

Special issue: Review

Assessing the connection between organophosphate pesticide poisoning and mental health: A comparison of neuropsychological symptoms from clinical observations, animal models and epidemiological studies

Lorann Stallones* and Cheryl L. Beseler

Colorado State University, Department of Psychology, Fort Collins, United States

ARTICLE INFO

Article history:

Received 29 May 2015

Reviewed 26 August 2015

Revised 1 October 2015

Accepted 5 October 2015

Published online 28 October 2015

Keywords:

Mood disorders

Organophosphate poisoning

Review

Epidemiology

Toxicology

ABSTRACT

Psychiatry and psychology are beginning to recognize the importance of lead, mercury and heavy metals as causal partners in the development of mental disorders. Further, mental health researchers and clinicians are embracing the idea that the combined effects of genetics and environmental exposures can result in perturbations in brain neurochemistry leading to psychiatric disorders. The purpose of this review is to examine the biological foundations for the epidemiological observations previously identified by reviewing the toxicology literature and relating it to epidemiological studies addressing the role of poisoning with organophosphate pesticides (OPs) in neurobehavioral and neuropsychological disorders. The goal of this review is to raise awareness in the mental health community about the possibility that affective disorders might be the result of contributions from environmental and occupational pesticide poisoning.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Psychiatry and psychology are beginning to recognize the importance of lead, mercury and heavy metals as causal partners in the development of mental disorders (Genus, 2008a). Further, mental health researchers and clinicians are embracing the idea that the combined effects of genetics and environmental exposures can result in perturbations in brain

neurochemistry leading to psychiatric disorders (Genus, 2008b). Some clinicians are unaware that environmental toxins may play a role in initiating mental disorders because of the segregation of the neurotoxicological and psychiatric literature. Recent reviews have recounted the growing number of studies showing that exposure to high levels of organophosphate pesticides (OPs) have been associated with depression and high suicide rates in agricultural and other pesticide exposed workers (Freire & Koifman, 2013; Jaga &

* Corresponding author. Colorado State University, Department of Psychology, Fort Collins, United States.

<http://dx.doi.org/10.1016/j.cortex.2015.10.002>

0010-9452/© 2015 Elsevier Ltd. All rights reserved.

Dharmani 2007) and in suicidal ideation among highly exposed workers (Wesseling et al., 2010). These observations are telling because, aside from mood and affective disorders, farmers generally have lower frequencies of psychiatric disorders than other occupational groups (Thelin, Holmberg, Nettelbladt, & Thelin, 2009; Thomas et al., 2003). However, British farmers reported thinking that “life was not worth living” and this depressive symptom might be indicative of increased suicidal ideation and increase the risk of suicide (Thomas et al., 2003). This highlights the importance of addressing why the suicide rate in some farming communities is so high given the fact that farmers generally have better mental health than their urban counterparts and also than workers in other occupations (Boxer, Burnett, & Swanson, 1992; Charlton, 1995; Fragar & Henderson, 2005; Gregoire, 2002; Gunderson et al., 1990; Hawton, Fagg, Simkin, Harriss, & Malmberg, 1998; Kposowa, 1999; Stallones, 1990; Stallones, Doenges, Dik, Valley, 2013). A link between a history of organophosphate exposure and suicide has been suggested in several epidemiological studies (Meyer et al., 2010; Parron, Hernandez, & Villanueva, 1996; Stallones, 1990; Stallones, 2006; van Wijngaarden, 2003).

The purpose of this review is to examine the biological foundations for the epidemiological observations previously identified by reviewing the toxicology literature and relating it to epidemiological studies addressing the role of poisoning with OPs in neurobehavioral and neuropsychological disorders. There have been a number of excellent reviews of both toxicology (Colovic, Krstic, Lazarevic-Pasti, Bondzic, & Vasic, 2013; Karalliedde, Edwards, & Marrs, 2003; Kwong, 2002) and epidemiology (Freire & Koifman, 2013; Jaga & Dharmani 2007; Jokanovic & Kosanovic, 2010; London et al., 2012) on this topic, but the reviews from these disciplines have not been integrated using a neuroscience framework. The goal of this review is to raise awareness in the mental health community about the possibility that affective disorders might be the result of contributions from environmental and occupational pesticide poisoning.

2. Brief history of organophosphate compounds: relevance to mental health

OPs are some of the most common pesticides in use today and are similar to some of the chemical warfare agents developed during World War II. Although not as toxic as nerve gases, the approximately 200 OP chemicals act by inhibiting cholinesterases, including the nervous system enzyme acetylcholinesterase (AChE) (Kwong, 2002). OPs are quickly absorbed through the skin, mucous membranes, gastrointestinal tract and respiratory tract, but it is inhalation exposure, which causes the most rapid onset of symptoms (Vale, 1998). Short-term acute toxic effects are caused by an inhibition of AChE, an enzyme that inactivates the neurotransmitter, acetylcholine, causing acetylcholine to accumulate at the cholinergic synapses (Vale, 1998). The result is cholinergic syndrome defined as an overstimulation of muscarinic and nicotinic acetylcholine receptors in the central and peripheral nervous systems.

3. Biological basis for depression

Depression is an illness with a basis in environmental stress and alterations in neurotransmitter systems including the noradrenergic, cholinergic, serotonergic, and dopaminergic pathways (Janowsky & Risch, 1987; Stone, Lin, Rosengarten, Kramer, & Quartermain, 2003). One of the earliest observations was that monoamine depletion, which reduces the available serotonin or norepinephrine neurotransmitters, results in depressive symptoms (Bunney & Davis, 1965; Schildkraut, 1965). This observation was supported by the efficacy of the monoamine oxidase inhibitors and tricyclic antidepressants used to treat depression and by the determination that these drugs increase monoamine receptor sensitivity (Charney, Menkes, & Heninger, 1981). Recent research suggests that epinephrine acting at alpha-1 adrenoceptors may also play a role due to its stress-mediating effects (Stone et al., 2003), and is consistent with a previous finding that epinephrine effects are reduced in response to physostigmine in depressed patients (Janowsky, Risch, Ziegler, Huey, & Rausch, 1986). The most accepted hypothesis is that no single neurotransmitter is responsible for depression, but that many alterations in interacting pathways cause the dysregulation that leads to depression (Siever & Davis, 1985). The understanding of the biological mechanisms and neurotransmitter systems underlying depression can be credited to the study of drug effects in animal models and psychiatric patients (Janowsky, el-Yousef, Davis, & Sekerke, 1972).

Several models suggest that alterations in the cholinergic system play a pivotal role in the development of depression (Janowsky & Risch, 1987). The first is the monoamine–acetylcholine interaction model based on evidence showing that psychostimulants, which increase catecholaminergic activity, show reciprocal effects with cholinomimetics, which increase cholinergic activity. The second model is that the cholinergic system acts alone or with other neurotransmitter systems to directly regulate mood. The third model (The Balance Hypothesis) states that a pharmacologically-induced change in acetylcholine level causes changes in systems other than the cholinergic system, such as GABA, serotonin, dopamine and norepinephrine, but does not directly cause depression. The fourth model asserts that acetylcholine acts as a regulator of stress, and depression is one possible response to stress (Dagyte, Den Boer, & Trentani, 2011; Janowsky & Risch, 1987). In support of the fourth hypothesis, acetylcholine turnover increases with increases in stress in animals, and exaggerated responses are seen in rats that are bred to be cholinergically supersensitive.

There is a body of evidence in both human populations and animal studies demonstrating that drugs which mimic the effects of OPs, or have the same mode of action as OPs, affect mood. These studies show that the cholinergic effects of OP intoxication can be reproduced in either of two ways: (1) administration of cholinergic agonists, primarily muscarinic agonists such as arecoline, oxotremorine, pilocarpine, scopolamine and RS-86 or (2) administration of cholinesterase inhibitors [diisopropylfluorophosphate (DFP), physostigmine] that have been used clinically (Janowsky & Risch, 1987; Overstreet, Miller, Janowsky, & Russell, 1996). Cholinergic

agonists, the first group, act by increasing activity of muscarinic acetylcholine receptors resulting in the same effect as inhibiting AChE. Both approaches result in increased acetylcholine activity which mimics the effects of OP exposure.

Researchers over the past 30 years have proposed that mood disorders stem from an imbalance between adrenergic and cholinergic factors (Fig. 1). This model has since been modified based on the strength of evidence that the dopaminergic, in addition to the adrenergic pathway, is strongly implicated in mania (van Enkhuizen et al., 2014). Janowsky and colleagues published the cholinergic-adrenergic hypothesis of depression and mania in 1972 (Janowsky et al. 1972) and provided evidence for the hypothesis using individuals exposed to physostigmine and methylphenidate (Janowsky, El-Yousef, & Davis, 1973). The central premise of the hypothesis is that depression is a consequence of central cholinergic predominance and mania is a consequence of adrenergic predominance. Anticholinergic drugs have been shown to induce depression and reduce mania in bipolar patients (Janowsky & Risch, 1987). The most studied anticholinesterases used to induce depression or reduce mania are DFP and physostigmine (Janowsky et al. 1973). Research participants who were given OPs in the 1970s produced a short-term response that included retarded depression, fatigue, irritability, impaired concentration, confusion and anxiety (Janowsky et al., 1972, 1973).

In addition to the observations that cholinergic agonists and cholinesterase inhibitors reduce mania in bipolar patients, rat studies show that increased activity in the cholinergic system results in a later compensatory antagonistic activation of the adrenergic system (Janowsky & Risch, 1987). The observed withdrawal effects from antidepressants resulting in a depressed mood, anxiety, withdrawal, agitation and insomnia, are believed to be associated with muscarinic receptor hypersensitivity or what has been termed “cholinergic overdrive” (Dilsaver and Greden, 1984). Additionally, reciprocal interactions have been observed between agents that increase catecholaminergic activity and those that increase cholinergic activity (Janowsky & Risch, 1987). Methylphenidate reverses psychomotor retardation, which occurs after anticholinesterase agents (Janowsky, Overstreet, & Nurnberger, 1994). Psychomotor retardation in humans is associated with feelings of fatigue, lack of thoughts, and

anergy with decreased activity (Janowsky et al. 1994). Methylphenidate antagonized by physostigmine and amphetamine is antagonized by arecoline (Janowsky & Risch, 1987).

Evidence specifically implicating acetylcholine in depression can be found in the literature. Abnormal levels of cortical choline have been reported in several brain imaging studies of depressed individuals (Charles et al., 1994; Steingard et al., 2000). After treatment with antidepressants, these increased levels reverted to normal levels (Charles et al., 1994). The acetylcholine precursors choline and lecithin can induce depression (Casey, 1979; Davis, Hollister, & Berger, 1979; Tamminga, Smith, Change, Haraszti, & Davis, 1976).

Patients with affective disorders are more sensitive to the negative affect and inhibitory effects of cholinomimetics than are control groups (Janowsky, Risch, Parker, Huey, & Judd, 1980; Janowsky, Risch, Judd, Huey, & Parker, 1981). Using the Profile of Mood States Scales, self-reported anxiety, depression, hostility, confusion and decreases in elation were significantly greater in affective disorder patients than in other psychiatric patient groups or normal controls after physostigmine infusion (Janowsky et al. 1980, 1981).

Physostigmine and other cholinomimetic drugs cause increases in HPA axis activity and result in increased cortisol secretion and elevated ACTH levels, characteristic of depression in humans (Risch et al., 1981). Increased beta endorphin, released following stimulation by ACTH and corticotropin-releasing hormone (CRF), is also observed in depressed patients, as well as those administered physostigmine and arecoline (Risch et al. 1981).

Some of the most interesting effects of cholinomimetics are on the sleep parameters (Janowsky & Risch, 1987; Poland et al., 1997). Sleep abnormalities are related to dysregulation of the muscarinic cholinergic system (Gillin, Sitaram, & Mendelson, 1982; Sitaram, Nurnberger, Gershon, & Gillin, 1982). Sleep EEG abnormalities in depression in humans is well studied and is associated with decreased rapid eye movement (REM) latency where the first REM sleep cycle occurs earlier in the depressed (65 min) than in non-depressed (90 min) and increased REM density where there are more REM sleep events (Shaffery, Hoffmann, & Armitage, 2003). In addition, REM sleep time is increased in depressed compared to non-depressed individuals and wave patterns are altered indicating different types of brain activity during the sleep cycle (Shaffery et al. 2003). Cholinergic agonists administered to non-depressed individuals cause the same effects as those seen in depressed individuals (Janowsky & Risch, 1987; Poland et al., 1997). Arecoline, a cholinergic agonist, was shown to significantly shorten REM latency when infused into patients with an affective disorder or with a family history of affective disorder compared to normal controls (Janowsky & Risch, 1987). Berger, Lund, Bronisch, and von Zerssen (1983) found that physostigmine induced arousal and awakening from sleep more frequently in patients with affective disorders than in normal controls (Berger et al., 1983) (and later showed supershortening of REM latency in depressives orally administered the muscarinic agonist, RS-86) (Berger, Hochli, Zulley, Lauer, & von Zerssen, 1985).

Janowsky's adrenergic-cholinergic imbalance model fits the physiological, behavioral and neurobiological data better than other hypotheses in humans or animals (Shaffery et al.,

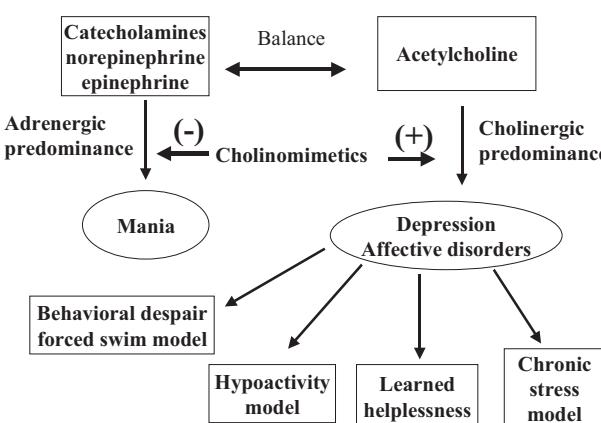


Fig. 1 – The Janowsky et al. (1972) Balance Hypothesis.

2003) and is most relevant to OP-induced depression. All of the models reduce to two current theories: (1) that acetylcholine alters other neurotransmission systems (GABA, serotonin, dopamine or norepinephrine) but does not directly cause depression, and/or (2) that acetylcholine regulates the effects of stress and depression may be just one possible outcome. Recent developments in the field suggests that acetylcholine disruption may bridge these two models where cognitive symptoms are a direct result of both acetylcholine alterations and chronic stress; mood may be a result of disruptions in connected neurotransmitter pathways (Dagyte et al., 2011).

Chronic stressful life events (allostatic overload) can result in HPA-axis dysregulation (Anisman, Merali, & Hayley, 2008; Stone, Lin, & Quartermain, 2008). Alterations in the HPA axis are associated with the changes in the positive reward pathways resulting in anhedonia and the characteristic lack of interest or pleasure in activities characteristic of depression (Stone, Quartermain, Lin, & Lehmann, 2007; Stone et al., 2008). Stress alters the levels of 5-HT and NE receptor subtypes, as well as altering their turnover rates and localization (Lau, Heimann, Bartsch, Schloss, & Weber, 2013; Nestler et al., 2002; Nutt, 2002; Wong et al., 2000). These changes in the 5-HT and NE neurotransmitter systems in the hypothalamus can result in altered secretion of CRH (Mitchell, 1998; Nemeroff, 1996; Reul & Holsboer, 2002), decreases in growth factors such as Brain-Derived Neurotrophic Factor (BDNF) (Duman, Malberg, & Nakagawa, 2001) and increases in inflammatory cytokines (Hayley, Poulter, Merali, & Anisman, 2005; Maes, 1999). In the HPA dysregulation model of depression, overwhelming evidence shows that stress is a key element in altering the HPA-axis in animals and humans. However, chronic stress has been shown to increase the release of acetylcholine and sensitize cholinergic neurons in the rat hippocampus (Mark, Rada, & Shors, 1996; Mizoguchi, Yuzurihara, Ishige, Sasaki, & Tabira, 2001). Acetylcholine appears to play a role in responding to stress, and may have a role in memory deficits associated with depression (Mizoguchi et al., 2001). However, acetylcholine release is a response to the stress-initiating events (Paul, Jeon, Bizon, & Han, 2015).

All models and theories to date include the importance of the cholinergic system, but knowing what role it plays in relation to other neurotransmission systems will be difficult to tease out. The Flinders Sensitive Line (FSL) rat model has proven beneficial to our present understanding of depression and changes in neurotransmission systems.

Developed at the University of Flinders in Australia, the FSL rat represents the genetic predisposition for supersensitivity to cholinergic agonists and is the model used for understanding human genetic predisposition to depression (Overstreet & Russell, 1982). These rats are supersensitive to cholinergic and serotonergic (5-HT1A) agonists and show characteristic symptoms of depression found in humans (Overstreet, Daws, Schiller, Orbach, & Janowsky, 1998). They have increased rapid-eye movement (REM) sleep, appetite and weight changes and reduced activity, and increased anhedonia, all of which can be reversed with tricyclic antidepressants and serotonin reuptake inhibitors (Overstreet & Russell, 1982). The biochemical similarities with humans are an HPA axis dysfunction, abnormalities in slow-wave and REM sleep, and immune system dysfunction (Yadid et al., 2000). The FSL

rats exhibit exaggerated immobility in the forced swim test compared to the Flinders Resistant Line (FRL) control rat (Overstreet et al. 1998). FSL rats also have increased hippocampal and striatal muscarinic acetylcholine receptors, indicating an upregulation of the muscarinic noradrenergic pathway. This observation supports the Janowsky balance hypothesis that increases in cholinergic activity may lead to increases in the adrenergic pathways, which involve the catecholamine neurotransmitters.

4. Epidemiological studies on mood disorders and organophosphates

Deaths from agricultural exposures to OP compounds were reported as early as 1949 (West, 1968). Several early studies were reported which would likely not be approved by an ethical review board today. Sustained low-level administration using daily injections of DFP produced insomnia, excessive dreaming, emotional lability, increased libido, paresthesias, visual hallucinations, and tremor in healthy volunteers (Grob, Lilienthal, Harvey, & Jones, 1947). In 1950, a paper was published linking the phosphate ester compound DFP to psychiatric symptoms (Rowntree, Nevin, & Wilson, 1950). The investigators administered the compound to 17 schizophrenics, 9 manic-depressives and 10 normal controls. In 6 of the schizophrenics, psychosis was activated with symptoms continuing for months after exposures were stopped; among the manic depressives mania was lessened, insomnia and depression were increased, and increased dreaming was induced. Among the normal volunteers altered emotional affect was induced including depression, irritability, lassitude, apathy, dejection and unhappiness (Rowntree et al., 1950).

Table 1 summarizes results from case series reports described below. Acute poisonings from inhibition of cholinesterase due to these compounds were reported beginning in the 1940s (Gershon & Shaw, 1961). Early central nervous system symptoms of organophosphorous compound exposures included giddiness, uneasiness, restlessness, anxiety and tremulousness (Grob, Garlick, & Harvey, 1950). In moderately poisoned cases, the symptoms were followed by headache and by insomnia with excessive dreaming and nightmares (Durham, Wolfe, & Quinby, 1965; Grob et al., 1950). In extremely severe poisoning cases the symptoms were followed by ataxia, tremor, drowsiness, difficulty concentrating, mental confusion, disorientation, and changes in speech characterized by slurring, difficulty forming words and in self-expression and multiple repetition (Grob et al., 1950). Apathy, withdrawal and depression were also reported to occur (Durham et al., 1965). In a case series, two forms of psychiatric illness were reported following episodes of OP poisoning: depression and schizophrenia (Gershon & Shaw, 1961). Durham et al. (1965) studied lapses of attention among pesticide applicators and controls during and after the spraying season. Poisoned individuals were also included in the study (Durham et al., 1965). Results were consistent with the hypothesis that poisoning with OPs resulted in reduction of mental alertness and increased mental confusion (Durham et al., 1965).

Table 1 – Literature based on case series reports assessing neuropsychological symptoms associated with history of acute pesticide poisoning.

Neuropsychological symptom	Author and year
Cognitive effects	
Mental alertness	Durham et al., 1965; Grob et al. 1950
Memory	Dille & Smith, 1964; Gershon & Shaw, 1961
Concentration/vigilance	Dille & Smith, 1964; Durham et al., 1965; Gershon & Shaw, 1961; Grob et al., 1950
Mood and personality	
Anxiety, irritability, giddiness, tension, restlessness, nervousness	Dille & Smith, 1964; Grob et al., 1950; Gershon & Shaw, 1961; Tabershaw & Cooper, 1966
Depression	Durham et al., 1965; Gershon & Shaw, 1961
Sleep disorders	Durham et al., 1965; Grob et al. 1950; Tabershaw & Cooper, 1996

By 1975, there was general consensus that several behavioral sequelae were associated with OP poisoning including: 1) impaired vigilance and reduced concentration; 2) slowing of information processing and psychomotor speed; 3) memory deficit; 4) linguistic disturbance; 5) depression and 6) anxiety. Studies of asymptomatic workers at risk for repeated exposures had produced equivocal results concerning these behavioral abnormalities, meaning that in studies where exposed but not poisoned workers were included in the surveys, the results were mixed with regard to behavioral effects (Levin, Rodnitzky, & Mick, 1976). Further, how long the effects reported would last was addressed in few of the early studies (Metcalf & Holmes, 1969; Tabershaw & Cooper, 1966). In California, organophosphate poisoned individuals were followed for at least three years after the acute event to assess how long the adverse consequences of the poisoning would persist (Tabershaw & Cooper, 1966). Of the 114 individuals, symptoms lasted for six months or longer among 43 [37.7%]. The persistent symptoms included blurred vision, gastrointestinal problems, headaches, chest pain, nervousness, weakness and weight loss. Many of the workers were intolerant to further pesticide exposures.

In Colorado, follow-up of a cohort of workers poisoned by organophosphate compounds was conducted (Metcalf & Holmes, 1969). Workers were enrolled in 1952 and subjected to a battery of psychological tests to search for classic evidence of brain damage. Testing conducted within 72 h of pesticide exposure showed no organic brain damage but always showed erratic and slowed functioning among those with a symptomatic exposure. Generalized weakness and confusion was observed after exposure and changes in EEG were found and described as indicative of drowsiness. Psychiatric evaluation comparing the exposed to a control group found chronic complaints including forgetfulness, difficulty thinking, visual difficulty, and persistent aches and pains. Drowsiness, fatigability and loss of interest in work were found in 45% of exposed and only 5% in the control group. In the follow-up study, a number of tests to evaluate cognition were conducted including the Wechsler Adult Intelligence Scale (WAIS), Benton Visual Retention Test, and a Story Recall Task. Dysfunctions most clearly seen in the exposed group were disturbed memory, difficulty in maintaining alertness and difficulty focusing attention. In sleep studies the investigators found that excessive drowsiness reported by

exposed workers related to a demonstrable underlying disturbed physiology. The deficits reported were believed to be consistent with the hypothesis that deep midbrain effects of OP compounds were of major importance in the production of the CNS changes described.

A number of studies comparing pesticide poisoned workers to a control group have been conducted. Table 2 contains a summary of studies which included controls which are described in detail in the following section. Levin et al. (1976) reported that exposed farmers and pesticide applicators scored significantly higher on the Taylor Manifest Anxiety Scale compared to non-exposed farmers. Reidy, Bowler, Rauch, and Pedrozzi (1992) reported that twice poisoned migrant farm workers scored lower than controls on measures of motor speed and visuospatial memory and higher on anxiety and depression symptom checklists one to two years after the poisoning episode. Savage et al. (1988) studied individuals who had experienced an acute organophosphate poisoning many years prior to the study. Matched controls were compared to poisoned cases and given a medical examination, the Halstead–Reitan test battery, the WAIS, the Peabody Individual Achievement Test and the Minnesota Multiphasic Personality Inventory (MMPI). Neurological tests showed memory deficits and six cases were classified as depressed compared with none of the controls. Exposed cases scored significantly worse on 18 of 34 subtests on the Halstead–Reitan test and twice as many cases as controls had Average Impairment Scores in the range characteristic of cerebral lesion. On the WAIS the poisoned cases had an average Full-Scale IQ 5 points lower than the control group and did significantly worse on six verbal tests. On the MMPI, cases scored higher on validity scales and on the paranoia and social introversion scales. Rosenstock, Keifer, Daniell, McConnell, and Claypole (1991) assessed individuals in Nicaragua who had been poisoned two years prior to testing and compared them to an age-matched control group. The poisoned group performed much worse on five of six WHO recommended neuropsychological tests (Rosenstock et al., 1991). Steenland, Jenkins, Ames, O’Malley, Crislip et al. (1994) studied organophosphate poisoned workers in California compared to controls and reported evidence of neuropsychological damage and disturbed peripheral nerve damage among the poisoned group. Eight neurobehavioral tests from the Neurobehavioral Evaluation System were used including mood scales, finger

Table 2 – Literature with comparison groups assessing neuropsychological symptoms associated with history of acute pesticide poisoning.

Neuropsychological symptom	Author and year
Cognitive effects	
Had difficulty concentrating	Metcalf & Holmes, 1969; Savage et al., 1988; Stallones & Beseler, 2002b
Been confused/disoriented	Metcalf & Holmes, 1969; Rosenstock et al., 1991; Stallones & Beseler, 2002b
Memory	Levin et al., 1976; McConnell, Keifer, & Rosenstock, 1994; Metcalf & Holmes, 1969; Reidy et al., 1992; Savage et al., 1988; Stallones & Beseler, 2002b
Difficulty understanding books, newspapers, magazines	Metcalf & Holmes, 1969; Steenland et al., 1994; Stallones & Beseler, 2002b
Mood and personality	
Irritability	Stallones & Beseler, 2002b; Steenland et al., 1994
Depression/depressive symptoms	Ahmed & Davies, 1997; Amr et al., 1997; Beard et al., 2013; Beseler et al., 2006; Beseler et al., 2008; Beseler & Stallones, 2008; Kim et al., 2013; Levin et al., 1976; Reidy et al., 1992; Savage et al., 1988; Stallones & Beseler, 2002a; Stallones & Beseler, 2002b; Steenland et al., 1994
Sleep disturbances	London et al., 1998; Metcalf & Holmes, 1969; Stallones & Beseler, 2002b; Wesseling et al. 2001
Anxiety	Levin et al. 1976; Reidy et al., 1992; Wesseling et al., 2001
Aggression/Anger	Wesseling et al., 2010
Impulsivity	Wesseling et al. 2010

tapping, sustained attention, hand-eye coordination, simple reaction time, symbol digit, pattern memory, and serial digit learning (Steenland et al., 1994). London, Nell, Thompson, and Myers (1998) studied pesticide applicators on South African fruit farms using a neuropsychological battery, neurological symptoms, vibration sense, and motor tremor and found the neurological symptoms were more prevalent among workers with a prior organophosphate pesticide poisoning compared with controls. Wesseling, van Wendel de Joode, and Monge (2001) studied banana workers in Costa Rica who had documented organophosphate poisoning and found that scores on somatization, obsessive-compulsiveness, anxiety, phobic anxiety, and hostility were significantly higher among poisoned workers compared with a control group. In summary, studies assessing pesticide poisoned workers find a large number of deficits related to mood, memory, reaction times and coordination that are consistent with the animal studies that have been reported.

Keifer, Rivas, Moon, and Checkoway (1996) studied community residents living near cotton fields in Nicaragua. Acute pesticide poisoning symptoms, a modified version of the Q-16 to assess psychiatric symptoms (Lundberg, Hogberg, Michelsen, Nise, & Hogstedt, 1997), and red blood cell cholinesterase levels were assessed in relation to aerial spraying with OPs. Compared with urban residents, the poisoned group had significantly elevated prevalence odds ratios (OR) as follows: non-specific symptom category 1.6 (95% confidence interval – CI .8, 3.2); possible symptom category 4.1 (95% CI 1.7, 10.2); and probable symptom category 9.9 (95% CI 2.9, 34.4). These findings indicate there may be a relationship between severity of poisoning and adverse outcomes. This finding was supported by a more recent study conducted among male farmers in South Korea that also assessed the relationship between self-reported depression and severity of pesticide poisoning symptoms (Kim, Ko, & Lee, 2013). Using information on source of treatment and number of reported poisoning episodes, they reported the following: cases with moderate to

severe symptoms OR 2.81, 95% CI 1.71, 4.63; cases treated in outpatient clinics or hospitals OR 2.52, 95% CI 1.15, 5.53; and those with multiple poisoning episodes OR 1.82, 1.19, 2.76 (Kim et al., 2013). The authors concluded that severity of poisoning was associated with an increased likelihood of depression (Kim et al., 2013).

Delgado et al. (2004) followed 53 patients who had been hospitalized for acute OP poisoning for two years after the episode and compared them with 23 non-poisoned individuals. The Q-16 was used to assess psychiatric symptoms. Symptom scores increased over the two year follow-up for all groups with a smaller change among the unexposed group. The difference between the poisoned and control groups was not significantly different after controlling for age, education, and alcohol consumption (Delgado et al., 2004).

In the Agricultural Health Study, female spouses of pesticide applicators were diagnosed with depression more often in the presence of a history of a pesticide poisoning than spouses who had not been poisoned (OR 3.26, 95% CI 1.72, 6.19) and in applicators (OR 2.57, 95% CI 1.74, 3.79) after controlling for state of residence, age, race, off-farm work, alcohol consumption, cigarette smoking, physician visits, and solvent exposure (Beseler et al., 2006; Beseler et al., 2008). In a more recent analysis of the same cohort, wives of applicators who reported a pesticide poisoning had a slightly higher incidence (new cases) of physician diagnosed depression (OR 1.78, 95% CI .76, 4.14) compared with wives who did not report a pesticide poisoning (Beard et al., 2013).

Results from a number of laboratory, clinical, and epidemiological studies led several investigators to propose a long-term neuropsychiatric syndrome resulting from organophosphate exposure which separated those effects occurring as a result of poisoning from those associated with chronic long term, low dose exposure. Ahmed and Davies (1997) described the syndrome they called chronic organophosphate-induced neuropsychiatric disorder (COPIND) as characterized by the following symptoms: one or more episodes of severe flu-like

symptoms lasting more than three days following exposure (and sometimes hypersalivation, abdominal cramps and diarrhea); mood destabilization; suicidal thinking; cognitive impairment; language disorder including word finding and expressive disorders; alcohol intolerance including marked increase in inebriating effects of alcohol, severe hang-over and quasi-allergic effects; heightened sense of smell; handwriting deterioration; sensitivity to exposure to low concentrations of organophosphates; and decreased exercise tolerance reflected in initial normal muscle power but inability to maintain it and no evidence of generalized weakness. [Jamal \(1997\)](#) conducted an extensive review of neurologic effects of chronic organophosphate pesticide exposure and designated two types of COPIND. The first (COPIND1) represented cases of acute poisoning resulting from long-term effects and the second (COPIND2) occurring from long-term exposures to subclinical doses ([Ahmed & Davies, 1997](#); [Jamal, 1997](#)). This syndrome is consistent with the animal evidence that exposure to chlorpyrifos leads to adverse neurodevelopmental effects and neurobehavioral effects associated with disruption of serotonin ([Aldridge, Levins, Seidler, &](#)

[Slotkin, 2005](#); [Aldridge, Seidler, & Slotkin, 2004](#); [Alridge, Seidler, Meyer, Thillai, & Slotkin, 2003](#), [Dam, Garcia, Seidler, & Slotkin, 1999](#); [Raines, Seidler, & Slotkin, 2001](#); [Slotkin, 1999](#); [Slotkin, 2004](#); [Slotkin, Tate, Cousins, & Seidler, 2002](#); [Slotkin, Tate, Ryde, Levin, & Seidler, 2006](#)).

Mood swings associated with exposure to organophosphates tend to be brief in duration and can involve swings from depression or to irritability and anger ([Davies et al., 2000](#)). Instability of mood rather than pervasive mood states and the absence of elevation of mood distinguish these cases from functional affective disorders and cyclothymia ([Davies, et al., 2000](#)). The change in personality observed has been reported to be an abrupt personality change confirmed by partners' or other family members ([Davies, et al., 2000](#); [Savage et al., 1988](#)). [Davies et al. \(2000\)](#) report that impulsive suicidal thoughts come out of the blue and may result in serious action using tractors, shotguns and nooses for hanging. Cognitive impairments often described by patients include difficulty in retaining recent information and concentration reflected in filling out forms. Names of familiar people may be forgotten temporarily and in serious cases the ability to perform

Table 3 – Summary of symptoms comparing clinical and case studies of organophosphate exposure to symptoms reported in epidemiological studies of occupationally-exposed workers.

Symptoms reported from pharmacological, clinical and case series of exposure to OP compounds in humans	Symptoms reported in epidemiological studies of moderate to high exposures and acute poisoning
<p>Chronic, low dose administration of cholinesterase inhibitors (DFP, physostigmine) to psychiatric patients:</p> <p>Cognitive effects</p> <ul style="list-style-type: none"> • Impaired concentration • Confusion <p>Mood disorders</p> <ul style="list-style-type: none"> • Retarded depression • Fatigue • Irritability • Sleep dysregulation (insomnia, excessive dreaming) • Emotional lability • Lassitude • Apathy • Dejection • Unhappiness • Anxiety <p>Neurological disorders</p> <ul style="list-style-type: none"> • Paresthesias • Visual hallucinations 	<p>Epidemiological literature of moderate to high exposure to OPs:</p> <p>Cognitive effects</p> <ul style="list-style-type: none"> • Impaired concentration • Confusion • Memory problems • Drowsiness/impaired vigilance <p>Mood disorders</p> <ul style="list-style-type: none"> • Retarded depression • Fatigue • Irritability • Sleep dysregulation (insomnia, excessive dreaming) • Emotional lability • Lassitude • Apathy • Withdrawal • Unhappiness • Anxiety <p>Neurological disorders</p> <ul style="list-style-type: none"> • Visual difficulty • Headache <p>Symptoms in acute poisoning from OP exposure (in addition to above):</p> <p>Cognitive effects</p> <ul style="list-style-type: none"> • Reduced motor speed • Reduced visuospatial memory • General memory deficits <p>Mood and other psychiatric disorders</p> <ul style="list-style-type: none"> • Somatization • Obsessive-compulsiveness • Anxiety • Phobic anxiety • Paranoia • Social Introversion • Hostility • Impulsivity
<p>Symptoms in early case studies of OP poisoning in humans</p> <p>Cognitive effects</p> <ul style="list-style-type: none"> • Difficulty concentrating • Disorientation • Mental confusion • Changes in speech <p>Mood and other psychiatric disorders</p> <ul style="list-style-type: none"> • Emotional lability, giddiness • Restlessness • Anxiety • Drowsiness • Insomnia • Apathy, withdrawal • Depression • Hostility, anger • Schizophrenia 	

sequential tasks is lost because previous steps are forgotten and memory problems are reported. Fundamental impairment of central information processing and an IQ loss involving dominant hemispheric functions were found in a small number of neuropsychological assessments conducted.

Two studies conducted in Colorado have been analyzed in an attempt to isolate OP pesticide poisoning specific symptoms of depression (Beseler et al., 2008; Stallones & Beseler, 2002a, 2002b). One survey was conducted in an eight county area of northeastern Colorado that included 47% of the agriculturally employed population (Stallones & Beseler, 2002a). Farms were sampled and farm operators and spouses of the operators were included in the study population. A total of 761 individuals representing 479 farms were enrolled in the study (Stallones & Beseler, 2002a). In the first study, self-reported OP pesticide poisoning symptoms were significantly associated with high depressive symptoms included headache/dizziness; eye irritation; nausea/vomiting; chest discomfort; difficulty breathing; and skin irritation (Stallones & Beseler, 2002a). These symptoms are indicative of a severe OP pesticide poisoning episode among those who reported depressive symptoms. In a subsequent analysis of the same study population, neurological symptoms significantly correlated with a self-reported poisoning were difficulty concentrating, problems with memory, depression, irritability, heart palpitations with exertion, excessive sleep, difficulty moving fingers, and headaches at least once a week (Stallones & Beseler, 2002b). After controlling for other factors, depression and sleeping too much remained significant (Stallones & Beseler, 2002b). In another study conducted in Colorado, a sample of rural farms was selected and enrolled farm operators and spouses were followed over three years (Beseler & Stallones, 2008). Farm residents reported personally mixing or applying organophosphate pesticides and reported symptoms associated with having experienced an organophosphate pesticide exposure. After adjusting for gender, age, marital status, income, debt and overall health status, the two predictors of pesticide poisoning related depressive symptoms were being bothered by things and restless sleep, both being somatic symptoms of depression (Beseler & Stallones, 2008). Of note is that those who reported a pesticide poisoning at baseline were more likely to be depressed in the subsequent years of the study relative to those who had not been poisoned (Beseler & Stallones, 2008). Earlier cross-sectional studies of individuals who had been pesticide poisoned also suggested that somatic symptoms of depression persisted after the acute poisoning episode (Ahmed & Davies, 1997; Amr, Halim, & Moussa, 1997).

Table 3 contains a summary of symptoms which have been reported in studies of OP poisoned workers and psychiatric populations. Despite use of a wide range of different assessment instruments, study designs, and target populations, a number of symptoms are consistently being reported which are related to affective and somatic components of dysfunction. These include depression, anxiety, irritability, hostility, confusion, impaired memory and concentration, and fatigue. The importance of linking these symptoms to environmental exposures is highlighted through the studies of suicidal ideation and high suicide rates in pesticide exposed populations.

5. Conclusions

The epidemiological concept of "The Healthy Worker Effect" (McMichael, 1976) strongly applies to farming because those with serious mood disorders would be unable to maintain the intensity of work required in farming and therefore would be likely to leave the farm workforce. In addition, farmers often own farms that have been in their families for generations and families with a history of psychiatric disorders, including vulnerabilities to stress-mediated depression, would not have the resilience to remain in farming. It is not likely that farmers are susceptible to the stresses and increased allosteric loads that would result in alterations in their HPA-axis. They have learned to deal with the uncertainties in weather, crop prices and all of the other uncontrollable events that they and their families have long endured. It is far more likely that the initiating event resulting in depression and an increased risk of suicide in farmers is having had a high OP pesticide exposure or OP poisoning.

The most likely explanation for depression in OP-poisoned farmers is alterations in the cholinergic system; which then alters the balance between the cholinergic and catecholaminergic systems, resulting in depression. An examination of the symptoms reported by pharmacological, clinical, toxicological and epidemiological studies all indicate a strong increase in negative affect and somatic complaints, with only a minimal impact on the positive affect dimension of depression. Certainly, retarded activity and anhedonia are seen in farmers occupationally exposed to high levels of OPs, but these are not the primary complaints or most prevalent symptoms. The most frequently reported symptoms are depressed mood, irritability and changes in sleep patterns, which are different from the symptoms associated with alterations in the HPA axis. Studies of depression related to the stress pathway show a strong loss of positive affect, as measured by behavior inactivity, anhedonia, and loss of reward-seeking behavior. The symptoms observed in OP-poisoned farmers are not suggestive of a stress-mediated pathway in the development of depression.

Certainly there are other mechanisms by which OPs could cause depression aside from the inhibition of AChE. In susceptible individuals, these other targets may have a role in depression where inhibition of AChE activity is not observed. OPs have been associated with increasing inflammation and resulting in the release of cytokines in the brain (Banks & Lein, 2012). Neuroimmunological factors have been implicated in depression (Jo, Zhang, Emrich, & Dietrick, 2015). Inflammation and cytokine release could certainly exacerbate the initial insult on the cholinergic system and prolong the depressive state. Additionally, there are targets in the brain that are not associated with AChE inhibition, such as neuropathy target esterase. The FSL rat was shown to have increased levels of arachidonic acid-containing phosphatidylcholine. The elevated arachidonic acid could directly inhibit nicotinic acetylcholine receptors and alter serotonin signaling pathways (Green, Anyakoha, Yadid, Gispan-Herman, & Nicolaou, 2009). These changes in the fatty acid composition of the cellular membrane is characteristic of inhibition of neuropathy target esterase, long known to be a

target of OP pesticides and implicated in the development of COPIND (Jamal, 1997).

The severity and duration of depression in OP-poisoned farmers could be a combination of all of these effects. It might be that the initial inhibition of AChE or neuropathy target esterase begins a cascade of events that leads to increased cytokine release by the immune system; increased inflammation and involvement of glia cells; and disruption of the HPA axis, glutamatergic and monoaminergic systems, in addition to the cholinergic and catecholaminergic systems. If the totality of the attack is sufficient, COPIND may ensue.

OPs are a large and diverse group of compounds with varying degrees of specificity, activity, and toxicity. Dose cannot easily be predicted from exposure due to formulation differences in the compound, the mixing and application methods used, personal protective equipment worn, and individual biological differences in detoxification, metabolism and excretion. Although acute poisoning effects are well-defined, chronic health effects after poisoning can be vague, for example, sheep-dippers that report having ill health from OP pesticide exposure (Rees, 1996). Beginning with the studies of Grob et al. (1947, 1950) and Dille and Smith (1964), depression was reported as an acute effect of OP poisoning. This is most likely due to stimulation of cholinergic pathways, and, possibly a compensatory mechanism of upregulation of muscarinic pathways, as shown by Janowsky and others (1972, 1973, 1980, 1981, 1986, 1987, 1994).

Since chemical contaminants are endemic in our environment and resources to study them are limited, research will continue to be lacking. Efforts should be targeted at reducing exposures, increasing education, and developing treatments that go beyond pharmaceutical interventions, which may alleviate symptoms but fail to address the underlying causes. Given the continued problem of stigmatization in underserved communities, acknowledging environmental factors as causal influences in psychiatric disorders might motivate treatment-seeking behavior.

REFERENCES

Ahmed, G. M., & Davies, D. R. (1997). Chronic organophosphate exposure: toward a definition of a neuropsychiatric syndrome. *Journal Nutritional and Environmental Medicine*, 7, 169–176.

Aldridge, J. E., Levin, E. D., Seidler, F. J., & Slotkin, T. A. (2005). Developmental exposure of rats to chlorpyrifos leads to behavioral alterations in adulthood, involving serotonergic mechanisms and resembling animal models of depression. *Environmental Health Perspectives*, 113, 527–531.

Aldridge, J. E., Seidler, F. J., & Slotkin, T. A. (2004). Developmental exposure to chlorpyrifos elicits sex-selective alterations in serotonergic synaptic function in adulthood: critical periods and regional selectivity for effects on the serotonin transporter, receptor subtypes, and cell singalling. *Environmental Health Perspectives*, 112, 148–155.

Alridge, J. E., Seidler, F. J., Meyer, A., Thillai, I., & Slotkin, T. A. (2003). Serotonergic systems targeted by developmental exposure to chlorpyrifos: effects during different critical periods. *Environmental Health Perspectives*, 111, 1736–1743.

Amr, M. M., Halim, Z. S., & Moussa, S. S. (1997). Psychiatric disorders among Egyptian pesticide applicators and formulators. *Environmental Research*, 73, 193–199.

Anisman, H., Merali, Z., & Hayley, S. (2008). Neurotransmitter, peptide and cytokine processes in relation to depressive disorder: comorbidity between depression and neurodegenerative disorders. *Progress in Neurobiology*, 85, 1–74.

Banks, C. N., & Lein, P. J. (2012). A review of experimental evidence linking neurotoxic organophosphorus compounds and inflammation. *Neurotoxicology*, 33, 575–584.

Beard, J., Hoppin, J., Richards, M., Alavanja, M., Blair, A., Sandler, D., et al. (2013). Pesticide exposure and self-reported incident depression among wives in the Agricultural Health Study. *Environmental Research*, 126, 31–42.

Berger, M., Hochli, D., Zulley, J., Lauer, C., & von Zerssen, D. (1985). Cholinomimetic drug RS-86, REM sleep, and depression. *Lancet*, 1, 1385–1386.

Berger, M., Lund, R., Bronisch, T., & von Zerssen, D. (1983). REM latency in neurotic and endogenous depression and the cholinergic REM induction test. *Psychiatry Research*, 10, 113–123.

Beseler, C., & Stallones, L. (2008). A cohort study of pesticide poisoning and depression in Colorado farm residents. *Annals of Epidemiology*, 18(10), 768–774.

Beseler, C., Stallones, L., Hoppin, J., Alavanja, M., Blair, A., Keefe, T., et al. (2006). Depression and pesticide exposures in female spouses of licensed pesticide applicators in the Agricultural Health Study cohort. *Journal of Occupation and Environmental Medicine*, 48(10), 1005–1013.

Beseler, C., Stallones, L., Hoppin, J., Alavanja, M., Blair, A., Keefe, T., et al. (2008). Depression and pesticide exposures among private pesticide applicators enrolled in the Agricultural Health Study. *Environmental Health Perspectives*, 116(12), 1713–1719.

Boxer, P. A., Burnett, C., & Swanson, N. (1992). Suicide and occupation: a review of the literature. *Journal of Occupational and Environmental Medicine*, 37(4), 442–452.

Bunney, W. E., & Davis, J. (1965). Norepinephrine in depressive reactions: a review. *Archives of General Psychiatry*, 13, 483–494.

Casey, D. E. (1979). Mood alterations during deanol therapy. *Psychopharmacology*, 62, 187–191.

Charles, H. C., Lazeyras, F., Krishnan, K. R., Boyko, O. B., Payne, M., & Moore, D. (1994). Brain choline in depression: in vivo detection of potential pharmacodynamic effects of antidepressant therapy using hydrogen localized spectroscopy. *Progress in Neuropsychopharmacology & Biological Psychiatry*, 18, 1121–1127.

Charlton, J. (1995). Trends and patterns in suicide in England and Wales. *International Journal of Epidemiology*, 24(Suppl. 1), S45–S52.

Charney, D. S., Menkes, D. B., & Heninger, G. R. (1981). Receptor sensitivity and the mechanism of action of antidepressant treatment. *Archives of General Psychiatry*, 38, 1160–1173.

Colovic, M. B., Krstic, D. Z., Lazarevic-Pasti, T. D., Bondzic, A. M., & Vasic, V. M. (2013). Acetylcholinesterase inhibitors: pharmacology and toxicology. *Current Neuropharmacology*, 11, 315–335.

Dagtye, G., Den Boer, J. A., & Trentani, A. (2011). The cholinergic system and depression. *Behavioural Brain Research*, 221, 574–582.

Dam, K., Garcia, S. J., Seidler, F. J., & Slotkin, T. A. (1999). Neonatal chlorpyrifos exposure alters synaptic developmental and neuronal activity in cholinergic and catecholaminergic pathways. *Developmental Brain Research*, 116, 9–20.

Davies, D. R., Ahmed, G. M., & Freer, T. (2000). Psychiatric aspects of chronic exposure to organophosphates: background and clinical picture. *Advances in Psychiatric Treatment*, 6, 187–192.

Davis, K. L., Hollister, L. E., & Berger, P. A. (1979). Choline chloride in schizophrenia. *American Journal of Psychiatry*, 136, 1581–1584.

Delgado, E., McConnell, R., Miranda, R., Keifer, M., Lundberg, I., Partenón, T., et al. (2004). A two-year follow-up of central nervous system effects of acute organophosphate pesticide poisoning. *Scandinavian Journal of Work and Environmental Health*, 30, 362–370.

Dille, J., & Smith, P. (1964). Central nervous system effects of chronic exposure to organophosphate insecticides. *Aerospace Medicine*, 35, 475–478.

Dilsaver, S. C., & Greden, J. F. (1984). Antidepressant withdrawal phenomena. *Biological Psychiatry*, 19, 237–256.

Duman, R. S., Malberg, J., & Nakagawa, S. (2001). Regulation of adult neurogenesis by psychotropic drugs and stress. *Journal of Pharmacology and Experimental Therapeutics*, 299, 401–497.

Durham, W. F., Wolfe, H. R., & Quinby, G. E. (1965). Organophosphorus insecticides and mental alertness. *Archives Environmental Health*, 10, 55–66.

van Enkhuizen, J., Janowsky, D. S., Olivier, B., Minassian, A., Perry, W., Young, J. W., et al. (2014). The catecholaminergic-cholinergic balance hypothesis of bipolar disorder revisited. *European Journal of Pharmacology*, 753, 114–126.

Fragar, L. J., & Henderson, A. (2005). Farming and mental health problems and mental illness. *International Journal of Social Psychiatry*, 51, 340–349.

Freire, C., & Koifman, S. (2013). Pesticides, depression and suicide: a systematic review of the epidemiological evidence. *International Journal of Hygiene and Environmental Health*, 216, 445–460.

Genuis, S. (2008a). Toxic causes of mental illness are overlooked. *Neurotoxicology*, 29(6), 1147–1149.

Genuis, S. (2008b). Our genes are not our destiny: incorporating molecular medicine into clinical practice. *Journal of Evaluation in Clinical Practice*, 14, 94–102.

Gershon, S., & Shaw, F. H. (1961). Psychiatric sequelae of chronic exposure to organophosphorus insecticides. *Lancet*, i, 1371–1374.

Gillin, J. C., Sitaram, N., & Mendelson, W. B. (1982). Acetylcholine, sleep, and depression. *Human Neurobiology*, 1, 211–219.

Green, P., Anyakoha, N., Yadid, G., Gispan-Herman, I., & Nicolaou, A. (2009). Arachidonic acid-containing phosphatidylcholine species are increased in selected brain regions of a depressive animal model: implications for pathophysiology. *Prostaglandins, Leukotrienes and Essential Fatty Acids*, 80, 213–220.

Gregoire, A. (2002). The mental health of farmers. *Occupational Medicine*, 52, 471–476.

Grob, D., Garlick, W. L., & Harvey, A. M. (1950). The toxic effects of man of the anticholinesterase insecticide parathion (p-nitrophenyldiethylthionophosphate). *Bulletin of Johns Hopkins Hospital*, 87, 106–129.

Grob, D., Lilienthal, J. L., Harvey, A. M., & Jones, B. F. (1947). The administration of di-isopropyl fluorophosphate (DFP) to man. I. Effect on plasma and erythrocyte cholinesterase; general systemic effects; Use in study of hepatic function and erythropoiesis; and some properties of plasma cholinesterase. *Bulletin of the Johns Hopkins Hospital*, 81, 217–292.

Gunderson, P., Donner, D., Nashold, R., Salkowicz, L., Sperry, S., & Wittman, B. (1990). The epidemiology of suicide among farm residents or workers in five North Central states, 1980–1988. *American Journal of Preventive Medicine*, 9(Suppl. 1), 26–32.

Hawton, K., Fagg, J., Simkin, S., Harriss, L., & Malmberg, A. (1998). Methods used for suicide by farmers: the contribution of availability and its relevance to prevention. *British Journal of Psychiatry*, 173, 320–324.

Hayley, S., Poulter, M., Merali, Z., & Anisman, H. (2005). The pathogenesis of clinical depression: stressor- and cytokine-induced alterations of neuroplasticity. *Neuroscience*, 135, 659–678.

Jaga, K., & Dharmani, C. (2007). The interrelation between organophosphate toxicity and the epidemiology of suicide and depression. *Reviews on Environmental Health*, 22(1), 57–73.

Jamal, G. A. (1997). Neurological syndromes of organophosphorous compounds. *Adverse Drug Reaction Toxicology Review*, 16, 133–170.

Janowsky, D. S., El-Yousef, M. K., & Davis, J. M. (1973). Antagonistic effects of physostigmine and methylphenidate in man. *American Journal of Psychiatry*, 130, 1370–1376.

Janowsky, D. S., el-Yousef, M. K., Davis, J. M., & Sekerke, H. J. (1972). A cholinergic-adrenergic hypothesis of mania and depression. *Lancet*, 2, 632–635.

Janowsky, D. S., Overstreet, D. H., & Nurnberger, J. I., Jr. (1994). Is cholinergic sensitivity a genetic marker for the affective disorders? *American Journal of Medical Genetics*, 54, 335–344.

Janowsky, D. S., & Risch, S. C. (1987). In H. Y. Meltzer (Ed.), *Psychopharmacology: The third generation of progress* (pp. 527–533). New York: Raven Press.

Janowsky, D. S., Risch, S. C., Judd, L. L., Huey, H. L., & Parker, D. (1981). Cholinergic supersensitivity in affect disorder patients: behavioral and neuroendocrine observations. *Psychopharmacology Bulletin*, 17, 129–132.

Janowsky, D. S., Risch, S. C., Parker, D., Huey, L. Y., & Judd, L. L. (1980). Increased vulnerability to cholinergic stimulation in affect disorder patients. *Psychopharmacology Bulletin*, 16, 29–31.

Janowsky, D. S., Risch, S. C., Ziegler, M. G., Huey, L., & Rausch, J. (1986). Physostigmine-induced epinephrine release in patients with affective disorder. *American Journal of Psychiatry*, 143, 919–921.

Jokanovic, M., & Kosanovic. (2010). Neurotoxic effects in patients poisoned with organophosphorus pesticides. *Environmental Toxicology and Pharmacology*, 29, 195–201.

Jo, W. K., Zhang, Y., Emrich, H. M., & Dietrick, D. E. (2015). Glia in the cytokine-mediated onset of depression: fine tuning the immune response. *Frontiers in Cellular Neuroscience*, 9, 1–13.

Karalliedde, L. D., Edwards, P., & Marrs, T. C. (2003). Variables influencing the toxic response to organophosphates in humans. *Food and Chemical Toxicology*, 41, 1–13.

Keifer, M., Rivas, F., Moon, J., & Checkoway, H. (1996). Symptoms and cholinesterase activity among rural residents living near cotton fields in Nicaragua. *Occupational and Environmental Medicine*, 53(11), 726–729.

Kim, J., Ko, Y., & Lee, W. J. (2013). Depressive symptoms and severity of acute occupational pesticide poisoning among male farmers. *Occupational and Environmental Medicine*, 70, 303–309.

Kposowa, A. (1999). Suicide mortality in the United States: differentials by industrial and occupational groups. *American Journal of Industrial Medicine*, 36, 645–652.

Kwong, T. C. (2002). Organophosphate pesticides: biochemistry and clinical toxicology. *Therapeutic Drug Monitoring*, 24, 144–149.

Lau, T., Heimann, F., Bartsch, D., Schloss, P., & Weber, T. (2013). Nongenomic, glucocorticoid receptor-mediated regulation of serotonin transporter cell surface expression in embryonic stem cell derived serotonergic neurons. *Neuroscience Letters*, 554, 115–120.

Levin, H. S., Rodnitzky, R. L., & Mick, D. L. (1976). Anxiety associated with exposure to organophosphate compounds. *Archives of General Psychiatry*, 33, 225–228.

London, L., Beseler, C., Bouchard, M., Bellinger, D., Colosio, C., Grandjean, P., et al. (2012). Neurobehavioral and neurodevelopmental effects of pesticide exposures. *NeuroToxicology*, 33, 887–896, 2012.

London, L., Nell, V., Thompson, M. L., & Myers, J. E. (1998). Effects of long-term organophosphate exposures on neurological symptoms, vibration sense and tremor among South African

farm workers. *Scandinavian Journal of Work and Health*, 24, 18–29.

Lundberg, I., Hogberg, M., Michelsen, Nise, G., & Hogstedt, C. (1997). Evaluation of the Q16 questionnaire on neurotoxic symptoms and a review of its use. *Occupational and Environmental Medicine*, 54(5), 343–350.

Maes, M. (1999). Major depression and activation of the inflammatory response system. *Advances in Experimental Medicine and Biology*, 461, 25–45.

Mark, G. P., Rada, P. V., & Shors, T. J. (1996). Inescapable stress enhances extracellular acetylcholine in the rat hippocampus and prefrontal cortex but not the nucleus accumbens or amygdala. *Neuroscience*, 74, 767–774.

McConnell, R., Keifer, M., & Rosenstock, L. (1994). Elevated quantitative vibrotactile threshold among workers previously poisoned with methamidophos and other organophosphate pesticides. *American Journal Industrial Medicine*, 25(3), 325–334.

McMichael, A. J. (1976). Standardized mortality ratios and the ‘healthy worker effect’: scratching beneath the surface. *Journal of Occupational Medicine*, 18, 165–168.

Metcalf, D. R., & Holmes, J. H. (1969). EEG, psychological, and neurological alterations in humans with organophosphorous exposure. *Annals of the NY Academy of Sciences*, 160, 357–365.

Meyer, A., Koifman, S., Koifman, R., Moreira, J., Chrisman, J., & Abreu-Villaca, Y. (2010). Mood disorder hospitalizations, suicide attempts, and suicide mortality among agricultural workers and residents in an area with intensive use of pesticides in Brazil. *Journal of Toxicology and Environmental Health. Part A*, 73, 866–877.

Mitchell, A. J. (1998). The role of corticotropin releasing factor in depressive illness: a critical review. *Neuroscience and Biobehavioral Reviews*, 22, 635–651.

Mizoguchi, K., Yuzurihara, M., Ishige, A., Sasaki, H., & Tabira, T. (2001). Effect of chronic stress on cholinergic transmission in rat hippocampus. *Brain Research*, 915, 108–111.

Nemeroff, C. B. (1996). The corticotropin-releasing factor (CRF) hypothesis of depression: new findings and new directions. *Molecular Psychiatry*, 1, 336–342.

Nestler, E. J., Barrot, M., DiLeone, R. J., Eisch, A. J., Gold, S. J., & Monteggia, L. M. (2002). Neurobiology of depression. *Neuron*, 34, 13–25.

Nutt, D. J. (2002). The neuropharmacology of serotonin and noradrenaline in depression. *International Clinical Psychopharmacology*, 17(Suppl. 1), S1–S12.

Overstreet, D. H., Daws, L. C., Schiller, G. D., Orbach, J., & Janowsky, D. S. (1998). Cholinergic/serotonergic interactions in hypothermia: implications for rat models of depression. *Pharmacology. Biochemistry and Behavior*, 59, 777–785.

Overstreet, D. H., Miller, C. S., Janowsky, D. S., & Russell, R. W. (1996). Potential animal model of multiple chemical sensitivity with cholinergic supersensitivity. *Toxicology*, 111, 119–134.

Overstreet, D. H., & Russell, R. W. (1982). Selective breeding for diisopropylfluorophosphate-sensitivity: behavioral effects of cholinergic agonists and antagonists. *Psychopharmacology*, 78, 150–155.

Parron, T., Hernandez, A., & Villanueva, E. (1996). Increased risk of suicide with exposure to pesticides in an intensive agricultural area. A 12-year retrospective study. *Forensic Science International*, 79, 53–63.

Paul, S., Jeon, W. K., Bizon, J. L., & Han, J. S. (2015). Interaction of basal forebrain cholinergic neurons with the glucocorticoid system in stress regulation and cognitive impairment. *Frontiers in Aging Neuroscience*, 7, 1–11.

Poland, R. E., McCracken, J. T., Lutchmansingh, P., Lesser, I. M., Tondo, L., Edwards, C., et al. (1997). Differential response of rapid eye movement sleep to cholinergic blockage by scopolamine in currently depressed, remitted, and normal control subjects. *Biological Psychiatry*, 41(9), 929–938.

Raines, K. W., Seidler, F. J., & Slotkin, T. A. (2001). Alterations in serotonin transporter expression in brain regions of rats exposed neonatally to chlorpyrifos. *Brain Research Develop. Brain Research*, 130, 65–72.

Rees, H. (1996). Exposure to sheep dip and incidence of acute symptoms in a group of Welsh sheep. *Occupational and Environmental Medicine*, 53, 258–263.

Reidy, T. J., Bowler, R. M., Rauch, S. S., & Pedrozza, G. I. (1992). Pesticide exposure and neuropsychological sequelae to organophosphate pesticide poisoning. *American Journal of Public Health*, 84, 731–736.

Reul, M. H. M., & Holsboer, F. (2002). Corticotropin-releasing factor receptors 1 and 2 in anxiety and depression. *Current Opinions in Pharmacology*, 2, 23–33.

Risch, S. C., Cohen, R. M., Janowsky, D. S., Kalin, N. H., Sitaram, N., Gillin, J. C., et al. (1981). Physostigmine induction of depressive symptomatology in normal human subjects. *Psychiatry Research*, 4(1), 89–94.

Rosenstock, L., Keifer, M., Daniell, W. E., McConnell, R., & Claypole, K. (1991). Chronic central nervous system effects of acute organophosphate pesticide intoxication. *Lancet*, 338, 223–227.

Rountree, D. W., Nevin, S., & Wilson, A. (1950). The effects of diisopropylfluorophosphonate in schizophrenia and mild depressive psychosis. *Journal Neurological Neurosurgery Psychiatry*, 13, 47–62.

Savage, E. P., Keefe, T. J., Mounce, L. M., Heaton, R. K., Lewis, J. A., & Burcar, B. J. (1988). Chronic neurological sequelae of acute pesticide poisoning. *Archives of Environmental Health*, 43, 38–45.

Schildkraut, J. J. (1965). The catecholamine hypothesis of affective disorders: a review of supporting evidence. *American Journal of Psychiatry*, 122, 509–522.

Shaffery, J., Hoffmann, R., & Armitage, R. (2003). The neurobiology of depression: perspectives from animal and human sleep studies. *The Neuroscientist*, 9, 82–98.

Siever, L. J., & Davis, K. L. (1985). Overview: toward a dysregulation hypothesis of depression. *American Journal of Psychiatry*, 142, 1017–1031.

Sitaram, N., Nurnberger, J. I., Gershon, E. S., & Gillin, J. C. (1982). Cholinergic regulation of mood and REM sleep: a potential model and marker for vulnerability to depression. *American Journal of Psychiatry*, 139, 571–576.

Slotkin, T. A. (1999). Developmental cholinotoxicants: nicotine and chlorpyrifos. *Environmental Health Perspectives*, 107(Suppl 1), 71–80.

Slotkin, T. A. (2004). Cholinergic systems in brain development and disruption by neurotoxicants: nicotine, environmental tobacco smoke, organophosphates. *Toxicology and Applied Pharmacology*, 198, 132–151.

Slotkin, T. A., Tate, C. A., Cousins, M. M., & Seidler, F. J. (2002). Functional alterations in CNS catecholamine systems in adolescence and adulthood after neonatal chlorpyrifos exposure. *Developmental Brain Research*, 133, 163–173.

Slotkin, T. A., Tate, C. A., Ryde, I. T., Levin, E. D., & Seidler, F. J. (2006). Organophosphate insecticides target serotonergic system in developing rat brain regions: disparate effects of diazinon and parathion at doses spanning the threshold for cholinesterase inhibition. *Environmental Health Perspectives*, 114, 1542–1546.

Stallones, L. (1990). Suicide mortality among Kentucky farmers, 1979–1985. *Suicide and Life-Threatening Behavior*, 20(2), 156–163.

Stallones, L. (2006). Suicide and occupational exposure to pesticides, Colorado, 1990–1999. *Journal of Agromedicine*, 11(3/4), 107–112.

Stallones, L., & Beseler, C. (2002a). Pesticide poisoning and depressive symptoms among farm residents. *Annals of Epidemiology*, 12, 389–394.

Stallones, L., & Beseler, C. (2002b). Pesticide illness, farm practices, and neurological symptoms. *Environmental Research, Section A*, 90, 89–97.

Stallones, L., Doegnes, T., Dik, B., & Valley, M. (2013). Occupation and suicide: Colorado 2004–2006. *American Journal Industrial Medicine*, 56, 1290–1295.

Steenland, K., Jenkins, B., Ames, R. G., O'Malley, M., Chrislip, D., & Russo, J. (1994). Chronic and neurological sequelae to organophosphate pesticide poisoning. *Archives of Environmental Health*, 43, 38–45.

Steingard, R. J., Yurgelun-Todd, D. A., Hennen, J., Moore, J. C., Moore, C. M., Vakili, K., et al. (2000). Increased orbitofrontal cortex levels of choline in depressed adolescents as detected by *in vivo* proton magnetic resonance spectroscopy. *Biological Psychiatry*, 48(11), 1053–1061.

Stone, E. A., Lin, Y., & Quartermain, D. (2008). A final common pathway for depression? Progress toward a general conceptual framework. *Neuroscience and Biobehavioral Reviews*, 32, 508–524.

Stone, E. A., Lin, Y., Rosengarten, H., Kramer, H. K., & Quartermain, D. (2003). Emerging evidence for a central epinephrine-innervated alpha1-adrenergic system that regulates behavioral activation and is impaired in depression. *Neuropsychopharmacology*, 28, 1387–1399.

Stone, E. A., Quartermain, D., Lin, Y., & Lehmann, M. L. (2007). Central α_1 -adrenergic system in behavioral activity and depression. *Biochemical Pharmacology*, 73, 1063–1075.

Tabershaw, I. R., & Cooper, W. C. (1966). Sequelae of acute organic phosphate poisoning. *Journal of Occupational Medicine*, 8, 5–20.

Tamminga, C., Smith, R. C., Change, S., Haraszti, J. S., & Davis, J. M. (1976). Depression associated with oral choline. *Lancet*, 2, 905.

Thelin, N., Holmberg, S., Nettelbladt, P., & Thelin, A. (2009). Mortality and morbidity among farmers, nonfarming rural men, and urban referents: a prospective population-based study. *International Journal of Occupational and Environmental Health*, 15, 21–28.

Thomas, H. V., Lewis, G., Thomas, D. R., Salmon, R. L., Chalmers, R. M., Coleman, T. J., et al. (2003). Mental health of British farmers. *Occupational and Environmental Medicine*, 60, 181–186.

Vale, J. A. (1998). Toxicokinetic and toxicodynamic aspects of organophosphorus (organophosphate) insecticide poisoning. *Toxicology Letters*, 102–103, 649–652.

Wesseling, C., van Wendel de Joode, B., Keifer, M. C., London, L., Mergler, D., & Stallones, L. (2010). Symptoms of psychological distress and suicidal ideation among banana workers with a history of poisoning by organophosphate or n-methyl carbamate pesticides. *Occupational Environmental Medicine*, 67, 778–784.

Wesseling, C., van Wendel de Joode, B., & Monge, P. (2001). Pesticide-related illness among banana workers in Costa Rica: a comparison between 1993 and 1996. *International Journal of Occupational Environmental Health*, 7, 90–97.

West, I. (1968). Sequelae of poisoning from phosphate ester pesticides. *Industrial Medicine and Surgery*, 37(7), 538.

van Wijngaarden, E. (2003). An exploratory investigation of suicide and occupational exposure. *Journal of Occupational and Environmental Medicine*, 45, 96–101.

Wong, M. L., Kling, M. A., Munson, P. J., Listwak, S., Licinio, J., Prolo, P., et al. (2000). Pronounced and sustained central hypernoradrenergic function in major depression with melancholic features: relation to hypercortisolism and corticotropin-release hormone. *Proceedings of the National Academy of Sciences. U.S.A.*, 97, 325–330.

Yadid, G., Nakash, R., Deri, I., Tamar, G., Kinor, N., Gispan, I., et al. (2000). Elucidation of the neurobiology of depression: insights from a novel genetic animal model. *Progress in Neurobiology*, 62(4), 353–378.