chemical biomarker concentrations by age group, and then applied a series of regression models to
evaluate the linear (βage) and nonlinear (βage2) relationships between age and chemical biomarker levels.
Results: For restricted chemicals, a minimum persistence of 1 year in the human body is needed to observe
substantial differences between the less exposed young population and historically exposed adults. We define a
metric ( >/age age2

1
26.9 ) that identifies several phthalates, brominated flame retardants, pesticides, and metals

such as lead and tungsten as elevated and ongoing exposures in children. While a substantial reduction in
children's exposures was reflected in PFOS and PFOA, levels of PFNA and PFHxS in children were higher in
2013–2014 compared to those in 1999–2000.
Conclusions: Integrating a series of regression models with systemized stratified analyses by age group enabled
us to define an age-based pattern to identify chemicals that are of higher levels in children.

1. Introduction

Characterizing an individual's exposome requires understanding
their lifelong chemical exposures, which includes how chemical ex-
posures are changing over time and by age. Studies using population-
level chemical biomonitoring data have observed a variety of chemical-
specific time and age trends. Persistent chemicals such as poly-
chlorinated biphenyls (PCBs) tend to show a strong decline over time
and differentiated exposure patterns across life stages, which are linked
to chemical persistency and changes in legislation (Quinn and Wania,
2012; Xue et al., 2014). Relative to PCB exposures which derive mainly

from the diet, characterizing exposures to chemicals in consumer pro-
ducts, such as phthalates, are more complex, since these chemicals are
used in a range of products with varying usage patterns. As a result,
very different age-based and temporal patterns can be observed even
within the same chemical family. For instance, urinary concentrations
of mono-ethyl phthalate, mono-n-butyl phthalate, mono-benzyl phtha-
late, and metabolites of di(2-ethylhexyl) phthalate showed a decline,
whereas mono-isobutyl phthalate, mono(3-carboxypropyl) phthalate,
mono-carboxyoctyl phthalate, and mono-carboxynonyl phthalate in-
creased from 2001 to 2010, implying that the latter phthalates may be
substitutes for the former (Zota et al., 2014). Similar trends can be
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observed in biomonitoring data for Per- and Polyfluoroalkyl substances
(PFASs), such as perfluorooctane sulfonate (PFOS) and per-
fluorooctanoate (PFOA), where differences in population concentra-
tions manifested following restrictions in 2000–2002 (Calafat et al.,
2007; Kato et al., 2011). The exposure patterns of other PFASs from
treated consumer products (Trudel et al., 2008), water (Gyllenhammar
et al., 2018; Mondal et al., 2012), and food contamination (Schecter
et al., 2010) are not as well understood and evoke the need to study
how age-based trends for these substances are changing over time
(Gomis et al., 2017). While many studies have used biomonitoring data
to identify a variety of chemical-specific time and age trends, expanding
these analyses to a broader set of chemicals and chemical classes will
enable us to understand the drivers behind these age-based trends.

To better understand the relationship between chemical biomarker
levels and age, several mechanistic models have been developed to
investigate the potential determinants. These models have studied age
relationships for specific chemical classes such as PCBs (Quinn and
Wania, 2012; Ritter et al., 2011), dioxins (Jolliet et al., 2008), and
selected PFASs (Gomis et al., 2017; Wong et al., 2014), with most
considering dietary exposure pathways. These models have enabled the
identification of key potential determinants such as biological half-
lives, restriction dates, and change of intake with age as important
factors in understanding age-based trends. However, such models have
mostly been applied to dietary exposures for persistent chemicals and
require substantial amount of data on age-based exposure patterns,
chemical properties, and chemical usage. Such stipulations make a
systematic application across a broad set of chemical classes and ex-
posure pathways complex and challenging. Thus, an overarching sta-
tistical approach anchored in biomonitoring data would complement
mechanistic approaches by allowing us to screen age-based trends and
main determinants across a larger number of chemicals, chemical
classes and (even unknown) product usage to identify subpopulations at
risk of high exposure.

Compared to adults, children are particularly susceptible to toxicant
exposures due to factors such as higher metabolic rate (Shimokata and
Kuzuya, 1993; Speakman, 2005), rapid growth, development of organs
and tissues (Services 2012), and behaviors associated with normal de-
velopment such as crawling (Just et al., 2015), mouthing (Tsou et al.,
2015; Xu et al., 2010), and playing (Kumar and Pastore, 2007). For
example, higher concentrations of polybrominated diphenyl ethers
(PBDEs) in younger individuals were attributed to lifestyle and activity
differences (Sjödin et al., 2008). Due to their increased susceptibility, it
is imperative to identify chemicals to which children are highly ex-
posed. Comparing geometric means of chemical levels across age
groups enables the identification of chemicals that are higher in chil-
dren (Jl et al., 1994; Richter et al., 2009; Silva et al., 2004). Such ap-
proaches limited in adjusting for confounders, however, and they do
not inform the influence of potential determinants on age-based trends.
There is a need to integrate data on biological half-lives and restriction
dates with cross-sectional biomonitoring data to understand age pat-
terns and systematically identify ongoing exposures in children.

While progress has been made to characterize temporal trends for a
few chemical classes, an overarching screening approach has yet to be
developed to systematically study age-based and temporal trends of
biomarker data in context with temporal determinants such as half-lives
and restriction dates for a wide range of chemicals in the US population.
In this study, we therefore applied a systematic approach through a
series of regression models to characterize chemical specific age-based
patterns and identify highly exposed subpopulations for a broad set of
141 chemical biomarkers from a 1999–2014 sample of the US popu-
lation. More specifically, our objectives were to 1) understand the in-
fluence of temporal determinants on age-based trends, in particular
time trends, biological half-lives, and restriction dates, 2) systematically
define an age-based pattern of concern to identify chemicals of ongoing
and high exposures in the younger population, and 3) conduct a tar-
geted analysis of six PFASs to characterize how age-based trends of

these substances are changing over time.

2. Material and methods

The approach integrates four types of data: a large dataset of bio-
marker concentrations for multiple chemicals in a large sample of the
US population, the corresponding demographic factors for the studied
population, a dataset of human biological half-lives for the observed
chemicals, and a dataset describing the year and type of restrictions
imposed on the production, emission, sale, or use of products con-
taining these substances, if applicable.

2.1. Study population

Since 1999, the Centers for Disease Control (CDC) has conducted the
continuous National Health and Nutrition Examination Survey
(NHANES) to collect cross-sectional data on demographic, socio-
economic, dietary, and health-related characteristics in the US popu-
lation. For this analysis, we combined data from the chemical bio-
marker and demographic datasets between years 1999–2014 for an
initial number of 82,091 participants and 550 biomarkers. We then
excluded participants for which corresponding data on chemical bio-
markers do not exist (N=7149), resulting in a sample size of 74,942
study participants. On a chemical specific basis, we also excluded
participants with missing information on any of the following covari-
ates: age, NHANES cycles, sex, race/ethnicity, poverty income ratio,
cotinine levels, and urinary creatinine. These exclusion and inclusion
criteria are detailed in Fig. 1.

2.2. Chemical biomarker measurements

We define chemical biomarker as an indicator of environmental
exposure that can be measured in blood, serum, or urine. SI Table S1
presents brief descriptions of the laboratory techniques, while details of
the procedure can be assessed through their corresponding references.
We replaced all measurements below the limit of detection (LOD) with
the LOD divided by the square root of 2, as recommended by the CDC
(CDC, 2009) to produce reasonably unbiased means and standard de-
viations (Hornung and Reed, 1990). At times, NHANES identified a
problem of interference from molybdenum oxide that resulted in cor-
rected concentration of urinary cadmium recorded as 0 ng/mL (NCHS,
2005a, 2005b). Log-transforming such data would be undefined,
therefore such measurements were replaced with the LOD divided by
the square root of 2 if the participant's urinary cadmium level was
under the LOD, or otherwise excluded. We calculated detection fre-
quencies for each chemical biomarker (SI, Table S2) and excluded
biomarkers with detection frequencies of 50% or less (n=172). Across
the NHANES cycles, improvements in laboratory technology can
change the LOD and thus influence changes in detection frequencies by
NHANES cycle. To prevent such influence, we calculated detection
frequencies by NHANES cycle (SI, Table S3) for each chemical bio-
marker and excluded measurements that showed drastic changes in the
LOD (SI, Table S4) and detection frequencies over time (Fig. 1). For
instance, percentages of participants with PCB 196 measurements
above LODs for Cycle 2 and Cycle 3 are 37.8% and 86.7%, respectively,
and the LOD for Cycle 2 and Cycle 3 were 10.50 ng/g and 0.40 ng/g,
respectively. As such, measurements from Cycle 2 for PCB 196 were
excluded (SI, Fig. S1 and S2). Measurements from given cycles for all
PCBs, Dioxins, and Furans along with 2-(N-methyl-PFOSA) acetate, 2,4-
D, Paranitrophenol, and 1-pyrene (m=134,453) were therefore also
excluded based on this criteria (SI, Table S5). We also excluded bio-
markers that are not indicative of exposure (n=136). We preferred
lipid adjusted measurements for biomarkers indicated by 7- or 8-letter
NHANES codename ending in “L” or “LA,” respectively, for which
NHANES provided both lipid-adjusted and non-lipid adjusted mea-
surements, and thus excluded non-lipid adjusted chemical biomarkers

V.K. Nguyen et al. Environment International 122 (2019) 117–129

118



(n=79). Finally, transition from the early to recent NHANES cycles
resulted in differences in NHANES chemical codenames, which we
corrected to reflect a unique codename for each biomarker (n=22).
The final dataset for analysis consisted of 141 chemical biomarkers
from 16 different classes.

2.3. Half-lives of organic and inorganic substances in humans

The biological half-life of a chemical is an important factor to ex-
plain differences in chemical biomarker levels across the life-stages
(Quinn and Wania, 2012). To determine a set of relevant half-lives, we
first developed a table of NHANES codenames and corresponding CAS
No. for each chemical biomarker (SI, Table S7). We then matched
metabolite biomarkers to their corresponding parent compounds. For
biomarkers that are metabolites of several parent compounds, we de-
veloped the composite half-life by summing the half-life of the meta-
bolite with the maximum half-life of the corresponding parent sub-
stances. This assumes that the parent substance or compartment with
the highest persistence drives the persistency of the metabolic bio-
marker. We searched a database of empirically-based whole body
elimination half-lives and identified 36 chemicals on the list (Arnot
et al., 2014). For an NHANES chemical biomarker that is a mixture of
two substances, i.e. m-/p-Xylene, we applied the average of the sub-
stance's half-life. Thirty six of the 118 organic chemicals in this study
have empirically-based whole body elimination half-lives available in
the OECD QSAR ToolBox (https://www.qsartoolbox.org/). For organic
chemicals that are not in the empirical database (h=82), the total
elimination (intrinsic) half-life was predicted using a screening-level
Quantitative Structure-Activity Relationship (QSAR) (Arnot et al.,
2014). The model is a fragment-based QSAR that was developed and
validated following OECD QSAR guidance (OECD, 2004, 2014). Since
estimated persistency of PFASs showed high variability with estimates
up to 220 years, empirically based half-lives (h=6) were selected from
literature for this chemical class (SI, Text S1 and Table S8). Since these
QSARs are only applicable to organic substances, we identified the half-
lives of inorganic substances in humans through a review (SI, Table S9).
In selecting literature half-lives (h=23), we preferred 1) human half-
lives over those from animals, 2) half-lives from animal species that are
anatomically similar to humans if human data were not available, and

3) slower elimination kinetics over rapid kinetics. We selected the
maximum half-life for 1) inorganic chemicals that have multiple half-
lives for a given biological compartment, and for 2) chemicals with
half-lives available for multiple biological compartments, e.g. body,
bones, blood, or lungs. SI Table S12 tabulates the methods used to find
or estimate half-life for each chemical biomarker.

2.4. Restriction dates

It has been suggested that the time-lapse between a chemical's re-
striction date and sample collection date is an important contributor to
biomarker concentration time trends and age-based differentiations
(Quinn and Wania, 2012). To investigate this, we developed a database
of restriction dates (years) in US commerce through an extensive review
(SI, Tables S10 and S14). Some chemicals have several reported re-
striction dates, in particular those that were restricted from different
products in different years, such as lead. Note that some chemicals were
restricted in certain applications but not in others. For instance, the use
of lead was banned in paint (Fowler, 2008) and gasoline (Newell and
Rogers, 2003), but it is still used in cosmetic products (FDA, 2018) and
plumbing (US EPA, 2011, 2017). Also, some chemicals have been gra-
dually phased out over several years, such as PFASs. For chemicals with
dates recorded as a range, and for which we were unable to determine
the relative importance of a given year, we applied the mean year.
When there are several dates associated with a chemical biomarker, we
applied the latest date to represent the most recent period that the
substance was banned or phased out.

2.5. Statistical analysis

We performed all analyses using R version 3.5.1. We first defined 11
different age groups to compare chemical biomarker differences by age
(Table 1), and then partitioned the distribution of each chemical bio-
marker by age group and NHANES cycle. To aid data visualization, such
as in Fig. 5, we adjusted concentrations of urinary chemical biomarkers
by urinary creatinine levels (NCHS, 2010). For a given biomarker, we
used ANOVA to test for differences among geometric means of chemical
concentration across the age groups.

In NHANES, deliberate oversampling was commonly employed to
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Fig. 1. Schematic description of the process to curate chemical biomarker measurements and of the analytical methods used to identify temporal variations in
biomarker levels.

V.K. Nguyen et al. Environment International 122 (2019) 117–129

119

https://www.qsartoolbox.org


detect susceptible subpopulations at risk for exposures and/or disease
(Stevens et al., 1988). As such, generalizing the results to the US po-
pulation requires the application of survey weights to account for the
sampling design, but this decreases statistical power in identifying as-
sociations within the susceptible and oversampled subpopulations
(Korn and Graubard, 1991). We applied the survey weights in our
statistical models for a few chemical biomarkers and identified minor
differences between the weighted and unweighted regression coeffi-
cients for age (SI, Table S11). Due to this minimal influence, survey
weights were not included in our statistical analyses.

We used multivariate regression models to evaluate the influence of
age and time on the chemical biomarker concentrations in blood and
urine after log-transformation of these data. We included log-trans-
formed levels of cotinine as a covariate to represent smoking (Benowitz,
1999), and creatinine levels to adjust for urine dilution and flow dif-
ferences (Barr et al., 2005). We modeled poverty income ratio (PIR),
i.e., the ratio of household income and poverty threshold adjusted for
family size and inflation, as a surrogate variable for socioeconomic
status. First, we examined the influence of age and time on chemical
biomarker concentrations by performing a series of chemical-specific
regression models with the main predictors of age centered at the mean
age X( )age (continuous), survey cycle (continuous), sex (categorical),
race/ethnicity (categorical), PIR (continuous), and cotinine (con-
tinuous) as described in Eq. (1) without the term for age squared:

= +
+

+
+

+
+

+
+

log X X X
X X

X
X

X
X

X
X

10( ) ( )
( )

ChemicalConcentration age age age

age age age

cycle cycle

sex sex

race ethnicity race ethnicity

PIR PIR

cotinine cotinine

creatinine creatinine

2

/ /

2

(1)

>where XChemical Concentrations is the log-transformed, unadjusted che-
mical biomarker concentration for all participants, Xi, where i ϵ {age,
age2, cycle, sex, race/ethnicity, PIR, cotinine, creatinine}, is the i covariate
for all participants, βi is the linear regression coefficient for the i cov-
ariate, and α is the intercept. For urinary chemical biomarkers, we

further corrected the regression models by adjusting for urinary crea-
tinine levels (continuous). For cotinine, the regression models were not
corrected for cotinine. Age coefficient (βagelinear) and cycle coefficient
(βcycle) are interpreted as the change in log-transformed chemical bio-
marker concentration due to a one-year increase in age or a one-survey-
cycle increase in time, respectively. To account for multiple compar-
isons, we used a False Detection Rate (FDR) method on the p-values of
the linear regression age-coefficients (Benjamini and Hochberg, 1995).

To evaluate nonlinear relationships between chemical biomarker
levels and age and systematically identify chemicals that are of higher
concentrations in children, we included age centered at Xage squared as
another main predictor as shown in Eq. (1). Age was centered at Xage to
reduce the collinearity between the linear and quadratic age predictors
to assess the separate contribution of these terms (Dalad and Zickar,
2012). We denote the age coefficient of the nonlinear regression models
as βage to differentiate it from that of the linear models, βagelinear. It is
interpreted as the change in log-transformed chemical biomarker con-
centration due to a one-year increase in age. βage2 is interpreted as the
change in the slope relationship between log-transformed chemical
concentrations and age for a one-year increase in age. Using βage and
βage2, we defined a metric (schildren) to rank the chemicals from most
concerning to least concerning for children as described in Eq. (2):

= +s X X X X( ¯ ) ( ¯ )children age children age age children age
22 (2)

where Xchildren is designated to 5 years old for this analysis (SI, Table
S6). A more positive schildren is indicative of higher chemical biomarker
levels in children. 10schildren is interpreted as the fold difference in che-
mical biomarker levels between a child of 5 years and an adult of
31.88 years. Using the regression coefficients, we predicted the log-
transformed chemical biomarker levels for all participants with com-
plete data on age, cycle, sex, race/ethnicity, PIR, and cotinine. Pre-
dictions are not available for children between one to two years of age,
since measurements for blood cotinine in this age group were missing.

To understand how differences in chemical biomarker concentra-
tions between young and older individuals change over time, i.e., how
age-based trends are changing over time, we conducted stratified ana-
lyses by NHANES cycle. We first partitioned life-stage changes in che-
mical biomarker concentrations by NHANES cycle and fitted these
cycle-specific concentrations with smooth curves through LOESS (lo-
cally weighted scatterplot smoothing) (Royston, 1992). Then for each

Table 1
Characteristics of the study population of 74,942 participants.

Categorical

Age groups N (%) Cycle N (%) Sex N (%)

1–2 4714 (6.29) 1999–2000 (Cycle 1) 8832 (11.79) Male 36,941 (49.29)
3–4 3307 (4.41) 2001–2002 (Cycle 2) 9929 (13.25) Female 38,001 (50.71)
5–12 12,741 (17.01) 2003–2004 (Cycle 3) 9179 (12.25) Race/Ethnicity
13–18 10,793 (14.40) 2005–2006 (Cycle 4) 9440 (12.60) Mexican Americans 17,199 (22.95)
19–28 8391 (11.20) 2007–2008 (Cycle 5) 9307 (12.42) Other Hispanics 5580 (7.45)
29–38 7129 (9.51) 2009–2010 (Cycle 6) 9835 (13.12) Non-Hispanic Whites 28,555 (38.10)
39–48 7168 (9.56) 2011–2012 (Cycle 7) 8956 (11.95) Non-Hispanic Blacks 18,055 (24.09)
49–58 6209 (8.29) 2013–2014 (Cycle 8) 9464 (12.62) Other races 5553 (7.41)
58–68 6528 (8.71)
69–78 4676 (6.24)
79–85 3286 (4.38)

Continuous

N (%) 5th Median Mean (SD) 95th

Age (years) 2 25 31.88 (24.28) 77
PIR (−) 68,942 (91.99) 0.30 1.80 2.276 (1.60) 5.00
Cotinine (ng/mL) 54,513 (72.74) 0.011 0.066 38.39 (103.80) 282.00
Creatinine (mg/dL) 63,457 (84.67) 26 116 130.3 (81.98) 284
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cycle with measurements, we performed a chemical-specific linear
regression with age (continuous) as the main predictor while adjusting
for sex (categorical), race/ethnicity (categorical), PIR (continuous), and
smoking (continuous) described in Eq. (3):

= = = +
= +

= +
= +

= +
= +

log X Cycle k X Cycle k
X Cycle k

X Cycle k
X Cycle k

X Cycle k
X Cycle k

10( [ ]) [ ]
[ ]

[ ]
[ ]

[ ]
[ ]

ChemicalConcentration age k age

sex k sex

race ethnicity k race ethnicity

PIR k PIR

cotinine k cotinine

creatinine k creatinine

k

,

,

/ , /

,

,

,

(3)

where k is the available cycle number that can range from 1 to 8,
XChemical Concentrations[Cycle= k] is the log-transformed, unadjusted che-
mical biomarker concentrations of participants in the kth cycle,
Xm[Cycle= k], where m ϵ {age, sex, race/ethnicity, PIR, cotinine, creati-
nine} is the m covariate for all participants in the kth cycle, βm,k is the
linear regression coefficient for the m covariate in the kth cycle, and αk
is the intercept for the kth cycle. The linear regression age coefficient
(βage,k) is interpreted as the change in log-transformed chemical bio-
marker concentration due to a one-year increase in age for a given kth
cycle.

3. Results

3.1. Study population

Table 1 presents population characteristics for the 74,942 NHANES
participants from 1999 to 2014. The mean age is 31.88 (SD 24.28) with
approximately 42.1% of the population being 18 years old or younger.
This indicates children are oversampled, since according to the US
Census, 26% of the US civilian noninstitutionalized populations are
below 19 years of age (US Census Bureau, 2014). The number of par-
ticipants across the cycles does not vary drastically. The population is
evenly distributed by sex with approximately 51% of the population
being female. All race/ethnicity were oversampled, except for Non-
Hispanic Whites, since according to the US Census, the proportions of
Hispanics, Non-Hispanic Blacks, and Other Race are 17.8%, 13.3%, and
9.8%, respectively (US Census Bureau, 2016). The mean of PIR is 2.276
(SD 1.60). The means of cotinine and creatinine levels were 38.39 (SD
103.80) ng/mL and 130.3 (SD 81.98) mg/dL, respectively.

3.2. Age-based trends, half-lives, and restriction dates

Fig. 2A shows the number of biomarkers for each chemical class,
and Fig. 2B shows the range of log-transformed half-lives for each
chemical class with a dashed line representing one year (SI, Table S12).
Chemical classes with half-lives in the range of 1 to 100 h include
Phthalates, Acrylamide, Other, Smoking Related Compounds (SRCs),
Phytoestrogens, Polycyclic Aromatic Hydrocarbons (PAHs), Personal

Fig. 2. Characteristics of the 141 NHANES chemical biomarkers for 16 classes, including (A) the number of chemical biomarkers for each colored-specific chemical
class, (B) ranges of log-transformed composite half-lives in hours, (C) ranges of linear age coefficients (βagelinear′s), defined as the log change in chemical concentration
due to a one-year increase in age, and (D) percentage of unrestricted or restricted chemicals per class. Colors of the restriction types only applied to (D) and are also
used in Fig. 3. BFRs, Brominated Flame Retardants; SRCs, Smoking Related Compounds; PAHs, Polycyclic Aromatic Hydrocarbons; PCCPCs, Personal Care and
Consumer Product Compounds; VOCs, Volatile Organic Compounds; PFASs, Per- and Polyfluoroalkyl substances; PCBs, Polychlorinated Biphenyls. Models were
adjusted for age centered at (Xage ), survey cycle, sex, race/ethnicity, poverty income ratio, blood cotinine concentrations, and urinary creatinine concentrations.
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Care and Consumer Product Compounds (PCCPCs), Volatile Organic
Compounds (VOCs), and Melamine, while classes with more persistent
chemicals include Brominated Flame Retardants (BFRs), PFASs, PCBs,
Dioxins, and Furans. Chemicals from the Metals and Pesticides classes
demonstrate a wide range of persistency in the human body.

Fig. 2C shows ranges of βagelinear′s for each chemical class with nu-
merical values in SI Table S13. These values are interpreted as the log
change in chemical concentration for a one-year increase in age. The
majority of chemicals from PCBs, Furans, Dioxins, Melamine, Metals,
and Pesticides along with a single BFR (2,2′,4,4′,5,5′-hex-
abromobiphenyl) have high positive ranges of βagelinear′s, indicating
higher concentrations in the older population. In contrast, most of the
phthalates, SRCs, and BFRs along with a few VOCs, PCCPCs, PAHs, and
phytoestrogens have negative βagelinear′s, reflecting higher concentra-
tions in younger individuals. The majority of chemical biomarkers have
βagelinear′s between −0.01 and 0.01, suggesting small or no differences
in chemical biomarker levels across the life-stages.

Fig. 2D shows the proportions of unrestricted or restricted chemicals
for each class, and SI Table S14 tabulates the restriction dates. Since the
latest data were from 2013 to 2014, chemicals with restriction dates
after 2014 are categorized as having no restriction. Chemical classes
with higher proportions of unrestricted chemicals include Acrylamide,
Other, SRCs, VOCs, and Melamine, and these have limited βagelinear′s. In
contrast, PCBs, Dioxins, and Furans show higher proportions of his-
torically restricted chemicals and have the highest βagelinear′s and high
half-lives. The majority of BFRs, PCCPCs, and PFASs have been re-
stricted more recently and have limited βagelinear′s despite PFASs having
high half-lives. The Metal and Pesticides classes demonstrate a wide
variety of restriction types, with most of the persistent chemicals in
these classes having been restricted before the turn of the century.

SI Fig. S3, Text S2, and Table S15 further analyze changes in bio-
marker levels over the NHANES cycles, demonstrating a decrease in
chemical biomarker levels over time for the majority of pesticides and
PFASs, while a few pesticides, phthalates, and PAHs have increasing

time trends.

3.3. Influence of temporal determinants on linear age-based trends

To understand the influence of chemical persistence in the body,
time trends, and restriction dates on differences in chemical biomarker
concentrations across the life-stages, we examined the βagelinear′s as a
function of human whole body elimination half-lives for all chemical
biomarkers, color-coded by 1) restriction dates (Fig. 3) and by 2) time
trend trajectories (SI, Fig. S4). Chemical biomarkers with half-lives less
than one year have βagelinear′s ranging from −0.01 to 0.01, indicating
limited variation across the life-stages. For these chemicals, cross-sec-
tional biomonitoring data is primarily reflective of present exposures in
different age groups or populations (Quinn and Wania, 2012). In con-
trast, chemical biomarkers with half-lives greater than one year de-
monstrate more variation across the life-stages and show a positive
association between the βagelinear′s and half-lives. The majority of these
persistent chemicals were banned or phased out between the 1970s and
1999 (blue markers in Fig. 3). This implies exposures of the younger
population have been strongly reduced, and that higher concentrations
observed in the older population are likely due to historical exposures
and long biological half-lives. Despite the long half-lives of BFRs and
PFASs, βagelinear′s of these chemical classes are substantially lower than
those of other persistent substances with similar half-lives. The lower
βagelinear′s with age may be explained by the fact that these chemicals
have been recently restricted or are still in use (red and yellow markers
in Fig. 3) and that current exposures remain higher than exposures to
legacy pollutants that were banned earlier. Of special concern are
chemicals with negative βagelinear′s, since these chemicals are of higher
levels in the younger population compared to the aged population. Most
of these chemicals are unrestricted (red markers in Fig. 3) and de-
monstrate an increasing or stable time trend (red and orange markers in
SI, Fig. S4).

Fig. 3. Linear age coefficients (βagelinear′s) as a function of chemical persistency in the human body for 141 substances with symbols indicating the different chemical
classes. The colors indicate the time period during which the compound was restricted (same as Fig. 2D). Models are adjusted for age centered at Xage , survey cycle,
sex, race/ethnicity, poverty income ratio, blood cotinine concentrations, and urinary creatinine concentrations. See Fig. 2 for abbreviations.
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3.4. Nonlinear age-based pattern of higher levels in children

Since a linear relationship between age and log-transformed bio-
marker levels may not be representative for chemicals that display a
nonlinear relationship with age, we refined the chemical-specific re-
gression models to have age centered at Xage squared as another main
predictor to better characterize this relationship. Fig. 4 summarizes the
results for age from the quadratic regression model by presenting the
association between βage2 and βage for all chemical biomarkers. The
chemical classes are indicated by difference shapes, while the colors
show the different categories of fold difference in chemical biomarker
levels between a child of 5 years and an adult of 31.88 years. For in-
stance, mono-benzyl phthalate levels in 5-years-old children are on
average 2.598 times higher compared to those for 31.88-years-old
adults (SI, Table S6). A positive βage2 indicates a convex (or u-shaped)
relationship between log-transformed chemical biomarker levels and
age, while a negative βage2 indicates a concave (or n-shaped) relation-
ship.

Chemicals in the upper left quadrant are of interest, since these are
higher in 5-years-old children compared to 31.88-years-old adults by
more than a factor of 2. Most of these chemicals are metals, pesticides,
and phthalates used in building materials and articles. Based on Eq. (2),
the boundary line corresponds to equal biomarker levels for a child of
5 years and an adult of 31.88 years. Chemicals above and to the left of

the boundary line > =( ),/, , , , ,age age X X
1 1

26.9age age
2 tend to have a

downward and convex trend across age groups, implying the highest
biomarker levels for the youngest participants. The highest levels in
children compared to adults of average age are observed for mono-

benzyl phthalate, O-Desmethylangolensin (O-DMA), mono-(3-carbox-
ypropyl) phthalate, 2-amnothiazolne-4-carbxylic acid and tungsten. SI
Table S6 provides a detailed list of chemicals ranked from highest to
lowest relative value between children and adults of average age.

To further compare chemical biomarker distributions across the
different life-stages and identify linear and nonlinear age-based trends,
we stratified these distributions into 11 age groups (Fig. 5) and selected
example chemicals to represent the specific age-group trends within a
chemical class. The geometric mean of the measured chemical bio-
marker levels for each age group is represented by a gray circle, while
the geometric mean of the predicted chemical biomarker levels is in-
dicated by a brown triangle. Outliers are represented by dash marks
outside of the distributions of chemical biomarker concentration. A
residual standard error (RSE) of 0 implies the model perfectly predicts
the log-transformed biomarker levels. Geometric mean of predicted
chemical biomarker levels for the 1–2 age group is unavailable, since
cotinine was not measured in these participants.

Overall, the nonlinear regression models predicted the measured
geometric means fairly well, particularly for children, middle-aged
adults, and the elderly. The models, however, overestimated biomarker
levels for tungsten, phthalates, and parabens in the adolescent age
group, and underestimated lead in the toddler age group, indicating the
need for a higher order polynomial model rather than a parabolic re-
gression model for these specific cases.

The following section analyzes in further detail these age trends by
chemical class and type of usage.
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Fig. 4. Association between βage2 and βage for 141 substances with symbols indicating chemical classes and colors indicating categories of fold difference in biomarker
levels between a child of 5 years and an adult of 31.88 years. The boundary line βage2/βage > 1/26.9 differentiates chemicals of higher levels in children from those of
higher levels in the older population. Models were adjusted for age centered at Xage , age centered at Xage squared, survey cycle, sex, race/ethnicity, poverty income
ratio, blood cotinine concentrations, and urinary creatinine concentrations. See Fig. 2 for abbreviations.
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Fig. 5. Violin plots of chemical biomarker concentrations partitioned by age group to display the 5th, 25th, 50th, 75th, and 95th percentiles, indicated by the
superimposed boxplot. The frequency of chemical biomarker levels are represented by the width of the violins for (A) PCB 49, (B) PCB 194, (C) PFNA, (D) PFOS, (E)
Tungsten, (F) Lead, (G) Mono-(3-carboxypropyl) phthalate, (H) Mono-benzyl phthalate, (I) Mono-ethyl phthalate, and (J) Methyl paraben. ( ) geometric mean of
measured data. ( ) geometric mean of predicted chemical biomarker levels. Colors differentiate the age groups. Models were adjusted for age centered at Xage , age
centered at Xage squared, survey cycle, sex, race/ethnicity, poverty income ratio, blood cotinine concentrations, and urinary creatinine concentrations.
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3.5. Age-based trends by chemical class

3.5.1. PCBs, dioxins, and furans
For PCBs, there are three main age patterns: a slight downward and

convex trend, a steep upward and concave trend, and no trend across
the life stage (Fig. 4). The PCBs with half-lives less than one year
(Fig. 3) showed little or no variation in chemical biomarker con-
centrations by age. PCB 49 (Fig. 5A) and PCB 44 are the only two PCBs
for which the youngest participants have the highest biomarker levels,
with their negative βage and positive βage2 characterizing a slight
downward and convex trend across the age groups. This might indicate
children are exposed through a pathway specific to these two con-
geners. In contrast, the more persistent PCBs, dioxins and furans have
higher concentrations in the older population, except for 1,2,3,4,6,7,8-
Heptachlorodibenzofuran (half-life of 2.60 years), which has a βage of
−0.0021. This may indicate ongoing exposure despite this chemical
having been banned much earlier. With the highest βage of 0.037 and a
βage2 of −0.00033, PCB 194 illustrated well (Fig. 5B) a steep upward
and concave trend across the age groups with the oldest participants
having at most a 100-fold difference in biomarker levels compared to
the youngest age group. This tendency is confirmed in the pooled serum
concentrations observed for four age groups (12–19, 20–39, 40–59,
60+) in 2005–2008 by different race-sex combinations (details in SI,
Text S3, Section 4). Age is a good predictor of biomarker levels for the
more persistent PCBs, with an adjusted correlation coefficient (R2)
ranging between 0.37 and 0.74 for most PCBs, with the exception of
PCB 28 (R2=0.048), PCB 44 (R2= 0.037), and PCB 49 (R2= 0.043).

3.5.2. PFASs
PFASs are also highly persistent, but their sage do not vary as

substantially as those of PCBs. Most of the PFASs have sage close to 0,
indicating there is little to no difference by age and implying ongoing
exposures. PFNA shows little to no variation across age groups
(Fig. 5C). On the other hand, PFOA and PFOS show a slight upward and
convex trend across the age groups (Fig. S5 and 5D). This is confirmed
by a βage of 0.0029 and a βage2 of 3.27E-05 for PFOS, and by a βage of
−5.80E-05 and a βage2 of 2.97E-05 for PFOA. Since PFOS and PFOA
were phased out in 2002 (M Company, 2000; US EPA, 2003, 2007),
differences across the age groups are substantially smaller than those
observed in PCB 194, which was banned in 1979. Such differences
across the life-course, however, are expected to increase in the future as
articles and materials containing PFASs will reach the end of their
usable life. A specific trend analysis is presented in the next section for
six PFASs to illustrate how the age-based trends vary across the dif-
ferent cycles.

3.5.3. Metals
Another class of highly persistent chemicals is the Metals. Although

many of the metals demonstrate a stable trajectory over time (yellow
markers in SI, Fig. S4), there are high variations in chemical biomarker
levels across the life-stages, with three different types of age group
patterns evident (Figs. 3 and 4). Cadmium demonstrates higher urinary
concentrations in the older population with a βage of 0.014 and a βage2 of
−9.22E-05, denoting a slight upward and concave trend across the age
groups (SI, Fig. S6). Lead is one of the few chemicals with measure-
ments in children 1 to 4 years old. Although the βage of lead (0.0039) is
not as high as that of cadmium, the convex trend of lead
(βage2 = 8.72E ‐ 05) across the age groups indicates the youngest and
oldest age groups have the highest biomarker concentrations compared
to the other age groups (Fig. 5F). Although tungsten has similar

persistency to cadmium and lead, it has a βage of −0.0069 and a βage2 of
0.00015, indicating a downward, convex trend across the age groups
(Fig. 5E). This is also indicative of high and ongoing exposures in the
younger population.

3.5.4. Phthalates and parabens
Most phthalates are used as plasticizers. These phthalates show a

similar age group pattern to that of mono-(3-carboxypropyl) phthalate -
a metabolite of mono-n-butyl phthalate, di-n-butyl phthalate, mono-n-
octyl phthalate, and di-n-octyl phthalate (Fig. 5G), and mono-benzyl
phthalate (Fig. 5H), with the highest concentration apparent in the
youngest age group, a decrease during adolescence and young adult-
hood, and then stabilization for the older age groups. In contrast, mono-
ethyl phthalate is mostly used in cosmetics and demonstrates a very
different age group pattern from those in its chemical family (Fig. 5I). It
has a similar age group pattern to chemicals used in cosmetics such as
methyl paraben (Fig. 5J). Methyl paraben has a slight upward and
concave trend across the 5–12, to 13–18, and 19–28 years-old partici-
pants. Its levels peak for the mature adults and show a slight decrease in
the older age groups.

3.6. Change in age-based trends of PFASs over time

To determine how the age-based trends are changing over time, we
fitted smooth curves to the life-stage changes in chemical biomarker
concentration for each available NHANES cycle and conducted a series
of linear regression models stratified by cycle to extract the βage,k's. The
βage,k's show the overall difference in chemical biomarker concentra-
tions between the young and aged populations for a given NHANES kth
cycle. Understanding how these βage,k's change over time provides in-
sight on how the difference between the youth and elderly changes
across the cycles. In addition, these βage,k's will help determine how long
a time lapse must occur between the restriction date and sample col-
lection date in order to observe these life-stage differences.

PFASs were further analyzed, since some have been recently phased
out and have measurements spanning over six or more cycles. PFOS,
Perfluorohexane sulfonic acid (PFHxS), PFOA, Perfluorodecanoic acid
(PFDA), PFNA, and 2-(N-methyl-PFOSA) acetate were selected due to
their high detection frequencies for each available cycle. Fig. 6 presents
how the age-based trends are changing over time. Each curve represents
the variation in chemical biomarker concentration by age for a given
NHANES cycle. A vertical shift in an ith cycle curve indicates how the
chemical biomarker concentrations have increased or decreased com-
pared to those in the (i-1)th cycle. The steepness of the curve shows the
rate at which the log-transformed chemical concentration is changing
with each one-year increase in age for a given cycle, providing insight
on how the differences in chemical biomarker levels between the youth
and elderly are changing over time. An increase in the βage,k's indicates
that the difference between the young and aged populations are ex-
panding over time.

Between 1999 and 2000, the βage,1 for PFOS is 6.82E-4 (p-
value= 0.019). If we assume chemical biomarker concentrations
change linearly with age, then this value implies a 1.13-fold difference
(1080×6.82E-4= 1.13) in chemical concentration between an 80-year
old participant and a newborn (aged 0). Between 2013 and 2014, the
βage,8 is 6.49E-3 (p-value= 2.63E-59) with a 3.3 fold difference. This
suggests that a decade after the phase-out of PFOS, the aged population
has approximately a 3-fold difference in PFOS levels compared to the
youth (Fig. 6A and G). As the biomarker levels of PFOS and 2-(N-me-
thyl-PFOSA) acetate decrease across the cycles, illustrated by the

Fig. 6. Chemical biomarker concentrations across the life-stages stratified by NHANES cycles for (A) PFOS, (B) PFHxS, (C) PFOA, (D) PFDA, (E) PFNA, and (F) 2-(N-
methyl-PFOSA) acetate. (G) 95% confidence intervals for the cycle-specific age coefficients for PFOS, PFHxS, PFOA, PFDA, PFNA, and 2-(N-methyl-PFOSA) acetate.
The cycle-specific age coefficients (βage,k's) with age shows the adjusted rate at which the chemical concentration is changing for a one-year increase in age for a
particular cycle. Models were adjusted for age, sex, race/ethnicity, poverty income ratio, blood cotinine concentrations, and urinary creatinine concentrations.
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downward shifts in the concentration-age curves, the difference be-
tween the youth and elderly increases. This is evidenced by the in-
creasing steepness of these curves (Fig. 6A and F) and the upward trend
in βage,k's (Fig. 6G). These patterns imply the use of PFOSA stopped
around the time of the restrictions on PFOS and PFOA in 2002 (US EPA,
2003, 2007). A similar pattern can be observed with PFHxS and PFOA
concentrations, but the differences between the young and aged po-
pulations for these chemicals do not change as drastically as they do for
PFOS and PFOSA (Fig. 6B, C, and G). These patterns suggest that as
time increases between the restriction and sample collection dates, the
differences by age will become more prominent.

On the other hand, PFHxS, PFDA, and PFNA display different trends
over time. For instance, biomarker levels for PFHxS initially decrease
during 1999–2006, increase in 2007–2008, and then decrease again for
the more recent NHANES cycles (Fig. 6B and G). For PFDA, biomarker
levels increase from 1999 to 2006 and then decrease afterward (Fig. 6D
and G). Biomarker levels of PFNA increase during the early NHANES
cycles and then decrease after 2009–2010, but the PFNA levels for
2013–2014 are on average higher than those between 1999 and 2000
especially for children. The cycle-specific age coefficients for PFNA
fluctuate during the early NHANES cycles but then show a strictly in-
creasing trend after 2007–2008 (Fig. 6E and G). These fluctuations in
biomarker levels suggest PFHxS, PFDA, and PFNA may have been used
as substitutes for PFOS and PFOA and reflect ongoing exposure
throughout the population.

4. Discussion

In this article, we present a comprehensive analysis of age-based
and time trends in chemical biomarker concentrations in the US po-
pulation. We have accounted for biological half-lives of chemicals, type
of usage, and historical events, i.e., dates of chemical bans and phase-
outs, which are expected to influence population-level exposures. These
results provide insight on population exposure trajectories. They are
also informative for differentiating legacy exposures from current ex-
posures and for identifying chemicals of higher levels in the younger
population.

For restricted chemicals, our data confirm that a minimum persis-
tence of 1 year in the human body is necessary to observe substantial
differences between the young population and historically exposed
adults. Biological half-life is not the only determinant of high chemical
biomarker levels in the aged population, however. Studies on age-based
and time trends of biomonitoring data have suggested the potential
influences of bans, phase-outs, bioaccumulation, metabolic rates, and
consumer product usage on such trends (Calafat et al., 2007; Kato et al.,
2011; Sjödin et al. 2008; Xue et al., 2014; Zota et al., 2014), with the
most influential determinant for simulated longitudinal data being the
time lapse between the peak of emission and the sample collection
(Quinn and Wania, 2012). Thus, elevated concentrations in the elderly
population are primarily due to a combination of past exposure and
slow elimination. Using measured biomonitoring data for a wide range
of chemicals, we confirm that chemicals with high age coefficients
primarily have a biological half-life longer than 1 year and have been
banned or phased out for longer than the chemical's half-life (Quinn and
Wania, 2012). This evidences the efficacy of public health interven-
tions, such as the International Stockholm Convention on Persistent
Organic Pollutant, to reduce or prevent high exposures and associated
health outcomes for the younger population (Prüss-Ustün et al., 2011;
WHO, 2016).

PFASs are also persistent, with half-lives ranging from 1.6 years to
7.3 years, yet show minimal differences in biomarker concentrations
across the life-stages. These substances demonstrate contrasting age-
based patterns even within the same family. For instance, we observed
a substantial reduction in PFOA and PFOS levels in children, but levels
of PFNA and PFHxS in children during 2013–2014 are still higher or
equal than those in the earlier NHANES cycles. This indicates ongoing

and higher exposures for the younger population. Such exposures to
PFASs may occur through breastfeeding (Kärrman et al., 2007;
Mogensen et al., 2015; Thomsen et al., 2010) or drinking contaminated
water (Gyllenhammar et al., 2018; Mondal et al., 2012). In addition,
this pattern could be due to the fact that some of these chemicals were
recently phased-out, or due to the short time lapse between the emis-
sion peak and the sample collection. The time lapse of a decade for
PFASs is shorter than the time lapse of almost 30 years for PCBs. Thus, it
can be inferred that as this time lapse increases, especially if it exceeds
the half-life of the substance, the difference in PFASs concentrations by
age will continue to increase (Quinn and Wania, 2012; Gomis et al.,
2017).

While cadmium levels are lower in the younger population, this is
not the case for lead and especially tungsten for which the younger
population has surprisingly higher biomarker levels. Higher lead levels
have been attributed to consumer products usage, such as toys and
children jewelry (Guney and Zagury, 2013; Kumar and Pastore, 2007),
exposures to dust and soil (Dixon et al., 2009; Lanphear et al., 1998),
and exposures via maternal transfer in utero or during breastfeeding
(Bhattacharyya, 1983; Silbergeld, 1991). For the older participants,
high lead levels may be due to leaded gasoline combustion before tet-
raethyl lead in gasoline was banned (Newell and Rogers, 2003). High
tungsten levels in children may be due to exposures to contaminated
soil, articles from parents' workspace, and electrical devices (ATSDR,
2005; Kampmann et al., 2002). The overall trend of higher levels in the
5–12 years old followed by a downward, convex trend across the older
age groups suggests exposures in children may be driven by factors
specific to this susceptible population. Hence, further research is ne-
cessary to elucidate potential reasons for higher exposures in children.

For several less-persistent chemicals, such as phthalates that are
widely used in consumer products, younger individuals seem to have
been highly exposed, in addition to some persistent chemicals such as
the BFRs, PFASs and lead. Our results suggest that age-based trends in
these biomarker levels reflect product usage trends. Most phthalates
show a plasticizer age pattern with higher concentrations in the
5–12 years old age group followed by a downward, convex trend across
older age groups, which is quantified by a positive βage2 and negative
βage. Children may be highly exposed to these chemicals through fre-
quent contact with flooring materials (Healthy Building Network, 2017;
Just et al., 2015; Xu et al., 2010) and toys (Hileman, 2007), which are
products that typically have high levels of plasticizers. Also, children
may more readily absorb these compounds (Royce and Needleman,
1992). Metabolic rate is known to vary across age with a peak occurring
during childhood and then stabilizing or decreasing during the senior
years (Shimokata and Kuzuya, 1993; Speakman, 2005). In contrast,
mono-ethyl phthalate is used in personal care products (Api, 2001) and
shows a concave pattern similar to those of chemicals used in personal
care products such as parabens and triclosan. The increase in exposure
from children to teenagers may be explained by a greater use of cos-
metic and/or skin care products during the teenage years (Calafat et al.,
2010; Freedman, 1984; Gentina et al., 2012). Comparing chemical le-
vels by age group and quantifying trends across the age groups with
βage2 and βage enables us to identify two interesting clusters: 1) a cluster
of phthalates used as plasticizers and 2) a cluster of chemicals used in
personal care products. Mono-ethyl phthalate was shown to cluster with
PCCPCs instead of with those in its chemical family. These age-based
clusters of chemicals with similar product usage suggest a possibility to
develop product-specific archetypes of intake pattern with e.g. a con-
cave age curve for personal care products versus a convex age curve for
plasticizers in articles and building materials. These archetypes could
then be used to help extend mechanistic modelling approaches to pre-
dict direct exposures to chemicals used in consumer products.

The present study has a number of limitations. By comparing chemical
biomarker levels by age group, we have identified several chemicals, such
as lead, tungsten, and phthalates, to be of higher concentrations in the
younger population than in the older population. Although we have
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identified a number of potential reasons for higher exposures in children,
we have not accounted for differences in metabolic rate within our
models. Future extensions could determine surrogate variables to develop
a scoring system to quantitatively represent metabolic rate and understand
how it could confound age and chemical biomarker concentrations.
Finally, while we demonstrated an overarching, statistical approach to
identify chemicals that are of higher concentrations in children, there is a
need to understand toxicological effects of these chemicals along with
identifying sources and pathways of exposures to prevent elevated che-
mical levels and the onset of adverse health effects (Prüss-Ustün et al.,
2011; WHO, 2016; Zota et al., 2014).

Though we defined an age pattern of concern for children, quanti-
fying exposure for young children, especially those below the age of 4,
was limited to a few chemical biomarkers such as lead, manganese,
cadmium, methyl mercury, cotinine, acrylamide, and glycideamide. As
shown with lead, predictions were unavailable for children below the
age of 2, since cotinine was not measured for these participants. Thus
when more measurements for children become available, future ex-
tensions could incorporate such data to better quantify and predict
exposure for this susceptible population.

Geographical location has been identified as a confounder of che-
mical exposure disparities, particularly for heavy metals (Hough et al.,
2004; Voutsa and Samara, 2002), but we did not consider this as a
covariate in this study. Future studies could consider geospatial varia-
tions in chemical biomarker concentrations to systematically address
geographical location as a confounder.

For lipophilic chemicals, we preferred the lipid-adjusted measure-
ments, since these measurements were normalized to the blood lipid
content of the participants. In addition, adipose content tends to in-
crease as a person age, which can potentially lead to higher con-
centrations of more lipophilic compounds in the aged population. Even
though BMI could modulate the concentration-age associations, we did
not consider it as a covariate, since we wanted to study the BMI
mediated effect of age on chemical biomarker levels. Future extensions
could further explore the confounding nature of BMI on age-based and
time trends of chemical biomarker levels.

5. Conclusions

This study presents a framework for systematically analyzing and
interpreting biomonitoring data, to better understand chemical bio-
marker differences across the life-stages. We suggest different criteria
for determining which chemicals are reflective of legacy exposures vs.
current exposures and identify an age pattern of concern when long-
itudinal data are unavailable or incomplete. We confirm the criteria
indicative of legacy exposure as follows: 1) biological half-life of at least
one year, 2) decreasing average biomarker concentration over time due
to the chemical being banned or phased out, and 3) the time lapse
between emission peak and the sample collection exceeding the human
elimination half-life. For chemicals below the one-year half-life mark,
cross-sectional biomonitoring data mostly reflect recent intake rates. In
addition to confirming the criteria for legacy versus relevant exposures,
the complementary analysis combining a series of regression models
with systemized stratified analyses by age group helped us define an
age-based pattern for identifying chemicals of higher and ongoing ex-
posures in children. This is especially evident when a chemical bio-
marker has an increasing or stable time trajectory, demonstrates a
convex relationship with age, and is of higher concentration in the
younger population. The presented framework can be used to help fa-
cilitate risk stratification and guide targeted interventions.
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