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INTRODUCTION

Fall accidents are a significant problem for the 
elderly, in terms of both human suffering and 
economic losses. Localized muscle fatigue is a 
potential risk factor for slip-induced falls as muscle 
fatigue adversely affects proprioception, movement 
coordination and muscle reaction times leading to 
postural instability and gait changes. Specifically, 
fatigue in ankle is associated with decline in 
postural stability, motor performance and fall 
accidents in human subjects. Automated recognition 
of ankle fatigue condition may be advantageous in 
early detection of fall and injury risks. In this study, 
we explore the classification potential of support 
vector machines (SVM) in recognizing gait patterns 
associated with ankle fatigue utilizing an inertial 
measurement unit (IMU) as the wearable 
technology has the potential to investigate 
continuous kinematic changes evoked by fatigue. 
  
The SVM is considered a powerful technique for 
general data classification and has been widely used 
to classify human motion patterns with good results. 
The advantage of SVM algorithm [1] is that it can 
generate a classification result with limited data sets 
by minimizing both structural and empirical risks. 
Although numerous studies have been devoted to 
improving the SVM algorithms, little work has been 
performed to assess the robustness of SVM 
algorithms associated with movement variations and 
fatigue states. 

In the current study, we aim to monitor kinematics 
of walking in unconstrained environments using an 
IMU situated around the trunk Center-of-Mass 
(COM) during ankle fatigue and no-fatigue walking 
conditions. We hypothesize that ankle fatigue will 
influence walking behavior and this subtle changes 

in gait can be classified by supervised machine 
learning techniques such as support vector machines. 
  
METHODS 

Seventeen healthy young adults (9 males and 8 
females) participated in the study. The participants 
mean age was 29±11 years, height 174±10 cm, and 
weight 73±12 kg. The experiment was composed of 
inducement of fatigue in ankle joints with squatting 
exercises [2]. Walking trials were conducted both 
prior and after the fatiguing condition. The IMU 
node consisted of MMA7261QT tri-axial 
accelerometers and IDG-300 (x and y plane 
gyroscope) and ADXRS300, z-plane uniaxial 
gyroscope aggregated in the Technology-Enabled 
Medical Precision Observation (TEMPO) platform 
which was manufactured in collaboration with the 
research team of the University of Virginia [3].  

For the classification, both training and testing data 
sets consisted of ankle fatigue/no-fatigue walking 
data. Kinematic data used for SVM input was 
Representative Gait Cycle (RGC) data. RGC begins 
when one foot contacts the ground and ends when 
that foot contacts the ground again using the shank 
IMU. A perfect representative gait cycle signal 
between two easily identifiable events of the same 
foot was chosen for the analysis (Figure 1). This 
representative gait cycle started at peak right shank 
angular velocity (left foot mid-stance) and 
terminated at consecutive peak right shank angular 
velocity (left foot mid-stance). All IMU signals 
were truncated to RGC and normalized to 0% to 
100%. A repeated-measure design was used to test 
changes intra-subject in gait parameters from 
normal walking and post fatigue walking trials.  

The SVM classifier has not been applied previously 
to ankle fatigue and no-fatigue gait patterns. An 
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Table 1: Three feature sets were used as inputs to SVM. 1) General features, 2) Selected features and 3) 
Complete concatenated waveform. 

Table 2: Intra-subject ankle fatigue classification using IMU derived features. Accuracy, sensitivity, specificity 
and AUC (area under the Receiver operating curve) are tabulated for three kinds of feature selections methods 

and three kernels. 

Ankle Fatigue
Linear Polynomial RBF

General 
Features 

Accuracy 97 92 96
Sensitivity 97.78 93.33 95.56
Specificity 95.56 91.11 95.56
AUC 1 1 1

Domain 
knowledge 
based Selected 
Features 

Accuracy 98 90 97
Sensitivity 100 91.11 100
Specificity 95.56 88.89 93.33
AUC 1 0.96 0.96

Normalized 
complete 
concatenated 
waveform 
signals 

Accuracy 99 83 98
Sensitivity 100 86.67 100
Specificity 97.78 80 95.56
AUC 1 1 1

 General Features Domain knowledge based Selected 
Features 

Complete Concatenated 
Waveform 

Data 
input 
for 
SVM 

-Accelerometer and gyroscope data in all 3 
directions of normalized representative gait 
cycle 

-Accelerometer and gyroscope data in all 3 
directions of normalized representative gait 
cycle 

- Resultant acceleration 
- Resultant Jerk 

-Concatenated input of 
normalized 
representative gait cycle 

i) Mean
ii) Standard deviation 
iii) Maximum 
iv) Minimum 
v) Mean Absolute Value 

Resultant Acceleration features 
i) Skewness (temporal shift) 
ii) Energy 
iii) Dominant frequency 
iv) Maximum acceleration 
v) Minimum Acceleration 

Range of acceleration 

--No Feature-- 

i) Skewness 
ii) Kurtosis 
iii) Energy 
iv) Number of Slope sign 

changes 
v) Number of zero crossings 

Resultant Jerk features 
i) Skewness (temporal shift) 
ii) Mean Jerk at heel contact 
iii) Absolute Maximum Jerk 
iv) Absolute Minimum Jerk 

xi) Length of waveform 
xii) Dominant Frequency using 

low-pass filter and FFT 

v) Range of Jerk Produced 
abs(max-min) 

vi) Jerk Cost 
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