

## 5. Hidden occupational fatalities in the agricultural industry

**Peter Y. Chen and Lorann Stallones**

---

Agricultural work is accompanied with diverse hazards in the process of plowing, planting, growing, fertilizing, harvesting, packing, loading, repairing pens and gates, raising livestock, milking, breeding, birthing, tending sick or injured animals, mixing feed, feeding, moving animals, cleaning stalls and corrals, and so on (Cigularov et al., 2009). Many farm workers apply pesticides and fertilizers to crops, and operate and repair farm equipment. Most of the above activities are physically challenging. During planting and harvesting of crops, workers are in the fields for many hours and often work every day of the week. Those involved in livestock operations, particularly in dairy operations must also work long hours every day of the week tending to the cows.

Based on the United States Department of Agriculture (USDA, 2010), there were 2.2 million farms that had generated approximately \$331 billion in 2009. Of these farms, more than 90 percent were owned by individuals or families. Most farms involve relatively few acres, with 54.4 percent operating 1–99 acres and 31 percent operating 100–499 acres. The critical contribution of the agricultural industry to the society, however, is accompanied by an unacceptable loss of workers' lives. Over the past two decades, this industry has been ranked as the most dangerous occupation (National Institute for Occupational Safety and Health [NIOSH], 2010) based on rates of fatal and non-fatal injuries. The fatality rate for farm workers is approximately six times higher than the average rate for all industries (22.5/100 000 vs. 3.8/100 000) (National Safety Council [NSC], 2001). According to the NSC, an average of 740 farm workers lose their lives each year and another 130 000 workers become temporarily or permanently disabled as a result of hazards on farms. These hazards include, but are not limited to, toxic chemical exposures, entrapment in confined spaces, electrocution, tractor overturns, technological changes in operating equipment, repetitive exposure to musculoskeletal strains and sprains, animal handling, etc.

## SUICIDE IN THE AGRICULTURAL INDUSTRY

In this chapter, we attempt to continue raising awareness about a hidden occupational fatality, self-inflicted injury. Self-inflicted fatality, or suicide, is arguably viewed as a hidden occupational fatality because suicide is not defined as occupationally related unless the worker chose to end his or her life at their place of employment (Bureau of Labor Statistics [BLS], 2004a). In reality, approximately 75 percent of suicides occur in a house or apartment, followed by natural areas, streets or highways, or in motor vehicles (Colorado Department of Public Health and Environment, 2007). Thus, it is not surprising that few suicides at work are seen in the BLS Census of Fatal Occupational Injuries database. For instance, there were 242 occupational fatalities in the State of Colorado from 2004 to 2006. Among them, there are only 11 suicide cases that occurred at the workplace. It has long been suspected that suicidal tendencies may, to some degree, be affected by occupation (Blachly et al., 1963; Kposowa, 1999; Liu and Waterbor, 1994; van Wijngaarden, 2003).

High rates of suicide in the agricultural industry in different countries have been reported over many years, with farm workers often among the highest reported. Based on all suicide records in New Zealand between 2001 and 2005, Gallagher, Kliem, Beautrais and Stallones (2008) revealed that workers in farming, fisheries, or forestry had high suicide rates compared to workers in other occupations. Page and Fragar (2002) also reported higher suicide rates among male farm workers in Australia than rates in the male national population, and rates in the rural population. Recently we compared suicide rates among farm workers in Colorado, with Colorado population for two time periods: 1990–1999 (derived from Colorado death certificate files) and 2004–2006 (derived from Colorado Violent Death Reporting System). Part of our initial findings (Stallones et al., 2010) showed that the average annual suicide rate per 100 000 was 263.9 for male farm workers vs. 31.5 for the general male population, 56.1 for female farm workers vs. 8.1 for the general female population between 1990 and 1999; 226 among male farm workers vs. 67.3 among the general male population, and 37.4 among female farm workers vs. 18.5 among the general female population from 2004 to 2006.

The high rate of suicide among farm workers sends an alarming signal for four main reasons. First, suicide rates among farm workers seem disproportionately high, compared to other occupations, considering farm workers represent less than 0.7 percent of employees in 2009 (BLS, 2004b). Second, it has been estimated that there are 25 suicide attempts for every suicide completion (American Association for Suicidology, 2006). In other words, high suicide rates for farm workers only reflect the tip of iceberg,

which suggests that mental health problems may be much more severe in the agricultural industry than has previously been acknowledged. Third, people who attempt suicide and survive often have disabling injuries such as brain damage, para- or quadriplegia, organ failure, depression, and other mental health problems. Finally, suicide affects the health and safety of families, job sites and the farming community. In the situation of farm workers the impact most likely falls on the surviving family members and in the case of a farm owner, the family may not be able to keep the farm operating with the loss of a key contributor to the farm work. In addition, farming communities can be small close-knit groups and a suicide death in the community may have a profound impact on the well-being of the overall community. Neighbors, friends and family as well as other farm workers may feel shock, anger, guilt and depression. The medical costs and lost wages associated with suicide as well as those who are affected would take a great toll on the industry (Centers for Disease Control and Prevention, 2008).

## RISK FACTORS OF SUICIDE

Despite extensive research, there is no universally accepted theory to explain the occurrence of suicide. A number of risk factors have been reported as associated with increased risk of suicide in the general population and in the farm population, including age (increased rates with increased age), race (white and Asian populations), sex (males with higher rates except among Asian populations), family history of attempts, alcohol/substance abuse, maltreatment as a child, interpersonal loss or rejection, cultural and religious beliefs, mental disorders, physical illness, economic problems, lack of mental health services, and access to lethal means such as firearms or pesticides (Boxer et al., 1992; Charlton, 1995; Cubbin et al., 2002; Gregoire, 2002; Gunderson et al., 1990; Hawton et al., 1998; Kelly and Bunting, 1998; Thomas et al., 2003).

Although risk factors or plausible factors associated with suicide in general are documented in the suicide prevention literature, it is still not yet clear why farm workers report higher rates of depression and have such high suicide rates compared to other occupations (Grosch and Murphy, 1998). Based on the nature of the farm work, two unique yet critical factors, exposure to farm stressors (Fraser et al., 2005; Schenker, 1996) and organophosphate pesticides (Jaga and Dharmani, 2007; Stallones and Beseler, 2002), may account for higher depression (a potential trigger for suicide) in the agricultural industry. In the next two sections, we will first review a unique set of stressors farm workers face, and their potential

linkage with depression and suicide, followed by the focus on exposure to organophosphate pesticide at workplaces, and how the exposure may link to the high rate of suicide in the agricultural industry.

## EXPOSURE TO FARM STRESSORS

Stressful experience resulting from job stressors (i.e. stressful events or incidents) is often unavoidable, and has become part of work life. Potential adverse impacts of job stressors include the decrease of cognitive function (Proctor et al., 1996) and the increase of mental and physical fatigue and depression (Suwazono, et al., 2007), which may likely lead to mental illness and suicide (e.g. Amagasa et al., 2005).

Compared to job stressors reported in general industries (e.g. time pressure, job insecurity, conflict between different work roles, situational constraints [Spector et al., 2000]), those experienced among farm workers are rather unique, and tend not to be captured by conventional job stress models (Cornish and Gerrard, 1995; Sonnentag and Frese, 2003). Specifically, underlying causes of job stressors (e.g. time pressure or job insecurity) in the agricultural industry tend to be affected by circumstances which are not necessarily directly related to the job per se, yet these conditions could have a profound impact on one's work and experience.

More often job stressors faced by farm workers are unpredictable and uncontrollable. For instance, workers need to harvest crops quickly due to sudden changes in climatic conditions, which cannot be easily controlled, prevented, or eliminated through job designs, engineering control, pre-task planning or active coping. Stressors such as financial crisis or farm foreclosures caused by socio-economic factors (e.g. low market price) tend to lead workers or owners to blame themselves and lose hope (Gerrard, 1995). In addition, the destocking or culling of livestock due to epidemics (e.g. Ovine Johne's disease in Australia or foot-and-mouth disease in Great Britain) not only causes financial loss, but also severely affects the psychological well-being of farmers and their families, who often experience a sense of failure, as well as feelings of guilt, shame, helplessness or anger (Hall et al., 2004).

Considering more than 90 percent of farms are relatively small, and owned by individuals or families, farm work has been traditionally interwoven with family life. Empirical findings have revealed that family problems are one of the most frequent stressors experienced by farmers (Booth and Lloyd, 2000). Yet, work-family initiatives proposed by work and family researchers (e.g. Kelly et al., 2008) such as work-life policies and benefits (e.g. family leaves, flexible work arrangements and depend-

ent care supports) and work redesign ('no work on weekends') may not be compatible with farmers' work and lifestyle. Furthermore, conventional social support systems such as emotional or problem-solving support provided by supervisors and co-workers (Chen et al., 1999) may not be applicable due to the unique organizational structures and mobile workforce in small and medium sized farms. In sum, the agricultural industry faces a unique set of stressors that are not typically encountered by other industries, yet prevention approaches and mental health services have not been adequately investigated, developed, and provided for this population (Gunderson, 1995; Hall et al., 2004).

## EXPOSURES TO ORGANOPHOSPHATE PESTICIDES

Suicide using pesticides as the agent of harm has been a primary focus of many studies of suicide in various countries (e.g. Eddleston and Philips, 2004; London et al., 2005). Yet, the focus of our review is to what extent pesticide exposure at work may be responsible for suicidal behavior. It has been reported in several epidemiological studies over the past two decades that higher rates of suicide have appeared among farmers and others exposed to organophosphate pesticides at work (e.g. Gunderson et al., 1990; Hawton et al., 1998; Kposowa, 1999; Stallones, 1990, 2006). The possible link between organophosphate exposure and suicide is also recognized by physicians (Royal College of Physicians and Royal College of Psychiatrists, 1998).

Organophosphate pesticides were first introduced in the 1940s. Deaths from exposure to these compounds were reported as early as 1949 (West, 1968). In moderate exposure cases, the symptoms were followed by headache and insomnia with excessive dreaming and nightmares, and the symptoms in extreme exposures were followed by ataxia, tremor, drowsiness, difficulty concentrating, mental confusion, disorientation, and changes in speech characterized by slurring, difficulty in forming words and in self-expression and repetition (Durham et al., 1965; Grob et al., 1950). Apathy, anxiety, uneasiness, withdrawal and depression were also reported to occur (Dille and Smith, 1964; Gershon and Shaw, 1961).

Ahmed and Davies (1997) have proposed a long-term neuropsychiatric syndrome resulting from organophosphate exposure. The syndrome is called chronic organophosphate-induced neuropsychiatric disorder (COPIND) which is characterized by the following symptoms: one or more episodes of severe flu-like symptoms lasting more than three days following exposure (and sometimes hypersalivation, abdominal cramps and diarrhea); mood destabilization; suicidal thinking; cognitive

impairment; language disorder including word finding and expressive disorders; alcohol intolerance including marked increase in the inebriating effects of alcohol, severe hang-over and quasi-allergic effects; heightened sense of smell; handwriting deterioration; sensitivity to exposure to low concentrations of organophosphates; and decreased exercise tolerance reflected in initial normal muscle power but inability to maintain it and no evidence of generalized weakness.

While comparing exposed farmers to unexposed farmers, Levin et al. (1976) reported that the former tended to report high anxiety. Reidy et al. (1992) also found that twice poisoned migrant farm workers scored higher on anxiety and depression symptom checklists one to two years after the poisoning episode. Similar patterns were found from studies comparing exposed individuals or workers vs. controls (London et al., 1997; Rosenstock et al., 1991; Wesseling et al., 2010) in various countries (e.g. in South African fruit farms or among Costa Rican banana workers).

Unfortunately, the adverse effects of organophosphate pesticides do not just affect farm workers. For instance, Kamel and Hoppin (2004) reported neurological symptoms associated with pesticide exposure among pesticide applicators from Iowa and North Carolina recruited between 1993 and 1997. High frequency and low frequency use of organophosphate pesticides was compared and high frequency use was significantly associated with a wide range of symptoms including: fatigue, tension, insomnia, depression, difficulty concentrating, loss of appetite, and difficulty speaking among white male applicators. In the same cohort (Beseler et al., 2006), female spouses of pesticide applicators were diagnosed with depression more often in the presence of a history of a pesticide poisoning than spouses whose partner had not been poisoned (odds ratio 3.26, 95% CI 1.72, 6.19), after controlling for state of residence, age, race, off-farm work, alcohol consumption, cigarette smoking, physician visits and solvent exposure. Among the pesticide applicators, the odds ratio of diagnosed depression comparing those with a history of poisoning to those with no history, after controlling for the variables listed above, was 2.57 with 95% CI range from 1.74 to 3.79 (Beseler et al., 2008).

## ADDRESSING THE HIDDEN OCCUPATIONAL FATALITIES

The goal of this chapter is to raise awareness about the hidden occupational fatality, suicide, in the agricultural industry, and to review two contributing factors of depression and suicide among farm workers. In the remaining section, we attempt to propose a few suggestions for future

research and practice to address this occupational safety and health challenge.

Foremost, the definition of occupational self-inflicted fatality currently employed by government agencies (e.g. NIOSH, OSHA and the Bureau of Labor Statistics) and society is too limited to guide the development of a valid occupational surveillance tool as well as prevention strategies. This work-oriented definition (i.e. workers die by suicide at work) ignores the fact that boundaries between work and life are intertwined, particularly in the agricultural industry.

Our findings and other research (Gallagher et al., 2008; Stallones et al., 2010) have shown farmers have higher suicide rates than other occupational groups. Similarly, farming populations have long been reported to have higher rates of depression than other occupational groups (Gregoire, 2002; Linn and Husaini, 1987; Scarth et al., 2000; Stallones et al., 1995; Thomas et al., 2003). However, it has been consistently shown that farmers are reluctant to seek medical care for mental health and stress-related problems (e.g. Judd et al., 2006). More often they rely on their families and friends, prayer and non-professional help as preferred alternate ways to deal with mental health problems (Kirkwood and Peck, 1997). In addition, the culture in the farming communities emphasizes staying positive and strong in the face of challenges, and it is not acceptable for farm workers and their families to be negative or to complain. The need to combat the above barriers cannot be unstated. Research and practice need to utilize innovative approaches to build the capacity of culturally competent suicide intervention and prevention services in rural farming communities, to improve the ability and skills of farm workers and/or their families to respond to suicide risk in neighbors and family members, and strengthen mental health infrastructures. Prevention initiatives to address the above issues have been studied by our research team for different populations (see Chen et al., 2009; Stallones and Moore, 2010)

Third, people who are depressed tend to seek medical attention for physical issues more often than those who are not depressed (Cockerham et al. 1988; Rowen et al., 2002). Depression can manifest in a number of somatic symptoms which may lead people to seek medical care for those symptoms rather than for their mental health problems (Meyer et al., 2000; Stoudemire et al., 1985). Increasing the awareness of medical care providers of the likelihood that mental health problems may be manifested through somatic symptoms may ultimately increase treatment options for depressed agricultural workers and reduce the risk of severe adverse outcomes such as suicide.

It has been postulated that the likelihood that someone will engage in suicidal behavior in the presence of stressors may be lowered or raised

(Kamali et al., 2001), depending on other risk factors (e.g. genetic predisposition, personality traits, biochemical factors in a person's metabolism, the emotional state of hopelessness, or the presence or absence of ongoing support systems). The role of the such risk factors have not been incorporated in studies of mental health among agricultural workers in a systematic way, and would be of help in assessing potential prevention strategies. The integration of studies on depression, stressors and environmental exposures may provide a better understanding of the complex nature of gene and environmental interactions in agricultural workers.

## ACKNOWLEDGEMENTS

Preparation for this chapter is supported by Occupational Health Psychology Training, US NIOSH (1T42 OH009229-01) awarded to Peter Chen and Lorann Stallones. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of NIOSH.

This chapter is dedicated to the memory of J. Byler Nuckols, Mike Nowacki and Dane Menger.

## REFERENCES

Ahmed, G.M. and Davies, D.R. (1997), 'Chronic organophosphate exposure: toward the definition of a neuropsychiatric syndrome', *Journal of Nutritional and Environmental Medicine*, **7**, 169–176.

Amagasa, T., Nakayama, T. and Takahashi, Y. (2005), 'Karojisatsu in Japan: characteristics of 22 cases of work-related suicide', *Journal of Occupational Health*, **47**, 157–164.

American Association of Suicidology (2006), *Suicide in the U.S.A. based on Current (2003) Statistics*, Washington, DC: American Association of Suicidology.

Beseler, C., Stallones, L., Hoppin, J., Alavanja, M., Blair, A., Keefe, T. and Kamel, F. (2006), 'Depression and pesticide exposures in female spouses of licensed pesticide applicators in the Agricultural Health Study cohort', *Journal of Occupation and Environmental Medicine*, **48**, 1005–1013.

Beseler, C., Stallones, L., Hoppin, J., Alavanja, M., Blair, A., Keefe, T. and Kamel, F. (2008), 'Depression and pesticide exposures among private pesticide applicators enrolled in the Agricultural Health Study', *Environmental Health Perspectives*, **116**, 1713–1719.

Blachly, P.H., Osterud, H.T. and Josslin, R. (1963), 'Suicide in professional groups', *New England Journal of Medicine*, **268**, 1278–1282.

Booth, N.J. and Lloyd, K. (2000), 'Stress in farmers', *International Journal Social Psychiatry*, **46**, 67–73.

Boxer, P.A., Burnett, C. and Swanson, N. (1992), 'Suicide and occupation: a

review of the literature', *Journal of Occupational and Environmental Medicine*, **37**, 442–452.

Bureau of Labor Statistics (BLS) (2004a), *Census of Fatal Occupational Injuries*. Available at: <http://www.bls.gov/iif/oshcfo1.htm>.

Bureau of Labor Statistics (BLS) (2004b), *Current Population Survey*. Available at: <http://www.bls.gov/cps/lfcharacteristics.htm#annualstory>.

Centers for Disease Control and Prevention (2008), 'Understanding suicide factsheet'. Available at: [http://www.cdc.gov/ncipc/pub-res/suicide\\_factsheet\\_2008.pdf](http://www.cdc.gov/ncipc/pub-res/suicide_factsheet_2008.pdf).

Charlton, J. (1995), 'Trends and patterns in suicide in England and Wales', *International Journal of Epidemiology*, **24** (supplement 1), S45–S52.

Chen, P.Y., Moore, J.T. and Gibbs, J. (2009), *Project Safety Net: CSU Final Report October 1, 2006–September 30, 2009*. Available at: [http://www.cdphe.state.co.us/pp/Suicide/2009.12.07.CSU\\_PSN\\_Final\\_Report\\_09\\_29.pdf](http://www.cdphe.state.co.us/pp/Suicide/2009.12.07.CSU_PSN_Final_Report_09_29.pdf).

Chen, P.Y., Popovich, P.M. and Kogan, M. (1999), 'Let's talk: patterns and correlates of social support among temporary employees', *Journal of Occupational Health Psychology*, **4**, 55–62.

Cigularov, K.P., Chen, P.Y. and Stallones, L. (2009), 'Effects of farm safety climate and farm safety locus of control on error communication: perspectives from young farm workers', *Work & Stress*, **23**, 297–312.

Cockerham, W.C., Kuntz, G. and Lueschen, G. (1988), 'Psychological distress, perceived health status, and physician utilization in America and West Germany', *Social Science and Medicine*, **26**, 829–838.

Colorado Department of Public Health and Environment (2007), *Colorado Violent Death Reporting System (COVDRS): Highlights from 2004–2006*. Available at: <http://www.cdphe.state.co.us/pp/injepi/cvdrs/CVDRSOverviewhandout.pdf>.

Cornish, P.A. and Gerrard, N. (1995), 'Stress and the farm crisis: towards the development of a synergistic theory of empowerment', in H.H. McDuffie, J.A. Dosman, K.M. Semchuk, S.A. Olenchock and A. Senthilselvan (eds), *Agricultural Health and Safety: Workplace, Environment, Sustainability* (pp. 439–444), Salem, MA: CRC Press.

Cubbin, C. and Smith, G.S. (2002), 'Socioeconomic inequalities in injury: critical issues in design and analysis', *Annual Review of Public Health*, **23**, 349–375.

Dille, J.R. and Smith, P.W. (1964), 'Central nervous system effects of chronic exposure to organophosphate insecticides', *Aerospace Medicine*, **35**, 475–478.

Durham, W.F., Wolfe, J.R. and Quinby, G.E. (1965), 'Organophosphate insecticides and mental alertness', *Archives of Environmental Health*, **10**, 55–66.

Eddleston, M. and Phillips, M.R. (2004), 'Self poisoning with pesticides', *British Medical Journal*, **328**, 42–44.

Fraser, C.E., Smith, K.B., Judd, F., Humphreys, J.S., Fragar, L.J. and Henderson, A. (2005), 'Farming and mental health problems and mental illness', *International Journal of Social Psychiatry*, **51**, 340–349.

Gallagher, L., Kliem, C., Beauvais, A. and Stallones, L. (2008), 'Suicide and occupation in New Zealand, 2001–2005', *International Journal of Occupational and Environmental Health*, **14**, 45–50.

Gerrard, N. (1995), 'Farm stress: a community development approach to mental health service delivery', in H.H. McDuffie, J.A. Dosman, K.M. Semchuk, S.A. Olenchock and A. Senthilselvan (eds), *Agricultural Health and Safety: Workplace, Environment, Sustainability* (pp. 433–438), Salem, MA: CRC Press.

Gershon, S. and Shaw, F.B. (1961), 'Psychiatric sequelae of chronic exposure to organophosphate insecticides', *Lancet*, **1**, 1371–1374.

Gregoire, A. (2002), 'The mental health of farmers', *Occupational Medicine*, **52**, 471–476.

Grob, D., Garlick, W.L. and Harvey, A.M. (1950), 'The toxic effects in man of the anticholinesterase insecticide parathion (p-nitrophenyl diethyl thionophosphate)', *Bulletin of Johns Hopkins Hospital*, **87**, 106–129.

Grosch, J.W. and Murphy, L. (1998), 'Occupational differences in depression and global health: results from a national sample of US workers', *Journal of Occupational and Environmental Medicine*, **40**, 153–164.

Gunderson, P.D. (1995), 'An analysis of suicides on the farm or ranch within five north central United States, 1980 to 1988', in H.H. McDuffie, J.A. Dosman, K.M. Semchuk, S.A. Olenchock and A. Senthilselvan (eds), *Agricultural Health and Safety: Workplace, Environment, Sustainability* (pp. 465–467), Salem, MA: CRC Press.

Gunderson, P., Donner, D., Nashold, R., Salkowicz, L., Sperry, S. and Wittman, B. (1990), 'The epidemiology of suicide among farm residents or workers in five North Central states, 1980–1988', *American Journal of Preventive Medicine*, **9** (suppl 1), 26–32.

Hall, M.J., Ng, A., Ursano, R.J., Holloway, H. et al. (2004), 'Psychological impact of the animal–human bond in disaster preparedness and response', *Journal of Psychiatric Practice*, **10**, 368–374.

Hawton, K., Fagg, J., Simkin, S., Harriss, L. and Malmberg, A. (1998), 'Methods used for suicide by farmers: the contribution of availability and its relevance to prevention', *British Journal Psychiatry*, **173**, 320–324.

Jaga, K. and Dharmani, C. (2007), 'The interrelation between organophosphate toxicity and the epidemiology of suicide and depression', *Reviews on Environmental Health*, **22**, 57–73.

Judd, F., Jackson, H. et al. (2006), 'Understanding suicide in Australian farmers', *Social Psychiatry and Psychiatric Epidemiology*, **41**, 1–10.

Kamali, M., Oquendo, M. and Mann, J. (2001), 'Understanding the neurobiology of suicidal behavior', *Depression and Anxiety*, **14**, 164–176.

Kamel, F. and Hoppin, J. (2004), 'Association of pesticide exposure with neurologic dysfunction and disease', *Environmental Health Perspectives*, **112**, 950–958.

Kelly, E.L., Kossek, E.E., Hammer, L.B. et al. (2008), 'Getting there from here: research on the effects of work–family initiatives on work–family conflict and business outcomes', *The Academy of Management Annals*, **2**, 305–349.

Kelly, S. and Bunting, J. (1998), 'Trends in Suicide in England and Wales, 1982–96', *Population Trends*, **92**, 29–41.

Kirkwood, K. and Peck, D. (1997), 'How do you identify people with severe mental illness in rural communities?', *Mental Health Care*, **1**, 61–63.

Kposowa, A. (1999), 'Suicide mortality in the United States: differentials by industrial and occupational groups', *American Journal of Industrial Medicine*, **36**, 645–652.

Levin, H.S., Rodnitsky, R.L. and Mick, A.L. (1976), 'Anxiety associated with exposure to organophosphate compound', *Archives General Psychiatry*, **33**, 225–228.

Linn, J.G. and Husaini, B.A. (1987), 'Determinants of psychological depression and coping behaviors among Tennessee farm residents', *Journal of Community Psychology*, **15**, 503–512.

Liu, T. and Waterbor, J. (1994), 'Comparison of suicide and occupational exposure', *American Journal of Industrial Medicine*, **25**, 197–203.

London, L., Flisher, A.J., Wesseling, C., Mergler, D. and Kromhout, H. (2005), 'Suicide and exposure to organophosphate insecticide: cause or effect?', *American Journal of Industrial Medicine*, **47**, 308–321.

London, L., Myers, J.E., Nell, V.N., Taylor, T. and Thompson, M.L. (1997), 'An investigation into neurological and neurobehavioural effects of long-term agrichemical use among deciduous fruit farm workers in the western cape, South Africa', *Environ Research*, **73**, 132–145.

Meyer, T.H., Klemme, H. and Herrmann, C. (2000), 'Depression but not anxiety is a significant predictor of physicians' assessments about mental status in physically ill patients', *Psychotherapy and Psychosomatics*, **69**, 147–154.

National Institute for Occupational Safety and Health (NIOSH) (2010), 'NIOSH agriculture, forestry, and fishing program'. Available at: <http://www.cdc.gov/niosh/programs/agff/> (accessed 8 September 2010).

National Safety Council (2001), *Injury Facts, 2001 edition*, Itasca, IL: NSC.

Page, A.N. and Fragar, L.J. (2002), 'Suicide in Australian farming, 1988–1997', *Australian and New Zealand Journal of Psychiatry*, **36**, 81–85.

Proctor, S.P., White, R.F., Robins, T.G., Echeverria, D. and Rocskay, A.Z. (1996), 'Effect of overtime work on cognitive function in automotive workers', *Scandinavian Journal of Work and Environmental Health*, **22**, 124–132.

Reidy, T.J., Bowler, R.M., Rauch, S.S. and Pedrozzi, G.I. (1992), 'Pesticide exposure and neuropsychological impairment in migrant farm workers', *Archives of Clinical Neuropsychology*, **7**, 85–95.

Rosenstock, L., Keifer, M., Daniell, W.E., McConnell, R. and Claypole, K. (1991), 'Chronic central nervous system effects of acute organophosphate pesticide intoxication', *Lancet*, **338**, 223–227.

Rowen, P.K., Davidson, K., Campbell, J.A., Dobrez, D.G. and MacLean, D.R. (2002), 'Depressive symptoms predict medical care utilization in a population-based sample', *Psychological Medicine*, **32** (5), 903–908.

Royal College of Physicians and Royal College of Psychiatrists (1998), *Organophosphate Sheep Dip. Clinical Aspects of Long-Term Low-Dose Exposure. Report of a Joint Working Party of the Royal College of Physicians and Royal College of Psychiatrists*, Council Report CR67, London: Royal College of Physicians.

Scarth, R., Stallones, L., Zwerling, C. and Burmeister, L. (2000), 'The prevalence of depressive symptoms and risk factors among Iowa and Colorado farmers', *American Journal of Industrial Medicine*, **37**, 382–389.

Schenker, M.B. (1996), 'Preventive medicine and health promotion are overdue in the agricultural workplace', *Journal of Public Health Policy*, **17**, 275–305.

Sonnentag, S. and Frese, M. (2003), 'Stress in organizations', in W.C. Borman, D.R. Ilgen and R.J. Klimoski (eds), *Comprehensive Handbook of Psychology, Volume 12: Industrial and Organizational Psychology* (pp. 453–491), New York: Wiley.

Spector, P.E., Chen, P.Y. and O'Connell, B.J. (2000), 'A longitudinal study of relations between job stressors and job strains while controlling for prior negative affectivity and strains', *Journal of Applied Psychology*, **85**, 211–218.

Stallones, L. (1990), 'Suicide mortality among Kentucky farmers, 1979–1985', *Suicide and Life-Threatening Behavior*, **20**, 156–163.

Stallones, L. (2006), 'Suicide and occupational exposure to pesticides, Colorado, 1990–1999', *Journal of Agromedicine*, **11**(3/4), 107–112.

Stallones, L. and Beseler, C. (2002), 'Pesticide poisoning and depressive symptoms among farm residents', *Annals of Epidemiology*, **12**, 389–394.

Stallones, L. and Moore, J.T. (2010), 'Suicide prevention safety-net: use of social network analysis to describe community capacity for suicide prevention among agencies in one community', unpublished manuscript, Department of Psychology, Colorado State University.

Stallones, L., Leff, M., Garrett, C., Criswell, L. and Gillan, T. (1995), 'Depressive symptoms among Colorado farmers', *Journal of Agricultural Safety and Health*, **1**, 37–43.

Stallones, L., Nowacki, E., Chen, P.Y. and Doenges, T. (2010), 'Exploring race, sex, and age-adjusted rates of suicide across agricultural and construction workers', poster presented at the 138th Annual Meeting and Exposition of American Public Health Association, November, Denver, CO.

Stoudemire, A., Kahn, M., Brown, J.T., Linfors, E. and Houpt, J.L. (1985), 'Masked depression in a combined medical-psychiatric unit', *Psychosomatics*, **26**, 221–228.

Suwazono, Y., Nagashima, S., Okubo, Y. et al. (2007), 'Estimation of the number of working hours critical for the development of mental and physical fatigue symptoms in Japanese male workers – application of benchmark dose method', *American Journal of Industrial Medicine*, **50**, 173–182.

Thomas, H.V., Lewis, G., Thomas, D.R., Salmon, R.L., Chalmers, R.M., Coleman, T.J., Kench, S.M., Morgan-Capner, P., Meadows, D., Sillis, M. and Softley, P. (2003), 'Mental health of British farmers', *Occupational and Environmental Medicine*, **60**, 181–186.

United States Department of Agriculture (USDA) (2010), 'Fact sheet: United States'. Available at: <http://www.ers.usda.gov/statefacts/us.htm#FC> (accessed 8 September 2010).

van Wijngaarden (2003), 'An exploratory investigation of suicide and occupational exposure', *Journal of Occupational and Environmental Medicine*, **45**, 96–101.

Wesseling, C., van Wendel de Joode, B., Keifer, M., London, L., Mergler, D. and Stallones, L. (2010), 'Symptoms of psychological distress and suicidal ideation among banana workers with a history of poisoning by organophosphate or n-methyl carbamate pesticides', *International Journal of Occupational and Environmental Health*. Published online 25 August, doi: 10.1136/oem.2009.047266.

West, I. (1968), 'Sequelae of poisoning from phosphate ester pesticides', *Industrial Medicine & Surgery*, **37**(11), 832–836.

# Occupational Health and Safety for Small and Medium Sized Enterprises

---

*Edited by*

E. Kevin Kelloway

*Canada Research Chair in Occupational Health Psychology,  
Saint Mary's University, Canada*

Cary L. Cooper, CBE

*Distinguished Professor of Organizational Psychology and  
Health, Lancaster University, UK*

**Edward Elgar**

Cheltenham, UK • Northampton, MA, USA

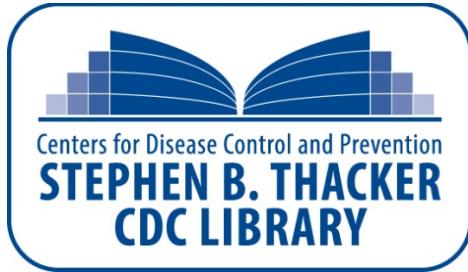
Copyrighted material

© E. Kevin Kelloway and Cary L. Cooper 2011

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical or photocopying, recording, or otherwise without the prior permission of the publisher.

Published by  
Edward Elgar Publishing Limited  
The Lypiatts  
15 Lansdown Road  
Cheltenham  
Glos GL50 2JA  
UK

Edward Elgar Publishing, Inc.  
William Pratt House  
9 Dewey Court  
Northampton  
Massachusetts 01060  
USA


A catalogue record for this book  
is available from the British Library

Library of Congress Control Number: 2011928594



ISBN 978 1 84844 669 4

Typeset by Servis Filmsetting Ltd, Stockport, Cheshire  
Printed and bound by MPG Books Group, UK



## Interlibrary Loans and Journal Article Requests

### Notice Warning Concerning Copyright Restrictions:

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted materials.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One specified condition is that the photocopy or reproduction is not to be *“used for any purpose other than private study, scholarship, or research.”* If a user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use,” that user may be liable for copyright infringement.

Upon receipt of this reproduction of the publication you have requested, you understand that the publication may be protected by copyright law. You also understand that you are expected to comply with copyright law and to limit your use to one for private study, scholarship, or research and not to systematically reproduce or in any way make available multiple copies of the publication.

**The Stephen B. Thacker CDC Library reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.**

### Terms and Conditions for items sent by e-mail:

The contents of the attached document may be protected by copyright law. The [CDC copyright policy](#) outlines the responsibilities and guidance related to the reproduction of copyrighted materials at CDC. If the document is protected by copyright law, the following restrictions apply:

- You may print only one paper copy, from which you may not make further copies, except as maybe allowed by law.
- You may not make further electronic copies or convert the file into any other format.
- You may not cut and paste or otherwise alter the text.