

Introducing LTASR, a new R package based on the NIOSH Life Table Analysis System

For over 50 years, the National Institute for Occupational Safety and Health (NIOSH) has aided epidemiologists in the analysis of occupational cohort studies with the Life Table Analysis System (LTAS).¹ LTAS simplifies person-year analyses, which is a central feature of occupational epidemiology research. LTAS is regularly used in occupational epidemiology studies to calculate standardised mortality ratios (SMRs). SMRs continue to be used in occupational epidemiology to compare the mortality experience of a cohort to a national or regional population. While there are limitations to SMRs, such as the inability to evaluate a dose-response association and bias towards the null from the healthy worker effect, SMRs remain an important tool in characterising the overall occupational experience of workers across different industries. SMRs are also an important surveillance tool in occupational and environmental settings. Many occupational cohort studies have used the NIOSH-LTAS system to conduct seminal research, such as a study of first responders to the World Trade Center disaster² and a study of neurodegenerative diseases among National Football League (NFL) players,³ among many others.

The LTAS software is no longer supported and provided by NIOSH/CDC. However, much of the functionality of LTAS can now be found within a package developed for the statistical computing software R⁴ called 'LTASR'. Developments in standard statistical software and computing power allow all the functionality of LTAS to exist in an R package with enhanced flexibility, customisation and reproducibility compared with its preceding graphical user interface (GUI) versions.

LTASR maintains the core functionality of LTAS, which is to:

1. Read in cohort information such as demographic information, mortality or morbidity information as well as time-dependent exposure history information.
2. Calculate person-time at risk in the form of person-days, based on criteria specified by the user, and stratify person-time based on dependent variables of interest. These person-time tables can also be exported for Poisson regression analyses to internally compare mortality rates typically across an exposure variable.
3. Analyse the stratified cohort by calculating SMRs and corresponding 95% CIs, that compare observed mortality rates to an external population.

The flexibility of R code facilitates additional functionality to be added over time, namely, the ability to stratify by time-dependent stratifiers such as duration of employment, calculating causal mortality ratios, performing background stratified Poisson regression, and evaluating heterogeneity of standardised variables over time using random effects models.

Another strength of the original LTAS system was the ability to classify causes of death across many revisions of the International Classification of Diseases (ICD). LTASR includes the ability to collapse ICD codes into the 119 causes of death groupings originally used by LTAS⁵ as well as includes the national referent rates from 1960 to 2020 for these outcomes to be used to calculate SMRs. NIOSH personnel plan to continue updating and making publicly available national-level referent rates for the NIOSH 119 cause of death groupings for the 11th ICD revision, which came into effect on 1 January 2022.

There are a few drawbacks to the current proposed package. For one, use of the package requires basic familiarity with the R programming language. Second, the package requires stricter formatting of the imported cohort information by the user than was required by the original LTAS software. That is, the original LTAS used a GUI that provided the ability to select various options that allowed the data being read to have a variety of formats. Third, as mentioned before, not all functionality of the original LTAS software is currently available, however the package will be continually updated. Specific information about the package, including a vignette providing more details for the use of the package, can be found on the Comprehensive R Archive Network (CRAN) website.⁶

An advantage of the LTASR package compared with prior LTAS GUIs is the enhanced reproducibility of R code. Previously, LTAS.NET users could document their 'point and click' analytical choices in a portable document format (PDF) output. R code allows the user to view analytical decisions and options, programme output, data and statistical output simultaneously in the same software environment.

R statistical software and the LTASR page are free to the user. While the original LTAS software will no longer be available for download, national rate file information and documentation will continue to be available through the LTASR package as well as on request from nioshltas@cdc.gov.

Stephen J Bertke **Kaitlin Kelly-Reif**

National Institute for Occupational Safety and Health, Division of Field Studies and Engineering, Cincinnati, Ohio, USA

Correspondence to Dr Stephen J Bertke, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH 45226, USA; inh4@cdc.gov

Contributors SJB was the principal author of the LTASR code being described. SJB and KK-R thoroughly tested the program as well as authored and reviewed drafts of the letter.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Disclaimer The findings and conclusions in this report are those of the author(s) and do not necessarily represent the official position of the National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention.

Competing interests None declared.

Patient consent for publication Not applicable.

Ethics approval Not applicable.

Provenance and peer review Not commissioned; internally peer reviewed.

© Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ.

To cite Bertke SJ, Kelly-Reif K. *Occup Environ Med* Epub ahead of print: [please include Day Month Year]. doi:10.1136/oemed-2022-108462

Received 9 May 2022

Accepted 24 August 2022

Occup Environ Med 2022;0:1.
doi:10.1136/oemed-2022-108462

ORCID iD

Stephen J Bertke <http://orcid.org/0000-0002-3047-3816>

REFERENCES

- 1 Schubauer-Berigan MK, Hein MJ, Raudabaugh WM, et al. Update of the NIOSH life table analysis system: a person-years analysis program for the windows computing environment. *Am J Ind Med* 2011;54:915–24.
- 2 Colbeth HL, Zeig-Owens R, Hall CB, et al. Mortality among fire department of the city of New York rescue and recovery workers exposed to the World Trade Center disaster, 2001–2017. *Int J Environ Res Public Health* 2020;17:6266.
- 3 Lehman EJ, Hein MJ, Gersic CM. Suicide mortality among retired National Football League players who played 5 or more seasons. *Am J Sports Med* 2016;44:2486–91.
- 4 R Core Team. *R: a language and environment for statistical computing*. Vienna, Austria: R Foundation for Statistical Computing, 2022.
- 5 Robinson CF, Schnorr TM, Cassinelli RT, et al. Tenth revision U.S. mortality rates for use with the NIOSH life table analysis system. *J Occup Environ Med* 2006;48:662–7.
- 6 Bertke SJ. LTASR: Functions to Replicate the Center for Disease Control and Prevention's 'LTAS' Software in R, 2022. Available: <https://CRAN.R-project.org/package=LTASR>