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Abstract: West Nile virus (WNV) was introduced to New York in 1999 and rapidly spread 

throughout North America and into parts of Central and South America. Displacement  

of the original New York (NY99) genotype by the North America/West Nile 2002 

(NA/WN02) genotype occurred in 2002 with subsequent identification of a novel genotype 

in 2003 in isolates collected from the southwestern Unites States region (SW/WN03 

genotype). Both genotypes co-circulate to date. Subsequent WNV surveillance studies  

have confirmed additional genotypes in the United States that have become extinct due  

to lack of a selective advantage or stochastic effect; however, the dynamic emergence, 

displacement, and extinction of multiple WNV genotypes in the US from 1999–2012 

indicates the continued evolution of WNV in North America. 
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1. Introduction 

West Nile virus (WNV; Flaviviridae: Flavivirus) is an “Old World” virus which re-emerged in the 

mid-1990s to international concern as a major public health threat. The virus was originally isolated in 

1937 from a febrile woman in the West Nile district of Uganda during routine surveillance for yellow 

fever virus (YFV) [1]. However, infection was not linked to overt clinical disease until the 1950s when 

epidemics in Israel and Egypt stimulated detailed studies on the virus and serological distribution of 

WNV-specific antibodies in northern and Sub-Saharan Africa [2–4]. Sporadic outbreaks of febrile 

disease occurred throughout the 1950s–1980s in Africa, Australia and the Middle East with larger 

outbreaks in Israel (1951–1952, 1957, and 1962), France (1962–1965) and South Africa (1974 and 

1983–1984) which were self-limited with few confirmed cases of neuroinvasive or other clinical 

disease, including some cases of hepatitis in South Africa [5,6]. Incidence of severe WNV-related 

disease in both humans and equines gained momentum in the mid-1990s with epidemics in northern 

Africa, the Middle East, and central Europe: Algeria (1994 and 1997), Morocco (1996), Romania 

(1996), Tunisia (1997), Russia (1999), Israel (1998–2000) and France (2000) [5,6]. In particular, the 

1996 Romanian epidemic marked the first human epidemic associated with significant incidence of 

encephalitic disease. 

Emergence of WNV in the Western hemisphere in 1999 resulted in its rapid expansion in naive 

enzootic transmission cycles throughout North America and into Central America with occasional 

evidence of viral isolates, RNA, and/or seroconversions in some areas of South America. On-going 

surveillance cohorts in the United States (US) have provided significant insight into the natural 

transmission dynamics, ecology, and evolution of WNV over the past decade. Cumulative efforts since 

1999 estimate over 3 million human WNV infections in the US with >780,000 WN fever cases,  

16,000 neurologic disease (WNND) cases, and over 1,500 associated fatalities [7]. Similar to the US, 

recent WNV epidemics in Europe have undergone a paradigm shift with unprecedented levels  

of mortality and human neurologic disease during outbreaks in Hungary (2003–2005), Greece  

(2010–2013), Russia (2007 and 2011–2013), Austria (2008–2009), Romania (2010), and Italy  

(2008–2009 and 2011–2012) [8]. Possible explanations for this shift in global WNV disease are  

multi-factorial and are dependent on both host and environmental stimuli (discussed in other articles 

within this special issue); this review will focus on the emergence, displacement, and extinction  

of several US genotypes to discuss potential genetic dynamics driving the evolution of WNV in  

North America. 

2. Global WNV Phylogenetics: Derivation of a Lineage 

West Nile virus has been designated into at least five distinct Lineages (1–5) based on in-depth 

phylogenetic analyses of published sequences in six of the seven continents (except Antarctica) collected 

from 1937 to the present (Figure 1; Koutango virus is indicated as a possible Lineage 6) [9,10]. 

Historically, Lineage 2 has circulated in sub-Saharan Africa and Madagascar in local endemic 

transmission cycles with limited evidence of epidemic transmission and was associated with less 

severe or non-neuroinvasive clinical disease in humans. However, recent epidemics in Greece, Italy, 

Romania, and South Africa have provided evidence of severe human neurologic disease associated 
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with Lineage 2 WNV isolates. These epidemic isolates cluster with the non-pathogenic ancestral 

Lineage 2 strains [11–18]. Lineage 3 consists of a single 1997 isolate collected from a WNV-positive 

mosquito pool in Austria, designated Rabensburg virus (RabV), which shares 75%–77% nucleotide 

and 89%–90% amino acid identity with published Lineage 1 and Lineage 2 isolates [10,12,19,20]; 

Lineage 4 consists of several Russian isolates identified in circulation since 1988 [21]; Lineage 5 is 

composed of 13 Indian isolates identified from 1955–1982 that demonstrate 74%–78% nucleotide 

divergence from Lineages 1–4 [10,22]. Despite global epidemic circulation of Lineages 1 and 2,  

the epidemiological significance of Lineages 3–5 remains unclear. 

Figure 1. Neighbor-joining phylogenetic tree, using condensed, simplified branches  

that depicts the Lineages 1–6 of West Nile virus. Indicated phylogenetic groupings are 

defined based upon the genetic distance (i.e., % nucleotide divergence) for isolates which 

cluster within Lineages 1–6 (≥20%), Clades 1a and 1b (12.7%–20.8%) of Lineage 1,  

and Clusters 1–6 (≤5.4%) of Lineage 1a. Lineages 1 and 2 are the most geographically 

dispersed and include both endemic and epidemic strains associated with outbreaks of 

neurologic disease in humans, horses and birds in the Americas, Europe, Africa and the 

Middle East. Strains circulating in the Americas belong to Cluster 4 of Lineage 1a,  

as defined by May et al. (2011) [10]. 
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Lineage 1 constitutes the largest WNV lineage with world-wide distribution of isolates further 

classified into two distinct clades: 1a and 1b [9,10]. Clade 1b contains Kunjin virus (KUNV) isolates 

in circulation in Australasia [10]. Clade 1a contains most of the Lineage 1 isolates with further 

subdivision into six discrete clusters based on conserved genotypic signatures [10,23,24]. Cluster 1 

consists of isolates from Northern Africa (1951–1976), Israel (1953), India (1968) and Portugal 

(1971). Cluster 2 contains more recent isolates from Romania (1996), Morocco (1996 and 2003), 

Kenya (1998), Italy (1998 and 2008–2011), Russia (1999–2000), France (2000), Portugal (2004) and 

Spain (2007), which have been further sub-divided into the Mediterranean and Eastern European 

subtypes, as defined by the presence of a conserved NS1-A70S substitution in all Mediterranean 

subtype isolates (Table 1) [10,25–29]. Cluster 3 includes 1995–2005 isolates from the Astrakhan 

region of Russia that encode two substitutions: NS1-S99P and NS2A-A224T, which are unique to this 

clade. Cluster 5 is composed 1965–1979 Central African isolates, and cluster 6 contains three isolates 

from Nigeria (1965), the Central African Republic (1967), and Senegal (1979) [10,30]. Cluster 4 

includes isolates from Tunisia (1997), Israel (1998 and 2000), Hungary (2003), and the Americas 

(1999–present) with conserved expression of both the E-T126I and NS4A-V85A substitutions. 

Furthermore, divergent evolution of a proline (residue 249) in the NS3 protein (linked with virulence 

in birds) is lineage-specific: Lineage 2 (H), Lineage 3 (N), Lineage 4 (T), and Lineages 1a (T/H/A),  

1b (A), and 1c (T) (Table 1) [10,31]. 

Table 1. Global evolution of WNV Lineage 1a: conserved amino acid substitutions 1. 
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T I K A S L A A I P V S S K T

1a 1 - · · · · · · · · · T · N · · ·

 
2 

Eastern 
European 

· M · S · F V · · · · · · · I

Mediterranean · M · S · · · · · T · · · · ·

3 - · · · · P · · T · · T · · · ·

4 - I V · * · · V · · · A · · · ·
NY99 I V · * · · V · · · A · · · *

  
SE Coastal 

Texas 
I V · * · · V · · · A · · · ·

NA/WN02 I A R * · · V · · · A · · * ·
SW/WN03 I A R * · · V · · · T · · R ·
MW/WN06 I A R * · · V · · · A/I · · * ·

5 - · · · · · · · · V · · · T · ·

6 - · · · · · · · · · · · · · · ·

1b - - · · · · · · · · · A · · · · ·

2 - - · · * · A · · · · H · N · · ·
1 E, envelope; NS, nonstructural; 4A, NS4A; 4B, NS4B; Summary of amino acid changes in the WNV 

genome (shaded text) relative to the consensus sequence which define specific clusters or genotypes in 

Lineage 1, Clades a and b, or Lineage 2; Dots indicate no difference from consensus (top); Asterisks (*) 

indicate the presence of the indicated amino acid change in some but not all isolates. 
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3. Introduction of WNV into North America: NY99 Genotype 

Initial isolation of WNV in the Western hemisphere followed a self-limited outbreak of 62 human 

encephalitis cases in the New York metropolitan area concurrent with 25 equine cases (9 fatal) and 

extensive mortality in local bird populations [32,33]. In 2000, detection of WNV-positive dead birds 

(in particular Corvus spp.) and Culex spp. mosquito pool isolates in New York (NY), New Jersey (NJ), 

Connecticut (CT), and Maryland (MD) confirmed the expansion of WNV throughout the northeastern 

US [33–35]. From 2000–2006, WNV spread down the eastern coast and across the continental US with 

subsequent detection in all 48 contiguous US states by 2004. National and international surveillance 

campaigns have also confirmed WNV circulation in regions of Canada, the Caribbean, Central 

America and South America [34,36–39]. 

Figure 2. Bayesian coalescent phylogenetic tree depicting the simplified distribution of the 

North American WNV genotypes within Lineage 1a Cluster 4. Posterior probabilities 

(≥0.92) support the emergence of at least four unique WNV genotypes and/or clusters in 

North America from ancestral North African strains: NY99 (red), NA/WN02 (blue), 

SW/WN03 (green), and MW/WN06 (gold). Both the number and temporal range are 

indicated for the isolates which cluster within each genotype or cluster. Scale bar, 

divergence time in years. 
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The homogeneous virus population that emerged from the original expansion of WNV in the 

eastern US during the initial epidemic was termed the “NY99 genotype” based on the original isolation 

in the New York metropolitan area in 1999 (Figure 2). Complete genomic sequencing of the prototype 

NY99 genotype isolate (NY99-flamingo382-99 (also NY99), AF196835) cultured from a dead Chilean 

flamingo (Phoenicopterus chilensis) in the Bronx zoo in parallel with envelope (E) gene amplicons 

from Culex spp. mosquito pools and two fatal human cases confirmed the circulation of WNV in local 

enzootic transmission cycles [32]. Paired E-glycoprotein antigenic mapping and phylogenetic analyses 

of this prototype isolate revealed 99.8% sequence identity with a Lineage 1a Cluster 4 1998 Israeli 

domestic goose isolate (IS-98 STD, AF481864). Limited sequence similarity (≤96.9%) relative  

to other published epidemic Lineage 1a Cluster 2 (European) and Lineage 1b (Kunjin) strains  

further supported the initial introduction of WNV into the US from the Middle East or surrounding  

region [10,32]. However, there is no conclusive evidence of how WNV was introduced into the US or 

the exact location from which the virus originated. In a recent 2011 paper, May et al. [10] proposed the 

indirect role of the 1998 Israeli isolate in the initial North American outbreak; inclusion of additional 

European and sub-Saharan African isolates supported the independent initiation of both the Israeli and 

New York outbreaks upon introduction of a common progenitor strain from an unknown location in 

northern Africa. 

In response to the initial 1999 New York epidemic, multiple WNV surveillance cohorts have 

monitored its spread across the US. Initial studies focused on the molecular evolution of the  

pre-membrane/membrane (prM/M) and E protein genes. In particular, surveillance cohorts in CT and 

NY from 1999–2001 confirmed the in situ evolution of the homogenous NY99 genotype in the 

northeastern US with limited genetic change (<0.18% nucleotide divergence) encoding synonymous 

mutations that were not fixed within the population [33–35,40,41]. Rapid adaptation of WNV to local, 

naïve Culex spp. mosquito and wild bird populations fueled expansion of the original NY99 genotype 

from the initial 1999 epicenter via migration routes across the continental US, north into Canada, and 

south into Central and South America [34,36–39]. 

4. Southeastern Coastal Texas Genotype 

Upon introduction of WNV into Texas in 2002, a divergent population of seven uniform isolates 

from the coastal region of southeast Texas (termed the Southeastern Coastal Texas genotype)  

(Figure 2) was identified [42]. Follow-up studies of this unique clade confirmed five unique amino 

acid substitutions across the encoded polyprotein sequence (E-T76A, NS1-E94G, NS2A-V138I, 

NS4B-V173I and NS5-T526I) supporting its designation as a novel WNV genotype (as exemplified by 

the Kuritz isolate (also known as TVP8533; AY289214)) [43,44]. However, since 2002, there have 

been no isolates identified belonging to this genotype suggesting its extinction. 

5. North America/WN 2002 (NA/WN02) Genotype 

Despite limited initial public health impact, clinical incidence of WNV infection peaked between 

2002–2003 with a combined total of 5,812 WNND cases and 548 fatalities [45]. Phylogenetic analyses 

of respective 2001–2004 North American isolates confirmed the displacement of the original NY99 

genotype in 2002 with a heterogeneous pool of isolates, termed the North American (NA/WN02) 
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genotype (Figure 2), characterized by 13 conserved nucleotide changes and an encoded substitution, 

V159A, in the E protein (Table 1) [41,46,47]. NA/WN02 genotype isolates exhibited an average 

0.24% nucleotide and 0.09% amino acid divergence from NY99 and up to 0.58% nucleotide 

divergence with other NA/WN02 isolates [47]. The novel E-V159A substitution has been linked to a 

reduced extrinsic incubation period in Culex spp. mosquitoes [46,48]. In effect, extinction of the 

original NY99 genotype is attributed to the more efficient dissemination of NA/WN02 isolates in the 

mosquito vector based on still unclear species- and population-specific dynamics [48,49]. In addition, 

annual reintroduction and local over-wintering of virus populations have been proposed as additional 

potential drivers of WNV evolution and diversification on both a local and national scale [50,51]. 

Overall, due to evidence of transient local genotypes, such as the Southeast Coastal Texas genotype 

(which lacked the E-V159A substitution), fixation of the NA/WN02 genotype in North America 

supports the selective advantage of the diverse, dynamic virus populations within this dominant 

genotype [42–44]. 

6. Southwest/WN 2003 (SW/WN03) Genotype 

Following emergence of the NA/WN02 genotype, progressive declines in clinical WNV disease 

from 2004–2011 have been correlated with regional homeostatic WNV populations and a decreasing 

national growth rate consistent with now endemic WNV circulation in the US [41,45,52,53]. Despite 

these trends, continued WNV surveillance efforts in the southwestern US identified a pool of  

2003–2009 isolates with novel phylogenetic relationships relative to the dominant NA/WN02 

genotype. Confirmation of 13 unique nucleotide changes defined the emergence of the additional 

southwestern US (SW/WN03) genotype in 2003 with positive selection for both the NS4A-A85T and 

NS5-K314R substitutions in multiple isolates (Figure 2) [54]. Both the NA/WN02 and SW/WN03 

genotypes co-circulate in the US to date; however, the majority of the distribution of the SW/WN03 

genotype remains restricted to the southwestern US with occasional isolates found in other states 

(Figure 3). 

7. Midwest/WN 2006 (MW/WN06 Cluster) 

Ongoing surveillance efforts with more recent 2006–2011 isolates have also identified a novel cluster 

of WNV isolates derived from human blood donors and birds from Idaho and North Dakota collected 

during 2006–2007 (termed the MW/WN06 cluster, Figure 2) within the SW/WN03 genotype [55].  

In addition, 27 of the 29 human isolates in these phylogenetic groups encode the characteristic 

SW/WN03 genotype NS4A-A85T substitution with 50% of these isolates also encoding the  

NS5-K314R substitution [54,55]. Interestingly, despite fixation of E-V159A and selection of  

NS4A-A85T in North American WNV populations, both positions exhibit genotypic variation and 

independent evolution on a global scale. In particular, although all immediate ancestors of Lineage 1a 

Cluster 4 demonstrate a valine at position 159 in the envelope (E) protein, all other WNV isolates 

express either a methionine or consensus isoleucine (Table 1). NS4A-85T is also fixed in all published 

Lineage 1a Cluster 3 isolates [10]. 
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Figure 3. Map of the United States showing states with the SW/WN03 genotype. Colors 

refer to year that the SW/WN03 genotype was first identified from isolates collected in a 

particular state. Red = 2003, orange = 2004, yellow = 2005, green = 2006, and  

blue = 2008.  

 

8. 2012 United States Epidemic 

Endemic enzootic circulation of WNV in the US since 2006 has coincided with a dramatic decline 

in the confirmed incidence of clinical disease with a total of <1,100 reported WNND cases between 

2008–2011 [45]. By comparison, WNV transmission in the recent 2012 US epidemic demonstrated  

a significant divergence from the national status quo. Overall, in 2012, the US witnessed  

5,674 confirmed WNV disease cases with 2,873 reports of WNND and 286 fatalities for a national 

incidence of 0.92 per 100,000 population, comparable to peak 2003 statistics [45,56,57]. National 

attention focused on the Dallas/Fort Worth, Texas metropolitan area, which represented >29% of the 

US public health burden and >50% of all reported neurologic cases [45,56]. In-depth phylogenetic 

analyses identified the co-circulation of three independent genetic groups in resident birds and  

Culex spp. mosquito pools collected from the greater Houston and Dallas/Fort Worth, Texas regions, 

which had 0.41–0.72% nucleotide divergence from NY99 [58,59]. Despite isolation of these isolates in 

the southwestern region of the US, all 2012 isolates clustered within the NA/WN02 genotype with 

published 2006–2009 NY and CT isolates. None of these isolates expressed the NS4A-A85T and  

NS5-K314R substitutions of the SW/WN03 genotype; however, there was evidence for positive 

selection of both NS2A-I52T (in all sampled isolates) and NS5-314 substitutions in independent 

follow-up studies [58,59]. These surveillance studies highlighted the continued evolution of WNV in 

the US; significantly, no correlation was identified between regional differences in WNV genetics and 

the in situ rise in encephalitic disease. 
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9. Mexico, Central America, and South America 

Despite current endemic circulation of WNV in the US, incidence of clinical encephalitic disease in 

Mexico is restricted to 8 confirmed cases between 2003–2009 in the northern Mexican States of 

Chihuahua, Sonora, and Nuevo Leon [36,60,61]. National screening campaigns of local equine 

populations from 2002–2007 identified up to 62.5% seroprevalence of WNV-specific antibodies 

limited to the northern and southeastern Mexican States with little clinical disease [62–65]. In effect, 

current evidence supports the introduction of WNV into Mexico from the US in two (or more) 

independent events: (1) bird migration from the southeastern US into the Yucatan Peninsula prior to 

2003 and (2), several independent reintroduction events on the US-Mexican border since 2003 [36]. 

Isolation of the prototype TM171-03 (AY660002) raven isolate from southeastern Tabasco State in 

2003 supports the initial introduction of WNV into the Yucatan Peninsula from migratory bird 

populations on the Pan-American Atlantic flyway [36]. TM171-03 clusters within the now extinct 

NY99 genotype with 0.42% nucleotide divergence from the prototype NY99 isolate; furthermore, 

absence of the E-V159A substitution supports immigration of the TM171-03 isolate or a progenitor 

strain prior to emergence of the NA/WN02 US genotype in 2002 [66,67]. Isolation of 15 additional 

WNV isolates between 2004–2009 was restricted to the northern States of Baja California Norte, 

Chihuahua, Nuevo Leon, Sonora, and Tamaulipas [60,68,69]. In-depth phylogenetic comparisons of 

these isolates identified closer relationships with NY99 (0.22–0.54% divergence) versus TM171-03 

(0.40–0.76%); restricted clustering within the NA/WN02 and SW/WN03 US genotypes gives  

further support for the independent introduction of these isolates across the US-Mexican border since 

2003 [54,68,69]. Recent evidence for the dynamic WNV transmission across the US-Mexican border 

provides additional selective pressure for WNV evolution in the southwestern US [69]. 

Outside of Mexico, serological evidence of WNV exists within several countries in the Caribbean 

and Central America in addition to some South American regions in Argentina [38], Brazil [70], 

Colombia [39], and Venezuela [71]. In particular, isolation of WNV in South America remains 

restricted to two 2006 Argentinian cases of fatal equine encephalitis [38] and two 2008 Colombian 

isolates from captive American flamingoes (Phoenicopterus ruber) [39]. In both studies, all four 

isolates clustered within the NY99 genotype with increased sequence divergence to published  

2003–2009 Mexican isolates. Current evidence supports the direct lineage of these isolates within the 

NY99 genotype; however, how these isolates immigrated into South America remains unclear [38,39]. 

No evidence exists for the alternative introduction of WNV into Central/South America outside  

the US, and no additional South American isolates have been isolated. Possible explanations for  

the relative absence of WNV in Mexico, Central America, and South America to date include  

(1) serologic cross-protection and/or competition with other endemic flaviviruses (e.g., St. Louis 

encephalitis, yellow fever, dengue, and mosquito-specific viruses) [72–74]; (2) under-reporting or 

clinical misdiagnosis under the dengue fever clinical umbrella; (3) a range of other potential host, 

environmental, and socio-economic factors. 
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Figure 4. Continued evolution and genetic variation of North American WNV isolates, 

1999–2012. North American WNV isolates (n = 454) published in GenBank between 

1999–2012 were compared to the prototype NY99-flamingo382-99 isolate (NY99, 

AF196835) [32] to determine the average annual percent (%) nucleotide divergence (black 

dots). Error bars indicate standard error from mean values. Red dotted lines, respective 

minimum and maximum annual % nucleotide divergence from NY99. Evaluation of 

overall annual WNV diversity (black line) is demonstrated as the maximum annual % 

nucleotide divergence between all published virus sequences. Estimates for 2012 included 

isolates from the 2012 Texas epidemic alone [45,56]. 

 

10. National Outlook: Is it the End or the Beginning? 

With the displacement, extinction, and co-circulation of multiple genotypes during its tenure in 

North America, forecasts for the evolution of WNV in the US remain conflicted. Is WNV evolution 

gaining momentum or coming to a halt? Initial published models predicted a mean substitution rate  

of 3.6 × 10−4 substitutions/site/year with a rapid decline in regional WNV variability following the  

2002–2003 peak in human clinical incidence [52]. Studies of North American WNV isolates collected 

from 1999–2011 have suggested that the virus has reached genetic homeostasis in North America 

consistent with limited sequence variation and the lack of emergent genotypes since 2006 [41,53,55]. 

However, much of this evidence was based on partial genome sequences (prM/E) and only included 

isolates from 1999–2005. In contrast, established WNV surveillance cohorts in both Chicago,  

Illinois [50,75,76] and Houston, Texas [44,47,54,59] highlight the continued evolution and 

diversification of WNV on a fine-geographic scale on par with both national and global trends [10]. 

Consider Figure 4 which depicts the mean annual % nucleotide divergence of all published North 
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American WNV isolates (n = 454 sequences) collected to date from the prototype NY99-flamingo382-99 

(NY99) strain. From a national perspective, WNV isolates appear more diverse from original NY99 

populations as time progresses. However, does this trend model evolution of a uniform national virus 

population or the continued microevolution of distinct WNV sub-populations on a local and/or 

regional scale? Calculation of the annual maximum percentage (%) nucleotide divergence between all 

published WNV sequences provides a more accurate approximation of WNV variability over time; as 

seen in Figure 4, the genetic variation of North American WNV isolates continues to increase 

consistent with the proposed expansion of local or regional WNV populations [50,75,76]. Overall, 

despite endemic circulation over the past decade, WNV continues to evolve in the United States 

through still unknown host and/or ecological selective pressures. 

11. Conclusions: The Future; Interpreting Genetic Data 

In silico phylogenetic models provide an effective approach to reconstruct the ancestral lineages or 

“relatedness” between target virus populations; however, such approaches are dependent on the 

applied dataset with critical biases from non-uniform host and/or regional surveillance (termed 

sampling bias). Such caveats include the over-representation of WNV isolates from a few select US or 

Mexican States in all current North American surveillance and phylogenetic studies. Multiple cohorts 

have described the evolution of WNV within localized geographic regions (city and/or state) across 

single or multiple years including California (CA) (complete genomes: 2003–2005) [77], CT (prM/E 

and complete genomes: 1999–2008) [35,51], Florida (FL) (prM/E: 2003–2005) [78], Illinois (IL) 

(complete genomes: 2002–2007) [50,75,76], Mexico (complete genomes: 2003–2010) [36,66–69], NY 

(E, NS5, and 3′-UTR: 2000–2003) [33,46], Puerto Rico (prM/E: 2007) [79], and TX (prM/E and 

complete genomes: 2002–2012) [41,42,44,47,53,54,59,69] (see Figure 5 for available genomic 

sequences by state). Overall, the above studies represent >71% of all published WNV isolates (Figure 5); 

furthermore, the conclusions from these analyses have demonstrated the co-circulation of localized 

clades introduced from other North American regions on a fine-geographic scale. Ongoing surveillance 

cohorts in these regions continue to exhibit neutral selection of circulating WNV clades with no 

additional evidence of fixed genotypic mutations. However, subsequent studies of the 2012 epidemic 

clearly show that the situation is more complex with 2012 TX isolates clustering within the NA/WN02 

genotype with published 2006–2009 NY and CT isolates [58,59]. 

Comprehensive surveillance and phylogenetic analysis of isolates from all US States would limit 

the current sampling bias attributed to current datasets (Figure 5). In addition, one central complication 

in the field is the correlation between genotypic variation and epidemic clinical disease. Due to the 

multi-factorial nature of WNV infection and disease progression, a single genetic change can alter 

WNV host fitness or virulence. Despite known limitations, phylogenetic and genotypic analyses have 

suggested that WNV virulence is multigenic with identification of several genetic determinants 

implicated in continued WNV evolution, which also correlate with differences in WNV phenotype in 

the mosquito vector, avian reservoir, or human/equine dead-end hosts [48,77,80–85]. 
  



Int. J. Environ. Res. Public Health 2013, 10 5122 

 

 

Figure 5. Map of the United States showing genomic sequences available by state and year. 

 

It is clear that these factors are multi-factorial; however, elucidating the underlying factors 

responsible for and/or affecting this evolution has been difficult. Despite these uncertainties, evidence 

for evolution of this virus since its introduction is well-defined with documented multigenic  

viral changes in response to numerous external contributors such as the variety and distribution of  

virus-infected hosts, climate, and additional ecological aspects. Continued investigation of genetic 

changes over time is critical to understanding the spread of the virus, viral and host factors contributing 

to virulence and mosquito competence, and the possible future of vaccines or drug candidates. In the 

aftermath of the significant 2012 US epidemic, which few anticipated, continued preparation for future 

epidemics is critical, for which (at present) we are unable to predict. 
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