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This study explored the use of body posture kinematics derived from wearable inertial sensors to
estimate force exertion levels in a two-handed isometric pushing and pulling task. A prediction
model was developed grounded on the hypothesis that body postures predictably change
depending on the magnitude of the exerted force. Five body postural angles, viz., torso flexion,
pelvis flexion, lumbar flexion, hip flexion, and upper arm inclination, collected from 15 male
participants performing simulated isometric pushing and pulling tasks in the laboratory were used
as predictor variables in a statistical model to estimate handle height (shoulder vs. hip) and force
intensity level (low vs. high). Individual anthropometric and strength measurements were also
included as predictors. A Random Forest algorithm implemented in a two-stage hierarchy
correctly classified 77.2% of the handle height and force intensity levels. Results represent early
work in coupling unobtrusive, wearable instrumentation with statistical learning techniques to
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model occupational activities and exposures to biomechanical risk factors in situ.

INTRODUCTION

Direct measurement of external force demands in
ambulatory material handling tasks (such as pushing,
pulling, carrying with different load levels) in situ
remains a challenge for ergonomics analysis. These
force estimates typically get used as inputs to
biomechanical models for estimating joint loads and
assessing injury risk. Towards assessing external loads
and kinetics in ambulatory tasks, previous studies have
used pressure mapping insoles (Cordero, Koopman, &
Van Der Helm, 2004) and instrumented force shoes
(Faber, Kingma, Schepers, Veltink, & Van Dieen, 2010)
to measure ground reaction forces, instrumented hand
gloves to measure grasp forces (Castro & Cliquet, 1997),
and electromyography (EMG) to measure muscle
activity thereby estimating the magnitude of force
exerted (Theado, Knapik, & Marras, 2007). Such
methods require trained ergonomists and can be
cumbersome and obtrusive.

Motion analysis systems comprising body-worn
inertial sensors have been used for measuring spatio-
temporal gait parameters (Aminian, Najafi, Biila,
Leyvraz, & Robert, 2002), joint kinematics (Bernmark &
Wiktorin, 2002; El-Gohary & McNames, 2012) and for
material handling activity classification (Kim &
Nussbaum, 2014). Recent advances in biomechanical
analysis techniques have also investigated estimating of
joint loads during normal walking using just kinematic
data from inertial sensors (Karatsidis et al., 2017).

In this paper, we explore the potential use of inertial
sensor-based posture kinematics and statistical learning
techniques to predict external load conditions,

specifically normalized push and pull force levels. Prior
ergonomics research has shown that, given certain work
constraints, body posture is organized systematically and
predictably in response to external force demands (e.g.,
Hoffman, 2008; Lim, Case, & D’Souza, 2016). We
developed and tested a statistical prediction model with a
limited set of posture variables from inertial sensors and
anthropometry variables to estimate normalized high vs.
low force levels and location of force exertion (shoulder
vs. hip height) during pushing and pulling task. We
focus on the Random Forest technique which yielded the
highest prediction accuracy from among five statistical
learning techniques that were evaluated.

METHODS
Study Participants

The study recruited fifteen healthy right-handed
male individuals aged between 18 to 35 years old from
the university population. Gender and age restriction
were applied to minimize variability in task postures.
Average (SD) age, height, and weight of participants
were 23.9 years (3.7 years), 1762mm (49mm), and
69.55kg (9.30kg) after excluding data from three
participants due to instrumentation error. Prior to
participation, participants provided written informed
consent and were screened for pre-existing back injuries
or chronic pain with a body discomfort questionnaire
adapted from the body mapping exercise developed by
NIOSH (Cohen, 1997). The study was approved by the
university’s Institutional Review Board.
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Experiment Procedure

The experiment had participants exert an isometric
horizontal force on an instrumented handle (Figure 1) to
achieve and maintain a required target force level (+5%)
for a 3s interval in 36 counterbalanced task conditions.
Task conditions were varied by manipulating four task
parameters, viz., handle height, force intensity,
handedness, and force direction. In this paper, we focus
on two of the task parameters, i.e., handle height (hip vs.
shoulder level) and force intensity (low vs. high). The
low-level force intensity was set to 25% and the high-
level to 75% of the participant’s two-handed maximum
push exertion (MVE; Hoffman, 2008) measured at hip
height and averaged over two trials.

Sensor 1. T6 ........................................... J Force ]ntenSIty

(Low and high)
Sensor 2.
R. upper arm

Handle Height

Sensor 3. (Shoulder and hip)
L5/S1
Sensor 4, -
R. thigh

Figure 1. Schematic representation of the experiment
apparatus and instrumentation showing anatomical reference
locations for the inertial sensors attachment.

Data Processing

During the experiment, body posture kinematics
were obtained using four commercial data-logging IS
devices (YEI Technology, Inc.) attached over the sixth
thoracic (T6) vertebra, low-back (L5/S1), lateral aspect
of the right upper arm, and lateral aspect of the right
thigh using customized Velcro straps (Figure 1). The IS
devices recorded triaxial accelerometer, gyroscope, and
magnetometer data at 100-Hz sampling frequency. The
data was filtered using a second-order low-pass zero-lag
Butterworth filter with a 2-Hz cut-off frequency. Three-
dimensional segment orientations using IS data were
computed using a custom algorithm implemented in
MATLAB R2016b (The MathWorks Inc.) and averaged
over the 3s task duration (for details see Lim et al.,
2016).

Statistical Data Analysis

Variable selection. Three segment postural angles
(viz., torso flexion, pelvis flexion, and right upper arm
inclination) relative to the reference posture (T pose) and
two joint angles (lumbar flexion and right hip flexion)
were selected as potential predictor variables. Nineteen
anthropometric and strength measurements were also
included as predictors. Tests for multicollinearity (i.e.,
correlation coefficient > 0.90) resulted in 13 variables
being excluded from further analysis.

The final set comprised eleven variables, viz., five
posture variables: torso flexion (TF), pelvis flexion (PF),
right upper arm inclination (UA), lumbar joint flexion
(LF), and right hip flexion (HF), and six person
variables: stature, weight, grip strength (right-hand),
push MVE, L5/S1 to floor height, and Greater
Trochanter to floor height.

Statistical model development. A preliminary
analysis was conducted comparing five statistical
classification techniques, viz., multinomial logistic
regression, linear discriminant analysis, classification
and regression trees, random forest, and naive bayes in
predicting the external force level as a categorical
variable with four classes (high force at shoulder height,
low force at shoulder height, high force at hip height,
and low force at hip height). Among these techniques,
the Random Forest had the highest prediction accuracy
when estimating the external load level and is the focus
of this analysis.

Random Forest (RF; Breiman, Friedman, Olshen, &
Stone., 1984) is a tree-based statistical learning
technique that explores the relationship between a
response variable and multiple predictor variables by
growing recursive binary partitioning at the nodes of the
tree. In contrast to in the classification and regression
trees which grow and prune a single tree for prediction, a
RF evaluates hundreds of trees with subsets of predictor
variables chosen randomly from the full set and averages
the prediction result to obtain one final model (Liaw &
Wiener, 2002).

Two different types of RF algorithms were
implemented to predict the four classes (Figure 2).
Model-1 was a multiclass prediction model where the
algorithm classifies four response classes at once.
Model-2 was a two stage hierarchical model comprising
a first binary classification model for predicting handle
height, and a second stage binary classification model
for predicting the force intensity level given handle
height. Model-2 was proposed based on prior empirical
studies which indicate that changes in handle height
induce a greater change in body posture compared to
manipulations in the force intensity level (Lim et al.,
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2016). Based on the prediction result for handle height
from the first stage, the dataset was split into two groups
and then subjected to a second stage model for
predicting the force intensity level. Model parameters
were set as the same for Models 1 and 2, namely, the
number of randomly chosen predictors at each split was
set as three, and the number of trees for each model was
set as 50.

Model Performance. A holdout cross validation was
performed by randomly assigning 90% of the data as the
training set and the remaining 10% as the testing set.
This was repeated 20 times for both models. Model
performance was evaluated by comparing the average
(S.D.) prediction accuracy (i.e., correct prediction vs.
misclassifications) between Models 1 and 2. All
statistical computations were carried out in the R
Statistical Package v.3.3.1 (R Core Team, 2016).

RESULTS
Model Comparisons

Model-1: multiclass prediction. The average (S.D.)
prediction accuracy of the multiclass model was low at
27.2% (9.4%) suggesting that predicting the force
intensity and location of force application
simultaneously may be challenging.

Model-2: hierarchical prediction. The second model
was built by having two sequential binary classification
models as described in Figure 2. The average (S.D.)
prediction accuracy of the overall prediction model was

Model 1. Multiclass prediction
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77.2% (4.4%). Classification on handle height alone was
96.6% (2.1%) accurate on average (S.D.), while the
prediction on force intensity was 80.1% (7.8%) accurate.
This finding suggests that changes in body kinematics
due to the force intensity levels may be subtle and not
distinguishable when the data is aggregated over handle
height, but is more meaningful when posture changes are
compared at the same handle height level. Postural
changes between force intensity were greater when the
handle height was set at shoulder height, and resulted in
a higher prediction accuracy (81.5%) compared to hip
height (78.6%).

Results from a t-test confirmed that the hierarchical
model (Model-2) outperformed the multiclass model
(Model-1) in terms of greater prediction accuracy (¢ =
21.67, dof = 26.93, p < 0.001) between holdout testing.
The hierarchical Model-2 also showed smaller variance
in prediction accuracy (S.D. of Model-1 = 9.4% vs.
Model-2 = 4.4%) suggesting greater stability.

Variable Importance

The relative importance of different variables
comprising the hierarchical model (Model-2) was
examined by calculating the Gini impurity Index (Strobl,
Boulesteix, Zeileis, & Hothorn, 2007), which is the
average impurity at a data partition across all classes of
the response variable. A greater decrease in the Gini
Index including vs. excluding a particular predictor
variable from the model suggests a greater importance of
that variable.

Model 2. Hierarchical prediction
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Figure 2. Structural differences in Model-1: Multiclass prediction with four classes as the response variable (left-panel) and Model-2:
Hierarchical structure (right-panel) where handle height is classified at the first stage and then force intensity. Prediction accuracy at
each stage is noted under each sub-model (denoted as an oval), and the overall prediction accuracy at the bottom of the panel.
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A. Stage 1 (Handle height)

B. Stage 2 (Force Intensity at hip)
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C. Stage 2 (Force Intensity at shoulder)
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Figure 3. Graphs showing the top-five important variables in each stage of the final hierarchical Model-2 (A: handle height at hip vs.
shoulder, B: force intensity at hip handle height, C: force intensity at shoulder handle height) by plotting the mean decrease in Gini
Index, a measure of relative importance (%) when the corresponding predictor variable is dropped from the model. A greater relative
importance suggests greater importance of the predictor variable.

Figure 3 shows the top-five important variables in
each stage of the final hierarchical model by plotting the
relative importance (%) of each variables in the model.
The relative importance was calculated as a relative
proportion of mean decrease in Gini Index. Torso
flexion and pelvis flexion angles were the most
important predictors when classifying handle height
(Figure 3-A).

All five postural angles were almost equally
important when predicting the force intensity level at the
hip handle height (Figure 3-B). Pelvis flexion was
relatively more important than other postural angles
when predicting the force intensity level at the shoulder
handle height (Figure 3-C). These differences in variable
importance between the stage-2 sub-models suggest a
need for predicting force exertion levels specific to
handle location and not aggregated across handle height
conditions.

DISCUSSION AND CONCLUSIONS

This study was intended as an initial step to explore
the potential of using inertial sensor-derived posture
kinematics for load prediction. Understandably, the
resulting prediction model is not yet generalizable for
predicting pushing and pulling force levels across
different worker and task conditions due to its small
sample, constrained task conditions, and limited number
of sensors. Nevertheless, the statistical prediction models
presented indicate that a reasonably accurate binary
classification of the exerted hand force levels during
two-handed pushing and pulling task can be made solely
from inertial sensor-derived posture kinematics. Further,
this suggests the potential of using inertial-sensor based

force prediction models when direct measurement of
forces may be problematic or obtrusive.

A hierarchical approach to statistical modeling
significantly improved the prediction accuracy compared
to predicting multiple response classes at once. This
result underscores the importance of empirical
knowledge about adaptations in body posture in
response to external force demands for developing
efficient hierarchies.

The relative importance of different variables in the
predictive model also provides insight into optimal
placement of inertial sensors for posture analysis. For
instance, if the pushing and pulling exertions are known
to be performed at a fixed handle height in the
workplace, then two inertial sensors could suffice (i.e., at
T6 and L5/S1). Regardless of the handle height, the
three most informative sensor attachment locations were
at L5/S1, T6, and the right thigh. This information could
serve as useful guidance about optimal placement of
body-worn inertial sensors for obtaining the most
informative postural kinematics with a minimal set of
body-worn sensors.

In this analysis, the anthropometry and strength
variables were found to be less important compared to
posture variables since the response variable consisted of
normalized force levels. We expect a greater
contribution of these variables if predicting absolute
force magnitudes, or if using statistical prediction
models where fixed effect variables (e.g., handle height,
force level) and random effect variables (e.g.,
anthropometry, strength measures) are treated differently
as in a mixed effects model (e.g., RE-EM tree; Sela &
Simonoff, 2012). Either approach would require a larger
sample size with diverse demographic and
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anthropometry characteristics and is the focus of future
work.
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