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Abstract

Affordable measurement of core body temperature (T,) in a continuous, real-
time fashion is now possible. With this advance comes a new data analysis
paradigm for occupational epidemiology. We characterize issues arising
after obtaining T. data over 188 workdays for 83 participating farmworkers,
a population vulnerable to effects of rising temperatures due to climate
change. We describe a novel approach to these data using smoothing and
functional data analysis. This approach highlights different data aspects
compared with describing T, at a single time point or summaries of the
time course into an indicator function (e.g., did T_ ever exceed 38 °C, the
threshold limit value for occupational heat exposure). Participants working
in ferneries had significantly higher T. at some point during the workday
compared with those working in nurseries, despite a shorter workday for
fernery participants. Our results typify the challenges and opportunities in
analyzing Big Data streams from real-time physiologic monitoring.

'Emory University, Atlanta, GA, USA
2Farmworkers Association of Florida, Apopka, FL, USA
3University of Florida, Gainesville, FL, USA

Corresponding Author:
Vicki Hertzberg, Emory University, 1520 Clifton Rd. NE, Atlanta, GA 30322, USA.
Email: vhertzb@emory.edu


mailto:vhertzb@emory.edu
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0193945916673058&domain=pdf&date_stamp=2016-10-18

96 Western Journal of Nursing Research 39(1)

Keywords
smoothing, functional data analysis, core body temperature, heat-related
illness, occupational epidemiology, farmworker, heat stress, LOESS

With climate change models projecting increasing frequency and severity of
heat waves, heat-related illness (HRI) due to environmental exposure is of
increasing public health concern (Spector & Sheffield, 2014). One popula-
tion at increased risk is that of farmworkers, whose heat-related mortality rate
is nearly 20 times that of the U.S. civilian population (Jackson & Rosenberg,
2010). We have undertaken a community-based participatory research proj-
ect among farmworkers to better understand the effects of occupational heat
exposure on body core temperature, as well as the association of body core
temperature with other physiological measures of heat stress, enabling us to
identify the workers at highest risk for HRI.

The current workplace recommendation for core body temperature (T,)
set by the American Congress of Government and Industrial Hygienists
(ACGIH; 1995) is a threshold limit value of 38 °C; it is recommended that a
worker’s T, not be permitted to exceed this threshold to avoid progression to
heat exhaustion and heat stroke. Understanding the interplay of workplace
environmental temperature, physical exertion, and T, in real time requires
collecting and analyzing copious quantities of complex physiologic data over
extended periods. Although affordable technology now exists to measure T,
in a non-laboratory setting continuously over the course of a workday, new
technical challenges and a new data paradigm have arisen with this advance,
necessitating novel analytic approaches. With these challenges also lie oppor-
tunities to analyze data in novel ways that can more fully explain the underly-
ing phenomena.

Ultimately, we wish to determine if symptoms of heat stress are related to
T, in a dose—response fashion, as well as understand patterns of correlation
between T, environmental temperature, physical exertion, and physiologic
strain. We will take advantage of the new power of continuous T, measure-
ments by analyzing these data with functional data analysis (FDA; Ramsay &
Silverman, 2005), a set of techniques that allows relationships to be tested
based on smoothed data curves of T, rather than simple per-person summary
measures of T..

Purpose

In this article, we describe the technical issues related to capturing real-time
T, and the analytic issues arising when large amounts of such data points are
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generated, detailing how we responded to these issues. We use the data col-
lected from 88 participants enrolled in our summer 2015 data collection
period as exemplars of these issues as well as to illustrate our analytic
approaches.

Method
Setting and Design

In a community-based participatory research project among farmworkers, we
enrolled 88 workers in a longitudinal cohort study and assessed 86 of them
over the course of up to 3 working days.

Participants

Community health workers recruited participants. Each week, the health
workers consented and enrolled a cohort of no more than 14 participants.
Exclusion criteria (based on recommendations of the manufacturer of the
sensor) are as follows:

Weight less than 80 pounds;

Type 1 diabetes;

History of disease of the esophagus, stomach, or intestine;
Previous surgery of the esophagus, stomach, or intestine;
Dysphagia;

Presence of a pacemaker;

Pregnancy.

Measuring core body temperature is part of a broader collection of data
that includes baseline and daily questionnaires capturing work habits, health,
and heat stress symptoms; clinical measurements focusing on signs of dehy-
dration; and environmental conditions. Results based on the interrelationship
of those data will be addressed in future papers. This protocol was reviewed
and approved by our institutional review board.

Physiological Data Collection

The CorTemp® Sensor (HQInc., Palmetto, FL; “the pill”) is an ingestible
device about the size of a large vitamin pill that wirelessly transmits T, as it
moves through the digestive tract. The gold standard for measuring core body
temperature is rectal temperature. Intestinal temperature via the CorTemp
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ingestible thermistor has been shown to be an equally valid, less invasive
method that is highly correlated to rectal temperature ( = .86), with an intra-
class correlation coefficient (ICC) of .87, mean bias of —0.19 °F, and low
coefficient of variation (CV; 1.99 °C) as compared with rectal temperature in
a validation study (Becker et al., 2007).

The pill transmits readings to a sensor worn by the participant. We set the
system to measure T, every 30 s. Based on pilot testing, this interval best
allowed us to capture multiple streams of physiological data that eventually
will be combined; for example, the physiologic strain index (Moran, Shitzer,
& Pandolf, 1998), a function of T, and heart rate, will be explored in a future
analysis as a predictor of HRI. The pill continues to produce readings until it
is excreted from the body.

Each participant wore a neoprene belt with the CorTemp® data recorder
secured in an attached pocket; participants wore the belt on the waist under-
neath clothing. In addition, each participant wore a heart rate monitor around
the torso and, at the hip, an elastic belt with an activity monitor. The three
belts were worn securely underneath clothing, so as not to interfere with daily
activities. At baseline, participants ingested the pill. In the mornings of the
next 3 days, participants reported to the study field office where they donned
the equipment; subsequently, they went to their work sites. After their shifts,
they returned to the field office where we removed the measurement devices.
Before and after each shift, we used the recorder to determine if the pill had
been excreted since the last determination; if so, we gave the participant
another pill to ingest. Data were downloaded from the recorder at the end of
each workday.

Technical Issues

Several technical issues had to be surmounted before data analysis could
commence. These issues can be grouped as personal aspects, system issues,
and outcome definitions, which we discuss in further detail below.

Personal aspects. The first of the personal aspects was that of the acceptability
of the pill. This arose first in subject recruitment. There were 160 people that
came to our field sites to learn more about the study; of these, 88 (55%)
people consented to participate and completed the baseline evaluation. Of the
72 people who did not consent, seven (10%) refused because of concerns
about ingesting such a large pill.

Another issue was worker compliance with the measurement protocol.
Although 88 workers were recruited, only 86 reported prior to the first shift.
The two who did not return were concerned about time commitment. Of the
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86, 81 completed all three shifts. Of the five who did not, two did not have
work on the third day, two did not show at the field office on the third day,
and one started data collection later in the week, and the field office was not
open on that participant’s third observation day.

Another issue related to the pill was that of pill excretion. For each
participant, we determined before and after each shift if the pill was pres-
ent; if not, they were given a new pill to ingest. In addition, there are a
number of individuals who excreted the pill during a shift. We could deter-
mine this occurrence by examining the time-stamped temperatures in com-
parison with the time-stamped heart rate data—if there were no temperature
data after a certain point in the day, but heart rate data continued to accrue,
we inferred that the pill had been excreted. In the 81 workers with 3 days
of observation (prior to data cleaning), 15 excreted the pill during at least
one work period. Ten (12%) workers retained the pill over 3 days and
nights, while another worker excreted the pill during each work period. To
limit analysis to fully monitored workdays, if pill excretion was more than
a brief period (20 min) before the assumed workday stop time, that obser-
vation was excluded.

Noncompliance with the monitoring protocol was another issue. Five
observation days were unusable due to wearing the monitor improperly, tak-
ing it off, or turning it off, possibly due to worker manipulation of the belts to
relieve discomfort.

Finally, there was the issue of how to define a “working day.” For pur-
poses of data registration for the planned FDA (described below), we
need to have a common Time 0 on each day for each worker to serve as
the time that she or he started work. Workers reported to the study field
office in the morning before starting their shifts, at which time they were
equipped with their individual monitors. They then drove to their work
sites, possibly stopping along the way to drop children off for day care or
to pick up food and/or beverages. At the end of the shift, they returned to
the field offices where their monitors were removed. Once there, they also
answered a short questionnaire that included questions about start and
stop times of their work periods. We found that the responses to the ques-
tionnaire about shift start and stop times were highly variable and often
nonsensical, and therefore were not useful for establishing a common
definition of a working day. We decided instead to restrict analyses to the
times between the time of first concurrent temperature and heart rate
detection plus 30 min (start time or time = 0) and the time of last concur-
rent temperature and heart rate detection minus 30 min (stop time). This
was done in an attempt to exclude periods expected to be associated with
travel to and from the worksite.
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Figure |. Examples of data issues and LOESS estimates.

Note. This graph shows several issues that commonly arise in our data. The bouncing ball
effect is seen on the left side, where there are two initial rapid rises in T_ followed by
recovery (A), followed by two rapid declines followed by recovery (B). There is an extreme
value of 34.2 °C at Work Hour 2.28 (C). Finally, there is a substantial gap in the temperature
data between work hours 5.39 and 5.73 (D). Overlaying the observations (triangles) is the
LOESS estimated curve for these data (solid line). LOESS = local regression; T, = core body
temperature.

System issues. Among the system issues was that periods of seemingly ran-
dom missing temperature data, sometimes occurred throughout the observa-
tion period. An example is shown in Figure 1, where all observations between
12:56 and 1:16 p.m. are missing. We examined the distribution of the per-
centage of values for which interim temperature values were missing, and
decided to eliminate any worker’s observation day on which more than 20%
of values were missing. Our rationale was that days with 20% or more miss-
ing were more likely to be due to faulty devices. We also excluded data from
any worker whose monitor failed during the day (» = 11). Finally, we excluded
data from participants who excreted the pill more than 20 min before the stop
time.

A second technical issue occurred when the pill was ingested in the morn-
ing, after which the recordings rose quickly from a low start. Occasionally,
there was a quick peak likely due to drinking a hot beverage. By censoring
observations in the first 30 min, we generally were able to remove the effects
of the early morning consumption of hot beverages (see Figure 1); this would
also allow temperature recordings to stabilize.
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A related issue was that our initial cursory observations revealed an unex-
pected but common data pattern that we term the “bouncing ball” effect (i.e.,
a rapid temperature decline with rapid recovery or a rapid increase with rapid
recovery). This is also illustrated in Figure 1. After subsequent evaluation by
our field staff, we believe that these occurrences were associated with con-
sumption of cold beverages while the pill was still in the stomach or the
proximal portion of the small intestine. Again, this is illustrated in Figure 1.
As beverage consumption throughout the workday is likely to be associated
with the body’s reaction to exertion and to environmental temperature, this is
an important feature to capture.

Another system issue is that the data occasionally included implausible
changes in temperature between 30-s readings. An example is shown in
Figure 1, in which there is a single temperature value of 32 °C occurring 2.3
hr into the measurement period (Figure 1, Point C); the proximal and distal
values close to this extreme reading were between 37 °C and 38 °C. From
conversations with the technical support engineers in HQInc., we attribute
these periodic implausible values to interference from another monitor or
electromagnetic (EM) fields generated by large electric motors, such as fans.
To avoid removing data that may be involved in the “bouncing ball” effect,
only the most extreme singleton readings (=5 degree difference between
nearest neighbors) are set to missing; remaining values are realigned by the
FDA, which smooths out extreme values such as in this example.

Finally, mishandling of files during the download process (mislabeling,
duplication, overlooked) is a potential problem arising from the large number
of biomonitoring data files that must be handled on-site in the field, under
strict time constraints at the end of a day of data collection that may start at 5
a.m. and end in the early evening. Extensive and varied checks are required
to flag files that should be examined for possible mislabeling and identify
those that are missing.

The effects of these cleaning decisions are detailed in Tables 1 and 2. We
began with 88 participants, of which 86 reported for the temperature mea-
surements. We gathered 253 workdays of data from these participants. After
these exclusions, there were 189 workdays from 83 participants with usable
data in our final data set for analysis.

Outcome definitions. Our analytic approach used both summary measures per
person and functional data as outcomes. Summary measures for each work-
day included whether the worker’s T, ever reached or exceeded 38 °C
(defined as at least two consecutive values >38 °C within 1 min, to eliminate
any implausible changes previously mentioned) and duration of time T, > 38
°C. A summary for each worker included the number of workdays with any
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Table I. Issues Affecting the Quality of Core Temperature Data and the Impact
on the Quantity of Data Available for Analysis.

No. of Workdays Workdays
Subjects Removed Remaining

Number of participants, N = 88
Participated on >| workday 86 253
Reasons workday data was unusable

Noncompliance

Did not wear monitor 86 2 251
Wore monitor in pocket 86 | 250
Monitor switched off 86 2 248
Monitor battery failed? 86 Il 237
Pill expelled during workday® 85 16 221
>20% missing values 83 33 189

a. Included one in which pill was expelled.
b. Three pill expulsions occurred within 30 min of morning field office visit. We did not
exclude 3 days when pill expulsion was within 20 min of end of the workday.

elevated T,.. These data points condensed the information from many hun-
dreds of data points into a single measure.

An alternative approach is FDA, the foundational assumption of which is
that the data reflect the smooth functional curves that generated them. In
FDA, the datum associated with replication i is a finite set of measurements,
Yil,..., Yin that occur at n distinct points of some dependent variable, which
is typically, but not always, time. Thus, FDA takes advantage of all data by
treating the individual’s temperature time course curve as an outcome. This
functional object can then be modeled in similar ways to a simple point
response—an example of a simple point response being “T, at precisely 8:00
am in the first observation period.” By using functional analysis, we can cap-
ture important features of T, over the course of the workday that are lost
when using a single summary measure as the response, such as when T, is
more likely to exceed 38 °C during the workday. These functions may also be
used as predictors of health outcomes.

Because our functional observations had occasional data gaps, missing
values, and other noise, it is desirable to smooth the functions for each work-
day prior to further analysis. There are many ways to smooth a functional
response. For these data, we have chosen the LOESS method (Cleveland,
1979; Cleveland & Devlin, 1988). The name LOESS is derived from “LOcal
regrESSion,” and it refers to a locally weighted scatterplot smoothing tech-
nique based on non-parametric regression. Consider a two-dimensional
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Table 2. The Impact of Data Issues on Per Day and Per Person Core
Temperature Data Available for Analysis, Pre-Cleaning Versus After Cleaning.

Pre-Cleaning Post-Cleaning

No. of participants each day

Workday | 86 68

Workday 2 86 6l

Workday 3 8l 60
No. of workdays available per participant

3 workdays 8l 37

2 workdays 5 32

| workday 0 14

scatterplot of T, versus time, ¢, with #n points. The LOESS method builds up a
functional estimate by fitting a low-degree polynomial using weighted least
squares to a subset of the data at each data point. By using weighted least
squares, this method gives more weight to points near the data point whose
response is being estimated. There are two choices of parameters necessary
for application: A, the degree of the local polynomial, and a, the proportion of
the overall data set used for each local fit. Other terms for a include band-
width and smoothing parameter. At each data point, the method uses the na
points (rounded to the nearest integer) that are closest to the point at which
the response is being estimated. The range for a is between (A + 1) /n and 1.
The estimated curve becomes smoother as o increases. Conversely, as o
becomes smaller, more of the features of the functional responses are retained.
However, this comes at a cost of increased computational time as well as
more wiggles in the estimator in response to fluctuations in the data. Figure 1
shows the LOESS estimator overlaid on the data. In this case, we used
o=.10,and A= 1.

After smoothing the T, time curve for each workday, we can apply FDA.
FDA works as follows: Let Y;(f) denote the response variable (e.g., the
smoothed estimator for T, at time #) for subject i on day ; at time z. In our case,

i=1,...,83;j=1,...,n;t €[0, 7}‘]5] , where n; is the number of days for which
subject ; is observed, 7=1,2,3 and Tz,s is the length of time between the

start of work and a timepoint 30 min before the end of the observation period
for subject ; on day j . We can estimate the average curve for subject i as

n.@):ﬁy"‘T(i’),

and the overall sample mean as
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i=1

An alternative strategy is to use an alternative, non-parametric, definition for
central tendency. In our case, due to the skewed distribution of T_, we used
the median as the summary measure for Y:.(¢) . Thus, we defined the overall
median curve, Y (%), for ¢ in some interval [swrr,tena ], as

Y (t):median{Yij (t),j:1,...,n,-,i:1,...,n}.

In a similar manner, we can define the overall percentile curves. After deriva-
tion of these functional estimates, we can apply LOESS again to smooth out
minor fluctuations.

Although these examples may seem simplistic, they allow great flexibility.
Suppose we want to determine if two groups of workers had different rela-
tionships between temperature and time. At each time point, we evaluate the
results of a statistical test, then create an inferential curve of p values, p(?) .
In addition, we address the issue of multiple comparisons (i.e., 60 [5%] of the
~1200 time-point wise statistical tests we conduct will be significant just by
chance) by conducting an omnibus test (Nichols & Holmes, 2002) for signifi-
cance tests at a fixed overall significance level. The omnibus test is a permu-
tation test of group assignments of the maximal test statistic over the interval
of interest in which we reject the omnibus hypothesis at level o, if the maxi-
mal statistic for the actual realization of the group assignments is in the top
1000% of the permutation distribution for the maximal statistic.

Results

In Table 3, we describe the demographic and occupational characteristics of
our usable sample. The majority of participants were female (63%), and the
average age was 37.7 years. During this recruitment season, participants
worked in two different segments of the agriculture industry—fernery (81%)
and nursery (19%). The median duration of observation was 6.0 hr (inter-
quartile range [IQR] = 4.9-8.3) for the group as a whole; for fernery partici-
pants, it was 5.5 hr (IQR = 4.7-7.1), whereas for nursery participants, it was
9.5 hr (IQR = 8.8-10.6).

We found readings of T, exceeding 38 °C at some point on 61% of work-
days, and 83% of participants had at least 1 workday on which T, > 38 °C at
some point (Table 4). Among the 37 participants with 3 days of usable data,
32% had 1 day, 16% had 2 days, and 41% had all 3 days on which T, > 38 °C
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Table 3. Characteristics of 83 Participants With 189 Workdays of Usable Data.

Characteristic n (%) of Participants M (Minimum-Maximum)

Type of agricultural work

Fernery 67 (81%)
Nursery 16 (19%)
Gender
Female 52 (63%)
Age, years 37.7 (19-54)

Table 4. Distribution of Per Workday and Per Person Summaries of Continuously
Measured Core Temperature.

Median (Ist and

nIN (%) 3rd quartile)
No. of days with core temperature >38 °C 116/189 (61%)
No. of participants with core temperature 69/83 (83%)

>38 °C on at least | day

No. of days with core temperature >38 °C, per participant (among those with 3
days data)?

0 days 4/37 (11%)
| day 12/37 (32%)
2 days 6/37 (16%)
3 days 15/37 (41%)
On those days with core temperature >38 °C
Average time until 238 °C, min 193 (109-257)
Average duration >38 °C, min 49 (21-109)

a. Among those with 2 days of data (n = 32), 34% had 2 days and 53% | day >38 °C; among
those with | day of data (n = 14), 57% reached core temperatures >38 °C on that day.

at some point. Among those with 2 days of data (n = 32), 53% had 1 day and
34% had 2 days on which T, > 38 °C at some point on that day; among those
with 1 day of data (n = 14), 57% had T, > 38 °C at some point on that day. For
these workdays, the median time to reach T, > 38 °C was 193 min (IQR =
109-257 min), and the average duration of T, > 38 °C was 49 min (IQR =
21-109 min).

We plotted the LOESS estimates overlaid on the observed data for each
workday, using A =1 and a = .1, .15, and .5. We found that a. = .1 struck an
appropriate balance between smoothing out fluctuations in the data and
maintaining the features of the T _—time relationship, hence all further work
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Figure 2. FDA median estimates for T versus time (closed circles) are overlaid
with the smoothed curve (solid line). Also shown are smoothed curves for the 5th

(short dash) and 95th (long dash) percentile values of these curve estimates.
Note. FDA = functional data analysis.

used A = 1 and a = .1. We also examined the mean and median functional
curves and found that the median was less noisy, smoothing over noisy phe-
nomena such as the bouncing ball effect without totally dampening this
important feature. In Figure 2, we plot the median values of the LOESS esti-
mates at each time point, as well as smoothed curves for the 5th and 95th
percentile values. Note the noise occurring after Hour 10, when only a few
participants remained working.

Figure 3 shows smoothed median and upper and lower percentile LOESS
estimated curves for fernery (left-hand side) and nursery participants (right-
hand side). Although the median curve never exceeds the threshold limit
value, the 90th percentile curve does so for part of the day, indicating that at
least 10% of fernery workdays have T, > 38 °C sometime between the end of
the fourth hr to the end of the 9th hr after starting work. While the median
curve for nursery participants similarly never exceeds the threshold limit
value, the 90th percentile curve also never exceeds it.

Figure 4 shows smoothed median curves for fernery and nursery partici-
pants superimposed with a rug plot of the results of the permutation test con-
ducted at each time point comparing the two groups. The median T, for
fernery participants exceeds that for nursery participants throughout the day,
significantly so around the end of the first work hour, and again between
Hours 5 and 8. Larger stars on the figure’s lower significance bar (“the rug”)
indicate statistical significance using the omnibus critical value.
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Figure 3. Smoothed FDA estimates for median (solid line), 10th (short dash),
and 90th (long dash) percentile values for T in fernery (left) and nursery (right)
workers.

Note. FDA = functional data analysis; T, = core body temperature.
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Figure 4. Rug plot of results of significance tests for differences in core
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30-s time interval.

Note. Point-wise significant times are marked with open circle, whereas the triangles indicate
points that meet the omnibus significance test. Both types of tests were carried out at the .05

significance level.
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Discussion

We have deployed an innovative technology—ingestible temperature sen-
sors—in a field setting for an epidemiological study of environmental heat
exposure. These sensors produce vast amounts of real-time data on physio-
logic conditions; as such these data present a new data paradigm that has both
challenges and rewards.

The primary challenge is in managing and examining the tremendous
quantity of data to assure data quality. We discovered unexpected wrinkles as
part of our data wrangling (the process of data cleaning and merging data
from disparate sources) in preparation for analysis. For instance, we found
that a quarter of the days observed had participant or technical issues that
prevented their use in analysis. There are two implications. First, researchers
should anticipate such data loss when considering sample size requirements
during study planning stages. Second, the issues that we encountered and
describe above illustrate the importance of graphing data, participant by par-
ticipant, prior to analysis to understand what problems have arisen.

However, the “Big Data” collected by continuous monitoring provides
new opportunities for in-depth understanding of the interplay between envi-
ronmental and work inputs and physiologic responses. By using several
methods of summarizing the abundant data monitored in real time, we were
able to highlight different aspects of the information. For example, using
simple per day and per person summaries, we observed that on a majority of
days, participants developed T, values exceeding the threshold limit value at
some point during the workday, and four fifths of participants exceeded the
threshold limit value on at least 1 workday. With the use of FDA, we gained
additional insight into the time course of the physiologic response beyond
that culled from the summary statistics, determining that fernery participants
were significantly hotter than nursery participants during some portions of
the day.

Our finding that fernery participants have higher T, values was not sur-
prising, based on previous data research with these communities. In both
industries, much of the work occurs in hot enclosed environments and work-
ers are under pressure to meet certain production quotas, requiring rapid
work and limited breaks. Yet there are differences in the physical structure of
the two work environments and the nature of work tasks performed that may
account for the differences in measurements. Fernery work takes place in
fields that are open on four sides, but are covered by porous black shadecloth
(“saran”) or, less commonly, under natural tree cover. Ventilation in ferneries
is limited, and although there is usually a packing shed with toilet and sink
somewhere on the property, it is often not close to workers in the field.
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Harvesting ferns requires a lot of bending, carrying, and rushing down fields.
Workers bend over repeatedly to thrust their arms into masses of ferns, cut the
fronds at their base, and secure them into bunches of 20 to 25 fronds. They
leave the frond bunches on the ground until they have a particular quantity,
then they gather up all the frond bunches into an armload, which they quickly
carry to a trailer waiting at the edge of the field. Nursery work involves the
production of potted flowers and foliage mainly in more permanent struc-
tures enclosed by nonporous plastic, and there are often fans and ventilation
within these structures. There are usually permanent outbuildings close to
workers that have toilets and sinks. Work tasks are variable, but often require
standing at a particular station for extended periods of time to plant at con-
veyor belts or load pots of plants into trays (Flocks et al., 2013; Mayer,
Flocks, & Monaghan, 2010).

We collected the data reported here in summer 2015, during which we
were only able to recruit a portion of the nursery workers that we had planned.
To allow for more accurate comparison, additional nursery workers and other
field crop workers will be recruited in future seasons as a means to minimize
the discrepancies between the numbers of workers in each industry.

LOESS smoothing and FDA techniques cannot overcome the noise pres-
ent in the data when sample sizes are small, as seen in later times in Figure 3,
as many fewer participants had shifts longer than 10 hr. Although we accom-
plished part of the process of data registration by starting all workdays from
a common Time 0, our inference suffers at later times as the sample size
decreases for longer workdays. Therefore, a future direction is to explore the
process of data warping, where we transform each workday to begin at a
common Time 0 and end at a common Time 1—each interval on the x axis
will then represent a proportion of workday.

Another future direction is to formalize and automate smoothing parame-
ter selection. For these data, we used visual inspection, but in 2017, when we
reach our targeted sample size of 400 participants, each with up to 3 work-
days, visual inspection will not be possible. One possible approach is to sum-
marize the parameter estimates of noise reduction and parameter retention
across a space of smoothing parameters, and to identify the point at which a
minimax is found.

Communication of these findings to the community partner in a way that
will allow for workers to understand their risk for HRI and generate appropri-
ate action toward attenuating these risks will also be challenging. Our next
analytical efforts will be directed at integrating T, with the simultaneous
heart rate and actigraphy data into predictive models of HRI.

The results of this work illustrate analytical techniques used when sensors
generate large amounts of data that are often messy or not easily interpretable.
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Sophisticated smoothing and FDA techniques allow us to discover patterns in
the data, testing these patterns as independent or dependent variables, rather
than only looking at more simplified outcome measures. These approaches
have direct applicability to other large data generating devices outside of agri-
cultural heat stress monitoring, including physiologic readings from patient
monitoring devices in the intensive care unit.

Although the challenges of analyzing large real-time data sets are substan-
tial, the importance of this work cannot be minimized. Rising temperatures
are a real threat to human life and the frequency at which workers exceed the
core body temperature that is safe to continue to work is of great concern. The
graphs depicted in this article illustrate what is happening physiologically in
groups of workers over time and can be used to develop compelling messages
advocating for policy to protect vulnerable working populations.
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