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This study explored the use of body posture kinematics derived from wearable inertial sensors to 
estimate force exertion levels in a two-handed isometric pushing and pulling task. A prediction 
model was developed grounded on the hypothesis that body postures predictably change 
depending on the magnitude of the exerted force. Five body postural angles, viz., torso flexion, 
pelvis flexion, lumbar flexion, hip flexion, and upper arm inclination, collected from 15 male 
participants performing simulated isometric pushing and pulling tasks in the laboratory were used 
as predictor variables in a statistical model to estimate handle height (shoulder vs. hip) and force 
intensity level (low vs. high). Individual anthropometric and strength measurements were also 
included as predictors. A Random Forest algorithm implemented in a two-stage hierarchy 
correctly classified 77.2% of the handle height and force intensity levels. Results represent early 
work in coupling unobtrusive, wearable instrumentation with statistical learning techniques to 
model occupational activities and exposures to biomechanical risk factors in situ.      
 

INTRODUCTION 
 

Direct measurement of external force demands in 
ambulatory material handling tasks (such as pushing, 
pulling, carrying with different load levels) in situ 
remains a challenge for ergonomics analysis. These 
force estimates typically get used as inputs to 
biomechanical models for estimating joint loads and 
assessing injury risk. Towards assessing external loads 
and kinetics in ambulatory tasks, previous studies have 
used pressure mapping insoles (Cordero, Koopman, & 
Van Der Helm, 2004) and instrumented force shoes 
(Faber, Kingma, Schepers, Veltink, & Van Dieen, 2010) 
to measure ground reaction forces, instrumented hand 
gloves to measure grasp forces (Castro & Cliquet, 1997), 
and electromyography (EMG) to measure muscle 
activity thereby estimating the magnitude of force 
exerted (Theado, Knapik, & Marras, 2007). Such 
methods require trained ergonomists and can be 
cumbersome and obtrusive. 

Motion analysis systems comprising body-worn 
inertial sensors have been used for measuring spatio-
temporal gait parameters (Aminian, Najafi, Büla, 
Leyvraz, & Robert, 2002), joint kinematics (Bernmark & 
Wiktorin, 2002; El-Gohary & McNames, 2012) and for 
material handling activity classification (Kim & 
Nussbaum, 2014). Recent advances in biomechanical 
analysis techniques have also investigated estimating of 
joint loads during normal walking using just kinematic 
data from inertial sensors (Karatsidis et al., 2017).  

In this paper, we explore the potential use of inertial 
sensor-based posture kinematics and statistical learning 
techniques to predict external load conditions, 

specifically normalized push and pull force levels. Prior 
ergonomics research has shown that, given certain work 
constraints, body posture is organized systematically and 
predictably in response to external force demands (e.g., 
Hoffman, 2008; Lim, Case, & D’Souza, 2016). We 
developed and tested a statistical prediction model with a 
limited set of posture variables from inertial sensors and 
anthropometry variables to estimate normalized high vs. 
low force levels and location of force exertion (shoulder 
vs. hip height) during pushing and pulling task. We 
focus on the Random Forest technique which yielded the 
highest prediction accuracy from among five statistical 
learning techniques that were evaluated.  
 

METHODS 
 
Study Participants 
 

The study recruited fifteen healthy right-handed 
male individuals aged between 18 to 35 years old from 
the university population. Gender and age restriction 
were applied to minimize variability in task postures. 
Average (SD) age, height, and weight of participants 
were 23.9 years (3.7 years), 1762mm (49mm), and 
69.55kg (9.30kg) after excluding data from three 
participants due to instrumentation error. Prior to 
participation, participants provided written informed 
consent and were screened for pre-existing back injuries 
or chronic pain with a body discomfort questionnaire 
adapted from the body mapping exercise developed by 
NIOSH (Cohen, 1997). The study was approved by the 
university’s Institutional Review Board. 
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Experiment Procedure 
 

The experiment had participants exert an isometric 
horizontal force on an instrumented handle (Figure 1) to 
achieve and maintain a required target force level (±5%) 
for a 3s interval in 36 counterbalanced task conditions. 
Task conditions were varied by manipulating four task 
parameters, viz., handle height, force intensity, 
handedness, and force direction. In this paper, we focus 
on two of the task parameters, i.e., handle height (hip vs. 
shoulder level) and force intensity (low vs. high). The 
low-level force intensity was set to 25% and the high-
level to 75% of the participant’s two-handed maximum 
push exertion (MVE; Hoffman, 2008) measured at hip 
height and averaged over two trials.   
 

 
 
Figure 1. Schematic representation of the experiment 
apparatus and instrumentation showing anatomical reference 
locations for the inertial sensors attachment. 
 
Data Processing 
 

During the experiment, body posture kinematics 
were obtained using four commercial data-logging IS 
devices (YEI Technology, Inc.) attached over the sixth 
thoracic (T6) vertebra, low-back (L5/S1), lateral aspect 
of the right upper arm, and lateral aspect of the right 
thigh using customized Velcro straps (Figure 1). The IS 
devices recorded triaxial accelerometer, gyroscope, and 
magnetometer data at 100-Hz sampling frequency. The 
data was filtered using a second-order low-pass zero-lag 
Butterworth filter with a 2-Hz cut-off frequency. Three-
dimensional segment orientations using IS data were 
computed using a custom algorithm implemented in 
MATLAB R2016b (The MathWorks Inc.) and averaged 
over the 3s task duration (for details see Lim et al., 
2016). 
 

 
Statistical Data Analysis 
 

Variable selection. Three segment postural angles 
(viz., torso flexion, pelvis flexion, and right upper arm 
inclination) relative to the reference posture (T pose) and 
two joint angles (lumbar flexion and right hip flexion) 
were selected as potential predictor variables. Nineteen  
anthropometric and strength measurements were also 
included as predictors. Tests for multicollinearity (i.e., 
correlation coefficient > 0.90) resulted in 13 variables 
being excluded from further analysis.  

The final set comprised eleven variables, viz., five 
posture variables: torso flexion (TF), pelvis flexion (PF), 
right upper arm inclination (UA), lumbar joint flexion 
(LF), and right hip flexion (HF), and six person 
variables: stature, weight, grip strength (right-hand), 
push MVE, L5/S1 to floor height, and Greater 
Trochanter to floor height. 

Statistical model development. A preliminary 
analysis was conducted comparing five statistical 
classification techniques, viz., multinomial logistic 
regression, linear discriminant analysis, classification 
and regression trees, random forest, and naïve bayes in 
predicting the external force level as a categorical 
variable with four classes (high force at shoulder height, 
low force at shoulder height, high force at hip height, 
and low force at hip height). Among these techniques, 
the Random Forest had the highest prediction accuracy 
when estimating the external load level and is the focus 
of this analysis.  

Random Forest (RF; Breiman, Friedman, Olshen, & 
Stone., 1984) is a tree-based statistical learning 
technique that explores the relationship between a 
response variable and multiple predictor variables by 
growing recursive binary partitioning at the nodes of the 
tree. In contrast to in the classification and regression 
trees which grow and prune a single tree for prediction, a 
RF evaluates hundreds of trees with subsets of predictor 
variables chosen randomly from the full set and averages 
the prediction result to obtain one final model (Liaw & 
Wiener, 2002).  

Two different types of RF algorithms were 
implemented to predict the four classes (Figure 2). 
Model-1 was a multiclass prediction model where the 
algorithm classifies four response classes at once. 
Model-2 was a two stage hierarchical model comprising 
a first binary classification model for predicting handle 
height, and a second stage binary classification model 
for predicting the force intensity level given handle 
height. Model-2 was proposed based on prior empirical 
studies which indicate that changes in handle height 
induce a greater change in body posture compared to 
manipulations in the force intensity level (Lim et al., 
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2016). Based on the prediction result for handle height 
from the first stage, the dataset was split into two groups 
and then subjected to a second stage model for 
predicting the force intensity level. Model parameters 
were set as the same for Models 1 and 2, namely, the 
number of randomly chosen predictors at each split was 
set as three, and the number of trees for each model was 
set as 50. 

Model Performance. A holdout cross validation was 
performed by randomly assigning 90% of the data as the 
training set and the remaining 10% as the testing set. 
This was repeated 20 times for both models. Model 
performance was evaluated by comparing the average 
(S.D.) prediction accuracy (i.e., correct prediction vs. 
misclassifications) between Models 1 and 2. All 
statistical computations were carried out in the R 
Statistical Package v.3.3.1 (R Core Team, 2016). 

 
RESULTS 

 
Model Comparisons 
 

Model-1: multiclass prediction. The average (S.D.) 
prediction accuracy of the multiclass model was low at 
27.2% (9.4%) suggesting that predicting the force 
intensity and location of force application 
simultaneously may be challenging. 

Model-2: hierarchical prediction. The second model 
was built by having two sequential binary classification 
models as described in Figure 2. The average (S.D.) 
prediction accuracy of the overall prediction model was 

77.2% (4.4%). Classification on handle height alone was 
96.6% (2.1%) accurate on average (S.D.), while the 
prediction on force intensity was 80.1% (7.8%) accurate. 
This finding suggests that changes in body kinematics 
due to the force intensity levels may be subtle and not 
distinguishable when the data is aggregated over handle 
height, but is more meaningful when posture changes are 
compared at the same handle height level. Postural 
changes between force intensity were greater when the 
handle height was set at shoulder height, and resulted in 
a higher prediction accuracy (81.5%) compared to hip 
height (78.6%).        

Results from a t-test confirmed that the hierarchical 
model (Model-2) outperformed the multiclass model 
(Model-1) in terms of greater prediction accuracy (t = 
21.67, dof = 26.93, p < 0.001) between holdout testing. 
The hierarchical Model-2 also showed smaller variance 
in prediction accuracy (S.D. of Model-1 = 9.4% vs. 
Model-2 = 4.4%) suggesting greater stability. 
 
Variable Importance 
 

The relative importance of different variables 
comprising the hierarchical model (Model-2) was 
examined by calculating the Gini impurity Index (Strobl, 
Boulesteix, Zeileis, & Hothorn, 2007), which is the 
average impurity at a data partition across all classes of 
the response variable. A greater decrease in the Gini 
Index including vs. excluding a particular predictor 
variable from the model suggests a greater importance of 
that variable.  

 
 

 
 

Figure 2. Structural differences in Model-1: Multiclass prediction with four classes as the response variable (left-panel) and Model-2: 
Hierarchical structure (right-panel) where handle height is classified at the first stage and then force intensity. Prediction accuracy at 
each stage is noted under each sub-model (denoted as an oval), and the overall prediction accuracy at the bottom of the panel.
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A. Stage 1 (Handle height)       B. Stage 2 (Force Intensity at hip)     C. Stage 2 (Force Intensity at shoulder) 
 

 
 

Figure 3. Graphs showing the top-five important variables in each stage of the final hierarchical Model-2 (A: handle height at hip vs. 
shoulder, B: force intensity at hip handle height, C: force intensity at shoulder handle height) by plotting the mean decrease in Gini 
Index, a measure of relative importance (%) when the corresponding predictor variable is dropped from the model. A greater relative 
importance suggests greater importance of the predictor variable. 
 

Figure 3 shows the top-five important variables in 
each stage of the final hierarchical model by plotting the 
relative importance (%) of each variables in the model. 
The relative importance was calculated as a relative 
proportion of mean decrease in Gini Index. Torso 
flexion and pelvis flexion angles were the most 
important predictors when classifying handle height 
(Figure 3-A).  

All five postural angles were almost equally 
important when predicting the force intensity level at the 
hip handle height (Figure 3-B). Pelvis flexion was 
relatively more important than other postural angles 
when predicting the force intensity level at the shoulder 
handle height (Figure 3-C). These differences in variable 
importance between the stage-2 sub-models suggest a 
need for predicting force exertion levels specific to 
handle location and not aggregated across handle height 
conditions. 
 

DISCUSSION AND CONCLUSIONS 
 
This study was intended as an initial step to explore 

the potential of using inertial sensor-derived posture 
kinematics for load prediction. Understandably, the 
resulting prediction model is not yet generalizable for 
predicting pushing and pulling force levels across 
different worker and task conditions due to its small 
sample, constrained task conditions, and limited number 
of sensors. Nevertheless, the statistical prediction models 
presented indicate that a reasonably accurate binary 
classification of the exerted hand force levels during 
two-handed pushing and pulling task can be made solely 
from inertial sensor-derived posture kinematics. Further, 
this suggests the potential of using inertial-sensor based 

force prediction models when direct measurement of 
forces may be problematic or obtrusive.  

A hierarchical approach to statistical modeling 
significantly improved the prediction accuracy compared 
to predicting multiple response classes at once. This 
result underscores the importance of empirical 
knowledge about adaptations in body posture in 
response to external force demands for developing 
efficient hierarchies.  

The relative importance of different variables in the 
predictive model also provides insight into optimal 
placement of inertial sensors for posture analysis. For 
instance, if the pushing and pulling exertions are known 
to be performed at a fixed handle height in the 
workplace, then two inertial sensors could suffice (i.e., at 
T6 and L5/S1). Regardless of the handle height, the 
three most informative sensor attachment locations were 
at L5/S1, T6, and the right thigh. This information could 
serve as useful guidance about optimal placement of 
body-worn inertial sensors for obtaining the most 
informative postural kinematics with a minimal set of 
body-worn sensors.  

In this analysis, the anthropometry and strength 
variables were found to be less important compared to 
posture variables since the response variable consisted of 
normalized force levels. We expect a greater 
contribution of these variables if predicting absolute 
force magnitudes, or if using statistical prediction 
models where fixed effect variables (e.g., handle height, 
force level) and random effect variables (e.g., 
anthropometry, strength measures) are treated differently 
as in a mixed effects model (e.g., RE-EM tree; Sela & 
Simonoff, 2012). Either approach would require a larger 
sample size with diverse demographic and 

Proceedings of the Human Factors and Ergonomics Society 2017 Annual Meeting 1034



anthropometry characteristics and is the focus of future 
work.  
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