
Abstract 

Sleep exerts important modulatory effects on most compo­
nents of the endocrine system. Pathways mediating the impact 
of sleep on peripheral endocrine function and metabolism 
include the activity of the hypothalamic releasing and inhibit· 
ing factors on pituitary hormone release and the autonomous 
nervous system control of endocrine organs. Modulatory 
effects of sleep on endocrine release are not limited to the 
hormones of the hypothalamic-pituitayy axes; these effects are 
also observed for the hormones controlling carbohydrate 
metabolism, appetite regulation, and water and electrolyte 
balance. Sleep loss is associated with disturbances of hormone 

MODULATION OF ENDOCRINE 
FUNCTION BY SLEEP-WAKE 
HOMEOSTASIS AND CIRCADIAN 
RHYTHMICITY 
In healthy adults, reproducible changes of essentially all 
hormonal and metabolic variables occur during sleep and 
around wake-sleep and sleep-wake transitions. These daily 
events reflect the interaction of central circadian rhythrnic­
ity and sleep-wake homeostasis. Thus, the dual control of 
sleep timing and quality by circadian processes (i.e., Process 
C) and sleep-wake homeostasis (i.e., Process S) is readily 
reflected in the modulatory effects exerted by sleep on 
endocrine and metabolic function. Pathways by which 
central circadian rHythmicity and sleep-wake homeostasis 
affect peripheral endocrine function and metabolism 
include the modulation of the activity of the hypothalamic 
releasing and inhibiting factors and the autonomous 
nervous system control of endocrine organs. Findings from 
genome-wide association studies also support a role of 
circulating melatonin levels on specific endocrine targets, 
including the pancreatic beta cells. 1-3 The relative contri­
butions of circadian timing compared with homeostatic 
control in the regulation of the temporal organization of 
~ormone release vary from one endocrine axis to another. 
~imilarly, modulatory effects of the transitions between 
:,vake and sleep (and vice versa) and between non-rapid eye 
movement (NREM) and rapid eye movement (REM) 
stages also vary from one hormone to another. 

Circadian oscillations can be generated in many periph­
eral organs, including tissues that release endocrine signals 
such as adipocytes and pancreatic beta cells.4 These "local" 
oscillators appear to be under the control of the central 
pacemaker in the suprachiasmatic nuclei either directly via 
neural and endocrine signals, or indirectly via its control 
of behavioral rhythms such as the sleep-wake cycle and the 
rhythm of feeding. The possible involvement of these 
peripheral oscillators on the temporal , organization of 
endocrine release and metabolic function during waking 
and sleeping remains to be investigated. 

L. 

secretion and metabolism, which may have clinical relevance, 
particularly as voluntary partial sleep curtailment has become 
a highly prevalent behavior in modern society. Reduced sleep 
quality also adversely affects ertdocrine release and metabo­
lism. Evidence suggests that part of the constellation of hor­
monal and metabolic alterations that characterize normal 
aging may reflect the deterioration of sleep quality. Major 
metabolic diseases such as obesity, type 2 diabetes, and poly­
cystic ovary syndrome are all associated with sleep distur­
bances, which may promote the development or exacerbate 
the severity of the condition. Strategies to reverse decrements 
in sleep quality may have beneficial effects on endocrine and 
metabolic function. 

To differentiate between effects of circadian rhythmicity 
and those subserving sleep-wake homeostasis, researchers 
have used experimental strategies that take advantage of 
the fact that the central circadian pacemaker takes several 
days to adjust to a large sudden shift of sleep-wake and 
light-dark cycles (such as occur in jet lag and shift work). 
Such strategies allow for the effects of circadian modula­
tion to be observed in the absence of sleep and for the 
effects of sleep to be observed at an abnormal circadian 
time. Figure 26-1 illustrates mean profiles of hormonal 
concentrations, glucose levels, and insulin-secretion rates 
(ISR) observed in healthy subjects who were studied before 
and during an abrupt 12-hour delay of the sleep- wake and 
dark- light cycles. To eliminate the effects of feeding, 
fasting, and postural changes, the subjects remained 
recumbent throughout the study, and the normal meal 
schedule was replaced by intravenous glucose infusion at a 
constant rate.5 

As shown in Figure 26-1, this drastic manipulation of 
sleep had only modest effects on the wave shape of the 
cortisol profile, in sharp contrast with the immediate shift 
of the growth hormone (GH) and prolactin (PRL) rhythms 
that followed the shift of the sleep- wake cycle. T he tem­
poral organization of thyroid-stimulating hormone (TSH) 
secretion appears to be influenced equally by circadian and 
sleep-dependent processes. Indeed, the evening elevation 
of TSH levels occurs well before sleep onset and has beyn 
shown to reflect circadian phase. During sleep, an inhibi­
tory process prevents TSH concentrations from rising 
further. Consequently, in the absence of sleep, the noctur­
nal TSH elevation is markedly amplified. Both sleep and 
time of day clearly modulated glucose levels and ISR. Noc­
turnal elevations of glucose and ISR occurred even when 
the subjects were sleep deprived, and recovery sleep at an 
abnormal circadian time was also associated with elevated 
glucose and ISR. This pattern of changes in glucose levels 
and !SR reflected changes in glucose use because, when 
glucose is infused exogenously, endogenous glucose pro­
duction is largely inhibited. 
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Table 26-1 Origin and Main Action of Hormones 

HORMONE MAIN SECRETING ORGAN MAIN ACTION IN ADULTS 

Growth hormone (GH) 

: P~olactin (PRL) 

. Adrenocorticotropic hormone (ACTH) 

Cortisol 

Thyroid-st imulating hormone (TSH) 

Luteinizing hormone (LH) 

Follicle-stimulating hormone (FSH) 

Testosterone 

Estradiol 

Insulin 

Melatonin 

Leptln 

Ghrelin 

... 

Pituitary g land 

"Pituita~ g land 

Pituitary g land 

Adrenal cortex 

Pituitary g land 

Pituitary g land 

Pituitary g land 

Gonads 

Ovaries 

P~ncreas 

Pineal gland 

Adipose t'issue 

Stomach 

24-hour secretory output. Sleep onset elicits a pulse in GH 
secretion whether sleep is advanced, delayed, or inter­
rupted and reinitiated. The mean GH profile shown in 
Figure 26-1 illustrates the maintenance of the relationship 
between sleep onset and GH release in subjects who 
underwent a 12-hour delay shift of the sleep-wake cycle. 
There is a consistent relationship between the appearance 
of delta waves in the EEG and elevated GH concentrations 
and maximal GH release occurs within minutes of the 
onset of slow-wave sleep (SWS).8•9 In healthy young men, 
there is a quantitative correlation between the amount of 
GH secreted during the sleep-onset pulse and the duration 
of the slow-wave episode.10 Pharmacologic stimulation of 
SWS with oral administration of low doses of gamma­
hydroxybucyrate (GHB), a drug used for the treatment of 
narcolepsy, as well as with ritanserin, a selective 5-hydroxy­
tryptamine (5-HT 2) receptor antagonist, results in increases 
in GH secretion. 11•12 Sedative hypnotics that are ligands of 
the GABAA receptor such as benzodiazepines and imidazo­
pyridines, do not increase nocturnal GH release, consis­
tent with their lack of stimulation of slow-wave activity.13 

The mechanisms that underlie the relationship between 
early sleep and GH release are unclear. The significance 
of this relationship is that anabolic processes in the body 
are synchronized to a state when behavioral rest occurs and 
}\'hen cerebral glucose use is at its lowest point. 14 There is 
good evidence to indicate that stimulation of nocturnal 
GH release and stimulation of SWS reflect, to a large 
extent, synchronous activity of at least two populations of 
hypothalamic GHRH neurons. 14 Sleep-onset GH secre­
tion appears to be primarily regulated by GHRH stimula­
tion occurring during a period of decreased somatostatin 
inhibition of somatotropic activity. Indeed, in humans, 
GH secretion during early sleep may be nearly totally sup­
pressed by administration of a GHRH antagonist. 15 The 
late evening and nocturnal hours coincide with the trough 
of a diurnal variation in hypothalamic somatostatin tone16 

that is likely to facilitate nocturnal GH release. It is also 
possible that ghrelin plays a role in causing increased GH 

Anabolic hormone that regulates body composition 

Stimulates lactation i n worr1eni Jllei otropic actions•~ 

Stimulates release of cortisol from adrenal cortex 

Stress hormone, ant iir;isulin effects 

Stimulates the release of thyroid hormones from the 
thyroid gland 

Stimulates ovarian and testicular function 

Stimulates ovarian and testicular function 

Stimulates spermatogenesis 

Stimulates fol licular growth 

Reg_!Jlates blood glucose levels 

Hormone of the dark that transmits information 
about the light-dark cycle 

Satiety hormone regulating ~n.ergy bilan~e 
Hunger hormone regulating energy balance 

secretion during sleep because the normal 24-hour ghrelin 
profile shows a marked nocturnal increase peaking in the 
early part of the night. 17

•
18 

The upper panel of Figure 26-1 shows that the secretion 
of GH is increased during sleep independently of the cir­
cadian time when sleep occurs and that sleep deprivation 
results in greatly diminished release of this hormone. 
However, a slight increase may be observed during noc­
turnal sleep deprivation, indicating the existence of a weak 
circadian component that could reflect, as discussed earlier, 
lower somatostatin inhibition. Following a night of total 
sleep deprivation, GH release is increased during the 
daytime such that the total 24-hour secretion is not sig­
nificantly affected. 19 Again, the mechanisms underlying 
this compensatory daytime secretion are unknown, but 
they could involve decreased somatostatinergic tone or 
elevated ghrelin levels. 

Marked rises in GH secretion before the onset of sleep 
have been reported by several investigators.20-22 Presleep 
GH pulses may reflect the presence of a sleep debt, as they 
occur consistently after recurrent experimental sleep 
restriction.23 The short-term negative feedback inhibition 
exerted by GH on its own secretion may also explain 
observations of an absent GH pulse during the first slow 
wave period, when a secreto1y pulse occurred before sleep 
onset. Awakenings interrupting sleep have an inhibitory 
effect on GH release.24•25 Thus, sleep fragmentation gen~­
ally decreases nocturnal GH secretion. 

THE CORTICOTROPIC AXIS 
Activity of the corticotropic axis-a neuroendocrine system 
associated with the stress response and behavioral activa­
tion--lmay be measured peripherally via plasma levels of 
the pituita1y adrenocorticotropic hormone (ACTH) and 
of cortisol, the adrenal hormone directly controlled by 
ACTH stimulation. The plasma levels of these hormones 
decline from an early morning maximum throughout the 
daytime and are near the lower limit of most assays in the 
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late evening and early part of the sleep period. Thus, sleep 
is normally initiated when corticotropic activity is quies­
cent. Reactivation of ACTH and cortisol secretion occurs 
abruptly a few hours before the usual waking time. 

The mean cortisol profile shown in Figure 26-1, illus­
trates the remarkable persistence of this diurnal variation 
when sleep is manipulated. Indeed, the overall waveshape 
of the profile is not markedly affected by the absence of 
sleep or by sleep at an unusual time of day. Thus, the 
24-hour periodicity of corticotropic activity is primarily 
coptrolled by circadian rhytlunicity. 
-'Nevertheless, modulatory effects of sleep or wake have 

been clearly demonstrated. Indeed, a number of studies 
have indicated that sleep onset is reliably associated with a 
short-term inhibition of cortisol secretion,5•26 although this 
effect may not be detectable when sleep is initiated at the 
time of the daily maximum of corticotropic activity, that 
is, in the morning.27 Under normal conditions, because 
cortisol secretion is already quiescent in the late evening, 
this inhibitory effect of sleep, which is temporally associ­
ated with the occurrence of slow-wave sleep,28·30 results in 
a prolongation of the quiescent period. Therefore, under 
conditions of sleep deprivation, the nadir of cortisol secre­
tion is less pronounced and occurs earlier than under 
normal conditions of nocturnal sleep. Conversely, awaken­
ing at the end of the sleep period is consistently followed 
by a pulse of cortisol secretion.s,zs,Ji 

During sleep deprivation, the rapid effects of sleep onset 
and sleep offset on corticotropic activity are obviously 
absent, and, as may be seen in the profiles shown in Figure 
26-1, the nadir of cortisol levels is higher than during 
nocturnal sleep (because of the absence of the inhibitory 
effects of the first hours of sleep), and the morning 
maximum is lower (because of the absence of the stimulat­
ing effects of morning awakening). Overall, the amplitude 
of the rhythm is reduced by approximately 15 % during 
sleep deprivation as compared to normal conditions. 

In addition to the immediate modulatory effects of 
sleep- wake transitions on cortisol levels, nocturnal sleep 
deprivation, even partial deprivation, results in an eleva­
tion of cortisol levels on the following evening.32 Sleep loss 
thus appears to delay the normal return to evening quies­
cence of the corticotropic axis. This endocrine alteration 
is remarkably similar to that occurring in normal aging, 
where increases in evening cortisol levels of similar mag­
nitude are consistently observed. This interpretation is 
consistent with findings in normal subjects submitted to 
recurrent partial sleep restriction, as discussed later. 

THE THYROID AXIS 
Daytime levels of plasma TSH are low and relatively stable 
and are followed by a rapid elevation starting in the early 
evening and culminating in a nocturnal maximum occur­
ring around the beginning of the sleep period. 3o,33 The 
later part of sleep is associated with a progressive decline 
in TSH levels, and daytime values resume shortly after 
morning awakening. The first 24 hours of the study iIJus­
trated in Figure 26-1 are typical of the diurnal TSH 
rhythm. Because the nocturnal rise of TSH occurs well 
before the time of sleep onset, it probably reflects a circa­
dian effect. However, a marked effect of sleep on TSH 

secretion may be seen during sleep deprivation (clearly 
seen in Fig. 26'-l), when nocturnal TSH secretion is 
increased by as much as 200% over the levels observed 
during nocturnal sleep. Thus, sleep exerts an inhibitory 
influence on TSH secretions, and sleep deprivation relieves 
this inhibition. 3o.34 

Interestingly, when sleep occurs during daytime hours, 
TSH secretion is not suppressed significantly below normal 
daytime levels. Thus, the inhibitory effect of sleep on TSH 
secretion appears to be operative when the nighttime ele­
vation has taken place, indicating once again the interac­
tion of the effects of circadian time and the effects of sleep, . 
When the depth of sleep at the habitual time is increase(! ' 
by prior sleep deprivation, the nocturnal TSH rise is more 
markedly inhibited, suggesting that SWS is probably th~ 
primary determinant of the sleep-associated fall.30 Awak­
enings interrupting nocturnal sleep appear to relieve the 
inhibition of TSH and are consistently associated with a 
short-term TSH elevation. 

Circadian and sleep-related variations in thyroid hor­
mones have been difficult to demonstrate, probably because 
these hormones are bound to serum proteins and thus their 
peripheral concentrations are affected by diurnal variations 
in hemodilution caused by postural changes. However, 
under conditions of sleep deprivation, the increased ampli­
tude of the TSH rhythm may result in a•detectable increase 
in plasma triiodothyronine (T3) levels, paralleling the noc­
turnal TSH rise.35 If sleep deprivation is continued for a 
second night, then the nocturnal rise of TSH is markedly 
diminished as compared with that occurring during the 
first night.35

•
36 It is likely that following the first night of 

sleep deprivation, the elevated thyroid hormone levels, 
which persist during the daytime period because of the 
prolonged half-life of these hormones, limit the subse­
quent TSH rise at the beginning of the next nighttime 
period. Data from a study of 64 hours of sleep deprivation 
suggest that prolonged sleep loss may be associated with 
an upregulation of the thyroid axis, with lower levels of 
TSH and higher levels of thyroid hormones.37 As discussed 
in the section on chronic sleep restriction, this was indeed 
the case in a study of the endocrine and metabolic effects 
of a sleep debt resulting from bedtime curtailment to 4 
hours per night for 6 nights.38,39 

The inhibitory effects of sleep on TSH secretion are 
time dependent, and that may cause, under specific cir­
cumstances, elevations of plasma TSH levels that reflect 
the misalignment of sleep and central circadian timing. In 
a study examining the course of adaptation to an abrupt 
8-hour advance of the sleep-dark period in healthy young 
men,40 TSH levels increased progressively because daytime 
sleep failed to inhibit TSH and nighttime wakefulness was 
associated with large circadian-dependent TSH elevations. 
As a result, mean TSH levels following awakening from 
the second shifted sleep period were more than twofold 
higher than during the same time interval following normal 
nocturnal sleep. This overall elevation of TSH levels was 
paralleled by a small increase in T 3 concentrations.40 This 
study demonstrated that the subjective discomfort and 
fatigue often referred to as "jet-lag syndrome" are associ­
ated not only with a desynchronization of bodily rhythms 
but also with a prolonged elevation of a liormone concen­
tration in the peripheral circulation. 
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The sleep-onset GH pulse was observed in all individual 
profiles for both sleep conditions. However, after partial 
sleep restriction, all subjects exhibited a GH pulse prior 
to sleep onset. There was a negative correlation between 
presleep GH secretion and sleep-onset GH release. Y.his 
profile of GH release is quite different from that observed 
during acute total sleep deprivation (see Fig. 26-1, top 
panels), where minimal GH secretion occurs during noc­
turnal wakefulness and GH secretion rebounds during 
daytime recovery sleep. 

v\:hen compared to the fully rested condition, the state 
of sleep debt was associated with alterations of the 24-hour 
profile of cortisol, including a shorter quiescent period and 
elevated levels in the evening (see Fig. 26-5, second panel 
shaded areas). This alteration was similar to that observed 
after acute total or partial sleep deprivation32 and may 
reflect decreased efficacy of the negative feedback regula­
tion of the hypothalamic-pituitary-adrenal axis.39 

Restriction and extension of sleep duration were also 
associated with clear changes in thyrotropic function. The 
nocturnal elevation of plasma TSH was dampened and 
thyroid hormone levels were higher in the sleep debt 
state.39 Previous studies have demonstrated that total sleep 
deprivation is initially associated with a marked increase in 
TSH secretion (see Fig. 26-1), which becomes smaller 
when sleep deprivation continues, presumably because of 
negative feedback effects from slowly rising levels of 
thyroid hormones. Similar mechanisms are likely to under­
lie the alterations in thyrotropic function after recurrent 
partial sleep restriction. 

Bedtime curtailment results in a higher glucose response 
to breakfast despite similar insulin secretion (see Fig. 26-5, 
lower panels). The difference in peak postbreakfast glucose 
levels between the sleep debt and fully rested conditions 
(i.e., ± 15 mg/dL) is consistent with a state of impaired 
glucose tolerance. Intravenous glucose tolerance testing 
confirms this deterioration in glucose tolerance.39 Reduced 
glucose tolerance is the combined consequence of a 
decrease in glucose effectiveness, a measure of noninsulin 
dependent glucose use, and a reduction in the acute insulin 
response to glucose despite a trend for decreased insulin 
sensitivity. The product of insulin sensitivity and acute 
insulin response to glucose, that is, the disposition index, 
a validated marker of diabetes risk, 103 was decreased by 
nearly 40% in the state of sleep debt, reaching levels typical 
of populations at an elevated risk of diabetes.104

,
105 These 

findings were confirmed in a subsequent randomized 
crossover study comparing two 10-hour nights versus two 
4-hour nights.106 

Mean levels of the satiety hormone leptin were reduced 
by 20% to 30% under sleep restriction as compared to 
extension (see Fig. 26-5, lowest panels).38 This effect size 
of sleep restriction is comparable to that occurring after 
three days of dietary restriction by approximately 900 kcal 
per day under normal sleep conditions.107 Further, there is 
a clear dose-response relationship between sleep duration 
and characteristics of the leptin profile38 (Fig. 26-6, upper · 
panels). Indeed, mean leptin levels gradually increase from 
4 hours to 8 hours and to 12-hour bedtime condition. 
Importantly, these differences in leptin profiles occur 
despite identical amounts of caloric intake, similar seden-

tary conditions, and stable weight. A reduction of peak 
leptin levels has also been reported in volunteers studied 
after 7 days of 4-hour bedtimes.108 

In a randomized crossover study of two nights of 4 hours 
in bed versus two nights of 10 hours in bed, daytime pro-
files of leptin and of the hunger hormone ghrelin were 
measured, and the subjects completed validated scales for 
hunger and appetite for various food categories (Fig. 26-6, 
lower panel).109 Overall leptin levels were decreased by an 
average of 18% and ghrelin levels were increased by 28%, 
and the ghrelin: leptin ratio increased by more than 70%. 
Hunger showed a 23% increase, and appetite for nutrients , ­
with high carbohydrate content was increased by more , 
than 30% when sleep was restricted. If this increase in 
hunger were to translate into a commensurate increase in ' 
food intake, weight gain would be expected. A recent 
laboratory study of overweight middle-aged adults who 
were submitted to 2 weeks of 1.5 hour of sleep extension 
or restriction in a randomized crossover design indeed 
showed an increase in food intake from snacks during 
sleep restriction.U0 However, the participants gained 
weight under both sleep conditions and differences in 
leptin or ghrelin levels were not detected. 

Two epidemiologic studies have confirmed and extended 
these findings with observations of reduced leptin levels, 
after controlling for body mass index (BMI) or adiposity, 
in habitual short sleepers.111

•
112 Higher ghrelin levels were 

also associated with short sleep.111 A subsequent smaller 
study involving only postmenopausal women did not 
confirm the link between sleep duration, leptin, and 
ghrelin levels, 113 but very few participants had short sleep 
durations. 

Epidemiologic Studies 
Over the past ten years, a large number of studies have 
examined associations between sleep duration and the 
prevalence and incidence of type 2 diabetes and obesity. 
Nearly all these studies explored existing data sets that 
included self reported sleep duration and none of them 
determined whether short sleep was the result of bedtime 
curtailment or was due to the presence of a sleep disorder 
or other co-morbidities. 

Four cross-sectional studies found a significant associa­
tion between short sleep and the risk of diabetes.11+117 In 
four of six prospective studies, short sleep at baseline was 
found to predict a higher incidence of diabetes.118

-
123 The 

follow-up period ranged from 10 to 18 years. 
By the end of 2008, more than 40 cross-sectional epide­

miological studies have provided evidence for an associa­
tion between short sleep and higher BM!. One meta­
analysis found that the pooled odds ratio (OR) linking 
short sleep to obesity was 1.89 in children and 1.5 5 in 
adults. 124 Another meta-analysis reported an OR of 1.58 in 
children with short sleep duration and an OR of 1.92 in 
children with the shortest sleep duration. 125 A systematic 
review concluded that short sleep duration appears inde:. 
pendently associated with weight gain, particularly in 
younger age groups.126 A cross-sectional analysis that 
uniquely assessed sleep duration by wrist actigraphy in 
more than 6,000 men and women, ages 67 to 99 years, and 
showed that, compared to sleeping 7 to 8 hours per night, 
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