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INTRODUCTION

Fall accidents are a significant problem for the
elderly, in terms of both human suffering and
economic losses. Localized muscle fatigue is a
potential risk factor for slip-induced falls as muscle
fatigue adversely affects proprioception, movement
coordination and muscle reaction times leading to
postural instability and gait changes. Specifically,
fatigne in ankle is associated with decline in
postural stability, motor performance and fall
accidents in human subjects. Automated recognition
of ankle fatigue condition may be advantageous in
early detection of fall and injury risks. In this study,
we explore the classification potential of support
vector machines (SVM) in recognizing gait patterns
associated with ankle fatigue utilizing an inertial
measurement unit (IMU) as the wearable
technology has the potential to investigate
continuous kinematic changes evoked by fatigue.

The SVM is considered a powerful technique for
general data classification and has been widely used
to classify human motion patterns with good results.
The advantage of SVM algorithm [1] is that it can
generate a classification result with limited data sets
by minimizing both structural and empirical risks.
Although numerous studies have been devoted to
improving the SVM algorithms, little work has been
performed to assess the robustness of SVM
algorithms associated with movement variations and
fatigue states.

In the current study, we aim to monitor kinematics
of walking in unconstrained environments using an
IMU situated around the trunk Center-of-Mass
(COM) during ankle fatigue and no-fatigue walking
conditions. We hypothesize that ankle fatigue will
influence walking behavior and this subtle changes

in gait can be classified by supervised machine
learning techniques such as support vector machines.

METHODS

Seventeen healthy young adults (9 males and 8
females) participated in the study. The participants
mean age was 29+11 years, height 174+10 cm, and
weight 73+12 kg. The experiment was composed of
inducement of fatigue in ankle joints with squatting
exercises [2]. Walking trials were conducted both
prior and after the fatiguing condition. The IMU
node consisted of MMA7261QT tri-axial
accelerometers and IDG-300 (X and y plane
gyroscope) and ADXRS300, z-plane uniaxial
gyroscope aggregated in the Technology-Enabled
Medical Precision Observation (TEMPO) platform
which was manufactured in collaboration with the
research team of the University of Virginia [3].

For the classification, both training and testing data
sets consisted of ankle fatigue/no-fatigue walking
data. Kinematic data used for SVM input was
Representative Gait Cycle (RGC) data. RGC begins
when one foot contacts the ground and ends when
that foot contacts the ground again using the shank
IMU. A perfect representative gait cycle signal
between two easily identifiable events of the same
foot was chosen for the analysis (Figure 1). This
representative gait cycle started at peak right shank
angular velocity (left foot mid-stance) and
terminated at consecutive peak right shank angular
velocity (left foot mid-stance). All IMU signals
were truncated to RGC and normalized to 0% to
100%. A repeated-measure design was used to test
changes intra-subject in gait parameters from
normal walking and post fatigue walking trials.

The SVM classifier has not been applied previously
to ankle fatigue and no-fatigue gait patterns. An



important characteristic of using SVM classifier in
this study was to obtain high ankle fatigue/no-
fatigue classification accuracy with three different
types of feature input (Table 1): (1) selected “ad hoc”
features based on domain knowledge; (2) general
features; and (3) concatenated complete gait pattern
signals. After extracting features, all features or
input variables were normalized by computing their
z-scores. Input data was kept in range between 0
and 1. Then Principle Component Analysis (PCA)
was employed to decrease the dimensions. The
objective of PCA is to perform dimensionality
reduction while preserving as much of the
randomness in the high-dimensional space as
possible. Subsequently, a five-fold cross-validation
scheme was adopted to evaluate the generalizability
of the SVM classifier. Finally, SVM models were
trained over the range C=2"" to 2'° using linear,
polynomial and radial basis function kernel.

RESULTS AND DISCUSSION

The machine learning classification results
demonstrated high intra-individual classification
rates across all three-kernel types (i.e., linear,
polynomial and radial basis function kernel). We
found that linear (accuracy ~97-99%) and RBF
(accuracy ~96-98%) kernels perform equally well in
intra-individual ankle fatigue/no-fatigue
classifications (Table 2). The polynomial kernel had
the lowest classification accuracy amongst all three
different types of kernels. Our results also indicate
that ankle fatigue effects are evident in individuals’
gait patterns and extracted features and, SVM
accurately classified ankle fatigue/no-fatigue
conditions. We found that SVM classifier
incorporating trunk kinematic signals during gait
has an excellent potential to predict fatigue status
intra-individually (~98% accurate predictions).

Previous researchers have adopted various gait
feature extraction methods for SVM classification.
Results of our investigation indicate that features
extraction methods influenced classification
accuracy. In ankle fatigue classification,
concatenated waveform input resulted in the highest
classification accuracies; however, selected feature
input had better classification accuracies than
general feature input. This may be attributed to

intra-individual variability. In essence, concatenated
waveform input exhibited superior classification
accuracy and had important gait information to
classify fatigue; on the contrary, the other two
feature extraction methods lacked peculiar
information  relevant to  achieving higher
classification results.

Three different types of kernels were employed in
SVM: linear, polynomial, and radial basis function.
Both linear and RBF kernels performed well in
ankle fatigue/no-fatigue classifications. Considering
the computational cost, RBF and polynomial
kernels need less time compared to linear kernels in
the same conditions. As such, RBF kernel is the
most promising kernel function in the ankle fatigue
classification schemes, and it may also provide
better applicability to real time system
implementation.

Representative Gait Cycle
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Figure 1: Two consecutive time epochs when right
shank attains peak angular velocities were chosen
during walking as input gait pattern data mimicking
gait cycle and was defined as Representative Gait
Cycle. The R-GC data from IMU situated at trunk
was truncated for extraction of features values to

SVM.
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Table 1: Three feature sets were used as inputs to SVM. 1) General features, 2) Selected features and 3)
Complete concatenated waveform.

General Features

Domain knowledge based Selected

Complete Concatenated

Features Waveform
Data -Accelerometer and gyroscope data in all 3 -Concatenated input of
. -Accelerometer and gyroscope data in all 3 directions of normalized representative gait normalized
z;][‘)llt directions of normalized representative gait cycle representative gait cycle
SVM cycle - Resultant acceleration
- Resultant Jerk
1) Mean . Resultant Acceleration features
11) Standard deviation i) Skewness (temporal shift)
1.11) Mflxllmum ii) Energy
iv) Minimum iii) Dominant frequency --No Feature--
V) Mean Absolute ,y alue iv) Maximum acceleration
o1 v) Minimum Acceleration
= N ;'xkl Range of acceleration
1) ls(k;WH.CSS Resultant Jerk features
13) ErLller(;/ls i) Skewness (temporal shift)
iv) Number of Slope sign ") Mean Jerk at heel contact
changes iii) Absolute Maximum Jerk
. iv) Absolute Minimum Jerk
v) Number of zero crossings
v) Range of Jerk Produced
abs(max-min)
xi) Length of waveform vi) Jerk Cost
Xii) Dominant Frequency using
low-pass filter and FFT T d3r
— 2
JjCc = J. | e |?dt

Table 2: Intra-subject ankle fatigue classification using IMU derived features. Accuracy, sensitivity, specificity
and AUC (area under the Receiver operating curve) are tabulated for three kinds of feature selections methods

and three kernels.

Ankle Fatigue
Linear | Polynomial RBF

General Accuracy 97 92 96
Features Sensitivity 97.78 93.33 95.56

Specificity | 95.56 91.11 95.56

AUC 1 1 1
Domain Accuracy 98 90 97
knowledge Sensitivity 100 91.11 100
based Selected | Specificity | 95.56 | 88.89 93.33
Features AUC 1 0.96 0.96
Normalized Accuracy 99 83 98
complete Sensitivity 100 86.67 100
concatenated Specificity | 97.78 | 80 95.56
waveform AUC 1 1 1
signals
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