

prevents the long-term cognitive impairment and disability that currently affect a large number of critical illness survivors (4). When the sandman visits the ICU, he will ideally leave critically ill patients with better outcomes both in the short term and for many years to come. Though delirium prevention, whether through promotion of sleep or via other mechanisms, has important short-term benefits, its greatest benefits may very well come from effects on long-term outcomes. For this reason, we recommend that long-term outcomes be included in every clinical trial of an intervention directed at delirium in the ICU.

With only one randomized trial available at this time to inform us about the effects of nocturnal dexmedetomidine in the ICU, it would be premature to recommend nocturnal dexmedetomidine for all ICU patients. But the strategy shows promise and should be considered an evidence-based alternative to other drugs that are sometimes used in the ICU to minimize delirium and/or promote sleep, such as antipsychotics and melatonin. We now need confirmatory trials that examine not only delirium but also mechanisms, multiple schedules, and patient populations, and, perhaps most importantly, long-term outcomes. ■

Author disclosures are available with the text of this article at www.atsjournals.org.

Erin Nuzzo, M.D.

Department of Medicine
University of Pittsburgh School of Medicine
Pittsburgh, Pennsylvania

Timothy D. Girard, M.D., M.S.C.I.

Department of Critical Care Medicine
University of Pittsburgh School of Medicine
Pittsburgh, Pennsylvania

ORCID ID: 0000-0002-9833-4871 (T.D.G.)

References

1. Barr J, Fraser GL, Puntillo K, Ely EW, Gélinas C, Dasta JM, et al.; American College of Critical Care Medicine. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. *Crit Care Med* 2013;41:263–306.
2. Girard TD, Jackson JC, Pandharipande PP, Pun BT, Thompson JL, Shintani AK, et al. Delirium as a predictor of long-term cognitive impairment in survivors of critical illness. *Crit Care Med* 2010;38:1513–1520.
3. Brummel NE, Jackson JC, Pandharipande PP, Thompson JL, Shintani AK, Dittus RS, et al. Delirium in the ICU and subsequent long-term disability among survivors of mechanical ventilation. *Crit Care Med* 2014;42:369–377.
4. Pandharipande PP, Girard TD, Jackson JC, Morandi A, Thompson JL, Pun BT, et al.; BRAIN-ICU Study Investigators. Long-term cognitive impairment after critical illness. *N Engl J Med* 2013;369:1306–1316.
5. Weinhouse GL, Schwab RJ, Watson PL, Patil N, Vaccaro B, Pandharipande P, et al. Bench-to-bedside review: delirium in ICU patients—importance of sleep deprivation. *Crit Care* 2009;13:234.
6. Flannery AH, Oyler DR, Weinhouse GL. The impact of interventions to improve sleep on delirium in the ICU: a systematic review and research framework. *Crit Care Med* 2016;44:2231–2240.
7. Pandharipande PP, Sanders RD, Girard TD, McGrane S, Thompson JL, Shintani AK, et al.; MENDS Investigators. Effect of dexmedetomidine versus lorazepam on outcome in patients with sepsis: an a priori-designed analysis of the MENDS randomized controlled trial. *Crit Care* 2010;14:R38.
8. Riker RR, Shehabi Y, Bokesch PM, Ceraso D, Wisemandle W, Koura F, et al.; SEDCOM (Safety and Efficacy of Dexmedetomidine Compared With Midazolam) Study Group. Dexmedetomidine vs midazolam for sedation of critically ill patients: a randomized trial. *JAMA* 2009;301:489–499.
9. Reade MC, Eastwood GM, Bellomo R, Bailey M, Bersten A, Cheung B, et al.; DahLIA Investigators; Australian and New Zealand Intensive Care Society Clinical Trials Group. Effect of dexmedetomidine added to standard care on ventilator-free time in patients with agitated delirium: a randomized clinical trial. *JAMA* 2016;315:1460–1468.
10. Alexopoulou C, Kondili E, Diamantaki E, Psarologakis C, Kokkini S, Bolaki M, et al. Effects of dexmedetomidine on sleep quality in critically ill patients: a pilot study. *Anesthesiology* 2014;121:801–807.
11. Skrobik Y, Duprey MS, Hill NS, Devlin JW. Low-dose nocturnal dexmedetomidine prevents ICU delirium: a randomized, placebo-controlled trial. *Am J Respir Crit Care Med* 2018;197:1147–1156.
12. Su X, Meng ZT, Wu XH, Cui F, Li HL, Wang DX, et al. Dexmedetomidine for prevention of delirium in elderly patients after non-cardiac surgery: a randomised, double-blind, placebo-controlled trial. *Lancet* 2016;388:1893–1902.
13. van den Boogaard M, Slooter AJC, Brüggemann RJM, Schoonhoven L, Beishuizen A, Vermeijden JW, et al.; REDUCE Study Investigators. Effect of haloperidol on survival among critically ill adults with a high risk of delirium: the REDUCE randomized clinical trial. *JAMA* 2018;319:680–690.
14. Pandharipande PP, Pun BT, Herr DL, Maze M, Girard TD, Miller RR, et al. Effect of sedation with dexmedetomidine vs lorazepam on acute brain dysfunction in mechanically ventilated patients: the MENDS randomized controlled trial. *JAMA* 2007;298:2644–2653.
15. Girard TD, Thompson JL, Pandharipande PP, Brummel NE, Jackson JC, Patel MB, et al.. Clinical phenotypes of delirium and severity of subsequent long-term cognitive impairment: a prospective cohort study. *Lancet Respir Med* 2018;6:213–222.

Copyright © 2018 by the American Thoracic Society

The Long-Term Effects of Cleaning on the Lungs

Past studies have demonstrated that cleaning in a variety of work settings is a risk factor for adverse respiratory health effects, most notably asthma (1, 2). Excess asthma and respiratory symptoms

Supported by intramural funding from the National Institute for Occupational Safety and Health. The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the National Institute for Occupational Safety and Health.

Originally Published in Press as DOI: 10.1164/rccm.201801-0138ED on February 23, 2018

have also been documented in persons cleaning at home (2, 3). In this issue of the *Journal*, Svanes and colleagues (pp. 1157–1163) examine the long-term effects of cleaning, using data from the European Community Respiratory Health Survey (ECRHS) (4). The authors showed that for women, but not men, both occupational and domestic cleaning were associated with accelerated declines in spirometric parameters over the course of 20 years. They found that the size of the effect was comparable to smoking 10 to 20 cigarettes daily during the study period.

ECRHS is a large, multicenter, population-based cohort study that began in the 1990s to address the increasing burden of asthma and its potential environmental causes (5). In their study, Svanes and colleagues included more than 6,000 adults recruited in 1992–1994 at ages 20 to 44 years (ECRHS I) and followed-up in 1998–2002 (ECRHS II) and 2010–2012 (ECRHS III) (4). Interviews and spirometry were conducted at each of the three time points, and self-reported cleaning activity information was collected during ECRHS II. Serial spirometric data were available for more than 85% of the participants.

At baseline, the study population was relatively young and healthy, with a mean age of 34 years, doctor-diagnosed asthma prevalence of 6%, and mean spirometric parameters exceeding 100% of predicted. Women, who made up 53% of the participants, were more likely than men to report cleaning occupationally (9% vs. 2%) or at home (85% vs. 47%). In models accounting for potential confounders, women who cleaned had accelerated declines in FEV₁ and FVC compared with women who did not. Occupational cleaning was associated with an additional loss of 3.9 ml/yr for FEV₁ and 7.1 ml/yr for FVC; cleaning at home was associated with an additional loss of 3.6 ml/yr for FEV₁ and 4.3 ml/yr for FVC. Similar accelerated declines were noted for at least weekly use of spray cleaners (for FEV₁) and other types of cleaners (for both FEV₁ and FVC). As the authors note, differential sensitivity to respiratory toxins or methodological issues might explain the absence of effect for men. The study may not have been sufficiently powered (just 57 men reported occupational cleaning), or the male reference group may have had other hazardous exposures that contributed to their rates of decline. Indeed, contrary to expectation (6), the rates of decline for noncleaners were considerably higher in men (26.4 ml/yr for FEV₁ and 17.8 ml/yr for FVC) than women (18.5 ml/yr for FEV₁ and 8.8 ml/yr for FVC), suggesting that the effects of cleaning may have been underestimated for men.

Changes in spirometric parameters are nonspecific, so this study cannot determine the underlying disease process. Women who cleaned reported more doctor-diagnosed asthma in ECRHS II than women who did not (up to 13.7% vs. 9.6%). However, women with and without asthma had the same relationships between cleaning and spirometric parameters. Asthma may go undiagnosed, so inclusion of asthma symptoms might have been illuminating. Recently, occupational cleaning has been identified as a risk factor for chronic obstructive pulmonary disease (7, 8). Odds ratios for incident chronic airway obstruction were elevated among female cleaners, but there were few cases, and differences were nonsignificant. Furthermore, declines in FEV₁ and FVC occurred in parallel, raising the possibility that cleaning led to interstitial changes, as occurred with humidifier disinfectant (9). In addition, bronchiolitis has been reported with some cleaning chemicals, and protean spirometric findings are possible (10). Tools such as oscillometry, specific inhalation challenge testing, analysis of particles in exhaled air, and quantitative chest computed tomography may complement spirometry in future studies.

Cleaning exposures include chemicals that are known sensitizers and irritants, chemicals with poorly characterized respiratory effects, and mixtures of all three, in addition to indoor allergens and pollutants (11). In this study, cleaners likely used a range of cleaning products for variable frequency and duration. This spectrum of exposures might have resulted in a spectrum of

outcomes, with some participants' accelerated decline related to airway obstruction and others' to interstitial changes, as with other complex inhalational exposures (12). That such a blunt exposure metric performed as well as it did is remarkable, and highlights the tremendous value of a well-designed prospective observational study such as ECRHS to detect associations that would not be evident using a cross-sectional approach or with a smaller cohort. Nonetheless, many questions about exposures remain unanswered, and Svanes and colleagues' findings provide strong support for expanded exposure assessment in future studies (4).

Most studies of cleaners face similar exposure assessment challenges. Contributing to these challenges are incomplete information on products used and their ingredients, an abundance of cleaning products on the market, and a lack of methods to simultaneously measure multiple chemicals (2). Yet quantitative exposure assessment is critical not only to identify causative chemicals and inform the development of exposure limits but also to identify effective strategies to prevent or manage adverse respiratory health effects. Product substitution or elimination requires knowledge of the causative agents and a mechanism to certify the safety of alternative products. Although Green Seal certifies products as asthmag-free, numerous other "green" or "eco-friendly" labels do not necessarily shield against adverse respiratory health effects (13). For example, a new peroxygen-containing product promoted as a safer alternative to other sporidical disinfectants was nonetheless associated with symptoms among cleaners and healthcare workers (14). Effective engineering or administrative controls require knowledge of exposure levels and the specific tasks, tools, and workplace or home characteristics leading to exposures. Efforts to raise awareness among workers, employers, and the public about the risks of cleaning, and among healthcare professionals to recognize cleaning-related respiratory disease, would also benefit from knowledge of causative agents and exposures. Future studies could incorporate direct reading instruments with advanced sensors now in development for simultaneous measurement of multiple chemicals (15).

Although more certainty about pathophysiology and exposure is welcome, it would be a mistake simply to wait for the results of future investigations. These results should prompt prudent actions to prevent long-term lung damage among cleaners, including modifying cleaning practices, such as eliminating the use of spray products; mixing products in ventilated areas or purchasing ready-to-use products; judicious and selective use of cleaning products for specific applications; increasing public awareness about hazards and dispelling misperceptions that cleaning agents for home use or "green" cleaners are "safe"; training workers, employers, and healthcare professionals about the effects of cleaning; forming stakeholder committees to make cleaning product purchasing policies; incorporating questions on use of cleaning products in population-based respiratory disease surveillance; and where other control measures are not feasible, considering the use of appropriate respiratory protection (1, 2). The time to act is now. ■

Author disclosures are available with the text of this article at www.atsjournals.org.

Kristin J. Cummings, M.D., M.P.H.
M. Abbas Virji, Sc.D.

Respiratory Health Division
National Institute for Occupational Safety and Health
Morgantown, West Virginia

References

1. Folletti I, Zock JP, Moscato G, Siracusa A. Asthma and rhinitis in cleaning workers: a systematic review of epidemiological studies. *J Asthma* 2014;51:18–28.
2. Siracusa A, De Blay F, Folletti I, Moscato G, Olivieri M, Quirce S, et al. Asthma and exposure to cleaning products: a European Academy of Allergy and Clinical Immunology task force consensus statement. *Allergy* 2013;68:1532–1545.
3. Zock JP, Plana E, Jarvis D, Antó JM, Kromhout H, Kennedy SM, et al. The use of household cleaning sprays and adult asthma: an international longitudinal study. *Am J Respir Crit Care Med* 2007;176:735–741.
4. Svanes Ø, Bertelsen RJ, Lygre SHL, Carsin AE, Antó JM, Forsberg B, et al. Cleaning at home and at work in relation to lung function decline and airway obstruction. *Am J Respir Crit Care Med* 2018;197:1157–1163.
5. European Community Respiratory Health Survey [accessed 2018 Jan]. Available from: <http://www.ecrhs.org>.
6. Kohansal R, Martinez-Camblor P, Agustí A, Buist AS, Mannino DM, Soriano JB. The natural history of chronic airflow obstruction revisited: an analysis of the Framingham offspring cohort. *Am J Respir Crit Care Med* 2009;180:3–10.
7. De Matteis S, Jarvis D, Hutchings S, Darnton A, Fishwick D, Sadhra S, et al. Occupations associated with COPD risk in the large population-based UK Biobank cohort study. *Occup Environ Med* 2016;73:378–384.
8. Van den Borre L, Deboosere P. Health risks in the cleaning industry: a Belgian census-linked mortality study (1991–2011). *Int Arch Occup Environ Health* 2018;91:13–21.
9. Kim HJ, Lee MS, Hong SB, Huh JW, Do KH, Jang SJ, et al. A cluster of lung injury cases associated with home humidifier use: an epidemiological investigation. *Thorax* 2014;69:703–708.
10. Cummings KJ, Kreiss K. Occupational and environmental bronchiolar disorders. *Semin Respir Crit Care Med* 2015;36:366–378.
11. Quirce S, Barranco P. Cleaning agents and asthma. *J Investig Allergol Clin Immunol* 2010;20:542–550, quiz 2p, 550.
12. Caplan-Shaw CE, Yee H, Rogers L, Abraham JL, Parsia SS, Naidich DP, et al. Lung pathologic findings in a local residential and working community exposed to World Trade Center dust, gas, and fumes. *J Occup Environ Med* 2011;53:981–991.
13. Dahl R. Green washing: do you know what you're buying? *Environ Health Perspect* 2010;118:A246–A252.
14. Hawley B, Casey M, Virji MA, Cummings KJ, Johnson A, Cox-Ganser J. Respiratory symptoms in hospital cleaning staff exposed to a product containing hydrogen peroxide, peracetic acid, and acetic acid. *Ann Work Expo Health* 2017;62:28–40.
15. Dieffenderfer J, Goodell H, Mills S, McKnight M, Yao S, Lin F, et al. Low-power wearable systems for continuous monitoring of environment and health for chronic respiratory disease. *IEEE J Biomed Health Inform* 2016;20:1251–1264.

Copyright © 2018 by the American Thoracic Society

Complementing Lung Cancer: How Tumor Cells Co-opt the Host Complement System to Reach Bone

Lung cancer remains the number one cause of cancer-related death worldwide. Despite significant advances in early detection, resection, genetics, and targeted therapies, its 5-year survival remains below 20% (1). A major reason for its grim prognosis relates to the fact that most lung cancers are detected late, often after the cancer has metastasized to other organs. Of these, bone metastasis has long been described as affecting up to 40% of patients and represents a major source of morbidity and mortality (2). The cumulative survival rates after bone metastasis in the setting of lung cancer is 11.3% at 2 years, with a mean survival of 9.7 months (3). Thus, new insights into the molecules and pathways involved in osseous metastasis in this disease should be pursued to identify potential targets for intervention.

The complement system was recently associated with poor prognosis in patients with lung cancer (4). The complement system is best known for its role in innate and adaptive immunity, as its cascade leads to activation of the anaphylatoxins C3 and C5, which participate in the formation of membrane attack complexes on the surface of target cells (5). Notably, although C3b and C5b participate in opsonization and the assembly of membrane attack complexes, C3a and C5a activate cognate G protein-coupled signaling receptors termed C3R (C3 receptor) and C5aR1 (C5a receptor 1) and C5aR2, respectively, which are implicated in diverse biological processes ranging from cellular chemotaxis and vascular permeability to atherosclerosis (6). Regarding cancer,

C5a has been found to impair antitumor immune responses through modulation of regulatory T-cell function and the production of immunosuppressive cytokines (7, 8). It is through these nonopsonin pathways that the complement system is thought to affect cancer progression, but the exact mechanisms involved remain incompletely elucidated.

In this issue of the *Journal*, Ajona and colleagues (pp. 1164–1176) bring new insight into this area by setting out to explore the potential role of the C5a/C5aR1 axis in bone metastases, using experimental models of lung cancer (9), but first they showed that patients with high levels of C5aR1 mRNA in tumor cells manifest shorter recurrence-free survival and overall survival, although the exact reason for this was not investigated. Tumor cells as well as host stromal cells, epithelial cells, neutrophils, and macrophages stained positive for C5aR1 in patients diagnosed with non–small cell lung cancer. Notably, higher C5aR1 levels were found in primary lung tumors harvested from patients with bone metastases when compared with those with metastases to nonskeletal sites. Further *in vitro* studies revealed that these receptors are functional in lung A549 cells. Of interest, recombinant C5a did not affect cell proliferation, but increased cell motility and invasiveness, processes inhibited by a matrix metalloproteinase inhibitor.

To study bone metastasis, the investigators used A549M1 cells derived from a parental A549 cell line previously shown to selectively form osseous metastases; these cells were silenced for C5aR1 using lentiviral transduction. Using this system, they found that C5a-mediated induction of motility and invasiveness was

Originally Published in Press as DOI: 10.1164/rccm.201801-0032ED on January 24, 2018