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ABSTRACT 

 Accurate risk assessment tools and methods are necessary to understand the relationship between 

occupational exposure to physical risk factors and musculoskeletal disorders. Ergonomists typically 

consider direct measurement methods to be the most objective and accurate of the available tools. 

However, direct measurement methods are often not used due to cost, practicality, and worker/workplace 

disruption.  

 Inertial measurement units (IMUs), a relatively new direct measurement technology used to assess 

worker kinematics, are attractive to ergonomists due to their small size, low cost, and ability to reliably 

capture information across full working shifts. IMUs are often touted as a field-capable alternative to 

optical motion capture systems (OMCs). The error magnitudes of IMUs, however, can vary significantly 

(>15°) both within and across studies. The overall goals of this thesis were to (i) provide knowledge about 

the capabilities and limitations of IMUs in order to explain the inconsistencies observed in previous studies 

that assessed IMU accuracy, and (ii) provide guidance for the ergonomics community to leverage this 

technology. All three studies in this dissertation systematically evaluated IMUs using a repetitive material 

transfer task performed by thirteen participants with varying movement speeds (15, 30, 45 cycles/minute) 

and magnetic disturbance (absent, present). An OMC system was used as the reference device. 

 This first study systematically evaluated the effects of motion speed and magnetic disturbance on 

the spatial orientation accuracy of an inertial measurement unit (IMU) worn on the hand.  Root-mean-

square differences (RMSD) exceeded 20° when inclination measurements (pitch and roll) were calculated 

using the IMU’s accelerometer. A linear Kalman filter and a proprietary, embedded Kalman filter reduced 

inclination RMSD to <3° across all movement speeds. The RMSD in the heading direction (i.e., about 

gravity) increased (from <5° to 17°) under magnetic disturbance. The linear Kalman filter and the 

embedded Kalman filter reduced heading RMSD to <12° and <7°, respectively. This study indicated that 

the use of IMUs and Kalman filters can improve inclinometer measurement accuracy. However, magnetic 

disturbances continue to limit the accuracy of three-dimensional IMU motion capture. 

 The goal of the second study was to understand the capability of IMU inclinometers to improve 

estimates of angular displacements and velocities of the upper arm. RMSD and peak displacement error 
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exceeded 11° and 28° at the fastest transfer rate (45 cycles/min) when upper arm elevation was calculated 

using the IMU accelerometer. The implementation of a Kalman filter reduced RMS and peak errors to 

<1.5° and <2.3°, respectively. Similarly, the RMS and peak error for accelerometer-derived velocities 

exceeded 81°/s and 221.3°/s, respectively, at the fastest transfer rate. The Kalman filter reduced RMS and 

peak errors to <9.2°/s and < 25.1°/s, respectively.  

 The third study was conducted to evaluate the relationship between magnetic field strength 

variation and magnetic heading deviation. In this study, the presence of the metal plate increased magnetic 

heading deviations from <12° (90th-10th percentile) to approximately 30°. As expected, the magnetic field 

strength standard deviation increased from 1.0uT to 2.4uT. While this relationship may differ across other 

sources of magnetic disturbance, the results reinforce the notion that local magnetic field disturbances 

should be minimized when using IMUs for human motion capture.  

 Overall, the findings from this thesis contribute to the ergonomics community’s understanding of 

the current capabilities and limitations of IMUs. These studies suggest that while the touted capabilities of 

the IMUs (full-body motion capture in workplace settings) may be unattainable based on current sensor 

technology, these sensors are still significantly more accurate than the accelerometer-based inclinometers 

commonly used by ergonomists to measure motions of the upper arms. 
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PUBLIC ABSTRACT 

 Musculoskeletal disorders of the upper extremity are among the most common and expensive of 

all occupational injuries and illnesses. Understanding and measuring the risk factors associated with these 

conditions is important for improving worker health and well-being. The measurement systems available 

for this purpose, however, are quite limited. Inertial measurement units (IMUs), a relatively new 

technology available for measuring important aspects of worker motion in the field, offer improved data 

collection prospects for ergonomists. However, the accuracy of IMUs can vary beyond clinically-

acceptable levels. The overall goals of this thesis were to (i) provide knowledge about the capabilities and 

limitations of IMUs in order to explain the inconsistencies observed in previous studies that have assessed 

IMU accuracy, and (ii) provide guidance for the ergonomics community to leverage this technology within 

its current capabilities. The studies in this dissertation systematically examined factors known to adversely 

affect IMU accuracy. Results suggested that the advertised capabilities of IMUs (full-body motion capture 

in workplace settings) may not be achievable using current sensor technologies. However, these sensors are 

still substantially more accurate than the devices commonly used by ergonomists to measure upper 

extremity postures and movements in field settings.  
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CHAPTER 1 

INTRODUCTION AND BACKGROUND 

 

1.1 Work-Related Musculoskeletal Disorders 

 The term ‘musculoskeletal disorders’ refers to a wide range of health outcomes affecting the 

muscles, tendons, ligaments, and peripheral nerves (Punnett and Wegman 2004). These outcomes cause 

pain and functional impairment to various body segments and joints including the neck, shoulder, elbow, 

forearm, wrist and hand (Li and Buckle 1999). Specific conditions include rotator cuff tendonitis, 

epicondylitis in the elbow, wrist tendonitis, hand-arm vibration syndrome, and carpal tunnel syndrome 

(CTS) (Bernard 1997).  

 Work-related musculoskeletal disorders (WMSDs) are an important occupational health problem. 

In 2014, WMSDs accounted for 33 percent of all non-fatal workplace injuries and illnesses requiring days 

away from work in the United States (BLS 2015). Recovery times associated with WMSDs can also be 

prolonged, particularly for outcomes of the upper extremity. Shoulder-related MSDs, wrist-related MSDs, 

and CTS required a median of 24 days, 18 days, and 30 days before returning to work, respectively, in 2012 

(BLS 2013). The financial burden associated with WMSDs is also substantial. The direct costs (e.g. 

worker’s compensation, medical costs) associated with WMSDs have been estimated to range from $13 to 

$54 billion annually, while estimates of the indirect costs associated (e.g. loss of productivity, worker 

training) exceed $160 billion (National Research Council 2001; Bernard 1997; American Academy of 

Orthopaedic Surgeons 2008).  

 Epidemiologic studies have investigated associations between both non-occupational and 

occupational risk factors and WMSDs. In general, it is widely believed that WMSDs can be attributed to a 

combination of personal, psychosocial, and physical risk factors (Bongers et al. 2006; Malchaire, Cock, and 

Vergracht 2001). Personal risk factors include age, gender, height, weight, hobbies, and general health 

status (Malchaire, Cock, and Vergracht 2001) Occupational psychosocial stressors, such as job insecurity, 

elements of work organization (e.g., “safety culture/climate” and downsizing), and job-specific factors 
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(e.g., shiftwork) also contribute to musculoskeletal health status (Landsbergis, Grzywacz, and LaMontagne 

2014). In particular, variables derived from the well-known “demand/control” model of occupational 

psychosocial stress (Karasek et al. 1998) have been observed as independent risk factors for WMSDs in 

several epidemiologic studies (e.g., Punnett and Wegman 2004; Fethke et al. 2015). Most relevant to this 

thesis, however, WMSDs are associated with a consistent set of physical risk factors used to describe the 

extent of biomechanical loading imposed by a given work situation. Physical risk factors include the forces 

exerted, the postures (and movements) required to perform the functions of a job or task, the extent to 

which the forces/postures are repeated (i.e., the risk factor “repetition”), and mechanical vibration (Bernard 

1997; Malchaire, Cock, and Vergracht; Spielholz et al. 2001).  

 Exposure to physical risk factors for musculoskeletal disorders is typically assessed using methods 

classified as self-report, observation-based, or direct measurement (David 2005; Spielholz et al. 2001; Li 

and Buckle 1999). In general, self-report methods are the least expensive and require less training to 

conduct, but the exposure information obtained is crude and often unreliable (David 2005). Observation-

based methods (e.g. Hand Activity Level (Latko et al. 1997), Strain Index (Moore and Garg 1995) ) are 

considered to be the most practical since they minimize worker/workplace disruption and require minimal 

equipment costs. Observation-based methods, however, may be subjected to observer biases and the time 

required to complete analyses can be substantial (Dartt et al. 2009; David 2005). Direct measurement 

methods (e.g. electromyography, optical motion capture [OMC]) are considered the most accurate and 

objective form for exposure assessment. Direct measurement methods, however, are traditionally limited by 

equipment cost, practicality, and potential for worker/workplace disruption (Spielholz et al. 2001; Amasay 

et al. 2009).  

 Considerable progress has been made towards understanding relationships between occupational 

physical risk factors and WMSDs. The association between exposure to non-neutral shoulder postures and 

upper extremity MSDs (UEMSDs), specifically, has been reported in several epidemiologic studies (Gerr et 

al. 2013; Svendsen et al. 2004; Nordander et al. 2016; Miranda et al. 2008; Ohlsson et al. 1995; Silverstein 

et al. 2008; Punnett et al. 2000). Risk estimates in these studies (e.g., odds ratios [OR] and hazard ratios 

[HR]) were adjusted for personal and/or psychosocial factors; however, different methods were used to 
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capture and summarize information about exposure to non-neutral shoulder postures. Miranda et al., (2008) 

reported that self-reported exposure to awkward postures (no/yes) at work was associated with a 

subsequent chronic shoulder disorder (OR: 1.9; 95% confidence interval [CI]: 1.1-3.2) among the Finnish 

adult population. Gerr et al., (2013) observed an association between percent of task time spent with upper 

arm elevation >90° (as a continuous variable, based on expert video analysis) and risk of neck/shoulder 

disorders (HR: 1.07; 95% CI: 1.0-1.15) among appliance manufacturing workers during a three-year 

prospective study. Similarly, Punnett et al., (2000) observed increases in risk estimates of shoulder 

disorders among automobile assembly workers as percent time spent with the upper arms elevated >90° 

(based on video analysis) increased; e.g., OR = 2.0 for more than 0% but less than 10% time with the right 

shoulder elevated >90° and OR = 3.9 for ≥10% time with the right shoulder elevated >90° (referent 

exposure category was 0% time with the right shoulder elevated >90°). The percentage of time with the 

upper arm elevated >90° was also used at the exposure variable and associated with shoulder outcomes 

(OR: 1.16; 95% CI: 1.08-1.25 for shoulder pain with disability and OR: 1.08; 95% CI: 1.4-1.13 for 

shoulder pain without disability) among machinists, car mechanics, and house painters (Svendsen et al. 

2004). Although 90° of upper arm elevation is a common exposure “cutoff,” other definitions have been 

used. For example, Silverstein et al., (2008) reported working in upper arm flexion ≥45° for ≥15% of the 

time was associated with rotator cuff syndrome (OR: 2.16; 95% CI: 1.22-3.83) in a cross-sectional study 

among active workers encompassing different occupational groups.  

 In general, the magnitudes and precision of the reported risk estimates in epidemiologic studies 

vary substantially, which limits the usefulness of these estimates to inform the occupational safety and 

health decision-making processes. In addition to methodological differences in study samples, study 

designs, and the extent to which confounding was controlled in the analyses, the heterogeneity in risk 

estimates may be partially explained by the common use of potentially biased and idiosyncratic self-report 

and observation-based exposure assessment methods in epidemiological studies of WMSDs (Gerr et al. 

2013; Fethke et al. 2012). Direct measures of worker postures and movements are used less commonly, but, 

in conjunction with standardized data processing methods and summary metrics, enable greater 

comparability between study results. Recently, for example, Nordander et al., (2016), described the results 

of pooled analyses of up to 33 occupational groups from 16 separate cross-sectional studies. For each group 
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(which varied in size from 32 to 206 participants), information was available about the prevalence of 

shoulder-related musculoskeletal outcomes and the distributions (means and standard deviations) of a 

variety of physical exposure summary metrics derived from directly measured data. Linear relationships 

were observed between the group mean 99th percentile upper arm elevation and the prevalence of tension 

neck syndrome, and between the group mean 50th percentile upper arm angular velocity both bicipital 

tendonitis and infraspinatus tendonitis.   

 These studies have indicated that accurate risk assessment tools and methods are pertinent to 

improve our understanding of the relationship between occupational exposure to physical risk factors and 

musculoskeletal disorders. Modern ergonomics exposure assessment guidelines generally accept that direct 

measurement of working posture using instrumentation systems is preferable to self-report or observation-

based methods. The cost of purpose-built hardware (e.g., electrogoniometers) available to quantify 

occupational physical risk factors in workplace settings, however, requires tradeoffs to be made between 

increased sampling durations and increased participants. 

 In contrast to electrogoniometers, inertial measurement units (IMUs) are inexpensive (<$5), 

generic sensors employed in a variety of modern electronic devices (e.g., smart phones, virtual reality, 

drones, fitness trackers) to measure motion. IMU technology will likely improve into the distant future 

given its demand and market capacity. In addition, human motion tracking is increasingly common outside 

of biomechanics, leading to development of consumer-oriented devices (e.g., Microsoft Kinect, Intel 

Realsense) for motion tracking. Given its small size, long recording times, and decreasing hardware costs, 

IMUs are increasingly adopted by the ergonomics community to quantify human motion in workplace 

settings (Schall et al. 2015; Douphrate et al. 2012). Since the sensors can be attached to any body segment, 

IMUs offer more flexibility compared to the electrogoniometers and accelerometers commonly used to 

directly measure exposure to non-neutral posture in the workplace setting.  

 

1.2 Background 

 Human motion can be measured using an OMC system, electromagnetic tracking devices, 

electrogoniometers, and accelerometers. The most precise measurements of human motion are typically 
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achieved in the laboratory environment with an OMC or electromagnetic tracking device. Human motion in 

the workplace setting is commonly measured using an electrogoniometer or accelerometer. Each 

instrumentation system is briefly explained in subsequent sections.  

 

1.2.1 Optical Motion Capture 

 An OMC is considered the gold standard for human motion measurement analysis (Cuesta-

Vargas, Galán-Mercant, and Williams 2010). A marker-based OMC system uses cameras to track the 

position of individual markers in three-dimensional space. Each marker contains a unique identifier that is 

used to facilitate calculations of joint kinematics. At least two cameras are required to measure the position 

of a marker in three-dimensional space. Spatial orientation measurements require the simultaneous tracking 

of at least three markers attached to the same body segment. Standardized marker placement guidelines 

(e.g. ISB convention (Wu et al. 2005)) facilitate comparisons across studies.  

 Marker occlusion and soft-tissue artifacts affect the overall accuracy of OMC-based motion 

measurements. Marker occlusion occurs when a marker is detected by fewer than two cameras due to line-

of-sight obstructions, resulting in loss of the marker position in three-dimensional space. Soft-tissue 

artifacts occur when the skin movement is different than the underlying bone structure (Corazza et al. 

2006). The system cost, setup time, level of obtrusiveness, and need for the instrumented human to remain 

within a limited volume (i.e., in view of fixed-position cameras) are among the factors that preclude the use 

of OMC systems in workplace settings (Amasay et al. 2009). Ergonomists have also used inexpensive, 

consumer-grade markerless motion capture systems (e.g. Microsoft Kinect) to measure body movements 

(Xu and McGorry 2015; Dutta 2012; Bonnechère et al. 2014). Although this technology has shown 

promise, such systems are still subjected to the constraints of occlusion and a limited capture volume.  

 

1.2.2 Electromagnetic Tracking 

An electromagnetic tracking device captures the position and orientation based on measurements 

of the local magnetic field vector at the sensor (Welch and Foxlin 2002). This device consists of a source 
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that emits an electromagnetic field, and magnetometers that measure the strength and direction of the 

generated magnetic field (Cuesta-Vargas, Galán-Mercant, and Williams 2010; Huiyu Zhou and Hu 2008). 

Unlike an OMC, electromagnetic tracking devices do not require a line-of-sight connection between the 

transmitter and sensor. This device is generally reliable and accurate, but can be adversely affected by the 

presence of metals (Cuesta-Vargas, Galán-Mercant, and Williams 2010). Similar to an OMC system, 

electromagnetic tracking devices are only operable in constrained environments, limiting their use to a 

laboratory-based settings. 

 

1.2.3 Electrogoniometers 

 Electrogoniometers are frequently used in workplace settings to directly measure human motion, 

particularly the motions of the distal upper extremity (Fethke et al. 2012; Asundi, Johnson, and Dennerlein 

2012; Balogh et al. 2009; Cook, Burgess-Limerick, and Papalia 2004). An electrogoniometer is a 

mechanical device that spans a human joint and measures its angular displacement (Buchholz and Wellman 

1997). Single-axis, dual-axis, and tri-axial elecrogoniometers are available to accommodate measurement 

of angular displacement in multiple movement planes (e.g., dual-axis devices are used to measure 

flexion/extension and radial/ulnar deviation of the wrist). Electrogonimeters, however, may restrict the 

natural movement of a joint, causing measurement error and potential misinterpretation of the results 

(Buckle and Jason Devereux 2002; Buchholz and Wellman 1997; Jonsson and Johnson 2001)..  

 

1.2.4 Accelerometers 

 Piezoresistive accelerometers are frequently used as inclinometers to measure the inclination angle 

of the trunk and/or upper arm with respect to gravity (Fethke, Gant, and Gerr 2011; Fethke et al. 2016). 

Inclination is calculated under the assumption that the total measured acceleration is constant at 9.81 m/s2, 

the acceleration due to gravity (Sabatini 2006). In general, accelerometer-derived inclination measurements 

are accurate (<1°) under static conditions, but can deviate significantly (>80°) during periods of rapid, 

dynamic movement (Amasay et al. 2009). The errors increase with higher angular velocities and are 

compounded by distance between the accelerometer and the joint center of rotation due to increases in 
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tangential and centripetal accelerations (Amasay et al. 2009; Bernmark and Wiktorin 2002). Moreover, 

piezoresistive accelerometers are not sensitive to rotation about the gravity vector (heading), which is 

critical for capturing joint angles of the wrist and elbow or to separate the motion planes of the trunk and 

shoulder (Bernmark and Wiktorin 2002; Amasay et al. 2009; Korshøj et al. 2014). Inertial measurement 

units (IMUs) overcome these limitations, in theory, through the addition of gyroscopes and magnetometers.  

 

1.2.5  Inertial Measurement Units 

 Inertial measurement units are marketed as a solution for capturing human motion in three-

dimensional space but without environmental constraints imposed by laboratory-based OMC or 

electromagnetic motion capture systems. An IMU measures spatial orientation with respect to gravity and 

magnetic north using a combination of gyroscope, accelerometer, and magnetometer measurements. Joint 

angles can be estimated from IMUs attached to adjacent body segments (Cloete and Scheffer 2008; Martori 

et al. 2013) and then summarized using metrics to describe exposure to posture and movement 

characteristics indicative of WMSD risk (Kazmierczak et al. 2005).  

 

1.2.5.1 IMU Operation  

 An IMU traditionally refers to an inertial navigation system (INS), which tracks the position and 

orientation of an object relative to a known position, velocity, and orientation using an accelerometer and 

gyroscope (Woodman 2007). In the context of an INS, the gyroscope is used to determine orientation of an 

object and to rotate the accelerometer to the reference orientation. The position information is subsequently 

obtained by double-integrating the rotated accelerometer measurements with respect to time. An INS, 

however, is not practical for the purpose of human motion capture given its size and cost. In the context of 

human motion capture, an IMU refers to an attitude heading reference system (AHRS). An AHRS is 

commonly used to measure the orientation of an airplane using a combination of gyroscope, accelerometer, 

and magnetometer measurements. Recent advances in semiconductor technology pertaining to micro-

electromechanical systems (MEMS) have provided inertial sensors that are more suitable for human motion 

capture, given their small size, cost, and durability (Pasciuto et al. 2015; Chang et al. 2008).  
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Fundamentally, the spatial orientation of an IMU can be calculated using two distinct methods: (i) with 

respect to its initial orientation by integrating the angular velocity measured by the gyroscope, or (ii) with 

respect to gravity and magnetic north using an accelerometer and magnetometer (Yun, Bachmann, and 

McGhee 2008; Valenti, Dryanovski, and Xiao 2015; Bergamini et al. 2014; Schiefer et al. 2014). 

 A MEMS-based gyroscope measures angular velocity, which is integrated with respect to time to 

obtain spatial orientation measurements (Sabatini 2006). Gyroscope-derived orientation measurements are 

unaffected by linear acceleration and magnetic disturbance.  Gyroscopes differ in their cost, size, and 

performance (Zhi 2016). The performance of a gyroscope is characterized by its bias stability, which is 

assumed to follow a normal statistical distribution (Xia, Yu, and Kong 2014). This error characteristic is 

known as random walk (Chang et al. 2008). A change in measurement bias will cause the resulting error to 

compound linearly with respect to time when calculating spatial orientation measurements. MEMS-based 

gyroscopes, despite their advantages, are not particularly accurate. Gyroscope-derived spatial orientation 

measurements can easily deviate more than 10° per minute relative to a known orientation (Bergamini et al. 

2014; Luinge, Veltink, and Baten 2007).  

 Spatial orientation measurements derived using an accelerometer and magnetometer are broadly 

known as vector-based orientation measurements. Vector-based orientation measurements are considered to 

be time-invariant, in contrast to gyroscope-derived orientations. Spatial orientation can be determined given 

two or more vectors pointing to known directions. In this context, spatial orientation is derived from the 

gravity vector and the magnetic north vector.  

 The calculation of spatial orientation based on vector observations was originally developed to 

orient spacecraft using celestial bodies. Calculation of the optimal orientation estimate given multiple 

vector observations is classically known as Wahba’s problem (Wahba 1965). Optimal solutions to Wahba’s 

problem are obtained from redundant vector observations. The proposed solutions (Shuster and Oh 2012; 

Mortari 1997; Markley 1988) differ primarily by computation speed (Valenti, Dryanovski, and Xiao 2015). 

Deterministic solutions are obtained from two vectors that point to known directions (Valenti, Dryanovski, 

and Xiao 2015; Valenti, Dryanovski, and Xiao 2016; Yun, Bachmann, and McGhee 2008). The problem 

with deriving spatial orientation using the gravity and magnetic north vectors is the assumption that the 
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accelerometer is only measuring the direction of the gravity vector and the magnetometer is only measuring 

Earth’s local magnetic field. In reality, the accelerometers cannot discern gravitational acceleration from 

accelerations due to motion.  Similarly, the magnetometer measurements assume a homogenous magnetic 

field, which in reality is affected by ferromagnetic objects and electronic devices (Bachmann, Yun, and 

Peterson 2004). Depending on the formulation used to derive spatial orientation using vector observations, 

magnetic disturbance will either affect orientation around the gravity vector (heading) or across all motion 

planes (Yun, Bachmann, and McGhee 2008; Valenti, Dryanovski, and Xiao 2015; Valenti, Dryanovski, and 

Xiao 2016). Sensor fusion algorithms are used to combine gyroscope-derived orientation measurements 

with vector observations to improve measurement accuracy. 

 

1.2.5.2 Sensor Fusion 

 The purpose of sensor fusion is to reduce the effects of random and systematic measurement errors 

by combining information from multiple sensors (Plamondon et al. 2007). Gyroscope, accelerometer, and 

magnetometer measurements can be combined using complementary filters (Bachmann et al. 2001; 

Madgwick, Harrison, and Vaidyanathan 2011; Valenti, Dryanovski, and Xiao 2015; Y. Tian, Wei, and Tan 

2013), particle filters (Carmi and Oshman 2009; Yadav and Bleakley 2014), and Kalman filters (Foxlin 

1996; Sabatini 2006; Valenti, Dryanovski, and Xiao 2016; Gabriele Ligorio and Sabatini 2016; Sun et al. 

2013; Daniel Roetenberg et al. 2005; Sabatini 2011a; Brigante et al. 2011; Kraft; Makni, Fourati, and 

Kibangou 2014). A complementary filter combines the signal sources based on spectral frequency (Luinge 

and Veltink 2005), specifically the high-frequency components of gyroscope-derived orientation estimates 

with the low-frequency components of accelerometer and magnetometer-derived orientation estimates 

(Luinge and Veltink 2005). Complementary filters are relatively simple to implement in comparison to 

other algorithms and typically result in low computational overhead (Valenti, Dryanovski, and Xiao 2015). 

However, complementary filters fail to consider the stochastic error characteristics (e.g. white noise) 

associated with sensor measurements (Nowicki, Wietrzykowski, and Skrzypczyński 2015). In contrast, 

particle and Kalman filters combine measurements based on stochastic properties of sensor noise 

measurements (Sabatini 2011a). Particle filters use fewer underlying assumptions compared to Kalman 
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filters at the expense of high computation costs (Carmi and Oshman 2009). Kalman filters are widely used 

for motion tracking since they offer an appropriate balance between computational requirements and 

optimal estimation. (Sabatini 2011a).  

 

1.2.5.2.1 Kalman Filters 

 When given multiple sources of data, Kalman filters are commonly used to smooth noisy data and 

to estimate the parameters of interest (Faragher 2012). The Kalman filter estimates the parameters of 

interest (state vector) based on the expected behavior of the system (process model) and the expected error 

behavior of individual sensors (measurement model) (Luinge and Veltink 2005). The process model 

predicts the next measurement and eliminates unreasonable estimates made by the sensor. The 

measurement model relates the process model to the noisy but stable sensor measurements. A Kalman filter 

will provide optimal estimates for linear systems with the assumption that the process and measurement 

noise are normally distributed (Bachmann 2000). Variations of the Kalman filter, including the Unscented 

Kalman Filter (UKF) and the Extended Kalman Filter (EKF), were developed to address non-linear 

systems. The UKF approximates the Gaussian probability distribution of the non-linear system using a set 

of sample points while the EKF linearizes the system using a Jacobian matrix (LaViola 2003). The UKF, in 

general, offers better performance and filter stability compared to the EKF at the expense of increased 

computational overhead (Sabatini 2011a).  

 Kalman-based sensor fusion algorithms for IMUs are prevalent in literature. With few exceptions, 

an aspect of the process model involves calculating spatial orientation using gyroscope measurements, 

which is non-linear. The majority of the proposed filters use an EKF-based approach since the 

computational overhead of the UKF provides only marginal benefits for this application  (LaViola 2003; 

Sabatini 2011a). Most filters differ in the process model. The orientation information derived from an EKF 

can be described using Euler angles (Foxlin 1996), nine-element direction cosine matrices (Daniel 

Roetenberg et al. 2005), and, most commonly, as quaternions (Sabatini 2011a). In addition to the estimated 

orientation, the prediction model may account for gyroscope bias (Daniel Roetenberg et al. 2005; Ali and 

El-Sheimy 2013; Brigante et al. 2011), accelerometer bias (Sabatini 2006), magnetometer bias (Sabatini 
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2006; Sabatini 2011a), and linear acceleration (Lee, Park, and Robinovitch 2012; Gabriele Ligorio and 

Sabatini 2015; Daniel Roetenberg et al. 2005) to attenuate disturbances. Several proposed EKF 

formulations have pre-combined the accelerometer and magnetometer measurements into a quaternion 

vector to reduce computation costs, with differing approaches on the calculation of the quaternion-based 

measurement vector (Valenti, Dryanovski, and Xiao 2016; Ali and El-Sheimy 2013; Yun and Bachmann 

2006). However, the measurement vector typically consists of accelerometer and magnetometer 

measurements to simplify the measurement noise structure (Sabatini 2011a). 

 The tradeoffs between gyroscope-derived and accelerometer/magnetometer-derived spatial 

orientation measurements are determined by the tuning parameters of the Kalman filter. The tuning 

parameters can be obtained from sensor specifications (Sun et al. 2013), calculation of sensor standard 

deviation under static conditions (Gabriele Ligorio et al. 2016), Allan variance (Chang et al. 2008), or 

empirically (Bergamini et al. 2014). Additional mechanisms can be implemented to ensure that the total 

acceleration and magnetic field strength are within the expected range of gravity and magnetic north, 

respectively. These mechanisms would increase accelerometer and magnetometer noise parameters if the 

total acceleration and magnetic field strength measurements were outside the expected range (Sun et al. 

2013; Sabatini 2006; Daniel Roetenberg et al. 2005; Gabriele Ligorio and Sabatini 2016), therefore relying 

extensively on gyroscope-derived measurements with the expectation of time-dependent errors. Regardless 

of the filtering approach and its permutations, the assumptions of (i) homogenous measurements of gravity 

and magnetic field, and (ii) time-varying gyroscope errors remain valid. Consequently, magnetic 

disturbance can only be mitigated for short timeframes (Gabriele Ligorio and Sabatini 2016).  

 Researchers have also proposed alternative filtering and motion capture approaches. These include 

Kalman filter designs that take into account (i) a biomechanical model (El-Gohary and McNames 2012; El-

Gohary and McNames 2015; Zhang, Wong, and Wu 2011; Miezal, Taetz, and Bleser 2016), (ii) motion 

dynamics, (El-Gohary and McNames 2012; El-Gohary and McNames 2015), and kinematic constraints (El-

Gohary and McNames 2015; Miezal, Taetz, and Bleser 2016; Luinge and Veltink 2005; H. Zhou and Hu 

2010). Filtering strategies such as zero-velocity updates (El-Gohary and McNames 2012; Schiefer et al. 

2014; Meina, Rykaczewski, and Rutkowski 2016) and attaching multiple gyroscopes to the same circuit 
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board (Chang et al. 2008) aim to increase the measurement timeframe that IMUs can be used in 

magnetically-disturbed environments before the errors accumulate. IMU measurements have also been 

used in conjunction with other reference devices, such as a localized magnetic coil (D. Roetenberg, Slycke, 

and Veltink 2007; Tadayon et al. 2016), permanent magnets (Meina, Rykaczewski, and Rutkowski 2016), 

potentiometers  (Plamondon et al. 2007; Taunyazov, Omarali, and Shintemirov 2016), e-textiles (Tognetti 

et al. 2015), GPS (Matthew Brodie, Walmsley, and Page 2008), ultra-wideband positioning systems 

(Zihajehzadeh et al. 2015; Kok, Hol, and Schön 2015; Yoon et al. 2017), body-mounted cameras (e.g. 

visual odometry) (Oskiper et al. 2007; Vignais et al. 2013; Shiratori et al. 2011), and OMCs (Bó, 

Hayashibe, and Poignet 2011; Yushuang Tian et al. 2015; Won, Melek, and Golnaraghi 2010). However, 

these approaches have not been readily adopted in practice.  

 

1.2.5.3 Assessing IMU Accuracy 

 In general, the accuracy of an IMU is assessed by simultaneously measuring a motion pattern with 

the sensor and a reference device. An OMC is generally used as the reference device for this application 

(Cuesta-Vargas, Galán-Mercant, and Williams 2010). Mechanical gimbals (Lebel et al. 2013; Lebel et al. 

2015), robotic arms (Martori et al. 2013; Mourcou et al. 2015; El-Gohary and McNames 2015), pendulums 

(Godwin, Agnew, and Stevenson 2009; M.a. Brodie, Walmsley, and Page 2008), and human motion 

(Bergamini et al. 2014; Gabriele Ligorio et al. 2016; Faber et al. 2013) have been used to provide a source 

of motion.  

 Several studies reported favorable results (<6° average error) (Plamondon et al. 2007; Faber et al. 

2013; Kim and Nussbaum 2013; Martori et al. 2013; Bergamini et al. 2014), while others have reported 

inconsistent IMU error. For example, Schiefer et al., (2014) reported average root-mean-square (RMS) 

errors of 8.3° for the thorax and 8.6° for the left upper arm, but 14.5° for the right forearm and 16.8° for the 

head. Cloete et al., (2008) reported average RMS errors of 6.5° for right hip rotation, but 18.8° for right 

ankle rotation. Godwin et al., (2009) reported >20° RMS error (i) between different body segments within 

the same task and (ii) within the same body segment between different tasks. Robert-Lachaine et., (2016) 

reported errors less than 5° and greater than 40°, depending on the body segment.  
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 In general, IMU accuracy has been evaluated in the context of both biomechanics (i.e. joint 

kinematics) (Martori et al. 2013; Schall et al. 2015; Schall Jr. et al. 2015; Plamondon et al. 2007; Kim and 

Nussbaum 2013; El-Gohary and McNames 2012), and spatial orientation (Lebel et al. 2013; Lebel et al. 

2015; Bergamini et al. 2014; Gabriele Ligorio et al. 2016). Biomechanical-based assessments are relevant 

to those interested in alternatives to traditional optical and magnetic-based systems. These studies, 

however, may be unable to discern error magnitudes due to methodological differences from actual sensor 

error (Robert-Lachaine et al. 2016). A source of methodological difference between OMCs and IMCs is the 

differences in protocol used to define body segment orientation. When human motion is assessed using an 

OMC or magnetic tracking device, for example, the body segments are defined based on the position of 

bony landmarks (Wu et al. 2005; Kontaxis et al. 2009; Hsu et al. 2009). However, these landmarks are 

unavailable for IMCs due to the absence of positional information (de Vries et al. 2010). Alternative 

protocols used to define body segment orientation have been proposed and evaluated, with differences 

ranging from 15° to 40° across studies (de Vries et al. 2010; Ricci et al. 2014; Cutti et al. 2007; Robert-

Lachaine et al. 2016) relative to established clinical protocols.  

 The errors associated with IMU spatial orientation measurements (i.e., heading, pitch and roll 

angles rather than kinematic variables) are relevant for understanding IMU error characteristics and the 

theoretical accuracy of biomechanical-based measurements using current sensor technologies. Errors in 

spatial orientation measurements are often presented when (i) developing and comparing sensor fusion 

algorithms and (ii) assessing factors that can negatively affect IMU accuracy (Lebel et al. 2013; Gabriele 

Ligorio et al. 2016; Bergamini et al. 2014; Sessa et al. 2012; Lebel et al. 2015). In general, IMU accuracy is 

affected by measurement timeframe (Lebel et al. 2015), sensor hardware (Lebel et al. 2013), sensor fusion 

algorithms (Gabriele Ligorio and Sabatini 2015), error calculation method (Faber et al. 2013), and 

alignment between the IMU and OMC (Mecheri et al. 2016; Chardonnens, Favre, and Aminian 2012). On a 

fundamental level, the accuracy of IMU-derived spatial orientation measurements are affected by 

measurement timeframe (Lebel et al. 2015), motion (Lebel et al. 2013; Kim and Nussbaum 2013), and 

magnetic disturbance (de Vries et al. 2009; Bachmann, Yun, and Peterson 2004), which is consistent with 

the expected error characteristics of the gyroscope, accelerometer, and magnetometer, respectively.  
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1.2.5.4 Gaps in Current Literature 

 Despite the development of more advanced IMUs, knowledge about the current capabilities and 

limitations of IMUs is lacking within the occupational ergonomics community. This may be in part due to 

the evaluation of commercial hardware that employ proprietary algorithms for converting raw IMU data to 

kinematic constructs, which limits the generalizability of these studies’ results beyond potentially 

idiosyncratic commercial solutions. In addition, researchers often evaluate IMUs under nominal conditions 

with precautionary measures to control for magnetic disturbance (i.e. maintaining set distance between the 

system and known sources of disturbances) (Robert-Lachaine et al. 2016; Kim and Nussbaum 2013; Lebel 

et al. 2013; Lebel et al. 2015; Schiefer et al. 2014), which limits study generalizability to the laboratory 

environment (Schiefer et al. 2014).  The results may also be confounded by unforeseen sources of magnetic 

disturbance (e.g. metal below the floor) (de Vries et al. 2009). Despite being a known issue, few studies 

have assessed the effects of local magnetic fluctuations on IMU error (de Vries et al. 2009; Bachmann, 

Yun, and Peterson 2004; Gabriele Ligorio et al. 2016).   

 As ergonomists continue to use accelerometers in field studies to describe the inclination of the 

trunk and upper arms with respect to the gravity vector (i.e., pitch angle) and the horizon (i.e., roll angle). 

Several researchers have proposed using sensor fusion algorithms to attenuate motion-related artifacts in an 

effort to improve inclinometer accuracy (Lee, Park, and Robinovitch 2012; Gabriele Ligorio and Sabatini 

2015; Schall Jr. et al. 2015; Schall et al. 2015). However, none of these studies reported (i) the accuracy of 

accelerometer-derived angular displacement measurements, (ii) the accuracy of angular velocity 

measurements, or (iii) differences in motion assessment metrics used for health-based decision making in 

the context of occupational ergonomics. The relationship between inclinometer accuracy and motion 

assessment metrics and the ability of IMU-based inclinometers to improve measurement accuracy remains 

unknown. Previous work by Schall et al. provided direct comparisons of accelerometer and IMU-based 

inclinometers to an electrogoniometer used to measure trunk motion (Schall Jr. et al. 2015) and to a 

biomechanical-based optical motion capture system (Schall et al. 2015). The results showed (i) greater 

errors in the IMU measurements relative to the reference device (5-9° depending on motion plane and body 

segment) compared to previous studies and (ii) marginal differences between accelerometer-based and 

IMU-based inclination measurements. However, error sources not reflective of sensor accuracy (e.g. 



15  
 

measurement system misalignment (Mecheri et al. 2016), biomechanical modeling differences (Robert-

Lachaine et al. 2016), soft-tissue artifacts (Cutti, Cappello, and Davalli 2006)) were not fully managed in 

Schall et al.’s work. The necessity of sensor fusion algorithms given the dynamics of human motion, the 

capability of sensor fusion algorithms to improve measurement accuracy, and the accuracy of motion-

related risk assessment metrics due to sensor error, therefore, requires further investigation.  

 Another limitation of current studies is that the relationship between magnetic field strength 

variation and directional changes in the magnetic field has not been quantified. Despite this, magnetic field 

strength measurements are used to indicate periods of magnetic disturbance (Gabriele Ligorio et al. 2016; 

G. Ligorio and Sabatini 2015; Daniel Roetenberg et al. 2005) in recorded IMU data streams. Sensor fusion 

algorithms may also disregard magnetometer measurements when the magnetic field strength is outside a 

pre-determined threshold (Gabriele Ligorio and Sabatini 2016; Daniel Roetenberg et al. 2005; Sabatini 

2006; Sun et al. 2013; Y. Tian, Wei, and Tan 2013). Recently, magnetic strength measurements were used 

in a machine learning algorithm to automate identification of valid IMU data segments (Lebel et al. 2016). 

1.3 Summary and Specific Aims 

 Accurate exposure assessment methods are necessary to understand the relationship between 

physical risk factors and musculoskeletal disorders. Inertial measurement units (IMUs), a relatively new 

motion capture technology, are attractive to ergonomists due to their small size, relatively low cost, and 

ability to reliably capture information about worker movements across full working shifts. The current 

generation of gyroscopes used in these devices, however, are accurate for only short time periods. Time-

dependent gyroscope errors are typically mitigated by using a sensor fusion algorithm that combines 

gyroscope measurements with accelerometer and magnetometer measurements. The accuracy of IMUs, 

therefore, is negatively affected by both increased motion speeds and localized magnetic disturbances. 

Consequently, whole-body motion capture in unconstrained environments over full working shifts may be 

unattainable based on current sensor technology.  

 The overall goal of this thesis was to (i) provide knowledge about the capabilities and limitations 

of IMUs to explain the inconsistencies observed in previous studies that assessed IMU accuracy and (ii) 
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provide guidance for the ergonomics community to leverage the potential benefits of IMUs for the purpose 

of exposure assessment given the current state of IMU technology.  

 The goal of the first study (Specific Aim 1) was to explain the inconsistencies observed in 

previous studies that assessed IMU accuracy. A limitation of current literature is the inconsistent error 

magnitudes reported, which can vary significantly (>15°) within studies (e.g. different task or sensor 

location) and across studies. We hypothesized IMU sensor accuracy is affected by increased motion speeds 

and magnetic disturbance. The objective of this study was to examine the effects of increased movement 

speeds and magnetic disturbance (and their interaction) on IMU spatial orientation accuracy.  

 The goal of the second study (Specific Aim 2) was to improve inclinometer accuracy. 

Ergonomists commonly use accelerometer-based inclinometers to quantify worker postures and movement 

velocities in field settings and for prolonged sampling durations (e.g., complete work shifts). IMU-based 

inclinometers that combine accelerometer and gyroscope measurements may significantly improve 

measurement accuracy compared accelerometer-based inclinometers, in particular with increased motion 

speeds.  The primary objective of this study was to evaluate the effects of motion speed and sensor fusion 

algorithm on the accuracy of accelerometer- and IMU-derived upper arm elevation measurements. In 

addition, the impact on sensor fusion algorithm on metrics of upper arm elevation and velocity used in 

ergonomics exposure assessment was also explored. 

 The goal of the third study (Specific Aim 3) was to indirectly quantify the presence of magnetic 

disturbance. IMUs operate under the assumption of a homogenous local magnetic field. We hypothesize 

that when IMUs are used to quantify exposure to non-neutral postures over full working shifts in 

unconstrained environments, there will be data segments that will be adversely affected by magnetic 

disturbance. However, the homogeneity of the local magnetic field cannot be directly assessed without a 

reference device (e.g. OMC). Changes in magnetic field strength have been used to indicate periods of 

magnetic disturbance. However, the relationship between magnetic field strength and directional changes in 

the local magnetic field has never been quantified. We believe that variation in magnetic field strength 

could be used to indirectly assess the homogeneity of the magnetic field. This metric can be subsequently 

used to indirectly assess the accuracy of IMU-derived orientation measurements captured in unconstrained 
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environments and used to identify data segments that are unaffected by magnetic disturbance. The specific 

objectives of this study were to (i) characterize the relationship between magnetic field strength variation 

and magnetic heading deviation and (ii) evaluate the effects of local magnetic disturbance and motion 

speed on the spatial orientation accuracy of IMUs in the context of repetitive distal upper extremity (upper 

arm, forearm, and hand) motion. 

 The subsequent chapters of this dissertation is structured as follows. Chapter 2 will provide a 

mathematical background pertaining IMU operation, including spatial orientation, sensor measurements, 

and device evaluation. Chapter 3 will examine the relationship between motion speed, magnetic 

disturbance, and IMU error. Chapter 4 will examine the error of upper arm elevation measurements 

calculated using various methods and its implication on exposure assessment metrics. Chapter 5 will 

examine the relationship between magnetic field strength variation and magnetic heading Chapter 6 will 

provide an overall conclusion. 
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CHAPTER 2  

THEORETICAL BACKGROUND 

The chapter will briefly discuss the equations used to describe spatial orientation, the operation of 

IMU sensors, sensor fusion algorithms, and methods to assess IMU accuracy. This chapter is largely based 

on several previously published works (Sabatini 2011a; Trawny and Roumeliotis 2005; Woodman 2007; 

Welch and Bishop 2006). 

 

2.1 Spatial Orientation 

The position and orientation of a rigid body is described using a series of translations and rotations 

with respect to a known position and orientation. The rigid body and the origin are both defined by 

establishing a coordinate frame, which consists of three mutually-orthogonal unit vectors. The orientation 

between the two coordinate frames is described using a rotation matrix.  

 

2.1.1 Direction Cosine Matrix 

Consider Frame A (2.1) with mutually orthogonal unit vectors ݔԦ஺, ݕԦ ஺, ݖԦ஺. Each vector of Frame A 

consists of vector components ݔ஺, ݕ஺, ݖ஺. Similarly, Frame B (2.2) consists of mutually-orthogonal unit 

vectors ݔԦ஻, ݕԦ஻, ݖԦ஻ with vector components ݔ஻, ݕ஻, ݖ஻. The relationship between A and B is described by 

ܴ஻
஺ in (2.3). ܴ஻

஺ can also be calculated using the dot product (2.4). The dot product of two unit vectors is 

equivalent to the cosine of the angle between the two unit vectors, known as its direction cosine (2.5).   

Consequently, this matrix is known as the direction cosine matrix (DCM).  

ܣ = ሾݔԦ஺ Ԧݕ ஺ Ԧ஺ሿݖ = ቎
ଵݔ

஺ ଶݔ
஺ ଷݔ

஺

ଵݕ
஺ ଶݕ

஺ ଷݕ
஺

ଵݖ
஺ ଶݖ

஺ ଷݖ
஺

቏ 
(2.1) 

ܤ = ሾݔԦ஻ Ԧ஻ݕ Ԧ஻ሿݖ = ቎
ଵݔ

஻ ଶݔ
஻ ଷݔ

஻

ଵݕ
஻ ଶݕ

஻ ଷݕ
஻

ଵݖ
஻ ଶݖ

஻ ଷݖ
஻

቏ 
(2.2) 
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ܣ = ܴ஻
஺(2.3) ܤ 

ܴ஻
஺ = ଵିܤܣ = ቎

Ԧ஺ݔ ∙ Ԧ஻ݔ Ԧݕ ஺ ∙ Ԧ஻ݔ Ԧ஺ݖ ∙ Ԧ஻ݔ

Ԧ஺ݔ ∙ Ԧ஻ݕ Ԧݕ ஺ ∙ Ԧ஻ݕ Ԧ஺ݖ ∙ Ԧ஻ݕ

Ԧ஺ݔ ∙ Ԧ஻ݖ Ԧݕ ஺ ∙ Ԧ஻ݖ Ԧ஺ݖ ∙ Ԧ஻ݖ
቏ 

(2.4) 

቎
Ԧ஺ݔ ∙ Ԧ஻ݔ Ԧݕ ஺ ∙ Ԧ஻ݔ Ԧ஺ݖ ∙ Ԧ஻ݔ

Ԧ஺ݔ ∙ Ԧ஻ݕ Ԧݕ ஺ ∙ Ԧ஻ݕ Ԧ஺ݖ ∙ Ԧ஻ݕ

Ԧ஺ݔ ∙ Ԧ஻ݖ Ԧݕ ஺ ∙ Ԧ஻ݖ Ԧ஺ݖ ∙ Ԧ஻ݖ
቏ = ቎

௫Ԧಲ,௫Ԧಳߠݏ݋ܿ ௬ሬԦಲ,௫Ԧಳߠݏ݋ܿ ௭Ԧಲ,௫Ԧಳߠݏ݋ܿ

௫Ԧಲ,௬ሬԦಳߠݏ݋ܿ ௬ሬԦಲ,௬ಳߠݏ݋ܿ ௭Ԧಲ,௬ሬԦಳߠݏ݋ܿ

௫Ԧಲ,௭Ԧಳߠݏ݋ܿ ௬ሬԦಲ,௭Ԧಳߠݏ݋ܿ ௭Ԧಲ,௭Ԧಳߠݏ݋ܿ

቏ 
(2.5) 

 

The DCM possesses the following properties:  

்ܴܴ =  (2.6) ܫ

(ܴ)ݐ݁݀ = 1 (2.7) 

Rିଵ = ்ܴ  (2.8) 

where ்ܴ  is the transposition of R, and ܫ is the identity matrix, and ݀݁ݐ is the matrix determinant. 

The rotation matrix ܴ஻
஺, specifically, expresses the orientation of Frame A with respect to Frame B 

(Valenti, Dryanovski, and Xiao 2015). Similarly, ܴ஺
஻, defines the orientation of Frame B with respect to 

Frame A and is calculated using (2.9). The relationship between Frame A and B is defined in (2.10) and 

(2.11) for a vector with components ሾݔ஻ ஻ݕ ஻ሿ்ݖ  in Frame B, and ሾݔ஺ ஺ݕ   .஺ሿ் in Frame Aݖ

ܴ஺
஻ = (ܴ஻

஺)் (2.9) 

ሾݔ஻ ஻ݕ ஻ሿ்ݖ = ܴ஺
஻ሾݔ஺ ஺ݕ  ஺ሿ் (2.10)ݖ

ሾݔ஺ ஺ݕ ஺ሿ்ݖ = ܴ஻
஺ሾݔ஻ ஻ݕ ஻ሿ்ݖ  (2.11) 

The DCM is the foundation of spatial orientation. This representation, however, is non-intuitive 

and contains redundant parameters. The DCM is commonly converted to other representations of spatial 

orientations.  
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2.1.2 Euler Rotation 

A more intuitive method to describe spatial orientation is with a series of three sequential 

elemental rotations. Specifically, the relationship between two coordinate frames is formed by establishing 

intermediary coordinate frames. These coordinate frames are created by rotating the previous coordinate 

frame a certain angle about its x-axis, y-axis, or z-axis.  The DCM for a counter-clockwise (right-handed) 

elemental rotation around the x-axis (߶), y-axis (ߠ), and z-axis (߰) of a coordinate frame is as follows:   

ܴ௫(߶) = ൥
1 0 0
0 cos ߶ −sin ߶
0 sin ߶ cos ߶

൩ 
(2.12) 

ܴ௬(ߠ) = ൥
cos ߠ 0 sin ߠ

0 1 0
− sin ߠ 0 cos ߠ

൩ 
(2.13) 

ܴ௭(߰) = ൥
cos ߰ −sin ߰ 0
sin ߰ cos ߰ 0

0 0 1
൩ 

(2.14) 

There are multiple rotation sequences since the Euler rotation is non-communicative. The DCM 

corresponding to a given Euler rotation sequence is obtained by applying (2.12), (2.13), and (2.14) in the 

desired order. A common rotation sequence is the aerospace rotation sequence, consisting of a rotation of ߰ 

around the z-axis, followed by a rotation of ߠ around the y-axis, and a rotation of ߶ around the x-axis. The 

DCM for the aerospace rotation sequence and its transposition is shown in (2.15) and (2.16) respectively. 

The angle for this rotation sequence can be extracted from the DCM using (2.17).  

ܴ஻
஺ = ܴ௭(߰)ܴ௬(ߠ)ܴ௫(߶) = ൥

cos ߰ cos ߠ cos ߰ sin ߠ sin ߶ − cos ߶ sin ߰ sin ߰ sin ߶ + cos ߰ cos ߶ sin ߠ
cos ߠ sin ߰ cos ߶ cos ߰ + sin ߠ sin ߶ sin ߰ cos ߶ sin ߠ sin ߰ − cos ߰ sin ߶

− sin ߠ cos ߠ sin ߶ cos ߠ cos ߶
൩ 

(2.15) 

ܴ஺
஻ = (ܴ஻

஺)் = ܴ௫(−߶)ܴ௬(−ߠ)ܴ௭(−߰) 
(2.16) 

߰ = tanିଵ(ܴଶଵ ܴଵଵ⁄ ) 

θ = −sinିଵ(ܴଷଵ) 

߶ = tanିଵ(ܴଷଶ ܴଷଷ⁄ ) 

(2.17) 
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ܴ ݁ݎℎ݁ݓ = ൥
ܴଵଵ ܴଵଶ ܴଵଷ
ܴଶଵ ܴଶଶ ܴଶଷ
ܴଷଵ ܴଷଶ ܴଷଷ

൩ 

 The Euler rotation is an intuitive method used to describe spatial orientation. However, (i) the 

Euler rotation requires specific definitions to be established with regards to the order of rotation and (ii) the 

use of Euler angles will cause gimbal lock, resulting in non-unique solutions. Specifically, gimbal lock 

occurs when the axis of the first rotation is parallel to the axis of the third rotation. In the aerospace rotation 

sequence, the z-axis and x-axis axis are parallel when the y-axis is rotated to ±90°. The result of gimbal 

lock is that a degree of freedom is lost. The sum of the angle of rotation around the z-axis and the angle of 

rotation around the x-axis is still relevant, but the individual angles are not, given that infinite solutions are 

possible.  

 

2.1.3 Axis-angle representation 

 The relationship between two coordinate frames can also be described based on the direction and 

angle of rotation around a unit vector. The direction of rotation for unit vector ݑሬԦ is given by the x- (ݑ௫), y- 

-which is defined as a counter ,ߙ ሬԦ. The angle of rotation is specified byݑ of (௭ݑ) and z-components ,(௬ݑ)

clockwise rotation around ݑሬԦ. Given ܴ஻
஺, ߙ and ݑሬԦ can be calculated using (2.18) and (2.19), respectively, 

where ݎݐ(ܴ) is the trace function.  Given ߙ and ݑሬԦ, ܴ஻
஺ can be calculated with (2.20), where ݁݉݌ݔ is the 

matrix exponential function. The main disadvantage of this representation is the non-trivial relationship 

between successive rotations.  

ߙ = cosିଵ ቆ
(ܴ)ݎݐ − 1

2
ቇ 

(2.18) 

ሬԦݑ =
1

2sin(ߙ)
൥
ܴଷଶ − ܴଶଷ
ܴଵଷ − ܴଷଵ
ܴଶଵ − ܴଵଶ

൩ 
(2.19) 

ܴ஻
஺ =  (ሬԦ×ሿݑሾߙ)݉݌ݔ݁

(2.20) 
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ሾݑሬԦ×ሿ = ቎
0 ௭ݑ− ௬ݑ

௭ݑ 0 ௫ݑ−
௬ݑ− ௫ݑ 0

቏ 
(2.21) 

 

2.1.4 Quaternions 

 The axis-angle representation is often parameterized with (2.22), which is known as a quaternion 

rotation vector. The quaternion vector contains a scalar component ݍ଴ and vector component ࢗሬሬԦ. The scalar 

component is commonly defined as the first element of ݍԦ. However, it is also typical for the scalar 

component to be defined as the last element of ݍԦ which will result in a different set of equations than those 

provided in this chapter.  

Ԧݍ = ൤
଴ݍ

ሬሬԦࢗ ൨ = ቎

଴ݍ
ଵݍ
ଶݍ
ଷݍ

቏ = ൤
cos(ߙ 2⁄ )

ሬԦݑ sin(ߙ 2⁄ )
൨ =

ۏ
ێ
ێ
ۍ

cos(ߙ 2⁄ )
௫ݑ sin(ߙ 2⁄ )
௬ݑ sin(ߙ 2⁄ )
௭ݑ sin(ߙ 2⁄ ے(

ۑ
ۑ
ې
 

(2.22) 

 The quaternion equivalent of ܴ஻
஺ is ݍԦ஻

஺, which also describes the orientation of Frame A with 

respect to Frame B. The relationship between ݌஻ (a 3-dimensional vector in Frame B) and ݌஺ (a 3-

dimensional vector in Frame A) in quaternions is defined as follows:  

஺݌ = Ԧ஻ݍ
஺⨂݌஻⨂ݍԦ஻

஺ᇱ 
 

(2.23) 

஻݌ = Ԧ஻ݍ
஺ᇱ 

Ԧ஻ݍ⨂஺݌⨂
஺ 

(2.24) 

஺݌ = ሾ0 ஺ݔ ஺ݕ ஺ሿ்ݖ  
(2.25) 

஻݌ = ሾ0 ஻ݔ ஻ݕ  ஻ሿ்ݖ
(2.26) 

Ԧܽ ⊗ ሬܾԦ = ቎

ܽ଴
ܽଵ
ܽଶ
ܽଷ

቏ ⊗ ൦

ܾ଴

ܾଵ

ܾଶ
ܾଷ

൪ = ൦

ܽ଴ܾ଴ − ܽଵܾଵ − ܽଶܾଶ − ܽଷܾଷ

ܽ଴ܾଵ + ܽଵܾ଴ + ܽଶܾଷ − ܽଷܾଶ

ܽ଴ܾଶ − ܽଵܾଷ + ܽଶܾ଴ + ܽଷܾଵ

ܽ଴ܾଷ + ܽଵܾଶ − ܽଶܾଵ + ܽଷܾ଴

൪ 
(2.27) 

Ԧᇱݍ = ൤
଴ݍ

ሬሬԦ൨ࢗ− = ሾcos ߙ ௫ݑ− sin ߙ ௬ݑ− sin ߙ ௭ݑ− sin  ሿ்ߙ
(2.28) 
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where ⨂ is the quaternion product and ݍ′ is the quaternion conjugate of (2.29) ݍ. The quaternion conjugate 

is equivalent to the matrix transposition of a rotation matrix.  

Ԧ஺ݍ
஻ = Ԧ஻ݍ

஺ᇱ
= ൤

଴ݍ

 ሬሬԦ൨ࢗ−
(2.29) 

The quaternion product can be written in expanded and condensed matrix form as follows:   

Ԧܽ ⊗ ሬܾԦ = ൦

ܾ଴ −ܾଵ

ܾଵ ܾ଴

−ܾଶ −ܾଷ

ܾଷ −ܾଶ

ܾଶ −ܾଷ

ܾଷ ܾଶ

ܾ଴ ܾଵ

−ܾଵ ܾ଴

൪ ቎

ܽ଴
ܽଵ
ܽଶ
ܽଷ

቏ = ቎

ܽ଴ −ܽଵ
ܽଵ ܽ଴

−ܽଶ −ܽଷ
−ܽଷ ܽଶ

ܽଶ ܽଷ
ܽଷ −ܽଶ

ܽ଴ −ܽଵ
ܽଵ ܽ଴

቏ ൦

ܾ଴

ܾଵ

ܾଶ
ܾଷ

൪ 
(2.30) 

Ԧܽ ⊗ ሬܾԦ = ቂ
ܽ଴

ሬሬԦࢇ
ቃ ⊗ ൤

ܾ଴

ሬሬԦ࢈
൨ = ቈ

ܾ଴ ࢀሬሬԦ࢈−

ሬሬԦ࢈ ܾ଴ܫଷ௫ଷ − ሬሬԦ×൧࢈ ൣ
቉ ቂ

ܽ଴

ሬሬԦࢇ
ቃ = ൤

ܽ଴ ࢀࢇ−

ሬሬԦࢇ ܽ଴ܫଷ௫ଷ + ሾ ࢇሬሬԦ×ሿ
൨ ൤

ܾ଴

ሬሬԦ࢈
൨ 

(2.31) 

where ܫଷ௫ଷ is a 3x3 identity matrix. Equation (2.23) can be factored into (2.32), which implies the 

conversion from quaternion to DCM that is explicitly shown in (2.33). 

൥
஺ݔ

஺ݕ

஺ݖ
൩ = ቎

଴ݍ
ଶ + ଵݍ

ଶ − ଶݍ
ଶ − ଷݍ

ଶ ଶݍଵݍ)2 − (ଷݍ଴ݍ ଶݍ଴ݍ)2 + (ଷݍଵݍ
ଷݍ଴ݍ)2 + (ଶݍଵݍ ଴ݍ

ଶ − ଵݍ
ଶ + ଶݍ

ଶ − ଷݍ
ଶ ଷݍଶݍ)2 − (ଵݍ଴ݍ2

ଷݍଵݍ)2 − (ଶݍ଴ݍ ଵݍ଴ݍ)2 + (ଷݍଶݍ ଴ݍ
ଶ − ଵݍ

ଶ − ଶݍ
ଶ + ଷݍ

ଶ
቏ ൥

୆ݔ

୆ݕ

z୆

൩ 
(2.32) 

ܴ஻
஺ = ቎

଴ݍ
ଶ + ଵݍ

ଶ − ଶݍ
ଶ − ଷݍ

ଶ ଶݍଵݍ)2 − (ଷݍ଴ݍ ଶݍ଴ݍ)2 + (ଷݍଵݍ
ଷݍ଴ݍ)2 + (ଶݍଵݍ ଴ݍ

ଶ − ଵݍ
ଶ + ଶݍ

ଶ − ଷݍ
ଶ ଷݍଶݍ)2 − (ଵݍ଴ݍ2

ଷݍଵݍ)2 − (ଶݍ଴ݍ ଵݍ଴ݍ)2 + (ଷݍଶݍ ଴ݍ
ଶ − ଵݍ

ଶ − ଶݍ
ଶ + ଷݍ

ଶ
቏ 

(2.33) 

DCM can be converted into a quaternion using any of the following equations: 

቎

଴ݍ
ଵݍ
ଶݍ
ଷݍ

቏ =

ۏ
ێ
ێ
ێ
0.5ඥ1ۍ + ܴଵଵ + ܴଶଶ + ܴଷଷ

(ܴଷଶ − ܴଶଷ) ⁄଴ݍ4
(ܴଵଷ − ܴଷଵ) ⁄଴ݍ4
(ܴଶଵ − ܴଵଶ) ⁄଴ݍ4 ے

ۑ
ۑ
ۑ
ې
 

(2.34) 

቎

଴ݍ
ଵݍ
ଶݍ
ଷݍ

቏ =

ۏ
ێ
ێ
ێ
ۍ

(ܴଷଶ − ܴଶଷ) ⁄ଵݍ4

0.5ඥ1 + ܴଵଵ − ܴଶଶ − ܴଷଷ

(ܴଵଶ + ܴଶଵ) ⁄ଵݍ4
(ܴଵଷ + ܴଷଵ) ⁄ଵݍ4 ے

ۑ
ۑ
ۑ
ې
 

(2.35) 
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቎

଴ݍ
ଵݍ
ଶݍ
ଷݍ

቏ =

ۏ
ێ
ێ
ێ
ۍ

(ܴଵଷ − ܴଷଵ) ⁄ଶݍ4
(ܴଵଶ + ܴଶଵ) ⁄ଶݍ4

0.5ඥ1 − ܴଵଵ + ܴଶଶ − ܴଷଷ

(ܴଶଷ + ܴଷଶ) ⁄ଶݍ4 ے
ۑ
ۑ
ۑ
ې
 

(2.36) 

቎

଴ݍ
ଵݍ
ଶݍ
ଷݍ

቏ =

ۏ
ێ
ێ
ێ
ۍ

(ܴଶଵ − ܴଵଶ) ⁄ଷݍ4
(ܴଵଷ + ܴଷଵ) ⁄ଷݍ4
(ܴଶଷ + ܴଷଶ) ⁄ଷݍ4

0.5ඥ1 − ܴଵଵ − ܴଶଶ + ܴଷଷے
ۑ
ۑ
ۑ
ې
 

(2.37) 

In each of the formulations, a quaternion component is calculated from the diagonal elements of 

the DCM, corresponding to ݍ଴, ݍଵ, ݍଶ, and ݍଷin (2.34), (2.35), (2.36), and (2.37), respectively, which is 

subsequently used to normalize the other quaternion components. The equation with the largest 

normalization factor is often used to alleviate the numerical instabilities when dividing by a small number. 

The quaternion equivalent of (2.12), (2.13), and (2.14) is as follows:  

(߶)Ԧ௫ݍ = ሾcos(߶ 2⁄ ) sin(߶ 2⁄ ) 0 0ሿ் (2.38) 

(ߠ)Ԧ௬ݍ = ሾcos(ߠ 2⁄ ) 0 sin(ߠ 2⁄ ) 0ሿ் (2.39) 

(߰)Ԧ௭ݍ = ሾcos(߰ 2⁄ ) 0 0 sin(߶ 2⁄ )ሿ் (2.40) 

Following the aerospace rotation sequence, the conversion from Euler angles to quaternions and from 

quaternions to Euler angles is obtained from (2.41) and (2.42), respectively.  

Ԧ஻ݍ
஺ = (߰)Ԧ௭ݍ ⊗ (ߠ)Ԧ௬ݍ  ⊗ (߶)Ԧ௫ݍ  =

ۏ
ێ
ێ
ۍ
cos(߰ 2⁄ ) cos(ߠ 2⁄ ) cos(߶ 2⁄ ) + sin(߰ 2⁄ ) sin(ߠ 2⁄ ) sin(߶ 2⁄ )
cos(߰ 2⁄ ) cos(ߠ 2⁄ ) sin(߶ 2⁄ ) − sin(߰ 2⁄ ) sin(ߠ 2⁄ ) cos(߶ 2⁄ )
cos(߰ 2⁄ ) sin(ߠ 2⁄ ) cos(߶ 2⁄ ) + sin(߰ 2⁄ ) cos(ߠ 2⁄ ) sin(߶ 2⁄ )
sin(߰ 2⁄ ) cos(ߠ 2⁄ ) cos(߶ 2⁄ ) − sin(߰ 2⁄ ) sin(ߠ 2⁄ ) cos(߶ 2⁄ ے(

ۑ
ۑ
ې
 

(2.41) 

൥
߰
ߠ
߶

൩ = ቎
tanିଵ(2(ݍ଴ݍଷ + (ଶݍଵݍ ଴ݍ)

ଶ + ଵݍ
ଶ − ଶݍ

ଶ − ଷݍ
ଶ⁄ )

sinିଵ൫2(ݍ଴ݍଶ − ଷ)൯ݍଵݍ

tanିଵ(2(ݍ଴ݍଵ + (ଷݍଶݍ ଴ݍ)
ଶ − ଵݍ

ଶ − ଶݍ
ଶ + ଷݍ

ଶ⁄ )
቏ 

(2.42) 

 

2.1.5 Relative Orientation 

In the context of IMUs, the orientation of the IMU is referenced to magnetic north and gravity. 

Given IMU measurements from two IMU units attached to adjacent body segments, the relative orientation 
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between the IMUs (ܴ஼
஻) can be calculated using (2.44) based on the relationship defined in (2.43), where 

ܴ஻
஺and ܴ஼

஺ are the orientation provided by the IMU attached to the proximal and distal body segments, 

respectively. The quaternion equivalent is shown in (2.45) and (2.46), respectively..  

ܴ஼
஺ = ܴ஻

஺ܴ஼
஻  

(2.43) 

ܴ஼
஻ = (ܴ஻

஺)்ܴ஼
஺ 

(2.44) 

Ԧ஼ݍ
஺ = Ԧ஻ݍ

஺ ⊗ Ԧ஼ݍ
஻ 

(2.45) 

Ԧ஼ݍ
஻ = Ԧ஻ݍ

஺ᇱ
⊗ Ԧ஼ݍ

஺ 
(2.46) 

Spatial orientation can be described using various methods that are interchangeable. Euler rotation 

sequences are the most intuitive, but are order dependent and susceptible to singularities and gimbal lock. 

DCM describes spatial orientation on a fundamental level, but is non-intuitive and contains redundant 

parameters. Quaternion-based rotations can concisely represent spatial orientations without singularities 

with four parameters instead of 9. Consequently, spatial orientation is frequently represented using 

quaternions for IMUs.  

 

2.2 Calculating Spatial Orientation 

Spatial orientation (ܴ஻
஺) can be computed from vector measurements, or by integrating rotational 

velocities with respect to time. Vector-based calculations encompass spatial orientation calculated using an 

optical motion capture system (OMC) and using the combination of an accelerometer and magnetometer. 

Spatial orientation can be calculated deterministically given two vectors or through optimization-based 

approaches when provided with more than two vectors. The relationship defined in (2.1) is considered 

when calculating spatial orientation deterministically. This is expanded as follows:  

ሾݔԦ஺ Ԧݕ ஺ Ԧ஺ሿݖ = ܴ஻
஺ሾݔԦ஻ Ԧ஻ݕ  Ԧ஻ሿ (2.47)ݖ
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2.2.1 Optical Motion Capture Systems 

A deterministic solution to OMC measurements is to define the local coordinate frame (Frame B) 

by attaching three markers (݉ଵ, ݉ଶ, ݉ଷ) onto a rigid object or body segment. The first unit vector of the 

local coordinate frame (ݔԦ஻) is established as follows:  

Ԧ஻ݔ = (݉ଶ − ݉ଵ)/‖(݉ଶ − ݉ଵ‖ (2.48) 

where ‖∙‖ is the Euclidean norm operator. The construction of the second unit vector (ݕԦ஻) requires an 

intermediary unit vector and the cross product (×) to establish a vector that is perpendicular to ݔԦ஻.  

Ԧ஻ݕ = Ԧ஻×(݉ଷݔ − ݉ଵ))/‖ݔԦ஻×(݉ଷ − ݉ଵ))‖ (2.49) 

The third vector of the coordinate frame (ݖԦ஻) is simply the cross product of ݔԦ஻ and ݕԦ஻. 

Ԧ஻ݖ =  Ԧ஻ (2.50)ݕ×Ԧ஻ݔ

The local frame is defined subsequently defined as 

ܤ = ሾݔԦ஻ Ԧ஻ݕ  Ԧ஻ሿ (2.51)ݖ

The vectors are defined in the global frame (Frame A) is as follows:  

Ԧ஺ݔ = ሾ1 0 0ሿ் (2.52) 

Ԧݕ ஺ = ሾ0 1 0ሿ்  (2.53) 

Ԧ஺ݖ = ሾ0 0 1ሿ் (2.54) 

Given that ሾݔԦ஺ Ԧݕ ஺ Ԧ஺ሿ is an identity matrix, ܴ஻ݖ
஺ becomes the following:  

ܴ஻
஺ = ሾݔԦ஻ Ԧ஻ݕ  Ԧ஻ሿ் (2.55)ݖ

This approach can also be extended to deriving spatial orientation using a combination of accelerometer 

and magnetometer measurements.   
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2.2.2  IMU Sensors 

 

2.2.2.1 Accelerometers and Magnetometers 

Similarly, the vectors in the body frame (ݔԦ஻, ݕԦ஻, ݖԦ஻) can be defined using accelerometer 

measurements Ԧܽ஻= (ܽ௫, ܽ௬, ܽ௭) and magnetometer measurements ሬ݉ሬԦ஻= (݉௫, ݉௬, ݉௭) as follows:   

Ԧ஻ݔ =  Ԧܽ஻ ‖ Ԧܽ஻‖⁄  (2.56) 

Ԧ஻ݕ = (Ԧ஻×ሬ݉ሬԦ஻ݔ)  ⁄‖Ԧ஻×ሬ݉ሬԦ஻ݔ‖  (2.57) 

Ԧ஻ݖ =  (2.58) (Ԧ஻ݕ×Ԧ஻ݔ) 

The vectors are defined in the global frame (Frame A) as follows:  

Ԧ஺ݔ = ሾ0 0 1ሿ் (2.59) 

Ԧݕ ஺ = ሾ0 1 0ሿ்  (2.60) 

Ԧ஺ݖ = ሾ−1 0 0ሿ்  (2.61) 

The spatial orientation is calculated using the relationship defined in (2.1).  

ܴ஻
஺ = ሾݔԦ஺ Ԧݕ ஺ Ԧ஻ݔԦ஺ሿሾݖ Ԧ஻ݕ Ԧ஻ሿ்ݖ  (2.62) 

Alternatively, the relationship established in (2.10) can be extended to accelerometer measurements (2.63) 

since the sensing element of an accelerometer will register gravitational acceleration (݃) in the z-direction 

in the global frame under static conditions.   

ሾ0 0 ݃ሿ் = ܴ஻
஺ሾܽ௫ ܽ௬ ܽ௭ሿ் (2.63) 

ܴ஻
஺ is solved by converting it to an Euler rotation sequence using (2.64) to account for the matrix dimension 

mismatch.  

ሾ0 0 ݃ሿ் = ܴ௭(߰)ܴ௬(ߠ)ܴ௫(߶)ሾܽ௫ ܽ௬ ܽ௭ሿ் (2.64) 
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Equation (2.75) can be expanded by applying (2.15) as following:  

൥
0
0
݃

൩ = ൥
cos ߰ cos ߶ cos ߰ sin ߠ sin ߶ − cos ߶ sin ߰ sin ߰ sin ߶ + cos ߰ cos ߶ sin ߠ

cos ߠ sin ߰ cos ߶ cos ߰ + sin ߠ sin ߶ sin ߰ cos ߶ sin ߠ sin ߰ − cos ߰ sin ߶

− sin ߠ cos ߠ sin ߶ cos ߠ cos ߶
൩ ൥

ܽ௫
ܽ௬
ܽ௭

൩ 
(2.65) 

Equation (2.76) can be reordered using the relationship defined in (2.9) and (2.11), which results in (2.66) 

and can be further simplified into (2.67). 

൥
ܽ௫
ܽ௬
ܽ௭

൩ = ൥
cos ߰ cos ߶ cos ߠ sin ߰ − sin ߠ

cos ߰ sin ߠ sin ߶ − cos ߶ sin ߰ cos ߶ cos ߰ + sin ߠ sin ߶ sin ߰ cos ߠ sin ߶

sin ߰ sin ߶ + cos ߰ cos ߶ sin ߠ cos ߶ sin ߠ sin ߰ − cos ߰ sin ߶ cos ߠ cos ߶
൩ ൥

0
0
݃

൩ 
(2.66) 

൥
ܽ௫
ܽ௬
ܽ௭

൩ = ൥
−݃ sin ߠ

݃ cos ߠ sin ߶
݃ cos ߠ cos ߶

൩ 
(2.67) 

Gravity is defined as the vector magnitude of the accelerometer measurements to ensure values are within 

the domain of the trigonometric functions. Pitch and roll measurements are calculated by solving (2.67), 

resulting in (2.68) and (2.69), respectively.  

௔௖௖௘௟ߠ = sinିଵ ൬ܽ௫ ටܽ௫
ଶ + ܽ௬

ଶ + ܽ௭
ଶൗ ൰ = tanିଵ ൬−ܽ௫ ටܽ௬

ଶ + ܽ௭
ଶൗ ൰ 

(2.68) 

߶௔௖௖௘௟ = tan−1൫ܽݕ ⁄ݖܽ ൯ (2.69) 

It can be inferred from (2.68) that rotation around the gravity axis is unavailable. Consequently, a second 

observation vector is required, which is offered by a magnetometer. Heading from the magnetometer is 

generally calculated after rotating the magnetometer measurements (݉௫, ݉௬, ݉௭) to align with gravity 

using accelerometer measurement (2.70) to ensure magnetometer measurements do not affect inclination 

angles. Heading is subsequently calculated using (2.71), which can be simplified into (2.72). The 

measurements can be converted into a rotation matrix using (2.73) or into a quaternion vector with (2.41). 

Additional methods to combine accelerometer and magnetometers are discussed elsewhere (Valenti, 

Dryanovski, and Xiao 2015; Yun, Bachmann, and McGhee 2008). A limitation of the presented methods is 

that both increased motion speeds and magnetic disturbance will affect heading measurements.  
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ሾܯ௫ ௬ܯ ௭ሿ்ܯ = ܴ௬(ߠ)ܴ௫(߶)ሾ݉௫ ݉௬ ݉௭ሿ் (2.70) 

߰ = tanିଵ൫−ܯ௬ ⁄௫ܯ ൯ (2.71) 

߰ = tanିଵ ቆ
݉௭ sin ߶ − ݉௬ cos ߶

݉௫ cos ߠ + ݉௬ sin ߠ sin ߶ + ݉௭ sin ߠ cos ߶
ቇ 

(2.72) 

ܴ஻
஺ = ܴ௭(߰)ܴ௬(ߠ)ܴ௫(߶) (2.73) 

 

2.2.2.2 Gyroscopes 

A MEMS-based gyroscope is considered an angular rate sensor. Given angular rotation rates ߱௫, 

߱௬, ߱௭ from a tri-axial gyroscope and a sampling time period of ݐ߂, spatial orientation can be calculated as 

follows:   

Ԧை௅ி,௜ݍ
ைீி = Ԧை௅ி,௜ିଵݍ

ைீி ⊗  (2.74) ݐԦΔݍ

where 

ݐԦΔݍ = ሾcos(Δߙ 2⁄ ) ௫ݑ sin(Δߙ 2⁄ ) ௬ݑ sin(Δߙ 2⁄ ) ௭ݑ sin(Δߙ 2⁄ )ሿ் (2.75) 

Δα = ට߱௫
ଶ + ߱௬

ଶ + ߱௭
ଶ Δݐൗ  

(2.76) 

ሬ࢛ሬԦ = ൥
௫ݑ
௬ݑ
௭ݑ

൩ = ൤߱௫ ට߱௫
ଶ + ߱௬

ଶ + ߱௭
ଶൗ ߱௬ ට߱௫

ଶ + ߱௬
ଶ + ߱௭

ଶൗ ߱௭ ට߱௫
ଶ + ߱௬

ଶ + ߱௭
ଶൗ ൨

்

 
(2.77) 

Typically, the quaternion rate of rotation is calculated using a first order approximation (2.78), 

which can be condensed into (2.79). The derivation of (2.78) is shown elsewhere (Gośliński, Nowicki, and 

Skrzypczyński 2015). This measurement is subsequently integrated with respect to time to obtain spatial 

orientation measurements. 

ሶݍ =
1
2

߱⨂ݍ = ൦

ሶ଴ݍ
ሶଵݍ
ሶଶݍ
ሶଷݍ

൪ =
1
2

቎

଴ݍ
ଵݍ
ଶݍ
ଷݍ

቏ ⨂ ൦

0
߱௫
߱௬
߱௭

൪ =
1
2

൦

0 −߱௫
߱௫ 0

−߱௬ −߱௭
߱௭ −߱௬

߱௬ −߱௭
߱௭ ߱௬

0 ߱௫
−߱௫ 0

൪ ቎

଴ݍ
ଵݍ
ଶݍ
ଷݍ

቏ 
(2.78) 
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ሶݍ =  ݍߗ

ߗ =
1
2

൤0 − ሬ߱ሬԦ்

ሬ߱ሬԦ −ሾ߱×ሿ൨ 
(2.79) 

Given discrete measurements in equally spaced time intervals, spatial orientation is calculated 

using (2.80) under the assumption that the angular velocity is constant between each sampling interval 

(zeroth-order integrator) or with (2.81) under the assumption that the change in angular velocity between 

each sampling interval is linear (first-order integrator). Equation (2.82) is obtained by substituting (2.78) 

into (2.81), which can be condensed into (2.83).   

௞ାଵݍ =  ௞ (2.80)ݍ(ݐ߂௞ߗ)݉݌ݔ݁

௞ାଵݍ = ሶݍ ݐ߂ +  ௞ (2.81)ݍ

௞ାଵݍ =

ۏ
ێ
ێ
ێ
ۍ

1 −0.5߱௫Δݐ
0.5߱௫Δݐ 1

−0.5߱௬Δݐ −0.5߱௭Δݐ
0.5߱௭Δݐ −0.5߱௬Δݐ

0.5߱௬Δݐ −0.5߱௭Δݐ
0.5߱௭Δݐ 0.5߱௬Δݐ

1 0.5߱௫Δݐ
−0.5߱௫Δݐ 1 ے

ۑ
ۑ
ۑ
ې

൦

଴,௞ݍ
ଵ,௞ݍ
ଶ,௞ݍ
ଷ,௞ݍ

൪ 
(2.82) 

௞ାଵݍ = ൬0.5 ൤0 − ሬ߱ሬԦ்

ሬ߱ሬԦ −ሾ߱×ሿ൨ Δݐ + ସ௫ସ൰ܫ  ௞ݍ
(2.83) 

 A MEMS gyroscope contains the following error model (Chang et al. 2008; Xue et al. 2012):    

߱௠௘௔௦௨௥௘ௗ = ߱௧௥௨௘ + ܾఠ +  ఠ (2.84)ݒ

ܾఠ,௞ାଵ = ܾఠ,௞ + ሶܾ
ఠΔ(2.85) ݐ 

where the gyroscope noise ݒఠ and bias ܾఠ are both stochastic. The change in gyroscope bias rate ሶܾ
ఠ and 

white gyroscope noise ݒఠ are assumed to follow a normal distribution with a mean of zero and variances of 

ఠߪ
ଶ  and ߪ௕ሶ

ଶ, respectively.  

,ఠ~ܰ(0ݒ ఠߪ
ଶ) (2.86) 

ሶܾ
ఠ~ܰ(0, ௕ሶߪ

ଶ) (2.87) 
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2.2.3 Kalman Filter 

The Kalman filter estimates its parameters based on the stochastic properties of the system. The 

filter contains a process model (2.88) and measurement model (2.89). The Kalman filter will provide 

optimal estimates to the parameters of interest for a linear system when the process noise (ݓ௞ିଵ) and 

measurement noise (ݒ௞) follow a normal distribution with a mean of zero and variances of Q and R, 

respectively (Bachmann 2000).  

௞ݔ = ௞ିଵݔܣ + ௞ିଵݑܤ +  ௞ିଵ (2.88)ݓ

௞ݖ = ௞ݔܪ +  ௞ (2.89)ݒ

,0)ܰ~(ݓ)݌ ܳ) (2.90) 

,0)ܰ~(ݒ)݌ ܴ) (2.91) 

The process model (2.88) predicts ݔ௞, a column vector containing the parameters of interest based on prior 

estimate ݔ௞ିଵ and control variable ݑ௞ିଵ. Matrices A and B relate ݔ௞ିଵ and ݑ௞ିଵ to ݔ௞, respectively. The 

measurement model (2.89) compares ݔ௞ to sensor measurements ݖ௞, where H is a matrix that relates ݔ௞ to 

  .௞ݖ

The implementation of the Kalman filter is a series of five recursive equations:  

௞ݔ
ି = ௞ିଵݔܣ +  ௞ିଵ (2.92)ݑܤ

௞ܲ
ି = ܣ ௞ܲିଵ்ܣ + ܳ (2.93) 

௞ܭ = ௞ܲ
ܪ)்ܪି ௞ܲ

்ܪି + ܴ)ିଵ (2.94) 

௞ݔ = ௞ݔ
ି + ௞ݖ)௞ܭ − ௞ݔܪ

ି) (2.95) 

௞ܲ = ܫ) − ௞ܲ (ܪ௞ܭ
ି (2.96) 

Where ܫ is the identity matrix, ݔ௞
ି is the predicted value of ݔ௞, ௞ܲ

ି is the predicted estimation error 

covariance, ௞ܲ is the updated estimation error covariance, and ܭ௞ is the Kalman gain calculated from Q and 

R.  



32  
 

Given the non-linear process and measurement equations: 

௞ݔ = ,௞ିଵݔ)݂ ,௞ିଵݑ  ௞ିଵ) (2.97)ݓ

௞ݖ = ௞ݔ)݃ ,  ௞) (2.98)ݒ

The EKF can be applied as follows:  

௞ݔ
ି = ,௞ିଵݔ)݂ ,௞ିଵݑ 0) (2.99) 

௞ܲ
ି = ܣ ௞ܲିଵ்ܣ + ௞ܹܳ௞ିଵ ௞ܹ

்  (2.100) 

௞ܭ = ௞ܲ
ܪ)்ܪି ௞ܲ

்ܪି + ௞ܸܳ௞ ௞ܸ
்)ିଵ (2.101) 

௞ݔ = ௞ݔ
ି + ௞ݖ)௞ܭ − ௞ݔ)݃

ି, 0)) (2.102) 

௞ܲ = ܫ) − ௞ܲ (ܪ௞ܭ
ି (2.103) 

where A, W, H, and V are all Jacobin matrices. Matrix A contains the partial derivatives of ݂ with respect 

 H contains the partial derivatives of h with ,ݓ W contains the partial derivatives of ݂ with respect to ,ݔ

respect to x, and V contains the partial derivatives of h with respect to v.  

The Kalman filter is often implemented by considering (2.97) and (2.98) as follows:  

௞ݔ = ௞ିଵݔܨ + ௞ܹିଵݓ௞ିଵ (2.104) 

௞ݖ = ௞ିଵݔܩ + ௞ܸݒ௞  (2.105) 

Consequently, (2.99) and (2.102) are modified to (2.106) and (2.107), respectively. Specific Kalman Filter 

designs will be presented in subsequent sections.   

௞ݔ
ି =  ௞ିଵ (2.106)ݔܨ

௞ݔ = ௞ݔ
ି + ௞ݖ)௞ܭ − ௞ݔܩ

ି) (2.107) 
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2.2.4 Complementary Filter 

A complementary filter combines measurements based on spectral characteristics. In this 

application, the complementary filter combines the low-frequency component of the vector measurements 

with the high frequency component of gyroscope measurements. In a simple case, the transfer function (s) 

for an angle derived using the complementary filter (  :௖௢௠௣) is as follows (Zhi 2016)ߴ

௖௢௠௣ߴ =
1

1 + ݏܶ
௔௖௖௘௟ߴ +

ݏܶ
1 + ݏܶ

1
ݏ

ሶߴ =
௔௖௖௘௟ߴ + ܶ ሶߴ

1 + ݏܶ
 

(2.108) 

where T determines the filter cutoff frequency, ߴ௔௖௖௘௟  is the accelerometer-derived measurement angle, and 

߱ is the corresponding angular velocity measured by the gyroscope. Taking the backward difference results 

in the final equation.  

௖௢௠௣,௞ߴ = (1 − ௖௢௠௣,௞ିଵߴ൫(ߙ + ሶߴ
௞ିଵΔt൯ +  ௔௖௖௘௟,௞ (2.109)ߴߙ

Alternatively, the linear Kalman process (2.88) and measurement (2.89) equations can be formulated as 

follows:  

௞ߴ = ௞ିଵߴ + ሶߴ
௞ିଵݐ߂ +  ௞ିଵ  (2.110)ݓ

௔௖௖௘௟ߴ = ௞ߴ +  ௞ (2.111)ݒ

When implementing the Kalman filter, (2.92) and (2.95) reduces to  

௞ߴ = (1 − ௞ିଵߴ௞)൫ܭ + ሶߴ
௞ିଵΔt൯ +  ௔௖௖௘௟,௞ (2.112)ߴ௞ܭ

which has the same characteristic equation as the Complementary filter.  

 

2.3 Assessing IMU error 

Misalignment between OMC and IMU-derived orientation measurements must be managed since 

it can lead to over-estimation of IMU error. In theory, if ݍூீி
ைீி, the offset between the IMU global frame 

(IGF) and OMC global frame (OGF) is known, and if ݍை௅ி
ூ௅ி , the offset between the IMU local frame (ILF) 

and OMC local frame (OLF) is known, the OMC-derived orientation measurements (ݍைீி
ை௅ி  will be equal ((ݐ)

to the IMU-derived orientation measurements (ݍூீி
ூ௅ி(ݐ)).  
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ை௅ிݍ
ைீி(ݐ) = ூீிݍ

ைீி ⊗ ூ௅ிݍ
ூீி(ݐ) ⊗ ை௅ிݍ

ூ௅ி  
(2.113) 

 One method to obtain these offsets is to solve ݍூீி
ைீி and ݍை௅ி

ூ௅ி  separately. The local offset (ݍை௅ி
ூ௅ி )  

can be solved using angular rate measurements (Chardonnens, Favre, and Aminian 2012; de Vries et al. 

2009). Given spatial orientation measurements, angular rate measurements from the OMC can be solved 

algebraically through (2.75), (2.76), and (2.77) by rearranging(2.74) as follows:  

ݐԦΔݍ = Ԧை௅ி,௜ିଵݍ)
ைீி )′ ⊗ Ԧை௅ி,௜ݍ

ைீி
 (2.114) 

The relationship in (2.115) was considered once OMC-derived angular rate measurements 

(߱ைெ஼,௫, ߱ைெ஼,௬, ߱ைெ஼,௭) were obtained. ܴை௅ி
ூ௅ி  was solved using (2.116) where -p is the pseudoinverse 

function.  

቎
߱ைெ஼,௫,௜ ߱ைெ஼,௫,௡
߱ைெ஼,௬,௜ ⋯ ߱ைெ஼,௬,௡

߱ைெ஼,௭,௜ ߱ைெ஼,௭,௡

቏ = ܴை௅ி
ூ௅ி ቎

߱ ௫,௜  ߱௫,௡
߱ ௬,௜ ⋯ ߱௬,௡

߱ ௭,௜ ߱௭,௡

቏      ݅ = 1 … ݊ (2.115) 

ܴை௅ி
ூ௅ி = ቎

߱ைெ஼,௫,௜ ߱ைெ஼,௫,௡
߱ைெ஼,௬,௜ ⋯ ߱ைெ஼,௬,௡

߱ைெ஼,௭,௜ ߱ைெ஼,௭,௡

቏ ቎
߱ ௫,௜  ߱௫,௡
߱ ௬,௜ ⋯ ߱௬,௡

߱ ௭,௜ ߱௭,௡

቏

ି௣

       ݅ = 1 … ݊ (2.116) 

ூீிݍ
ைீி was obtained from (2.117) using ݍூ௅ி

ூீி derived from accelerometer measurements and magnetometer 

measurements (2.73) under static conditions at sample j, its corresponding OMC measurements at sample j, 

and the relationship established in (2.113).  

ܴூீி
ைீி = ܴை௅ி

ைீி(݆)(ܴூ௅ி
ூீி(݆)ܴை௅ி

ூ௅ி )ିଵ (2.117) 

The difference between IMU and OMC measurements at each sample is often quantified as the linear 

difference between the OMC-derived Euler angle (ߴைெ஼,௜) and IMU-derived Euler angle (ߴூெ௎,௜) (Schall Jr. 

et al. 2015; Schall et al. 2015).  

݀௜ = ைெ஼,௜ߴ −  ூெ௎,௜ (2.118)ߴ

A limitation of using the linear difference when quantifying IMU accuracy is to the occurrence of 

singularities. Consequently, more recent research has used the rotational difference between IMU and 

OMC spatial orientation measurements, which is consistent with joint angle calculations (Faber et al. 2013; 
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Gabriele Ligorio et al. 2016). Specifically, the sample-to-sample rotational difference ݍௗ೔
 is defined as (ݐ)

the offset between the global coordinates of the OMC and IMU after sensor alignment.   

ௗ೔ݍ
(ݐ) = ை௅ிݍ

ைீி(ݐ) ⊗ ூ௅ிݍ
ூீி(ݐ)′ (2.119) 

ௗ೔ݍ
 can subsequently be decomposed to Euler angles to provide a more relevant measurement.  

The sample-to-sample difference can be averaged by calculating the root-mean-square error. 

ܧܵܯܴ = ඩ
1
݊

෍ ݀௜
ଶ

௡

௜

 (2.120) 

Bland and Altman limits of agreement (LoA) are also commonly used to quantify errors within each trial, 

which consist of the average and spread of the sample-to-sample differences (Schall Jr. et al. 2015; Robert-

Lachaine et al. 2016). Other metrics to quantify IMU accuracy include the correlation of multiple 

correlation (CMC), and waveform distortion (WD) (Robert-Lachaine et al. 2016). 
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CHAPTER 3 

EFFECTS OF MOTION SPEED AND MAGNETIC DISTURBANCE ON THE 

ACCURACY OF INERTIAL MEASUREMENT UNITS 

 

3.1 Introduction 

 Accelerometers have for years been used in ergonomics field studies to describe the inclination of 

the trunk and upper arms with respect to the gravity vector (i.e., pitch angle) and the horizon (i.e., roll 

angle) (Åkesson et al. 1997; Fahrenberg et al. 1997). However, accelerometers are (i) most accurate when 

the motion to be assessed are static or quasi-static, and (ii) unable to capture information regarding motions 

about the gravity vector (i.e., heading angle) (Amasay et al. 2009; Bernmark and Wiktorin 2002). Without 

heading angles, accelerometers are not useful for measuring postures and movements of joints when a 

reference to gravity and the horizon cannot be reasonably assumed (e.g., flexion/extension of the wrist can 

occur with the wrist in any orientation with respect to gravity and the horizon). Inertial measurement units 

(IMUs), which package accelerometers with gyroscopes and magnetometers, are theoretically able to 

overcome the limitations of accelerometer-based measurement through the use of sensor fusion algorithms 

such as Kalman filters. 

 For field-based occupational ergonomics applications, IMUs are attractive due to their small size, 

relatively low cost, and ability to reliably capture information about worker posture and movement across 

full working shifts (Schall et al. 2015). These attributes are important, for example, when designing 

exposure assessment campaigns to estimate exposure to physical risk factors associated with 

musculoskeletal outcomes in epidemiological studies, or to facilitate quantitative evaluations of 

interventions. Commercial IMU-based motion capture systems are increasingly available and marketed to 

ergonomists. However, commercial systems typically use proprietary sensor fusion algorithms not well-

understood by many ergonomics practitioners. Moreover, the accuracy of IMU-based motion capture 

remains an important issue.  
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 Several studies have compared metrics of joint kinematics obtained using IMUs to those obtained 

using optical motion capture (Cloete and Scheffer 2008; Kim and Nussbaum 2013; Robert-Lachaine et al. 

2016; Cuesta-Vargas, Galán-Mercant, and Williams 2010; Godwin, Agnew, and Stevenson 2009). For 

example, Cloete and Scheffer (2008) observed errors <6° for hip flexion/extension, but >15° for ankle 

rotation. Similarly, Godwin et al., (2009) reported errors >20° (i) between different body segments within 

the same task and (ii) within the same body segment between different tasks. While these studies are 

immediately applicable to practitioners, error magnitudes are influenced by the biomechanical models used. 

Robert-Lachaine et al., (2016) observed that differences in protocol between the IMU and OMC can 

account for differences >40°, while the actual sensor error was <5°. In addition, the use of commercial 

hardware with proprietary algorithms for converting raw IMU data to kinematic constructs limits the 

generalizability of these studies’ results beyond potentially idiosyncratic commercial solutions.  

 The spatial orientation of IMUs (i.e., heading, pitch and roll angles rather than kinematic 

variables) is often presented when (i) developing and comparing sensor fusion algorithms and (ii) assessing 

factors that can negatively affect IMU accuracy. Such studies have generally reported greater accuracy (<6° 

average error) (Bergamini et al. 2014; Faber et al. 2013; Lebel et al. 2013; Gabriele Ligorio et al. 2016; 

Ricci, Taffoni, and Formica 2016) than those reporting kinematic variables. Spatial orientation is 

theoretically obtainable with a gyroscope. However, gyroscopes built using micro-electromechanical 

systems and packaged with IMUs are inaccurate, leading to time-dependent error known as gyroscopic 

drift. Deviations >10° per minute have been observed (Bergamini et al. 2014; Luinge, Veltink, and Baten 

2007). Alternatively, IMU spatial orientation can be derived with respect to gravity and magnetic north 

assuming the measured acceleration is due solely to gravity and a homogenous local magnetic field (Yun, 

Bachmann, and McGhee 2008; Valenti, Dryanovski, and Xiao 2015). These measurements are considered 

time-invariant, but can be adversely affected by highly dynamic motion and fluctuations within the local 

magnetic field (Amasay et al. 2009; Bernmark and Wiktorin 2002; de Vries et al. 2009; Lebel et al. 2013) 

leading to deviations up to 180° (Bachmann, Yun, and Peterson 2004). Sensor fusion algorithms are used to 

address the limitations of these two methods. Regardless of the fusion algorithm, the primary source of 

information is generally the gyroscope, while accelerometer and magnetometer measurements are used to 

remove gyroscopic drift (Yun and Bachmann 2006). Dynamic and magnetic disturbances are often 
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attenuated through increased reliance on gyroscope measurements with the expectation of time-dependent 

errors during periods of disturbance (Gabriele Ligorio and Sabatini 2016; Daniel Roetenberg et al. 2005; 

Sabatini 2006; Sessa et al. 2012).  

The primary objective of this pilot study was to examine the effects of movement speed and 

magnetic disturbance (and their interaction) on IMU spatial orientation accuracy during a repetitive upper 

extremity task. In order to extend generalizability, IMU spatial orientation was calculated using both non-

proprietary and proprietary Kalman filter approaches. The potential benefit of estimating inclination using 

an IMU with sensor fusion compared to an accelerometer-only approach was also explored.  

 

3.2 Methods 

 

3.2.1 Participants 

Thirteen participants (11 male; mean age= 27.2 ± 6.6 years; right-hand dominant) were recruited 

from the local community. Participants self-reported no history of orthopedic surgery in the upper 

extremity (shoulder, elbow, wrist, and hand), no physician-diagnosed musculoskeletal disorders disorder in 

the past six months, and no musculoskeletal pain in the two weeks prior to enrollment. The University of 

Iowa Institutional Review Board approved all study procedures, and informed consent was obtained from 

all participants. 

 

3.2.2 Experimental Task 

The experimental task (Figure 3.1) involved transferring wooden dowels (2 cm diameter x 8 cm 

length) for one minute from a waist-level container located directly in front of the participant to a shoulder-

level container placed 45° diagonally with respect to the sagittal and frontal planes. Three levels of 

movement speed were assigned: ‘slow’ (15 cycles/min), ‘medium’ (30 cycles/min), and ‘fast’ (45 

cycles/min). Pacing was controlled using a metronome. A metal plate (30.5 cm x 10 cm x 0.6 cm) was 

placed within the shoulder-level container to create a local magnetic field disturbance. Each participant 
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performed six trials of the task, once at each of the three movement speeds both with and without the metal 

plate. Experimental conditions were randomized to control for potential order effects. Participants were 

given time to acclimate to the motion speeds before each trial began. Each one-minute trial was followed 

by a rest period of five minutes. 

 
Figure 3.1. Experimental setup. Each transfer cycle consisted of (1) 
grasping a wooden dowel, (2) transferring the dowel to the unloading 
container, and (3) returning the hand back to the material feed 
container to grasp the next dowel. 

 

3.2.3 Instrumentation and Data Processing 

The spatial orientation of the hand was simultaneously measured using an IMU (SXT, Nexgen 

Ergonomics, Inc., Pointe Claire, Quebec, CA) and a six-camera OMC system (Optitrack Flex 13, 

NaturalPoint, Inc., Corvallis, OR, USA) that tracked a rigid marker cluster attached to the IMU surface 

(Figure 3.2). The IMU and OMC data were recorded at 128 Hz and 120 Hz, respectively (the maximum 

sampling rates for each system). Raw IMU data at each sample included acceleration, angular velocity, and 

magnetic field strength (all tri-axial), as well as a quaternion rotation vector a consisting of a real 

component (ݍ଴) and imaginary components (ݍଵ, ݍଶ, ݍଷ) output by a proprietary, embedded Kalman filter. 

Raw OMC data at each sample (i.e., spatial position of the marker cluster) were converted to a quaternion 
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rotation vector using the manufacturer’s software (Motive, NaturalPoint, Inc., Corvallis, OR, USA). The 

fundamental objective of all post-processing was to calculate the spatial orientation of the IMU and of the 

OMC marker cluster using the Euler rotation convention of heading (߰), pitch (ߠ), and roll (߶) angles. The 

IMU spatial orientation was estimated with three approaches: (i) using the raw IMU data streams (i.e., 

acceleration, angular velocity, and magnetic field strength) without sensor fusion, (ii) using modifications 

of a published, non-proprietary sensor fusion algorithm, and (iii) using the quaternion output from the 

IMU’s embedded and proprietary Kalman filter. The spatial orientation derived from the OMC marker 

cluster was calculated using the quaternion output of the OMC system software. All other post-processing 

was accomplished using MATLAB (2016a, Mathworks, Natick, MA). The raw IMU data were down-

sampled to 120 Hz to match the OMC sampling rate.  

 

Figure 3.2. IMU and its associated marker 
cluster attached to the hand of a participant 

 

3.2.3.1 IMU spatial orientation: no sensor fusion. 

 IMU pitch (ߠ) and roll (߶) angles are calculated from the accelerometer output (ܽ௫, ܽ௬, ܽ௭) using 

Equations (3.1) and (3.2).  

ߠ = tanିଵ ቆ−ܽ௫ ටܽ௬
ଶ + ܽ௭

ଶൗ ቇ 
(3.1) 

߶ = tanିଵ൫ܽ௬ ܽ௭⁄ ൯ (3.2) 

Heading angle (߰, i.e., rotation around gravity) was calculated using the pitch and roll measurements 

combined with the magnetometer output (݉௫, ݉௬, ݉௭) according to (3.3). 



41  
 

߰ = tanିଵ ቆ
݉௭ sin ߶ − ݉௬ cos ߶

݉௫ cos ߠ + ݉௬ sin ߠ sin ߶ + ݉௭ sin ߠ cos ߶
ቇ 

(3.3) 

The raw accelerometer data stream was low-pass filtered (2nd order Butterworth, 3 Hz corner frequency) 

prior to the Euler rotation angle calculations. Pitch and roll angles calculated without sensor fusion are 

described hereafter using the designation “Accel”. Heading angles calculated using raw magnetometer 

measurements (݉௫, ݉௬, ݉௭) are described hereafter using the designation “Mag.” Heading measurements 

calculated using Mag contained pitch and roll measurements obtained from the non-proprietary sensor 

fusion algorithm to mitigate the effects of increased movement speeds on heading error.  

 

3.2.3.2 IMU spatial orientation: non-proprietary sensor fusion 

A Kalman filter that separated the gravity vector from linear acceleration (given gyroscope and 

accelerometer measurements) was used to compute the acceleration magnitudes as inputs into (3.1) and 

(3.2). Pitch and roll angles calculated in this manner are described hereafter using the designation “Accel-

KF.” Similarly, a Kalman filter that separated the magnetic north vector from transient magnetic field 

strength fluctuation (given gyroscope and magnetometer measurements) was used to compute the magnetic 

field strength magnitudes as inputs into (3.4). Heading angles calculated in this manner are described 

hereafter using the designation “Mag-KF.” These Kalman filters were direct implementations of the 

“Linear Kalman Filter” that was previously proposed (Gabriele Ligorio and Sabatini 2015) and recently 

extended to account for magnetic disturbance (Gabriele Ligorio and Sabatini 2016). The Accel-KF and 

Mag-KF implemented, specifically, contain an identical Kalman Filter design but with different filter 

parameters. This filter was chosen based on simplicity in filter design and implementation.  

Generally, the Kalman Filter contains a process model (3.4) and measurement model (3.5). The 

process model estimates ݔ௞, a column vector containing the parameters of interest, from prior estimate ݔ௞ିଵ 

with a random variation of  ݓ௞ିଵ. A and W are matrices that relate ݔ௞ିଵ and ݓ௞ିଵ to ݔ௞, respectively. The 

measurement model compares ݔ௞ to sensor measurements ݖ௞, where H is a matrix that relates ݔ௞ to ݖ௞, and 

 ௞ areݒ ௞ିଵ andݓ ௞ is the random variation within the measurement model. The random process parametersݒ

assumed to follow normal distributions of ܰ(0, ܳ) and ܰ(0, ܴ), respectively.  
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௞ݔ = ௞ିଵݔܣ + ௞ܹିଵݓ௞ିଵ (3.4) 

௞ݖ = ௞ݔܪ + ௞ݒ  (3.5) 

The implementation of the Kalman filter is a series of five recursive equations:  

௞ݔ
ି =  ௞ିଵ (3.6)ݔܣ

௞ܲ
ି = ܣ ௞ܲିଵ்ܣ + ௞ܹܳ ௞ܹ

் (3.7) 

௞ܭ = ௞ܲ
ܪ)்ܪି ௞ܲ

்ܪି + ܴ)ିଵ (3.8) 

௞ݔ = ௞ݔ
ି + ௞ݖ)௞ܭ − ௞ݔܪ

ି) (3.9) 

௞ܲ = ܫ) − ௞ܲ (ܪ௞ܭ
ି (3.10) 

where ܫ is the identity matrix, ௞ܲ is the estimation error covariance, and ܭ௞ is the Kalman gain calculated 

from Q and R. The process equation (3.4) and measurement equation (3.5) for this implementation 

becomes the following:   

ቈ
݃௜

௕

ܽ௜
௕ ቉ = ቈ

௜ିଵ߱ൣ−)݉݌ݔ݁
௕ ×൧Δݐ) 0ଷ௫ଷ

0ଷ௫ଷ ܿ௔ܫଷ௫ଷܽ௜ିଵ
௕ ቉ ቈ

݃௜ିଵ
௕

ܽ௜ିଵ
௕ ቉ + ቈ

௜ିଵ݃ൣݐ߂−
௕ ×൧ 0ଷ௫ଷ

0ଷ௫ଷ ܿ௕ܫଷ௫ଷ
቉ ቈ

௜ିଵݓ
ఠ

௜ିଵݓ
௚௠቉ 

(3.11) 

൥
ܽ௫
ܽ௬
ܽ௭

൩ = ሾܫଷ௫ଷ ଷ௫ଷሿܫ ቈ
݃௜

௕

ܽ௜
௕ ቉ + ௜ݒ

௔ 
(3.12) 

where ݃௕ is direction of gravity vector and ܽ௕ is the acceleration separated by the filter when given 

gyroscope measurements (߱௫, ߱௬, ߱௭) and accelerometer measurements (ܽ௫, ܽ௬, ܽ௭). Gauss Markov 

parameters ܿ௔ and ܿ௕ determine the separation of gravity from linear acceleration. The process covariance 

matrix (Q) and the measurement covariance matrix (R) is defined as follows:  

ܳ = ൤
ఠߪଷ௫ଷܫ

ଶ 0ଷ௫ଷ
0ଷ௫ଷ ଷ௫ଷܫ

൨ 
(3.13) 

ܴ = ௔ߪଷ௫ଷܫ
ଶ (3.14) 
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where ߪఠ
ଶ  and ߪ௔

ଶ is the white gyroscope and accelerometer noise variance, respectively. Both are assumed 

to follow a normal statistical distribution with a mean of zero. The filter tuning parameters (Table 3.1) were 

obtained experimentally.  

Table 3.1. Kalman filter parameters. 
 Process Noise Measurement Noise ca cb 

Accel-KF 0.005 rad/s 0.008 m/s2 0.3 0.08 
Mag-KF 0.005 rad/s 0.3 μT 0.1 0.5 

 
 
3.2.3.3 IMU Spatial Orientation: Embedded Kalman Filter 

Equation (3.15) was used to convert the quaternion rotation vector output from the IMU’s 

embedded Kalman filter to heading, pitch, and roll angles. The angles calculated in this manner are 

described hereafter with the designation “Em-KF.” 

൥
߰
ߠ
߶

൩ = ቎
tanିଵ(2(ݍ଴ݍଷ + (ଶݍଵݍ ଴ݍ)

ଶ + ଵݍ
ଶ − ଶݍ

ଶ − ଷݍ
ଶ⁄ )

sinିଵ൫2(ݍ଴ݍଶ − ଷ)൯ݍଵݍ

tanିଵ(2(ݍ଴ݍଵ + (ଷݍଶݍ ଴ݍ)
ଶ − ଵݍ

ଶ − ଶݍ
ଶ + ଷݍ

ଶ⁄ )
቏ 

(3.15) 

 

 The raw OMC orientation measurements were first low-pass filtered (2nd order Butterworth, 6 Hz 

corner frequency). Then, the quaternion rotation vector output from the OMC system software was 

converted to heading, pitch, and roll angles using (3.15).  

 

3.2.3.4 Error Calculation 

The offset between the local coordinate frames of the OMC and the IMU was calculated using 

angular rate measurements according to de Vries et al., (2010). After applying the local offset, the offset 

between the global coordinate frames of the OMC and the IMU was determined under static conditions 

using IMU-derived orientation using the Mag approach. For each trial, the root-mean-square difference 

(RMSD) between the IMU- and OMC-derived heading, pitch, and roll angles was calculated as: 

஬ܦܵܯܴ = ඨ
1
݊

෍ ൫ϑைெ஼,௜ − ϑூெ௎,௜൯
ଶ௡

௜ୀଵ
 

(3.16) 
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where ݅ is the sample number, n is the number of samples, and ϑைெ஼  and ϑூெ௎  are the Euler rotation angles 

measured by the OMC and IMU, respectively.  

 

3.2.4 Statistical Analysis 

 Two-factor repeated measures analyses of variance were used to estimate the effects of movement 

speed, magnetic disturbance, and their interaction on estimates of RMSD in the heading, pitch, and roll 

directions. The Greenhouse-Geisser correction was used to adjust for violations of sphericity. All statistical 

analyses were performed using SPSS Statistics 23 (IBM, SPSS, Chicago, Illinois, USA). 

 

3.3 Results 

 

3.3.1 RMSD in the Pitch and Roll Directions 

The motion trajectory of the IMU for a single trial is shown in Figure 3.3. Regardless of the IMU 

spatial orientation estimation approach, neither the main effect of magnetic disturbance nor the interaction 

between movement speed and magnetic disturbance on RMSD was significant in the pitch and roll 

directions. The main effect of movement speed on RMSD in pitch and roll, however, was significant for the 

Accel and Accel-KF approaches but not for the Em-KF approach (Table 3.2). In general, mean RMSD 

increased with increasing movement speed; large increases (4° during the ‘slow’ condition to 24° during 

the ‘fast’ condition) were observed when using the Accel approach and small increases (1.1° to 1.9°) when 

using the Accel-KF approach. For the ‘medium’ and ‘fast’ movement speeds, using a Kalman filter (i.e., 

either the Accel-KF or Em-KF approach) to estimate pitch and roll reduced RMSD by an order of 

magnitude compared to using only the accelerometer (i.e, the Accel approach). Sample-to-sample 

differences between OMC and IMU pitch measurements were not time-dependent (Figure 3.4).  
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Figure 3.3. The motion trajectory of a single 
participant performing the task at ‘medium’ work 
speed without the presence of the metal plate. 
Measurements are calculated from the OMC marker 
cluster attached to the IMU located on the hand. 

 

Table 3.2. Mean (SD) root-mean-square differences in pitch and roll 
(°) calculated using an accelerometer (Accel), a linear Kalman filter 
(Accel-KF) and an embedded proprietary Kalman Filter (Em-KF). 

 Slow Med Fast p-value 
Pitch     
    Accel 4.0(0.7) 11.3(1.7) 24.0(2.5) <0.01 
    Accel-KF 1.1(0.5) 1.5(0.5) 1.9(0.4) <0.01 
    Em-KF 1.5(0.8) 1.8(1.2) 1.7(0.9)  
Roll     
    Accel 3.1(0.8) 6.4(1.7) 12.6(3.8) <0.01 
    Accel-KF 1.0(0.5) 1.4(0.5) 1.5(0.5) <0.01 
    Em-KF 2.2(1.4) 2.6(2.1) 2.1(1.4)  

 

 
Figure 3.4. Sample-to-sample difference between OMC and IMU-
derived pitch measurements during the ‘fast’ movement speed 
condition; IMU pitch angle estimated using the accelerometer data 
only (Accel) and a linear Kalman filter (Accel-KF) 
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3.3.2 RMSD in the Heading Direction 

For one participant, the heading RMSD from two trials processed using the Em-KF approach was 

more than four standard deviations greater than the mean heading angle RMSD across all subjects and 

testing conditions. These measurements were considered outliers and discarded from the analysis. 

Regardless of the IMU spatial orientation estimation approach, neither the main effect of movement speed 

nor the interaction between movement speed and magnetic disturbance on RMSD was significant in the 

heading direction. The main effect of magnetic disturbance on RMSD in the heading direction was 

significant for Mag, confirming that the metal plate altered the local magnetic field. The metal plate also 

adversely affected heading angle RMSD for both sensor fusion algorithms (Mag-KF, and Em-KF) (Table 

3.3) although the proprietary Em-KF performed somewhat better than the non-proprietary Mag-KF. 

Sample-to-sample differences between OMC and IMU heading measurements were time-dependent when 

using sensor fusion, particularly the Em-KF (Figure 3.5).  

Table 3.3. Mean (SD) root-mean-square difference in heading (°) 
calculated using a magnetometer (Mag), a linear Kalman filter 
(Mag-KF) and an embedded proprietary Kalman Filter (Em-KF). 

 w/o Metal w/Metal p-value 
Mag 3.3(1.0) 17.0(4.5) <0.01 
Mag-KF 4.1(1.9) 11.6(4.0) <0.01 
Em-KF 4.3(2.1) 7.0(4.1) <0.05 

 

 
Figure 3.5. Sample-to-sample difference between OMC and 
IMU-derived heading measurements during the ‘slow’ movement 
speed; IMU heading angle was estimated using the magnetometer 
only (Mag), a linear Kalman filter (Mag-KF) and a proprietary 
embedded Kalman filter (Em-KF).  
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3.4 Discussion 

 Consistent with other studies, pitch and roll angles estimated using only an accelerometer were 

less accurate as movement speed increased (Korshøj et al. 2014). This is primarily a function of increased 

tangential and centripetal acceleration magnitudes (Bernmark and Wiktorin 2002). While the accuracy of 

pitch and roll using the Accel-KF approach was influenced by movement speed, the magnitude of mean 

RMSD between the ‘slow’ and ‘fast’ movement speed was negligible (<1°). Both sensor fusion algorithms 

reduced RMSD in the pitch and roll directions to <3°across all movement speed conditions, which is 

consistent with previous studies (Gabriele Ligorio and Sabatini 2016; Bergamini et al. 2014; Gabriele 

Ligorio and Sabatini 2015). This finding suggests that IMU-derived inclination measurements improved 

measurement accuracy compared to accelerometer-derived inclination measurements commonly used to 

quantify non-neutral postures in the workplace within the context of occupational ergonomics. 

 The mean RMSD in the heading direction in testing conditions without the metal plate (<5° 

RMSD) was consistent with previous studies (<6°) (Faber et al. 2013; Lebel et al. 2013; Bergamini et al. 

2014; Gabriele Ligorio et al. 2016). As anticipated, the presence of the metal plate degraded the heading 

angle accuracy, though to a lesser extent when sensor fusion was used. We suspect that the addition of 

magnetic disturbance compensation strategies (e.g., vector selection) would improve measurement 

accuracy under the presence of magnetic disturbance. However, it is unlikely that sensor fusion algorithms 

would eliminate magnetic disturbances as long as magnetometers remain the source of information 

regarding orientation about the gravity vector.  

 

3.5 Conclusion 

 The use of IMUs in field-based ergonomics research is expected to increase as hardware 

development accelerates and more commercial options are available. We did not observe an interaction 

between movement speed and magnetic disturbance on the accuracy of IMU spatial orientation in this 

study. We observed substantially greater accuracy in IMU pitch and roll angles when using sensor fusion 

compared to using an accelerometer alone. This finding is important, as it suggests the increase in technical 

complexity when using an IMU with sensor fusion (vs. an accelerometer only) is offset by meaningful 
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improvements in measurement accuracy for describing the postures and movements of certain body 

segments, especially in dynamic situations with fast motion speeds. Another key observation is that the 

non-proprietary Kalman filters used in this study performed similarly to the embedded, proprietary Kalman 

filter packaged with the IMU hardware (although somewhat poorer with magnetic disturbance). Making 

such open-source processing alternatives available to the ergonomics community can, over time, reduce the 

reliance on proprietary solutions and improve the comparability within IMU-based research. The 

algorithms and MATLAB code used in this study will be made available  (see Appendix C). Finally, the 

full potential of IMU-based motion capture for field research is not likely to be realized without methods to 

identify and/or minimize the effects of local magnetic field disturbances. 
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CHAPTER 4  

ACCURACY OF ANGULAR DISPLACEMENTS AND VELOCITIES FROM 

INERTIAL-BASED INCLINOMETERS 

 

4.1 Introduction 

Measuring human motion with accuracy and precision is critical for many applications in 

occupational ergonomics, such as estimating exposure to non-neutral working postures (Douphrate et al. 

2012) and evaluating workplace designs (Fethke, Gant, and Gerr 2011). Human motion is most accurately 

quantified using laboratory-based electromagnetic or optical motion capture systems (OMC). However, 

high equipment costs and constrained recording areas prevent such systems from deployment in field-based 

occupational research (Cuesta-Vargas, Galán-Mercant, and Williams 2010; Sabatini 2006).  

Electrogoniometers and inclinometers are frequently used in workplace settings to directly 

measure human motion, particularly the motions of the distal upper extremity (Fethke et al. 2012; Asundi, 

Johnson, and Dennerlein 2012; Balogh et al. 2009; Cook, Burgess-Limerick, and Papalia 2004). An 

electrogoniometer is a mechanical device that spans a human joint and measures its angular displacement 

(Buchholz and Wellman 1997). Single-axis, dual-axis, and tri-axial elecrogoniometers are available to 

accommodate measurement of angular displacement in multiple movement planes (e.g., dual-axis devices 

are used to measure flexion/extension and radial/ulnar deviation of the wrist). Electrogonimeters, however, 

may restrict the natural movement of a joint, causing measurement error and potential misinterpretation of 

the results (Buckle and Jason Devereux 2002; Buchholz and Wellman 1997; Jonsson and Johnson 2001). 

Piezoresistive accelerometers are used as inclinometers to measure the angular displacement of the trunk 

and upper arm with respect to gravity (Fethke, Gant, and Gerr 2011; Fethke et al. 2016). Dual-axis and tri-

axial accelerometers are most commonly used for this purpose (Douphrate et al. 2012; Fethke, Gant, and 

Gerr 2011; Fethke et al. 2016; Hess et al. 2010). Accelerometer-based inclinometers, however, (i) are 

adversely affected by increased motion speeds and (ii) cannot accurately capture rotation about the gravity 

vector (heading), which is important for capturing joint angles of the wrist and elbow and to separate the 

motion planes for the trunk and shoulder (Bernmark and Wiktorin 2002; Amasay et al. 2009; Korshøj et al. 
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2014). Inertial measurement units (IMUs) overcome these limitations, in theory, through the addition of 

gyroscopes and magnetometers.  

An IMU measures the orientation of an object in three-dimensional space using a sensor fusion 

algorithm (e.g. Kalman filter) to combine measurements from solid-state gyroscopes, accelerometers, and 

magnetometers (Yun, Bachmann, and McGhee 2008; Daniel Roetenberg et al. 2005; Sun et al. 2013). Joint 

angle measurements can be subsequently calculated based on the relative orientation of two IMUs attached 

to adjacent body segments (Martori et al. 2013). Modern IMU hardware often packages the sensors with 

long-life batteries and onboard flash memory to enable prolonged data logging functionality. Thus, with 

respect to field-based research, IMUs are attractive for posture measurements because of their unobtrusive 

size, low system cost, durability, and ability to collect data over full working shifts (Douphrate et al. 2012). 

While studies have shown that these systems can be highly accurate (<6° average error) (Bergamini et al. 

2014; Faber et al. 2013; Kim and Nussbaum 2013; Plamondon et al. 2007; Robert-Lachaine et al. 2016), 

magnetic disturbance and increased motion speeds will negatively affect IMU accuracy (Lebel et al. 2013; 

Ricci, Taffoni, and Formica 2016; Bachmann, Yun, and Peterson 2004; de Vries et al. 2009). In particular, 

fluctuations within the local magnetic field expected in unconstrained environments can lead to deviations 

of 180° (Bachmann, Yun, and Peterson 2004).  

Strategies such as magnetic field rejection (Sun et al. 2013; Sabatini 2006; Gabriele Ligorio and 

Sabatini 2016), zero velocity updating (Schiefer et al. 2014), and kinematic modeling (El-Gohary and 

McNames 2012; El-Gohary and McNames 2015; Miezal, Taetz, and Bleser 2016), have been implemented 

within sensor fusion algorithms to improve the accuracy of IMU-based motion capture. These approaches, 

however, can only compensate for magnetic disturbances over short measurement durations (minutes) (El-

Gohary and McNames 2015; Lebel et al. 2015). Consequently, and despite considerable research 

concerning IMU-based motion capture and continued improvements to IMU hardware, systems capable of 

recording full three-dimensional motion for longer time periods (hours) in unconstrained environments 

have been largely elusive. Given the current capabilities of inertial-based motion capture systems and the 

advantages in cost and practicality associated with single-device solutions, several researchers have instead 

focused on using sensor fusion algorithms to attenuate motion-related artifacts in an effort to improve 
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inclinometer accuracy (Lee, Park, and Robinovitch 2012; Gabriele Ligorio and Sabatini 2015; Schall Jr. et 

al. 2015; Schall et al. 2015).   

Several studies have reported accurate (<5°) IMU-derived angular displacement measurements 

(Gabriele Ligorio and Sabatini 2015; Bergamini et al. 2014; Lee, Park, and Robinovitch 2012; Gabriele 

Ligorio and Sabatini 2016). However, none of these studies have reported the accuracy of (i) 

accelerometer-derived angular displacement measurements, (ii) angular velocity measurements, or (iii) 

posture and movement summary measures used for health-based decision making in the context of 

occupational ergonomics. Thus, the ability of IMU-based inclinometers to improve measurement accuracy 

compared to established accelerometer-based approaches remains unknown. Previous work provided direct 

comparisons of accelerometer and IMU-based inclinometers to an electrogoniometer used to measure trunk 

motion (Schall Jr. et al. 2015) and to a biomechanical-based optical motion capture system (Schall et al. 

2015). The results showed (i) higher errors in the IMU measurements relative to the reference device (5-9° 

depending on motion plane and body segment) compared to previous studies and (ii) marginal differences 

between accelerometer-based and IMU-based inclination measurements. However, error sources not 

reflective of sensor accuracy (e.g. measurement system misalignment (Mecheri et al. 2016), biomechanical 

modeling differences (Robert-Lachaine et al. 2016), soft-tissue artifacts (Cutti, Cappello, and Davalli 

2006)) were not fully managed in Schall et al.’s work. Furthermore, the similarities in measurement 

accuracy between accelerometer and IMU-based inclinometers reported in previous studies may be due to a 

combination of relatively slow motion speeds and sub-optimal sensor fusion tuning parameters that relied 

on accelerometer measurements more than necessary. 

 The primary objective of this study was to evaluate the effects of motion speed and sensor fusion 

algorithm on the accuracy of accelerometer- and IMU-derived upper arm elevation measurements. In 

addition, the impact on sensor fusion algorithm on metrics of upper arm elevation and velocity used in 

ergonomics exposure assessment was also explored.  
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4.2 Methods 

 

4.2.1 Participants 

Thirteen participants were recruited from the University of Iowa community. All participants (11 

male, mean age= 27.2 ± 6.6 years, right-handed dominant) were screened for any self-reported cases of: (i) 

physician-diagnosed musculoskeletal disorder in the past six months, (ii) pain for the previous two weeks 

prior to enrollment, and (iii) medical history of orthopedic surgery in the upper extremity (shoulder, elbow, 

wrist, hand). Each participant provided written informed consent prior to participation. The University of 

Iowa Institutional Review Board approved all study procedures.  

 

4.2.2 Task 

Each participant completed six trials of a simulated work task that involved transferring wooden 

dowels (2 cm diameter x 8 cm length) from a waist-high container in front of the participant to a shoulder-

height container located 45° diagonally from the participant (Figure 4.1). Each transfer required the 

participant to (i) grasp the dowel, (ii) transfer the dowel to the unloading container, and (iii) return to the 

material feed container. Each participant completed two trials at the given material transfer rate: slow (15 

cycles/min), medium (30 cycles/min), and fast (45 cycles/min). The transfer rate was controlled using a 

metronome and experimental conditions were randomized to control for potential order effects. Each 

participant was given time to acclimate to the assigned motion speed before each trial was captured. Each 

trial was one minute in duration and was followed by a rest period of five minutes.  

 



53  
 

 
Figure 4.1. Placement of the waist-height container holding the wooden dowels 
and the shoulder-height container. 

 

4.2.3 Instrumentation 

An IMU (series SXT, Nexgen Ergonomics, Inc., Pointe Claire, Quebec, CA) was secured to the 

lateral aspect of the dominant upper arm midway between the acromion and the lateral epicondyle (Figure 

4.2).  Accelerometer, gyroscope, and spatial orientation measurements (quaternions from an embedded 

Kalman filter) were captured from the IMU at 128 Hz. Spatial orientation was also simultaneously recorded 

using a six-camera OMC system (Optitrack Flex 13, NaturalPoint, Inc., Corvallis, OR, USA) that tracked a 

cluster of four reflective markers mounted to the surface of the IMU with double-sided tape (Figure 4.2). 

This was used in contrast to a biomechanical-based marker set to control for soft-tissue artifacts in order to 

isolate sensor error. The OMC measurements were recorded at 120 Hz. Calibration of the IMU and OMC 

instrumentation systems was performed using manufacturer-specified procedures.  
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Figure 4.2. IMU and its associated marker 
cluster attached to the upper arm of a 
participant 

 

4.2.4 Data Processing 

The spatial orientation derived from the OMC marker cluster was calculated using the quaternion 

output of the OMC system software. All post-processing was accomplished using MATLAB (2016a, 

Mathworks, Natick, MA). The raw IMU data were down-sampled to 120 Hz to match the OMC sampling 

rate. 

The upper arm elevation displacement was calculated by adding an offset to the inclination angle 

with respect to the gravity axis (ߠ). Upper arm angular velocity (ߠሶ) was calculated using the derivative of 

the upper arm elevation displacements with respect to time.  

௘௟௘ߠ = ߠ + 90° (4.1) 

ሶߠ = ௜ߠ) − (௜ିଵߠ Δݐ⁄  (4.2) 

IMU inclination angles pitch (ߠ) and roll (߶) were calculated using five different approaches: (i) 

using accelerometer measurements without sensor fusion, (ii) using a relatively simple first-order 

complementary filter, (iii) using a widely-implemented second-order complementary filter, (iv) using 

modifications of a published, non-proprietary sensor fusion algorithm, and (v) using the quaternion output 

from the IMU’s embedded and proprietary Kalman filter.  
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4.2.4.1 Accelerometer-derived Displacements 

 IMU pitch (ߠ) and roll (߶) angles were calculated from the accelerometer output (ܽ௫, ܽ௬, ܽ௭) 

using (4.3) and (4.4). 

ߠ = tanିଵ ቆ−ܽ௫ ටܽ௬
ଶ + ܽ௭

ଶൗ ቇ 
(4.3) 

߶ = tanିଵ൫ܽ௬ ܽ௭⁄ ൯ (4.4) 

The raw accelerometer data stream was low-pass filtered (2nd order Butterworth, 3 Hz corner frequency) 

prior to the angle calculations. Pitch and roll angles calculated without sensor fusion are described using the 

designation “Accel”. 

 

4.2.4.2 First-order Complementary Filter 

 The first-order complementary filter contains the following structure (Roan et al. 2012):  

௖௢௠௣,௜ߴ = (1 − ௖௢௠௣,௜ିଵߴ൫(ߙ + ሶߴ
௜Δt൯ +  ௔௖௖௘௟,௜ (4.5)ߴߙ

where ߴ௖௢௠௣,௜ is the angle derived from the complementary filter, ߴ௔௖௖௘௟,௜ is the angle derived from the 

accelerometer measurements,  ߴሶ
௜ is the rotational velocity, Δt is the sensor sampling period, and ߙ is the 

filter tuning parameter. The tuning parameter, ߙ is assigned a value between 0 and 1 (0 would rely solely 

on gyroscope-derived inclination measurements, and 1 would rely solely on accelerometer-derived 

inclination measurements). Equation (4.5) is written in terms of pitch and roll measurements as follows:  

൤
௜ߠ

߶௜
൨ = ൤

1 − ఏߙ 0
0 1 − థߙ

൨ ቈ
௜ିଵߠ + ሶΔtߠ
߶௜ିଵ + ߶ሶ Δt

቉ + ൤
ఏߙ 0
0 థߙ

൨ ൤
௔௖௖௘௟ߠ

߶௔௖௖௘௟
൨ 

(4.6) 

where ߠሶ  and ߶ሶ  are calculated using gyroscope measurements (߱௫, ߱௬, ߱௭) and the complementary filtered 

inclination measurements, as shown in (4.7).  

 

൤ߠሶ
߶ሶ ൨ = ൤

߱௬ cos ߶ − ߱௭sin ߶
߱௫ + ߱௬sin ߶ tan ߠ + ߱௭ cos ߶ tan  ൨ (4.7)ߠ
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Our first-order complementary filter was obtained by substituting (4.3), (4.4), and (4.7) into (4.6).  

For this study, both ߙఏ and ߙథ were each assigned a value of 0.01, based on visual inspection of the 

complementary filter results and the OMC data. Pitch and roll angles calculated using the first-order 

complementary filter are described using the designation “Comp-1”. 

 

4.2.4.3 Second-order Complementary Filter 

The design of the second-order complementary filter was a direct implementation of the filter 

developed by Madgwick et al., (2011). A detailed explanation can be found elsewhere (Mourcou et al. 

2015; Madgwick, Harrison, and Vaidyanathan 2011). Equation (4.9) was used to convert the quaternion 

rotation vector output from the second-order complementary filter heading, pitch, and roll angles. For this 

study, the filter parameter ߚ was assigned a value of 0.13. The angles calculated in this manner are 

described with the designation “Comp-2.”  

 

4.2.4.4 Kalman Filter: non-proprietary 

The Extended Kalman Filter used in this study contains the generic process model (4.10) and 

measurement model (4.11). The process model estimates ݔ௞, a column vector containing the parameters of 

interest, from prior estimate ݔ௞ିଵ with a random variation of  ݓ௞ିଵ. The matrices F and W relate ݔ௞ିଵ and 

 ௞, where G is aݖ ௞ to sensor measurementsݔ ௞, respectively. The measurement model comparesݔ ௞ିଵ toݓ

matrix that relates ݔ௞ to ݖ௞, and ݒ௞ is the random variation within the measurement model. The random 

parameters ݓ௞ିଵ and ݒ௞ are assumed to follow normal distributions of 0)ܰ~(ݓ)݌, ܳ) and 0)ܰ~(ݒ)݌, ܴ), 

respectively.  

൤
௜ߠ
߶௜

൨ = ൦
(1 − ௜ିଵߠఏ)൫ߙ + ൫߱௬ cos ߶௜ିଵ − ߱௭sin ߶௜ିଵ൯Δt൯ + ఏߙ tanିଵ ቆ−ܽ௫ ටܽ௬

ଶ + ܽ௭
ଶൗ ቇ

൫1 − థ൯൫߶௜ିଵߙ + ൫߱௫ + ߱௬sin ߶௜ିଵ tan ௜ିଵߠ + ߱௭ cos ߶௜ିଵ tan ௜ିଵ൯Δt൯ߠ + థߙ tanିଵ൫ܽ௬ ܽ௭⁄ ൯
൪ (4.8) 

൥
߰
ߠ
߶

൩ = ቎
tanିଵ(2(ݍ଴ݍଷ + (ଶݍଵݍ ଴ݍ)

ଶ + ଵݍ
ଶ − ଶݍ

ଶ − ଷݍ
ଶ⁄ )

sinିଵ൫2(ݍ଴ݍଶ − ଷ)൯ݍଵݍ

tanିଵ(2(ݍ଴ݍଵ + (ଷݍଶݍ ଴ݍ)
ଶ − ଵݍ

ଶ − ଶݍ
ଶ + ଷݍ

ଶ⁄ )
቏ (4.9) 
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௞ݔ = ௞ିଵݔܨ + ௞ܹିଵݓ௞ିଵ (4.10) 

௞ݖ = ௞ିଵݔܩ + ௞ܸݒ௞ (4.11) 

 

The implementation of the Kalman filter consists of a series of five recursive equations:  

௞ݔ
ି =  ௞ିଵ (4.12)ݔܨ

௞ܲ
ି = ܣ ௞ܲିଵ்ܣ + ௞ܹܳ ௞ܹ

் (4.13) 

௞ܭ = ௞ܲ
ܪ)்ܪି ௞ܲ

்ܪି + ௞ܸܳ௞ ௞ܸ
்)ିଵ (4.14) 

௞ݔ = ௞ݔ
ି + ௞ݖ)௞ܭ − ௞ݔܩ

ି) (4.15) 

௞ܲ = ܫ) − ௞ܲ (ܪ௞ܭ
ି (4.16) 

where ܫ is the identity matrix, ௞ܲ is the estimation error covariance, and ܭ௞ is the Kalman gain calculated 

from Q and R.  Matrices A, W, H, and V are all Jacobin matrices. Matrix A contains the partial derivatives 

of ܨ with respect ݔ, W contains the partial derivatives of ܨ with respect to ݓ, H contains the partial 

derivatives of ܩ with respect to x, and V contains the partial derivatives of ܩ with respect to v. 

The Kalman Filter implemented was modified from a validated Linear Kalman Filter (Gabriele 

Ligorio and Sabatini 2015). The filter was designed to discriminate the direction of gravity (݃௕) from the 

linear acceleration (ܽ௕) in the local coordinate frame when gyroscope measurements ሬ߱ሬԦ௕ = (߱௫, ߱௬, ߱௭) and 

accelerometer measurements (ܽ௫, ܽ௬, ܽ௭) are provided. The generic process (4.10) and measurement (4.11) 

models were provided by Ligorio et al., (2015) as follows:  

where 0ଷ௫ଷ is a 3x3 matrix with zeros, ܫଷ௫ଷ is a 3x3 identity matrix, ሾݑሬറ×ሿ is the skew symmetric matrix 

associated for a given vector (ݑሬറ), and ܿ௔, ܿ௕ are the parameters of the first-order Gauss-Markov process 

ቈ
݃௞

௕

ܽ௞
௕ ቉ = ቈ

௜ିଵ߱ൣ−)݉݌ݔ݁
௕ ×൧Δݐ) 0ଷ௫ଷ

0ଷ௫ଷ ܿ௔ܫଷ௫ଷܽ௜ିଵ
௕ ቉ ቈ

݃௞ିଵ
௕

ܽ௞ିଵ
௕ ቉ + ቈ

௜ିଵ݃ൣݐ߂−
௕ ×൧ 0ଷ௫ଷ

0ଷ௫ଷ ܿ௕ܫଷ௫ଷ
቉ ቈ

௞ିଵݓ
ఠ

௞ିଵݓ
௚௠ ቉ (4.17) 

൥
ܽ௫,௞
ܽ௬,௞
ܽ௭,௞

൩ = ሾܫଷ௫ଷ ଷ௫ଷሿܫ ቈ
݃௞

௕

ܽ௞
௕቉ + ௞ݒଷ௫ଷܫ

௔ (4.18) 
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used to account for external acceleration. The gyroscope noise ݓఠ and accelerometer noise ݒ௔ are assumed 

to follow a normal distribution of ܰ(0, ఠߪ
ଶ) and  ܰ(0, ௔ߪ

ଶ), respectively. The white Gaussian noise ݓ௚௠ is 

assumed to be zero mean with an identity covariance matrix. 

This process model was modified into a first-order approximation (4.19) to reduce computation 

time.  The gyroscope bias was also added to the process model (4.20) to improve measurement estimates, 

which is consistent with other Kalman Filter designs (Brigante et al. 2011; Gośliński, Nowicki, and 

Skrzypczyński 2015; Chang et al. 2008). The gyroscope bias was modeled as a random walk, where ሶܾ
ఠ is 

assumed to follow a normal distribution of ܰ(0, ఠ್ߪ
ଶ ).  

௜ିଵ߱ൣ−)݉݌ݔ݁
௕ ×൧Δݐ) ≈ ൫ܫଷ௫ଷ − ൣ߱௜ିଵ

௕ ×൧Δݐ൯ (4.19) 

ܾఠ,௜ = ܾఠ,௜ିଵ + ሶܾ
ఠΔ(4.20) ݐ 

Based on these changes, (4.17) and (4.18) becomes (4.21) and (4.22), respectively.  

Given that F is non-linear, A is defined as follows:  

The process covariance matrix (Q) and the measurement covariance matrix (R) is defined as follows:  

ܳ = ቎
ఠߪଷ௫ଷܫ

ଶ 0ଷ௫ଷ 0ଷ௫ଷ
0ଷ௫ଷ ଷ௫ଷܫ 0ଷ௫ଷ

0ଷ௫ଷ 0ଷ௫ଷ ఠ್ߪଷ௫ଷܫ
ଶ

቏ 
(4.24) 

ܴ = ௔ߪଷ௫ଷܫ
ଶ (4.25) 

቎
݃௜

௕

ܽ௜
௕

ܾఠ,௜

቏ = ቎
ଷ௫ଷܫ − ൣ(߱௜ିଵ

௕ − ܾఠ,௜ିଵ)×൧Δݐ 0ଷ௫ଷ 0ଷ௫ଷ

0ଷ௫ଷ ܿ௔ܫଷ௫ଷܽ௜ିଵ
௕ 0ଷ௫ଷ

0ଷ௫ଷ 0ଷ௫ଷ ଷ௫ଷܫ

቏ ቎
݃௜ିଵ

௕

ܽ௜ିଵ
௕

ܾఠ,௜ିଵ

቏ + ቎
ሾ݃௜ିଵ

௕ ×ሿݐ߂ 0ଷ௫ଷ 0ଷ௫ଷ

0ଷ௫ଷ ܿ௕ܫଷ௫ଷ 0ଷ௫ଷ
0ଷ௫ଷ 0ଷ௫ଷ Δܫݐଷ௫ଷ

቏ ቎

௜ିଵݓ
ఠ

௜ିଵݓ
௚௠

ሶܾ
ఠ

቏ (4.21) 

൥
ܽ௫,௞
ܽ௬,௞
ܽ௭,௞

൩ = ሾܫଷ௫ଷ ଷ௫ଷሿܫ ቈ
݃௞

௕

ܽ௞
௕቉ + ሾܫଷ௫ଷ ଷ௫ଷܫ 0ଷ௫ଷሿ ቎

݃௞
௕

ܽ௞
௕

ܾఠ,௞

቏ ௞ݒ
௔ (4.22) 

ܣ = ቎
ଷ௫ଷܫ − ൣ(߱௜ିଵ

௕ − ܾఠ,௜ିଵ)×൧Δݐ 0ଷ௫ଷ −ൣ݃௜
௕×൧Δݐ

0ଷ௫ଷ ܿ௔ܫଷ௫ଷܽ௜ିଵ
௕ 0ଷ௫ଷ

0ଷ௫ଷ 0ଷ௫ଷ ଷ௫ଷܫ

቏ (4.23) 
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Inclination measurements are calculated by substituting ݃௞
௕ into (4.3) and (4.4). The assigned filter 

parameters are shown in (Table 4.1). The angles calculated in this manner are described with the 

designation “Accel-KF.” 

Table 4.1. Kalman filter parameters. 
 Gyro White Noise Gyro Bias  Accel White Noise ca cb 

Accel-KF 0.005 rad/s 0.0005 (rad/s2) 0.005 m/s2 0.001 0.1 
 

4.2.4.5 Kalman Filter: Embedded (Proprietary) 

Equation (4.9) was used to convert the quaternion rotation vector output from the IMU’s embedded 

Kalman filter to heading, pitch, and roll angles. The angles calculated in this manner are described with the 

designation “Em-KF.”  The quaternion rotation vector output from the OMC system software was 

converted to heading, pitch, and roll angles using (4.9) as well.  

 

4.2.4.6 Inclinometer Accuracy 

The offset between the local coordinate frames of the OMC and the IMU was calculated using 

angular rate measurements according to de Vries et al. (2010). After applying the local offset, the offset 

between the global coordinate frames of the OMC and the IMU was determined under static conditions 

using Accel-derived inclination measurements. OMC-derived upper arm elevation displacements and 

velocities were calculated after the offsets were added to OMC-derived orientation measurements.  

Root-mean-square error (RMS) was calculated using (4.26) to quantify the average error of 

inclinometer measurements (ߠூே஼) relative to the OMC (ߠைெ஼). Peak error was calculated using the 99th 

percentile measurement of the rectified (absolute value) sample-to-sample difference between the OMC 

and inclinometer-derived measurements.   

ܵܯܴ = ඨ
1
݊

෍(ߠைெ஼ − ூே஼)ଶߠ

௡

 (4.26) 
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4.2.5  Statistical Analysis 

A two-factor repeated measures analysis of variance (ANOVA) was used test the main and 

interactive effects of material transfer rate and upper arm elevation calculation method (e.g., accelerometer, 

comp-1, comp-2) on (i) RMS displacement error, (ii) peak displacement error, (iii) RMS velocity error, and 

(iv) peak velocity error. Preplanned pairwise comparisons using Bonferroni corrections were used to test 

differences between displacements and velocities calculated using (i) accelerometer and comp-1, (ii) 

accelerometer and comp-2, (iii) accelerometer and MLKF, and (iv) accelerometer and EMKF on RMS and 

peak displacement errors as well as RMS and peak velocity errors.  

 

4.3 Results 

 

4.3.1 Angular Displacements 

The cyclic motion pattern and the changes to movement frequency associated with increased 

transfer rates (15, 30, 45 cycles/min) can be observed through the OMC-derived angular displacements 

(Figure 4.3). The within-trial acceleration measurements (average and variation) across all testing 

conditions are shown in Table 4.2. Statistically-significant (p<0.01) main effects of material transfer rate, 

calculation method, and their interaction were observed for both RMS and peak displacement error. All 

pairwise comparisons across each transfer rate were statistically significant for RMS displacement error 

(p<0.05) and peak displacement error (p<0.01). As expected, the accelerometer-derived displacements were 

similar to the OMC-derived displacements for the slowest transfer rate, but deviated substantially for the 

fastest transfer rate (Figure 4.4). 

 Although statistically-significant pairwise comparisons were observed for the RMS and peak error 

associated with the slowest transfer rate (Table 4.3), the measurement errors were minimal (2.3° RMS, 6.8° 

peak). Under the fastest transfer rate, the errors associated with accelerometer-derived displacements were 

more apparent (11.3° RMS, 28.9° peak). A simple first-order complementary filter reduced RMS error to 

3.2°, while a Kalman filter reduced the RMS error to <1.5°. Similarly, a first-order complementary filter 

reduced peak error to 6.5°, while a Kalman filter reduced peak error to <3.2°. In general, the accelerometer-
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derived displacements underestimated upper arm elevation as transfer rates increased, as evidenced by the 

90th percentile measurements. This was mitigated by implementing a sensor fusion algorithm. Time-

dependent errors were not observed for displacements calculated using sensor fusion algorithms (Figure 

4.5).  

 
Figure 4.3. OMC-derived upper arm elevation displacements (°) for one participant across three different material 
transfer rates: slow (15 cycles/min), medium (30 cycles/min), and fast (45 cycles/min). 
 

Table 4.2. Mean(SD) within-trial acceleration measurements across all 13 participants and material transfer rates.  
 Slow (15 cycles/min) Medium (30 cycles/min) Fast (45 cycles/min) 
Average (m/s2) 9.9(0.3) 10.1(0.3) 10.4(0.2) 
Standard Deviation (m/s2) 0.4(0.1) 1.0(0.2) 1.5(0.2) 
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Figure 4.4. Upper arm elevation displacements across two cycles at two material transfer rates: slow 
(15 cycles/min), and fast (45 cycles/min). Displacements were measured by the optical motion 
capture system (OMC) and calculated using an accelerometer (Accel), first-order complementary 
filter (Comp-1), and a modified linear Kalman filter (Kalman). 

 

 

Figure 4.5. Sample-to-sample displacement difference between OMC and IMU using a modified 
Linear Kalman Filter across two material transfer rates: slow (15 cycles/min) and fast (45 
cycles/min).  
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Table 4.3. Mean (SD) Angular displacements of upper arm elevation across 13 participants and three material 
transfer rates: slow (15 cycles/min), medium (30 cycles/min), and fast (45 cycles/min) that was maintained for a 
period of one minute. Displacements were measured by the optical motion capture system (OMC) and calculated 
using an accelerometer (Accel), first-order complementary filter (Comp-1), a second-order complementary filter 
(Comp-2), a modified linear Kalman Filter (MLKF), and an embedded Kalman filter (EMKF). 

Upper Arm Elevation Displacement OMC Accel Comp-1 Comp-2 MLKF EMKF 
‘Slow’ Transfer Rate       
    RMS (°) -REF- 2.3(0.4) 1.6(0.9)* 1.8(0.5)** 1.1(0.6)** 1.2(0.9)** 
    Peak (°) -REF- 6.8(1.7) 3.3(1.4)** 4.1(1.0)** 2.2(1.0)** 2.4(1.6)** 
    Mean (°) 47.4(7.7) 46.5(7.8) 46.9(8.2) 46.6(7.9) 46.7(7.8) 46.8(7.4) 
    10th Percentile (°) 20.5(6.4) 20.4(6.4) 21.0(6.9) 20.5(6.5) 20.4(6.6) 20.4(6.3) 
    50th Percentile (°) 46.1(8.9) 46.2(8.7) 45.5(9.2) 45.9(8.8) 45.4(8.8) 45.5(8.5) 
    90th Percentile (°) 75.4(8.7) 72.5(9.1) 74.2(9.2) 73.4(9.1) 74.2(8.8) 74.3(8.4) 
    Percentile Range (90th – 10th)(°)  54.9(4.4) 52.1(4.5) 53.2(4.1) 52.9(4.3) 53.7(4.0) 53.9(4.0) 
    Time in neutral posture (<20°) (%) 12.3(13.7) 12.0(12.9) 11.6(13.9) 12.2(13.4) 12.3(13.7) 12.1(13.2) 
    Time in extreme posture (≥45°)(%) 50.4(7.5) 50.6(8.3) 49.8(8.2) 50.2(8.1) 49.7(7.7) 49.9(7.2) 
    Time in extreme posture (≥60°)(%) 35.4(12.4) 33.4(13.7) 34.0(13.4) 33.8(13.4) 34.0(13.2) 34.7(11.8) 
‘Medium’ Transfer Rate       
    RMS (°) -REF- 6.3(1.5) 2.4(1.0)** 2.4(0.6)** 1.3(0.6)** 1.4(1.0)** 
    Peak (°) -REF- 17.5(4.6) 5.7(4.4)** 5.3(1.2)** 2.7(1.1)** 2.5(1.5)** 
    Mean (°) 44.4(7.3) 42.9(7.4) 43.8(7.6) 44.2(7.8) 43.7(7.4) 43.5(7.5) 
    10th Percentile (°) 19.0(6.8) 20.8(6.9) 19.8(7.0) 20.1(7.3) 19.1(6.9) 18.9(6.8) 
    50th Percentile (°) 41.8(8.1) 43.9(7.6) 41.1(8.1) 41.5(8.2) 41.1(8.0) 40.9(8.2) 
    90th Percentile (°) 73.1(9.1) 63.3(8.6) 71.4(9.1) 71.8(9.4) 71.7(9.0) 71.5(9.2) 
    Percentile Range (90th – 10th)(°)  54.1(5.4) 42.5(4.7) 51.6(5.2) 51.7(5.0) 52.7(5.3) 52.7(5.2) 
    Time in neutral posture (<20°) (%) 15.4(13.4) 11.7(11.9) 13.9(13.6) 13.6(13.9) 15.2(13.6) 15.5(13.7) 
    Time in extreme posture (≥45°)(%) 46.3(8.5) 46.9(12.3) 45.4(9.0) 45.8(9.1) 45.5(8.7) 45.2(8.8) 
    Time in extreme posture (≥60°)(%) 29.8(12.0) 21.0(15.8) 27.7(12.9) 28.0(13.0) 28.0(12.9) 27.6(13.2) 
‘Fast’ Transfer Rate       
    RMS (°) -REF- 11.3(1.9) 3.2(0.8)** 2.9(1.1)** 1.5(0.5)** 1.2(0.8)** 
    Peak (°) -REF- 28.9(5.2) 6.5(1.8)** 5.7(1.6)** 3.2(1.0)** 2.4(1.2)** 
    Mean (°) 43.6(7.2) 40.7(6.9) 43.3(7.4) 44.1(8.4) 42.9(7.3) 43.3(7.4) 
    10th Percentile (°) 18.1(5.8) 23.0(6.4) 19.5(6.3) 19.4(6.9) 18.2(6.0) 18.5(5.9) 
    50th Percentile (°) 42.3(7.9) 43.7(7.2) 42.0(7.9) 42.4(8.9) 41.6(7.9) 42.0(8.2) 
    90th Percentile (°) 71.1(9.1) 54.8(7.8) 69.2(9.2) 71.3(10.2) 69.8(9.2) 70.2(9.1) 
    Percentile Range (90th – 10th)(°)  53.0(6.2) 31.8(4.3) 49.7(6.1) 51.9(6.2) 51.6(6.1) 51.7(5.9) 
    Time in neutral posture (<20°) (%) 16.1(11.4) 8.0(9.6) 12.9(12.2) 14.2(13.3) 15.9(11.8) 15.5(12) 
    Time in extreme posture (≥45°)(%) 46.3(9.1) 41.1(20.9) 45.7(9.7) 46.5(10.3) 45.4(9.3) 45.9(9.5) 
    Time in extreme posture (≥60°)(%) 28.1(12.8) 8.3(10.2) 25.5(14.3) 27.7(14.6) 25.9(13.9) 26.7(13.9) 

*Statistically-significant (p<0.05) pair-wise tests between the accel and the sensor fusion method 
**Statistically-significant (p<0.01) pair-wise tests between the accel and the sensor fusion method 
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4.3.2 Angular Velocities 

 The increase in amplitude and frequency of OMC-derived angular velocities associated with 

increased material transfer rates can be observed in Figure 4.6. Statistically-significant (p<0.01) main 

effects of material transfer rate, calculation method, and their interaction were observed for both RMS and 

peak velocity error. All pairwise comparisons across each transfer rate was statistically significant for RMS 

velocity error (p<0.01) and peak velocity error (p<0.01). As expected, the accelerometer-derived velocities 

were similar to the OMC-derived velocities for the slow transfer rate, but deviated substantially for the fast 

transfer rate (Figure 4.7).  

 Unlike the accelerometer-derived displacements, the RMS and peak angular velocity error 

associated with accelerometer-derived angular velocities more noticeable (13.0°/s RMS and 42.7°/s peak). 

RMS and peak velocity error for accelerometer-derived measurements increased to 81.7°/s and 221.3°/s for 

the fastest motion condition. As expected, a first-order complementary filter reduced RMS error to 17°/s, 

while a Kalman filter decreased RMS error to <9.2°/s. Similarly, a first-order complementary filter reduced 

peak error to 46.2°/s, while a Kalman filter reduce peak error to <25.2°/s. 
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Figure 4.6. OMC-derived upper arm elevation velocities (one participant) across three material transfer rates: slow (15 
cycles/min), medium (30 cycles/min), and fast (45 cycles/min).   
 

 

Figure 4.7. Upper arm elevation velocities (°/s) for one participant across two material transfer 
rates: slow (15 cycles /min), and fast (45 cycles /min). Angular velocities were derived using 
displacements measured from the optical motion capture (OMC) calculated using an accelerometer 
(Accel), first-order complementary filter (Comp-1), and a modified linear Kalman filter (Kalman).
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Table 4.4. Angular velocities of upper arm elevation across 13 participants and three material transfer rates: slow (15 
cycles/min), medium (30 cycles/min), and fast (30 cycles/min) that was maintained for a period of one minute. Angular 
velocities were calculated using displacement measurements obtained from an optical motion capture system (OMC) an 
accelerometer (Accel), first-order complementary filter (Comp-1), a modified linear kalman filter (MLKF), and an 
embedded Kalman filter (EMKF).   
Velocity OMC Accel Comp-1 Comp-2 MLKF EMKF 
‘Slow’ Transfer Rate            
    RMS (°/s) -REF- 13.0(3.0) 4.4(1.1)** 9.9(0.8)** 3.1(0.9)** 2.8(1.0)** 
    Peak (°/s) -REF- 42.7(11.4) 14.1(4.4)** 19.9(2.1)** 9.7(3.4)** 8.7(3.3)** 
    Mean (°/s) 28.2(2.1) 28.6(2.3) 27.5(2.1) 28.7(2.4) 27.6(2.0) 27.7(2.0) 
    10th Percentile (°/s) 2.6(1.1) 4.0(1.3) 2.9(1.3) 4.4(0.7) 2.7(1.2) 2.6(1.2) 
    50th Percentile (°/s) 22.8(3.8) 25.9(2.7) 22.4(3.3) 23.8(2.0) 22.4(3.4) 22.5(3.5) 
    90th Percentile (°/s) 61.3(8.7) 56.6(7.0) 59.4(8.4) 59.6(7.7) 59.9(8.4) 60.1(8.5) 
    Percentile Range (90th – 10th)(°/s) 58.7(9.5) 52.6(7.7) 56.5(9.3) 55.2(7.8) 57.2(9.3) 57.4(9.4) 
    Time at low velocities (<5°/s)(%) 19.5(6.4) 13.2(3.7) 18.1(6.2) 11.5(1.9) 19.0(6.3) 19.6(6.3) 
    Time at high velocities (≥90°/s)(%) 1.0(1.5) 0.4(0.6) 0.8(1.3) 0.8(1.2) 0.9(1.4) 0.8(1.4) 
‘Medium’ Transfer Rate       
    RMS (°/s) -REF- 39.8(10.9) 10.3(2.4)** 11.1(1.4)** 5.9(1.4)** 5.1(2.0)** 
    Peak (°/s) -REF- 112.5(29.1) 30.8(10.0)** 25.6(7.9)** 17.1(4.3)** 15.3(7.7)** 
    Mean (°/s) 56.0(5.3) 49.7(5.9) 54(5.4) 54.3(5.3) 54.8(5.3) 54.7(5.2) 
    10th Percentile (°/s) 7.5(2.8) 9.8(3.0) 7.8(2.9) 8.1(2.3) 7.8(2.8) 7.3(2.8) 
    50th Percentile (°/s) 52.6(6.1) 49.3(7.2) 50.0(5.5) 49.9(6.2) 51.3(5.8) 51.4(6.0) 
    90th Percentile (°/s) 109.7(17.3) 89.0(11.2) 106.4(16.4) 107.3(15.9) 107.4(16.8) 107.3(16.7) 
    Percentile Range (90th – 10th)(°/s) 102.2(19.0) 79.2(10.7) 98.6(17.7) 99.2(17.0) 99.6(18.4) 99.9(18.3) 
    Time at low velocities (<5°/s)(%) 7.9(3.8) 5.7(2.0) 7.5(3.6) 6.7(2.0) 7.6(3.7) 8.0(3.7) 
    Time at high velocities (≥90°/s)(%) 21.7(8.5) 9.8(6.0) 19(8.6) 19.5(8.1) 20.0(8.7) 20.2(8.7) 
‘Fast Transfer Rate       
    RMS (°/s) -REF- 79.0(14.1) 17.0(2.7)** 13.8(3.7)** 9.3(1.7)** 7.3(3.9)** 
    Peak (°/s) -REF- 206.5(41.1) 46.2(8.4)** 36.2(18.6)** 25.2(5.8)** 21.4(13.8)** 
    Mean (°/s) 83.3(9.8) 62.5(7.2) 78.8(9.9) 81.9(10.2) 81.4(9.8) 81.6(9.4) 
    10th Percentile (°/s) 14.5(3.1) 11.4(2.5) 15.2(4.6) 13.5(4.0) 15.1(4.0) 15.0(3.6) 
    50th Percentile (°/s) 86.0(10.6) 57.6(7.6) 78.5(9.9) 82.6(10.8) 82.7(10.4) 83.5(9.9) 
    90th Percentile (°/s) 146.5(20.1) 118.5(16.6) 141.9(20.6) 148.5(19.7) 144.4(20.2) 144.0(19.7) 
    Percentile Range (90th – 10th)(°/s) 131.9(20.2) 107.1(16.2) 126.7(19.7) 135(18.9) 129.3(19.9) 128.9(19.8) 
    Time at low velocities (<5°/s)(%) 3.6(0.9) 4.6(1.3) 3.5(1.0) 4.0(1.3) 3.6(1.0) 3.5(1.0) 
    Time at high velocities (≥90°/s)(%) 46.7(6.1) 24.1(6.9) 41.3(7.6) 44.9(6.1) 44.6(6.5) 45.3(6.1) 

*Statistically-significant (p<0.05) pair-wise tests between the accel and the sensor fusion method 
**Statistically-significant (p<0.01) pair-wise tests between the accel and the sensor fusion method 
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4.4 Discussion 

The accelerometer-derived displacements were accurate (<2.5° RMS error, <7° peak error) for the slowest 

material transfer rates (15 cycles/min). This test condition corresponded to an acceleration average and 

standard deviation of 9.9 m/s2 and 0.4 m/s2 within each trial, respectively. The accelerometer-derived 

displacements were negatively affected by increased motion speeds. Under the fast motion condition, the 

RMS and peak displacement error increased to 11.3° and 28.9°, respectively. This observation was 

consistent with the expected increase in tangential and centripetal acceleration, which are both affected by 

increased angular velocities (Bernmark and Wiktorin 2002). The results of this study indicate a range of 

displacement errors (RMS <2.5° to >11°) that are comparable to (i) previous work that assessed 

accelerometer-based inclinometers under a variety of tasks and arm swing frequencies (RMS 2.0° to >13°) 

(Korshøj et al. 2014) and (ii) previous work that assessed accelerometer-derived displacements in static 

conditions (<2°) (Amasay et al. 2009). The accelerometer-based displacement RMS error for the medium 

material transfer rate (6.3°) was also consistent with previous work that reported an RMS error of 7.2° for 

upper arm elevation displacements during the prescribed work task (Schall et al. 2015). 

As expected, the sensor fusion algorithms improved measurement accuracy for upper arm elevation 

displacement. For every transfer rate tested, a statistically-significant pairwise difference was observed 

between the accuracy of accelerometer-derived displacements and each of the sensor fusion algorithms. 

However, the improvements in measurement accuracy were more apparent with increased motion speeds. 

For the fast motion condition, a simple first-order complementary filter reduced the RMS displacement 

error from 11.3° to 3.2°. However, this filter design did not account for variability in gyroscope bias nor 

non-gravitational acceleration. The comp-2 filter, which reduced the RMS displacement error to <2.8°, 

accounted for gyroscope bias variability in the filter design. The modified linear Kalman filter also 

accounted for non-gravitational acceleration, which further reduced the error to <1.5°. In general, our errors 

were consistent with other studies (<4° RMS error) that provided inclination estimates using an identical 

comp-2 filter (Mourcou et al. 2015; Bergamini et al. 2014), an identical Embedded Kalman Filter (Lebel et 

al. 2013; Lebel et al. 2015), and a similar linear Kalman filter  (Gabriele Ligorio and Sabatini 2016; 

Bergamini et al. 2014; Gabriele Ligorio and Sabatini 2015). The improvements in inclination accuracy with 

the Comp-1 filter was inconsistent with previous studies, which showed only marginal and inconsistent 
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improvements in measurement accuracy when used over accelerometer-derived measurements (Schall et 

al., 2015). We suspect this may be because the majority of the reported error may be attributed to 

methodological differences between the measurement systems (e.g. misalignment between measurement 

systems).  

Similar error trends appeared in velocity measurements since velocity was calculated by taking the 

derivative of the angular displacements with respect to time. As expected, accelerometer-derived angular 

velocities were unusable for the fast motion conditions (81.7°/s RMS error). This was mitigated 

considerably using a sensor fusion algorithm, which resulted in RMS errors between 7.3°/s and 17.0°/s for 

the fastest transfer rate, depending on the sensor fusion algorithm. Few studies have published accuracy of 

angular velocity measurements. In general, our results are consistent with previous studies. For the 

accelerometer-derived angular velocities, Schall et al. (2015) reported angular velocity errors <10°/s 

through comparisons against a lumbar electrogoniometer, which was consistent with our study (13°/s RMS) 

with regards to the slow transfer rate. For IMU-based angular velocity measurements, Kim et al., (2013) 

reported errors <10°/s for the vast majority of joint angle velocities across all body segments through 

comparisons against an OMC (Kim and Nussbaum 2013), Plamondon et al. (2007) reported angular 

velocity errors <13°/s (Plamondon et al. 2007) and Schall et al. (2015) reported RMS angular velocity 

errors <10.1°/s, which is consistent with our observations (<9.2°/s using a Kalman filter). 

In general, this study suggests that the dynamics associated with upper arm motion are (i) more 

than capable of adversely affecting accelerometer-derived angular displacement and velocity measurements 

that are commonly reported within the occupational ergonomics literature. We observed underestimation of 

the extreme postures and velocities (90th percentile) at increased motion speeds, which indicate that 

exposures to non-neutral postures may be underestimated in human health studies, in particularly when 

higher motion speeds are expected. These limitations, however, were mitigated by implementing a sensor 

fusion algorithm that combined accelerometer and gyroscope measurements. 
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4.4.1 Study Limitation 

  The main limitation in this study was the relatively short sampling period of one minute, given 

that the error of gyroscope-derived orientation measurements is time-dependent  (Bergamini et al. 2014; 

Lebel et al. 2015). This sampling duration was chosen based on the material transfer rate. In preliminary 

tests, it was difficult for the participants to maintain the fastest transfer rate (45 cycles/min) for longer than 

one minute due to fatigue. While several studies have used similar sampling durations (Bergamini et al. 

2014; M.a. Brodie, Walmsley, and Page 2008; El-Gohary and McNames 2012; Faber et al. 2013; Gabriele 

Ligorio and Sabatini 2016; Ricci, Taffoni, and Formica 2016), task-durations in the workplace setting may 

be considerably longer, which may result in larger error magnitudes. When designing this study, a 

compromise had to be made between maximizing IMU error due to increased motion speeds or increased 

sampling duration. However, the time-dependent error characteristics, if apparent, would be observable for 

the chosen task duration (Bergamini et al. 2014). This was not observed due, in part, to relatively 

‘conservative’ tuning parameters that relied more on accelerometer-derived inclination measurements. 

Based on the chosen parameters for the sensor fusion algorithms, the accuracy of the IMU-derived 

inclination measurements will be more likely to be negatively affected by increased motion speeds.  

A cyclic task was chosen to provide the maximum influence of motion to inclination error. 

However, the nature of the cyclic task precludes rest/recovery metrics that are also used to quantify motion-

related exposures. Furthermore, this study focused on accuracy of inclinometers and completely 

disregarded the issue of magnetic disturbance. The use of relatively standard sensor fusion algorithms in 

this experiment facilitates comparisons across other studies. However, differences in sensor specifications 

and tuning parameters may provide different error magnitudes. Finally, this study considers strictly sensor 

error. A recent study, for example, demonstrated that accelerometer-based inclinometers may 

underestimate inclination measurements under static conditions, particularly at angles >60° (Jackson et al. 

2015).  Differences in error measurement due to measurement methodology, such as differences in the local 

coordinate frame defined using anatomical landmarks in comparison to the sensor local coordinate frame 

and errors due to soft tissue artifacts, were not considered.  
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4.5 Conclusion 

The overall goal of this study was to evaluate the capability of IMU-based inclinometers to 

provide accurate measurements of upper arm elevation displacement and velocity. In general, the 

accelerometer-derived displacements were accurate (<2.5° RMS error, <7° peak error) for slow movement 

speeds. However, both accelerometer-derived displacements and velocities were negatively affected by 

increased motion speeds. Under the fast motion speeds, the RMS and peak displacement errors increased to 

11.3° and 28.9°, respectively. More importantly, the RMS and peak errors associated with accelerometer-

derived velocities were substantial (81.7°/s and 221.3°/s, respectively). A Kalman filter reduced peak 

displacement and velocity errors to <3.5° and <25.1°/s, respectively across all testing conditions. The 

results indicate that IMU-based inclinometers, in particular when using a Kalman filter, can substantially 

improve inclinometer accuracy compared to traditional accelerometer-based inclinometers for the 

assessment of upper arm elevation during increased motion speeds. 
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CHAPTER 5 

THE RELATIONSHIP BETWEEN MAGNETIC FIELD STRENGTH AND 

LOCALIZED MAGNETIC FIELD DEVIATIONS: TOWARD THE 

INDIRECT ASSESSMENT OF MAGNETIC DISTURBANCE   

 

5.1 Introduction 

Inertial measurement units (IMUs) can measure human kinematics without the environmental 

constraints imposed by laboratory-based motion capture systems (Sabatini 2006). Because IMUs are small, 

wireless, and often provide on-board memory for data logging, they are attractive to ergonomists for use in 

field-based studies to quantify aspects of motion pertinent to workplace injuries. Continuous measurements 

of joint angles, for example, can be estimated using raw sensor data from IMUs attached to adjacent body 

segments (Cloete and Scheffer 2008; Martori et al. 2013) and then summarized using metrics to describe 

risk for work-related musculoskeletal health outcomes (Kazmierczak et al. 2005). Understanding the 

conditions that adversely impact the accuracy of IMU-based motion capture is critical to those interested in 

using such systems outside the laboratory.  

Optical motion capture (OMC) systems are typically used as the reference device when assessing 

the accuracy of IMU-based motion measurements (Cuesta-Vargas, Galán-Mercant, and Williams 2010). 

Promising results (<6° average error) were reported in several studies (Bergamini et al. 2014; Faber et al. 

2013; Kim and Nussbaum 2013; Plamondon et al. 2007; Robert-Lachaine et al. 2016). However, IMU 

accuracy has been observed to be negatively affected by magnetic field disturbances (de Vries et al. 2009; 

Bachmann, Yun, and Peterson 2004) and highly dynamic motion (Lebel et al. 2013; Ricci, Taffoni, and 

Formica 2016). Because disturbances of the local magnetic field can cause directional changes up to 180° 

(Bachmann, Yun, and Peterson 2004), IMU accuracy is typically evaluated using procedures to minimize 

this problem (Kim and Nussbaum 2013; Lebel et al. 2015; Lebel et al. 2013; Robert-Lachaine et al. 2016; 

Schiefer et al. 2014).  
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Fundamentally, IMU spatial orientation is derived with respect to magnetic north and gravity 

using magnetometer and accelerometer measurements (Yun, Bachmann, and McGhee 2008). These 

measurements generally assume a homogeneous local magnetic field and that the accelerometer is 

responding only to gravity (Bachmann, Yun, and Peterson 2004; Gabriele Ligorio and Sabatini 2016). 

Sensor fusion algorithms (e.g. Kalman filters) that combine magnetometer, accelerometer, and gyroscope 

measurements (Daniel Roetenberg et al. 2005; Sabatini 2011b; Sabatini 2006; Valenti, Dryanovski, and 

Xiao 2016; Valenti, Dryanovski, and Xiao 2015) are commonly used to attenuate the effects of local 

magnetic field disturbances and non-gravitational acceleration. However, IMU spatial orientation accuracy 

is ultimately bounded by the stability of the local magnetic field and accelerometer-derived gravity 

measurements.  

Changes in magnetic field strength have been used to indicate periods of magnetic disturbance in 

recorded IMU data streams (Gabriele Ligorio et al. 2016; G. Ligorio and Sabatini 2015; Daniel Roetenberg 

et al. 2005). Sensor fusion algorithms may also disregard magnetometer measurements when the magnetic 

field strength is outside a pre-determined threshold (Gabriele Ligorio and Sabatini 2016; Daniel Roetenberg 

et al. 2005; Sabatini 2006; Sun et al. 2013; Y. Tian, Wei, and Tan 2013). Recently, magnetic strength 

measurements were used in a machine learning algorithm to automate identification of valid IMU data 

segments (Lebel et al. 2016). The relationship between magnetic field strength variation and directional 

changes in the magnetic field, however, has not been previously quantified. 

Several studies have reported associations between motion speed and IMU accuracy using 

mechanical devices such as gimbals or robotic arms (Lebel et al. 2013; Ricci, Taffoni, and Formica 2016). 

In general, IMU accuracy appears to decrease as motion speed increases. However, while mechanical 

devices provide highly repeatable motion patterns, such patterns are not representative of human motion. 

Furthermore, no study has systematically evaluated the combined effects of magnetic disturbance and 

motion speed on IMU accuracy. The objectives of this study were, therefore, to (i) characterize the 

relationship between magnetic field strength variation and magnetic heading deviation and (ii) evaluate the 

effects of local magnetic disturbance and motion speed on the spatial orientation accuracy of IMUs in the 

context of repetitive distal upper extremity (upper arm, forearm, and hand) motion. We hypothesized that 
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variation in magnetic field strength could be used to indirectly assess the homogeneity of the magnetic field 

and consequently, the accuracy of IMU-derived orientation measurements captured in unconstrained 

environments. We also hypothesized that IMU error would increase as motion speed increased. 

 

5.2 Methods 

 

5.2.1 Experimental Setup 

Thirteen participants (11 male and 2 female, mean age = 27.2 ± 6.6 years, all right hand dominant) 

were recruited from the University of Iowa community. All participants reported (i) no history of 

physician-diagnosed musculoskeletal disorders in the upper extremity during the previous six months, (ii) 

no history of orthopedic surgery of the upper extremity, and (iii) no pain in the upper extremity for two 

weeks prior to enrollment. The University of Iowa Institutional Review Board approved all study 

procedures and each participant provided written informed consent. 

Participants completed a repetitive task that involved transferring wooden dowels (2 cm diameter 

x 8 cm length) from a material feed container (waist-high and directly in front of the participant) to an 

unloading container (shoulder-high and offset with respect to the mid-sagittal plane). Each transfer cycle 

consisted of (i) grasping a wooden dowel, (ii) transferring the dowel to the unloading container, and (iii) 

returning the hand to the material feed container to grasp the next dowel. Three levels of movement speed 

were assigned: ‘slow’ (15 transfers/min), ‘medium’ (30 transfers/min), and ‘fast’ (45 transfers/min). Pacing 

was controlled using a metronome. A metal plate (30.5 cm x 10 cm x 0.6 cm) placed within the unloading 

container was used to create a local magnetic field disturbance. Each participant performed one trial in each 

combination of movement speed (slow, medium, and fast) and magnetic disturbance (absent or present). 

Participants were given time to acclimate to the motion speeds before data collection. Each trial was 

performed for one minute followed by a rest period of five minutes, and the trial order was randomized. 
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5.2.2 Instrumentation 

An IMU (SXT, Nexgen Ergonomics, Inc., Pointe Claire, Quebec, CA) was secured to the 

dominant upper arm, forearm, and hand using elastic straps (Figure 5.1). Gyroscope, accelerometer, 

magnetometer, and spatial orientation measurements (quaternions, from an embedded Kalman filter) were 

sampled at 128 Hz. A six-camera OMC system (Optitrack Flex 13, NaturalPoint, Inc., Corvallis, OR, USA) 

was used as the reference device; a cluster of four reflective markers was mounted to the surface of each 

IMU. The spatial positions and orientations of each marker cluster were recorded at 120 Hz. Calibration of 

the IMU and OMC systems was performed using manufacturer-specified procedures. A minimum distance 

of 120 cm was maintained between the cameras and experimental area to minimize ambient magnetic 

disturbances (de Vries et al. 2009; Bachmann, Yun, and Peterson 2004). 

 

Figure 5.1. IMUs and associated clusters of reflective markers 
attached to a participant. Spatial orientation of each body segment 
was simultaneously measured using an IMU and an OMC that 
tracked the reflective markers attached to the top surface of each 
IMU. 
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5.2.3 Data Post-Processing 

 Post-processing was accomplished using Matlab (R2015a, The Mathworks, Inc., Natick, MA, 

USA). The raw IMU data were down-sampled from 128 Hz to 120 Hz to match the sampling rate of the 

OMC system. For each trial, the measurement systems were time-synced and aligned by orientation.  

 

5.2.4 Orientation Estimation 

 The IMU and OMC orientation measurements were parameterized using quaternions. For each 

system, the quaternion rotation vector ݍԦ஻
஺ defined in (5.1) consisted of scalar (ݍ଴) and vector (ݍଵ, ݍଶ, ݍଷ) 

components describing the angle and direction of rotation between frame A and frame B. Specifically, ݍԦ஻
஺ 

defines the rotation from Frame B to Frame A, where ݑ௫, ݑ௬, ݑ௭ defined the x, y, and z-components of the 

unit vector describing the direction of rotation between the two coordinate frames, and ߙ defined the angle 

of rotation about the unit vector.  

Ԧ஻ݍ
஺ = ሾcos(ߙ 2⁄ ) ௫ݑ sin(ߙ 2⁄ ) ௬ݑ sin(ߙ 2⁄ ) ௭ݑ sin(ߙ 2⁄ )ሿ் 

(5.1) 

A vector in Frame B (ݒԦ஻) can be expressed in Frame A (ݒԦ஺) as follows 

ሾ0 Ԧ஺ሿ்ݒ = qሬԦ୆
୅ ⊗ ሾ0 Ԧ஻ሿ୘ݒ ⊗ qሬԦ୆

୅ିଵ
 

(5.2) 

where ⊗ represents quaternion multiplication and (ݍ)ିଵ represents the quaternion inverse. The relationship 

between Frames A, B, and C is such that  

qሬԦେ
୅ = qሬԦ୆

୅ ⊗ qሬԦେ
୆ 

(5.3) 

 and roll ,(ߠ) Ԧ can be converted using (5.4) to the common Euler rotation sequence of heading (߰), pitchݍ

(߶). Similarly, spatial orientation given with an Euler rotation sequence can be converted to a quaternion 

vector using (5.5). More information on quaternion mathematics pertaining to spatial orientation can be 

found elsewhere (Yun, Bachmann, and McGhee 2008; Valenti, Dryanovski, and Xiao 2016).  

൥
߰
ߠ
߶

൩ = ቎
atan2(2(ݍ଴ݍଷ + ,(ଶݍଵݍ 1 − ଶݍ)2

ଶ + ଷݍ
ଶ))

asin (2(ݍ଴ݍଶ − ((ଵݍଷݍ
atan2(2(ݍ଴ݍଵ + ,(ଷݍଶݍ 1 − ଵݍ)2

ଶ + ଶݍ
ଶ))

቏ 
(5.4) 
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Ԧݍ = ൦

cos(߰ 2⁄ )
0
0

sin(߰ 2⁄ )

൪ ⊗ ൦

cos(ߠ 2⁄ )
0

sin(ߠ 2⁄ )
0

൪ ⊗ ൦

cos(߶ 2⁄ )
sin(߶ 2⁄ )

0
0

൪ 
(5.5) 

 

5.2.5 Measurement System Alignment 

 Many methods have been used to align OMC and IMU measurement systems (Chardonnens, 

Favre, and Aminian 2012; de Vries et al. 2009; Dornaika and Horaud 1998; Faber et al. 2013; Mecheri et 

al. 2016; Sessa et al. 2012). In theory, if the offset between the IMU global frame (IGF) and OMC global 

frame (OGF) is known (ݍூீி
ைீி), and if the offset between the IMU local frame (ILF) and OMC local frame 

(OLF) is known (ݍை௅ி
ூ௅ி ), the OMC-derived orientation measurements (ݍை௅ி

ைீி(ݐ)) will be equal to the IMU-

derived orientation measurements (ݍூ௅ி
ூீி(ݐ)). 

ை௅ிݍ
ைீி(ݐ) = ூீிݍ

ைீி ⊗ ூ௅ிݍ
ூீி(ݐ) ⊗ ை௅ிݍ

ூ௅ி  
(5.6) 

In this study, the Nelder-Mead simplex method was used to determine offsets that would minimize total 

RMS error (Lagarias et al. 1998). Offsets were converted from Euler angles to quaternions using (5.5) to 

formulate (5.6) into an unconstrained multivariable function.  

 

5.2.6 Magnetometer and Accelerometer Measurements 

 The magnetic heading direction was measured using methods adopted from de Vries et al. (2009). 

Specifically, magnetometer measurements in the ILF (݉ூ௫, ݉ூ௬, ݉ூ௭) were first rotated to the OLF 

(݉ை௫ , ݉ை௬ , ݉ை௭) using (5.7) and then to the OGF using (5.8). Magnetic heading (Mhead) was then 

calculated using (5.9), where ܯை௫ and ܯை௬  are x and y-components of the magnetic field strength in the 

OGF. Local magnetic field variation within each trial was characterized using the standard deviation and 

the peak-to-peak amplitude (90th –10th percentiles) of the Mhead values.  

൦

0
݉ை௫
݉ை௬
݉ை௭

൪ = ை௅ிݍ
ூ௅ி ିଵ

⊗ ൦

0
݉ூ௫
݉ூ௬
݉ூ௭

൪ ⊗ ை௅ிݍ
ூ௅ி  

(5.7) 
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௛௘௔ௗܯ = atan ቆ
ை௫ܯ

ை௬ܯ
ቇ 

(5.9) 

 The total magnetic field strength (݉௡), angular velocity (߱௡), and acceleration (ܽ௡) at each sample 

were calculated using the magnetometer, gyroscope, and accelerometer vector magnitudes (5.10) to (5.12). 

Variations in magnetic field strength and acceleration within each trial were characterized using the 

standard deviation and the peak-to-peak amplitude (90th –10th percentiles) of the ݉௡ and ܽ௡ values. 

݉௡ = ට݉௫
ଶ + ݉௬

ଶ + ݉௭
ଶ 

(5.10) 

߱௡ = ට߱௫
ଶ + ߱௬

ଶ + ߱௭
ଶ 

(5.11) 

ܽ௡ = ටܽ௫
ଶ + ܽ௬

ଶ + ܽ௭
ଶ 

(5.12) 

 

5.2.7 IMU Accuracy 

 Sample-to-sample differences (Δ(ݐ)ݍ) between the OMC and IMU orientations were defined as 

the relative orientation between the OGF and the IGF (Faber et al. 2013; Gabriele Ligorio et al. 2016).   

Δ(ݐ)ݍ = ூீிݍ
ைீி(ݐ) = ை௅ிݍ

ைீி(ݐ) ⊗ ூ௅ிݍ)
ூீி(ݐ))ିଵ 

(5.13) 

Total sample-to-sample error across all motion planes was calculated using the scalar component of the 

sample-to-difference (Δݍ଴(ݐ)), which provides a non-redundant rotation between two coordinate frames 

independent of motion plane (de Vries et al. 2009; Lebel et al. 2013; Ricci, Taffoni, and Formica 2016).  

ݎ்ݎ݁ ௢௧(ݐ) = 2 acos(Δݍ଴(ݐ)) 
(5.14) 
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Δ(ݐ)ݍ was decoupled into directional components to further describe its error characteristics. Error 

components in heading, pitch, and roll directions were calculated using (5.4). The attitude error component 

was calculated using (5.15) and (5.16), where Δݍ଴௔௧௧(ݐ) is the scalar component of Δݍ௔௧௧. Attitude error is a 

combination of the pitch and roll error components, given each represents inclination with respect to 

gravity (Gabriele Ligorio et al. 2016; Bergamini et al. 2014; Gabriele Ligorio and Sabatini 2016).  

Δݍ௔௧௧(ݐ) =  ൦

cos(Δ(ݐ)ߠ 2⁄ )
0

sin(Δ(ݐ)ߠ 2⁄ )
0

൪ ⊗ ൦

cos(Δ (ݐ)߶ 2⁄ )
sin(Δ߶(ݐ) 2⁄ )

0
0

൪ 
(5.15) 

(ݐ)஺௧௧ݎݎ݁ = 2 acos(Δݍ଴௔௧௧(ݐ)) 
(5.16) 

 

RMS error was calculated to provide the “average” error for each trial using (17).  

௘௥௥ܵܯܴ = ඩ
1
݊

෍ ଶ(ݐ)ݎݎ݁

௡

௧ୀ଴

 
(5.17) 

 

5.2.8 Statistical Analysis 

Two-factor repeated measures analyses of variance (ANOVA) were used to estimate the fixed 

effects of motion speed (slow/medium/fast), magnetic disturbance (absent/present), and their interaction on 

(i) mean ߱௡, mean ܽ௡, mean ݉௡, and measures of variation in Mhead, ݉௡, and ܽ௡ values and (ii) total and 

directional spatial IMU spatial orientation errors. Separate models were constructed for each IMU sensor 

location (i.e., upper arm, forearm, and hand) and summary measure, and the Greenhouse-Geisser correction 

was used to adjust for violations of sphericity. Post-hoc comparisons of summary measures between pairs 

of motion speed levels were made using the Tukey procedure. All statistical procedures were performed 

using SPSS Statistics 23 (IBM, SPSS, Chicago, Illinois, USA). 
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5.3 Results 

 The repetitive task required roughly 35° of yaw, 50° of pitch, and 30° of roll ranges of motion 

(i.e., 90th–10th percentiles), on average, for the three sensor locations (Table 5.1). As expected, mean ߱௡, 

mean ܽ௡, and measures of ܽ௡ variation increased with motion speed (main effect of motion speed p<0.01 

for all summary measures, and p<0.01 between all pairs of motion speed levels), with the greatest velocities 

in the hand sensor (Table 5.2). Neither the main effect of magnetic disturbance nor the interaction between 

motion speed and magnetic disturbance were statistically significant for these measures. 

Table 5.1. Mean (SD) range of motion (90th–10th percentiles) across all 
participants and experimental trials. 
IMU Location Yaw (°) Pitch (°) Roll (°) 
Upper Arm 36.2(20.6) 53.8(5.4) 35.3(21.2) 
Forearm 35.9(8.1) 45.1(4.8) 29.8(6.4) 
Hand 33.1(7.4) 55.1(6.3) 28.1(9.2) 

 

Table 5.2. Main effect of motion speed on angular velocity, acceleration and measures of acceleration 
variation; all values reported as mean (SD). A statistically significant difference (p<0.01) between levels of 
motion speed was observed for all measures. 
 Slow Medium Fast 
Upper Arm    
Mean angular velocity vector magnitude [ωn] (°/s) 36.5(2.8) 72.5(6.4) 108.8(14.3) 
Acceleration vector magnitude [αn] (m/s2)    
    Mean  9.9(0.3) 10.1(0.3) 10.4(0.2) 
    Peak-to-peak 1.0(0.2) 2.4(0.6) 3.9(0.7) 
    Standard deviation 0.4(0.1) 1.0(0.2) 1.5(0.2) 
Forearm    
Mean angular velocity vector magnitude [ωn] (°/s) 40.7(4.9) 79.6(7.7) 117.0(10.9) 
Acceleration vector magnitude [αn] (m/s2)    
    Mean  9.9(0.1) 10.0(0.1) 10.6(0.2) 
    Peak-to-peak 1.7(0.3) 4.7(0.6) 8.0(0.8) 
    Standard deviation 0.7(0.1) 1.8(0.2) 3.1(0.3) 
Hand    
Mean angular velocity vector magnitude [ωn] (°/s) 48.6(4.6) 99.9(10.7) 154.3(18.9) 
Acceleration vector magnitude [αn] (m/s2)    
    Mean  9.9(0.03) 10.1(0.06) 10.9(0.2) 
    Peak-to-peak 2.2(0.4) 6.5(0.8) 12.1(1.2) 
    Standard deviation 0.9(0.2) 2.5(0.3) 4.7(0.5) 

 

The main effect of magnetic disturbance on magnetic heading variation (i.e., standard deviation 

and peak-to-peak) was statistically significant for both the hand and forearm sensors (p < 0.01), but not for 

the upper arm sensor (Table 5.3). As expected, greater errors were observed when the metal plate was 

present. The nature of this effect was further observed through substantial changes in magnetic heading as 
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the hand approached the unloading container (Figure 5.2). Moreover, for the hand sensor, a clear 

relationship was observed between the total magnetic field strength and magnetic heading during trials with 

the metal plate (Figure 5.3). Similar effects were not observed for the IMUs on the forearm and upper arm. 

Neither the main effect of motion speed nor the interaction between motion speed and magnetic disturbance 

on measures of magnetic heading variation was statistically significant. 

Table 5.3. Main effect of magnetic disturbance on measures of magnetic heading and magnetic field strength 
variation; all values reported as mean (SD). 
 Metal Absent Metal Present p 
Upper Arm    
Magnetic heading [Mhead] (°)    
    Peak-to-peak 4.6(1.3) 4.1(1.1)  
    Standard deviation 1.8(0.5) 1.6(0.4)  
Magnetic field strength vector magnitude [mn] (ߤT)    
    Mean 52.1(0.6) 52.0(0.6)  
    Peak-to-peak 2.5(0.5) 2.4(0.4)  
    Standard deviation 0.4(0.1) 0.5(0.2)  
Forearm    
Magnetic heading [Mhead] (°)    
    Peak-to-Peak 5.8(1.6) 11.6(2.1) < 0.01 
    Standard Deviation 2.4(0.8) 4.5(0.8) < 0.01 
Magnetic field strength vector magnitude [mn] (ߤT)    
    Mean 53.0(0.4) 53.0(0.7)  
    Peak-to-Peak 2.0(0.3) 2.6(1.1)  
    Standard deviation 0.8(0.1) 1.0(0.4)  
Hand    
Magnetic heading [Mhead] (°)    
    Peak-to-peak 5.6(1.3) 29.8(7.0) < 0.01 
    Standard deviation 2.2(0.5) 11.6(2.8) < 0.01 
Magnetic field strength vector magnitude [mn] (ߤT)    
    Mean 53.3(0.5) 53.4(1.8)  
    Peak-to-peak 2.5(0.2) 6.1(1.4) < 0.01 
    Standard deviation 1.0(0.1) 2.4(0.5) < 0.01 
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Figure 5.2.  Effect of the metal plate on the direction of the 
local magnetic field for the hand sensor; data from one 
participant (medium motion speed). 

 

 

The main effect of motion speed on IMU attitude and pitch RMS error was statistically significant 

for the IMU on the hand (Table 5.4), with error increasing as motion speed increased. However, the small 

differences in RMS errors between motion speed conditions suggest that the IMU gyroscope was able to 

attenuate motion-related artifacts for the range of motion speeds assigned. In general, neither the main 

effect of magnetic disturbance nor the interaction between magnetic disturbance and motion speed on IMU 

attitude, pitch, or roll RMS error was statistically significant. The effect of magnetic disturbance on IMU 

pitch error approached statistical significance, but the magnitude of the effect was small (< 0.1°). 
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Table 5.4. Mean (SD) root-mean-square IMU error components (in degrees) by local magnetic field disturbance (metal 
absent vs metal present) and motion speed (slow, medium, and fast).  

 Metal Absent  Metal Present  Tests of Fixed Effects1 
(p) 

 Slow Medium Fast  Slow Medium Fast  Speed Mag. Int. 
Upper Arm            

Pitch 0.7(0.4) 0.7(0.4) 0.7(0.4)  0.6(0.3) 0.7(0.4) 0.7(0.4)  0.16 0.15 0.24 
Roll 0.6(0.5) 0.6(0.3) 0.6(0.3)  0.5(0.2) 0.6(0.2) 0.6(0.2)  0.72 0.28 0.82 
Attitude2 0.9(0.6) 0.9(0.5) 1.0(0.4)  0.8(0.4) 0.9(0.4) 0.9(0.4)  0.28 0.17 0.50 
Heading 1.5(2.1) 1.5(1.4) 1.4(0.8)  1.2(0.9) 1.2(1.0) 1.2(0.9)  0.97 0.25 0.91 
Total3 1.8(2.2) 1.8(1.5) 1.7(0.8)  1.5(0.9) 1.6(0.9) 1.6(0.9)  0.97 0.25 0.94 

            
Forearm            

Pitch 0.5(0.2) 0.6(0.3) 0.7(0.9)  0.5(0.2) 0.5(0.2) 0.6(0.4)  0.11 0.05 0.84 
Roll 0.9(0.6) 1.0(0.6) 0.9(0.4)  1.0(0.6) 0.8(0.4) 0.9(0.4)  0.62 0.44 0.40 
Attitude 1.1(0.6) 1.2(0.7) 1.2(0.7)  1.1(0.6) 1.0(0.4) 1.1(0.5)  0.67 0.17 0.56 
Heading 1.0(0.8) 1.1(0.8) 1.4(2.1)  1.2(0.6) 1.3(0.6) 1.3(0.7)  0.56 0.58 0.61 
Total 1.5(1.0) 1.6(0.9) 1.9(2.1)  1.7(0.7) 1.7(0.7) 1.8(0.7)  0.57 0.82 0.60 

            
Hand            

Pitch 0.4(0.3) 0.5(0.2) 0.6(0.2)  0.3(0.1) 0.4(0.2) 0.7(0.2)  <0.01 0.93 0.29 
Roll 0.6(0.4) 0.5(0.1) 0.5(0.1)  0.4(0.1) 0.5(0.1) 0.5(0.1)  0.51 0.52 0.14 
Attitude 0.7(0.4) 0.7(0.2) 0.8(0.2)  0.6(0.1) 0.6(0.2) 0.9(0.3)  0.02 0.63 0.16 
Heading 1.2(1.3) 0.8(0.3) 2.1(1.4)  1.8(1.0) 1.8(1.0) 2.1(1.4)  0.27 0.03 0.71 
Total 1.4(1.3) 1.1(0.3) 1.6(0.8)  1.9(1.3) 1.9(1.0) 2.4(1.3)  0.19 0.03 0.66 

1 p-values from ANOVA tests of fixed effects (i.e., main effects of motion speed and magnetic disturbance, and their 
interaction) 
2Attitude is the combination of pitch and roll 
3Total is the combination of pitch, roll and heading 

 

We expected to observe time-dependent sample-to-sample differences between the OMC and IMU 

measurements in the heading direction when the metal plate was present, but not when the metal plate was 

absent. While this behavior was observed for some trials (Figure 5.4), time-dependence was observed 

across all trials upon examination of ensemble averages of the heading error (i.e., across all participants 

both with and without the metal plate, Figure 5.5). Not considering the time-dependence, the main effect of 

magnetic disturbance on IMU heading error was statistically significant only for the IMU on the hand 

(Table 5.4), with larger errors observed during trials with the metal plate. 

 
Figure 5.3. Relationship between magnetic field strength and 
magnetic heading angle for a single trial.  
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Figure 5.4. Sample-to-sample differences between the OMC and 
IMU heading measurements for the hand sensor across two trials 
(data from one participant at medium speed).  

 

 
Figure 5.5. Ensemble averages of the sample-to-sample differences 
between the OMC and IMU heading measurements with and 
without the metal plate. Standard deviations at each sample time 
are denoted with dotted lines.  

 

 

5.4 Discussion  

We examined errors in IMU spatial orientation measurements at upper extremity motion speeds 

common to industrial environments and both with and without the presence of a local magnetic field 

disturbance. In general, the magnitude of IMU error associated with magnetic disturbance was greater than 

that associated with motion speed. Statistically significant interactions between motion speed and magnetic 

disturbances were not observed.  
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5.4.1 Relationship between Magnetic Field Strength and Magnetic Heading Direction 

The ambient magnetic field within the experimental area was relatively homogenous. The 

magnetic heading standard deviation under ambient conditions was <3° across all IMUs, consistent with de 

Vries et al., (2009). For the hand sensor and during trials without the metal plate, the average peak-to-peak 

variation in magnetic heading was <6° while the average magnetic field strength standard deviation was 

1.0uT. Conversely, during trials with the metal plate, the average peak-to-peak variation in magnetic 

heading increased to approximately 30° while the average magnetic field strength standard deviation 

increased to 2.4uT. While this relationship may differ across other sources of magnetic disturbance, the 

results reinforce the notion that local magnetic field disturbances should be minimized when using IMUs 

for human motion capture. From a practical perspective, these results suggest it may be possible to use 

computationally simple methods to indirectly infer magnetometer data quality.  

 

5.4.2 Magnitude of IMU Error 

 For the IMU on the hand, motion speed affected IMU attitude and pitch RMS error, whereas 

magnetic disturbance affected IMU heading error. Consistent with our results, previous studies have 

reported RMS errors between 1° and 6° in heading, less than 3.5° in attitude, and total RMS error less than 

2.1° (Bergamini et al. 2014; Faber et al. 2013; Lebel et al. 2013; Gabriele Ligorio et al. 2016; Ricci, 

Taffoni, and Formica 2016). Differences in sampling timeframe (Lebel et al. 2015), methods used to align 

the IMU and OMC systems (Robert-Lachaine et al. 2016), and error calculation (Faber et al. 2013) may 

explain the range of values. (Lebel et al. 2013)) also evaluated the effect of motion speed on IMU error 

(using the same sensor model and embedded Kalman filter in the current study). In their study, IMUs were 

exposed to ‘slow’ (90°/s) and ‘fast’ (180°/s) angular velocities using a mechanical gimbal. Average total 

RMS errors of 1.2° and 2.1° were observed (i.e., within 1° of the total RMS of the current study). Similarly, 

(Ricci, Taffoni, and Formica 2016)) observed small increases (<2°) of IMU error with increases in motion 

frequency and amplitude. Regardless, the IMU attitude and pitch RMS errors appeared stable and 

consistent, indicating that pitch and roll measurements can be used in lieu of error-prone, accelerometer-
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only methods common to field-based measurement of human motion in ergonomics (David 2005; Li and 

Buckle 1999). 

Time-dependent error characteristics were observed in the heading direction both with and without 

the presence of the metal plate. This behavior has been observed in studies describing methods of 

minimizing the effect of magnetic disturbance in the sensor fusion process (Gabriele Ligorio and Sabatini 

2016; Madgwick, Harrison, and Vaidyanathan 2011; Daniel Roetenberg et al. 2005; Sabatini 2006). 

Consistent with (Lebel et al. 2015), the time-dependent error characteristics were apparent under our one-

minute sampling timeframe.  

 

5.4.3 Methodological Considerations 

 Although similar trends have been observed in published Kalman filter designs (Bergamini et al. 

2014; Gabriele Ligorio and Sabatini 2016), the IMU error magnitudes and characteristics observed in this 

study are applicable to the specific hardware and Kalman filter specifications (which are proprietary). Other 

inertial-based motion capture systems may use proprietary filters based on other strategies to minimize the 

effects of magnetic disturbances, such as zero-velocity updates (Schiefer et al. 2014) or dynamics-based 

kinematic modeling (El-Gohary and McNames 2012). Also, the relationship between magnetic field 

strength standard deviation and magnetic heading deviation may be different with other sources of 

magnetic disturbance. More powerful disturbances may increase errors due to larger directional changes 

within the local magnetic field and increased time any single IMU remains within the disrupted area.  

In preliminary tests, the fast transfer speed (45 transfers/min) was difficult for participants to 

maintain for longer than one minute due to fatigue. While task durations of one minute or less have been 

reported in studies describing IMU accuracy (Bergamini et al. 2014; M.a. Brodie, Walmsley, and Page 

2008; El-Gohary and McNames 2012; Faber et al. 2013; Gabriele Ligorio and Sabatini 2016; Ricci, 

Taffoni, and Formica 2016), longer sampling durations are generally needed in field studies and, therefore, 

more likely to result in greater measurement error. Furthermore, the relatively short sampling duration and 

per-trial alignment of the IMU and OMC likely resulted in underestimation of the true IMU error. Finally, 

this study examined the errors in estimation of the spatial orientation of IMUs and not errors in the 
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estimation of kinematic constructs (such as joint angles). Differences in biomechanical models (Robert-

Lachaine et al. 2016) and the potential compounding of errors between two IMUs (Lebel et al. 2013) may 

partially explain the larger joint angle errors observed in recent studies evaluating the IMU accuracy for 

field-based applications (Cuesta-Vargas, Galán-Mercant, and Williams 2010; Kim and Nussbaum 2013; 

Schall et al. 2015). Continued development of smaller, cheaper, and more accurate IMU hardware designs 

as well as strategies to identify and compensate for local magnetic field disturbances will allow for 

improved kinematic estimations as time progresses. 

In conclusion, we evaluated (i) the relationship between magnetic field strength and magnetic 

heading angle and (ii) the effects of motion speed and magnetic disturbance on the spatial orientation 

accuracy of IMUs worn on the distal upper extremity. In general, we observed small magnetic heading 

angle variation (< ~2.5° standard deviation) when the standard deviation of the magnetic field strength 

vector magnitude was <1.0 ߤT. While heading error was time-dependent both with and without the 

presence of magnetic disturbance, attitude and pitch errors were stable with respect to time. Motion speed 

affected IMU error to a lesser extent than magnetic disturbance, and no statistically significant interactions 

were observed. These results suggest that (i) motion speed has a negligible effect on IMU spatial 

orientation accuracy, and (ii) magnetic disturbances leading to a magnetic field strength standard deviation 

exceeding 1.0 ߤT may hinder the use of IMUs to capture three-dimensional kinematics. Assessing 

repeatability of IMUs across trials and for longer timeframes, effects of larger magnetic disturbances on 

IMU error, accuracy of relative orientation measurements between two IMUs, as well as IMU alignment 

methods are to be investigated in the future. 
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CHAPTER 6 

CONCLUSIONS, STUDY LIMITATIONS, AND FUTURE WORK 

 The use of IMUs in field-based ergonomics research is expected to increase as hardware 

development accelerates and more commercial options become available.  Quantifying exposure to non-

neutral postures is one of many applications for IMUs for ergonomists. Quantifying joint loadings and task-

level information (e.g. task identification, task frequency, task duration) may be other applications of IMUs 

within occupational ergonomics.  

Overall, the findings from this thesis contribute to the ergonomics community’s understanding of 

the current capabilities and limitations of IMUs. These studies suggest that while the touted capability of 

the IMUs (i.e, full-body motion capture in workplace settings) is not likely achievable at this time, IMUs 

are still substantially more accurate than the accelerometer-based inclinometers commonly used by 

ergonomists to measure motions of the upper arms. 

 The primary strength of this research is the systematic isolation and control of error sources that 

may affect measurement differences between the optical motion capture systems (OMC) and IMUs. Errors 

due to soft tissue artifacts were controlled by attaching a rigid marker cluster to the IMU surface. Any 

deviations due to soft tissue artifacts, therefore, affect both measurement systems equally. The two 

measurement systems were aligned using established procedures to control for misalignment between the 

measurement systems. All trials were also kept to a consistent measurement timeframe to control for 

potential time dependent IMU errors. Finally, the fastest of the motion speeds tested was selected based on 

extensive pilot testing to represent the upper limits of sustainable human speeds expected within the 

workplace setting.  

 This study is not without limitations that should be accounted in the future. The failure to use a 

biomechanical-based marker set instead of a rigid marker cluster may limit the generalizability of the 

results, given that differences in protocol applied to the measurement systems is a source of error regardless 

of IMU accuracy. While the one-minute trials enabled higher motion speeds, the trial length have prevented 

the accumulation of the time-dependent errors observed, particularly in the heading direction. In this study, 

an available, non-proprietary Kalman filter design was implemented to enhance the ability of others to 
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reproduce our findings. We suspect that newer IMU hardware with more accurate gyroscopes may result in 

lower error magnitudes. Furthermore, the implemented Kalman filter was not optimally designed nor tuned 

to attenuate for magnetic disturbances. Finally, there are also inherent errors within the OMC reference 

device. The accuracy of our system, for example, is <1mm for linear positions. However, the accuracy of 

OMC-derived spatial orientation is also dependent on the spacing between the markers attached to the rigid 

body. While the OMC displays a known and consistent error characteristic, the limits of agreement are also 

bounded by the OMC system. 

 Both the application and development of IMUs should be investigated into the distant future. 

While magnetic disturbance is a major source of IMU error, stable and accurate inclination measurements 

may be relevant towards (i) assessing within-subject posture variability to better understand occupational 

exposure, and (ii) applying machine learning concepts to recognize other dimensions of exposure such as 

task frequency and task duration. The continual development of IMUs may focus on combining gyroscopes 

and accelerometers with body-worn vision sensors, indoor positioning sensors, and gyroscope arrays to 

improve measurement accuracy. Methodological considerations to improve comparability with OMC 

systems using a biomechanical marker set. 
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APPENDIX B 
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APPENDIX C  

MATLAB CODE 

function [ out ] = LKF(processData,measureData, freq, processNoise, measureNoise,ca,cb) 
%LKF Linear kalman filter 
%   Implementation of the code in the following paper:  
%   Ligorio, G., & Sabatini, A. M. (2015). A novel Kalman filter for human motion  
%   tracking with an inertial-based dynamic inclinometer.  
%   IEEE Transactions on Biomedical Engineering, 62(8), 2033-2043. 
% 
%   measureData: n x 3 array contatining vector measurements (accelerometer or 
magnetometer) 
%   processData: n x 3 array containing angular rate measurements (gyroscope) 
%   measureNoise: measurement noise 
%   processNoise: process noise 
%   dT: Sampling period (seconds) 
%   ca, cb: Gauss Markov Parameters 
%   output: n x 6 vector  
%           col 1 to 3: gravity (local frame)  
%           col 4 to 6: acceleration (local frame)  
% 
%   Author: Howard Chen 
 
% Sampling period 
dT = 1/freq;  
 
% Process Covariance Matrix 
Q = eye(6); 
Q(1:3,1:3) = processNoise^2.*eye(3);  
 
% Measurement Covariance Matrix 
R = measureNoise^2.*eye(3);  
 
A = zeros(6,6); 
P = zeros(6,6); 
W = zeros(6,6);  
H = [eye(3),eye(3)];  
x = zeros(6,1);  
x(1:3) = measureData(1,:)';  
out = zeros(length(measureData),6); 
 
    for i=1:length(measureData);  
        A(1:3,1:3) = expm(- skew(processData(i,:)).*dT);   
        A(4:6,4:6) = ca.*eye(3);  
        x = A*x;  
 
        W(1:3,1:3) = skew(x(1:3).*dT);  
        W(4:6,4:6) = cb.*eye(3);  
        P = A*P*A'+W*Q*W';  
 
        K = P*H'*(H*P*H'+R)^-1;  
        x = x+K*(measureData(i,:)'-H*x);  
        P = (eye(6)-K*H)*P;  
        out(i,:) = x';  
    end 
end 
 
function [ wx ] = skew( a ) 
    % Skew symmetric matrix 
    wx = [0 -a(3) a(2); a(3) 0 -a(1); -a(2) a(1) 0]; 
end 
  



106  
 

function [ quat ] = incComp(gyro, accel, freq, alpha) 
%INCCOMP calculates inclination from accel and gyro measurements  
%   calculations is done in yaw-pitch-roll and converted to quaternions 
%   input: accel- accelerometer measurements 
%          gyro- gyroscope mearements 
%          freq- sampling frequency 
%          alpha- filter coefficient (1 = all accel) 
%                 alpha(1): pitch  
%                 alpha(2): roll 
%   output: q- quaternion measurements (can be converted back to Euler)  
%  
%   Author: Howard Chen 
 
ln = length(accel);  
quat = zeros(ln,4);  
 
dT = 1/freq;  
 
%calculate pitch and roll from accelerometer 
aPitch = atan(-accel(:,1)./sqrt(accel(:,2).^2+accel(:,3).^2)); 
aRoll = atan(accel(:,2)./accel(:,3)); 
 
cPitch = aPitch(1); 
cRoll = aRoll(1);  
for i=1:ln 
    cPitch = (1-alpha(1))*(cPitch+(gyro(i,2)*cos(cRoll)-
gyro(i,3)*sin(cRoll))*dT)+alpha(1)*aPitch(i);   
    cRoll = (1-
alpha(2))*(cRoll+(gyro(i,1)+gyro(i,2)*sin(cRoll)*tan(cPitch)+gyro(i,3)*cos(cRoll)*tan(cPi
tch))*dT)+alpha(2)*aRoll(i); 
 
    %Convert to quaternion     
    quat(i,1)=cos(cPitch./2).*cos(cRoll./2); 
    quat(i,2)=cos(cPitch./2).*sin(cRoll./2); 
    quat(i,3)=sin(cPitch./2).*cos(cRoll./2); 
    quat(i,4)=-sin(cPitch./2).*sin(cRoll./2); 
end 
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function [ out ] = modLKF(gyro, accel, freq, gyroNoise, gyroBias, accelNoise,ca,cb) 
%LKF Linear kalman filter 
%   Adopted from the code in the following paper:  
%   Ligorio, G., & Sabatini, A. M. (2015). A novel Kalman filter for  
%   human motion tracking with an inertial-based dynamic inclinometer. 
%   IEEE Transactions on Biomedical Engineering, 62(8), 2033-2043. 
%    
%   -The following adaptions were made:  
%   -added a gyroscope bias random walk model 
%   -used first order approximation for matrix exponential 
%   -Used EKF filter structure 
%   Author: Howard Chen 
 
% Sampling period 
dT = 1/freq;  
 
ln = length(accel);  
% Process Covariance Matrix 
Q = eye(9); 
Q(1:3,1:3) = gyroNoise^2.*eye(3);  
Q(7:9,7:9) = gyroBias^2.*eye(3); 
 
% Measurement Covariance Matrix 
R = accelNoise^2.*eye(3);  
 
A = zeros(9,9); 
P = zeros(9,9); 
W = zeros(9,9);  
H = [eye(3),eye(3),zeros(3,3)];  
x = zeros(9,1);  
x(1:3) = accel(1,:)';  
out = zeros(ln,9); 
 
for i=1:ln;  
    A(1:3,:) = [eye(3)-skew((gyro(i,:)-x(7:9)').*dT), zeros(3,3),-skew(x(1:3).*dT)];  
    A(4:6,:) = [zeros(3,3), ca.*eye(3), zeros(3,3)]; 
    A(7:9,:) = [zeros(3,3), zeros(3,3), eye(3)];  
 
    x = [A(1:6,1:6)*x(1:6);x(7:9)];  
    W(1:3,:) = [skew(x(1:3).*dT), zeros(3,3), zeros(3,3)]; 
    W(4:6,:) = [zeros(3,3), cb.*eye(3),zeros(3,3)];  
    W(7:9,:) = [zeros(3,3),zeros(3,3),dT.*eye(3)];  
 
    P = A*P*A' + W*Q*W'; 
    K = P*H'*(H*P*H'+R)^-1; 
    x = x+K*(accel(i,:)'-H*x); 
    P = (eye(9)-K*H)*P; 
    out(i,:) = x';  
end 
end 
 
function [ wx ] = skew( a ) 
    % Skew symmetric matrix 
    wx = [0 -a(3) a(2); a(3) 0 -a(1); -a(2) a(1) 0]; 
end 
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function [ q ] = accelMag( accel,mag) 
%ACCELMAG calculates orientation using accelerometer & magnetometers 
%   calculations is done in yaw-pitch-roll and converted to quaternions 
%   accel: nx3 vector with accelerometer measurements (gravity vector) 
%   mag: nx3 vector with magnetometer measurements (magetic north vector)  
%   q: nx4 quaternion rotation vector (q1 is real) 
% 
%   Author: Howard Chen 
 
% calculate pitch and roll from accel 
 
%pitch 
pitch = atan2(-accel(:,1),sqrt(accel(:,2).^2+accel(:,3).^2)); 
 
%roll 
roll = atan2(accel(:,2),accel(:,3)); 
 
% calculate yaw from mag and accel 
yaw=atan2(mag(:,3).*sin(roll)-
mag(:,2).*cos(roll),mag(:,1).*cos(pitch)+mag(:,2).*sin(pitch).*sin(roll)+mag(:,3).*sin(pi
tch).*cos(roll)); 
 
% convert ypr to quaternion 
q(:,1) = 
cos(yaw./2).*cos(pitch./2).*cos(roll./2)+sin(yaw./2).*sin(pitch./2).*sin(roll./2); 
q(:,2) = cos(yaw./2).*cos(pitch./2).*sin(roll./2)-
sin(yaw./2).*sin(pitch./2).*cos(roll./2); 
q(:,3) = 
cos(yaw./2).*sin(pitch./2).*cos(roll./2)+sin(yaw./2).*cos(pitch./2).*sin(roll./2); 
q(:,4) = sin(yaw./2).*cos(pitch./2).*cos(roll./2)-
cos(yaw./2).*sin(pitch./2).*sin(roll./2); 
end 
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function [q2] = gyroAlign( omcQuat,imuGyro,freq ) 
%GYROALIGN aligns the OMC Local Frame to the IMU Local Frame 
%  
% LF alignment is conducted following:  
% De Vries, W. H. K., Veeger, H. E. J., Baten, C. T. M., &  
% Van Der Helm, F. C. T. (2009). Magnetic distortion in motion  
% labs, implications for validating inertial magnetic sensors.  
% Gait & posture, 29(4), 535-541. 
% 
% Angular rate measurements from OMC is calculated following: 
% Brodie, M. A., Walmsley, A., & Page, W. (2008).  
% Dynamic accuracy of inertial measurement units during simple 
% pendulum motion: Technical Note. Computer methods in biomechanics  
% and biomedical engineering, 11(3), 235-242. 
% 
% Input: omcQuat- quaternion from OMC 
%        imuGyro- angular rate measurements (rad/s) from IMU gyroscope 
%        freq- common sampling frequency 
 
% Author: Howard Chen 
% Date: 3/6/2017 
 
 
% Low-pass filter to remove noise 
filtCutoff=5; 
[lowpass_b,lowpass_a]=butter(2,filtCutoff/(freq/2),'low');  
 
imuGyro=filtfilt(lowpass_b,lowpass_a,imuGyro(2:end,:));  
omcQuat=filtfilt(lowpass_b,lowpass_a,omcQuat);  
 
% Get angular rate measurements from OMC quaternion  
sz=size(omcQuat);  
omcOmega=zeros(sz(1)-1,3); 
 
for i=1:1:length(omcQuat)-1 
    %calculate dQ 
    dQ=quatMultiply(quatConj(omcQuat(i,:)),omcQuat(i+1,:)); 
    dQ=quatNormalize(dQ); 
     
    %calculate theta and angle 
    dTheta=2*acos(dQ(1)); 
    Ux=dQ(2)/sin(dTheta/2); 
    Uy=dQ(3)/sin(dTheta/2); 
    Uz=dQ(4)/sin(dTheta/2); 
     
    %calculate Omega 
    omegaNorm=freq*dTheta; 
    omcOmega(i,1)=omegaNorm*Ux; 
    omcOmega(i,2)=omegaNorm*Uy; 
    omcOmega(i,3)=omegaNorm*Uz; 
end 
 
% calculate LF rotation matrix 
R=imuGyro'*pinv(omcOmega'); 
 
%orthogonize matrix 
[U,W,V]=svd(R'); 
R = U*V';  
 
%Convert to Quaternion 
q2 = zeros(1,4);  
q2(1)=0.5.*sqrt(1+R(1,1)+R(2,2)+R(3,3)); 
q2(2)=(R(3,2) - R(2,3))./(4.*q2(1)); 
q2(3)=(R(1,3) - R(3,1))./(4.*q2(1)); 
q2(4)=(R(2,1) - R(1,2))./(4.*q2(1)); 
 
end 
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