

Unmanned aerial vehicles in construction and worker safety

John Howard MD | Vladimir Murashov PhD | Christine M. Branche PhD

National Institute for Occupational Safety and Health, Washington, DC

Correspondence

John Howard, MD, National Institute for Occupational Safety and Health, 395 E Street, S.W., Suite 9200, Washington 20201, DC.
Email: jhoward1@cdc.gov

Applications of unmanned aerial vehicles (UAVs) for military, recreational, public, and commercial uses have expanded significantly in recent years. In the construction industry, UAVs are used primarily for monitoring of construction workflow and job site logistics, inspecting construction sites to assess structural integrity, and for maintenance assessments. As is the case with other emerging technologies, occupational safety assessments of UAVs lag behind technological advancements. UAVs may create new workplace hazards that need to be evaluated and managed to ensure their safe operation around human workers. At the same time, UAVs can perform dangerous tasks, thereby improving workplace safety. This paper describes the four major uses of UAVs, including their use in construction, the potential risks of their use to workers, approaches for risk mitigation, and the important role that safety and health professionals can play in ensuring safe approaches to the their use in the workplace.

KEY WORDS

construction, drone, FAA, part 107, worker safety

1 | INTRODUCTION

In the past few years, new technologies and methods have emerged in residential and commercial construction aimed at increasing efficiency and decreasing waste. Advances in 3D printing have spurred the development of additive building construction¹ which may help eliminate material waste, expand the scope of construction designs, and lead to the on-demand production of mass-customized structures.² The use of small unmanned aerial vehicles (UAVs) is another emerging technology that is being increasingly employed in construction.³ Small UAVs have the potential to improve construction site logistics, accelerate project progress reports, and enhance construction site safety.^{4,5}

UAVs can be categorized into four main types depending on their primary use: (1) military; (2) recreational; (3) public; and (4) commercial. Military uses of large UAVs have a long history as surveillance tools and as weapon systems.⁶ Model aircraft, otherwise known as UAVs, also have a

long history and are now used by an increasing number of hobbyists for recreational enjoyment.⁷ Recently, public sector government agencies are finding multiple uses for small UAVs from border security to police surveillance.⁸ The commercial use of small UAVs is being seen across several industrial sectors such as construction, agriculture, and mining.⁹

The economic market for military and civilian UAVs is predicted to grow quickly. The Federal Aviation Administration (FAA) Aerospace Forecast for fiscal years 2016 to 2036 predicts that the sales of small UAVs will increase from 2.5 to 7 million by 2020.¹⁰ The Association for Unmanned Vehicle Systems International (AUVSI) expects 100 000 jobs to be created by 2025 from the expanding market for small UAVs.¹¹ Spending on all categories of UAVs is likely to total \$100 billion by 2020.¹² While national defense uses will continue to represent the largest segment of the economic market for UAVs, the market for civilian uses continues to expand. Global market revenue for recreational and commercial use (including public use) is expected to increase 34 percent to reach more than \$6 billion in 2017 and to grow to more than \$11.2 billion by 2020.¹³

The same aeronautical dynamics apply to remotely piloted aerial vehicles as they do to manned aircraft. An unmanned aerial system

(UAS) is composed of the vehicle airframe and power supply, vehicle sensors, remote operator, an onboard computer, and vehicle actuators.⁶ Sensors gather information about the vehicle's environment and actuators cause movement of the vehicle.⁶ The operator can receive information by looking directly at the vehicle (flying by "line-of-sight") or by looking at a video transmitted from the vehicle (flying by "first-person view").⁶ A computer can receive commands from the operator and communicates them to the actuators ("flying-by-wire").⁶ Some experimental UAVs are said to be "autonomous" by "flying along a set path called 'waypoints' and returning back to the home location when the flight is complete."¹⁴

Unlike the industrial robots introduced in the 1970s in the automobile manufacturing industry which are fixed in place, newer types of "flying robots" like small UAVs are mobile above or within the workplace. Their mobility can present safety risks to their proximate human co-workers.¹⁵ While their increasing use by industry has many business advantages, it is important to assess systematically the potential risks to worker safety and health associated with their use, and to disseminate widely best practices for managing any identified risks.

This article reviews the uses of military, recreational, public and commercial UAVs and the rules governing their use; uses of UAVs in construction and their potential hazards to workers; and emphasizes the important role that safety professionals can play in ensuring safe approaches to the use of small UAVs in the construction workplace.

2 | UAV USES AND RULES

2.1 | Military uses

Although the use of recreational, public, and commercial small UAVs has occurred relatively recently, the military use of unmanned aerial objects to support warfare has a long history. In 1849, pilotless balloons armed with bombs were used to quell civil unrest in Venice.¹⁶ During the American Civil War, reconnaissance balloons were used by both the Union and the Confederacy to determine enemy positions and to direct artillery fire during battle.¹⁷ In the 1930s, the British Royal Navy developed the Queen Bee, an unmanned aircraft vehicle that was designed for use in anti-aircraft gunnery practice.¹⁹ When the U.S. Navy developed a similar system, the name "drone" (after stingless male bees) was used to describe the U.S. version of the UAV in deference to Britain's Queen Bee.¹⁸

Any type of unmanned aircraft, ranging from the size of a small, radio-controlled "toy" model aircraft to the largest remotely controlled, weaponized military aircraft is commonly referred to as a "drone." However, the military describes drones more commonly as UAVs, Remotely Piloted Vehicles (RPVs), Unmanned Aerial Systems (UASs), or Remotely Piloted Systems (RPSs). UAVs and RPVs refer to the vehicle itself, and UASs and RPSs refer to vehicle and supporting equipment, including the on-the-ground operator.¹⁹ In this article, the term "UAV" is synonymous with the term "drone."

For military operations, UAVs/RPVs can provide a 24-hour "eye in the sky," and/or can be equipped with weaponry to provide offensive

capability for missions that are too dangerous for a human-piloted aircraft to undertake. UAVs can be controlled remotely by operators stationed anywhere in the world, and can remain aloft for much longer than can a human pilot.¹⁹ Unlike other weaponry such as missiles, military UAVs are intended to land, or be recovered, after their mission is completed.

Operation of military UAVs is governed generally by the U.S. Department of Defense.²⁰ However, the military follows the regulations of the FAA when flying in the National Airspace System (NAS). The NAS is "the common network of U.S. airspace; air navigation facilities, equipment and services; airports or landing areas; aeronautical charts, information and services; rules, regulations and procedures; technical information; and manpower and material. Included are system components shared jointly with the military."²¹

2.2 | Recreational uses

The hobby of flying model airplanes also has a long history. Hobbyists began flying unmanned models even before manned aviation became the commercial industry that it is today. Safety was an early concern of hobbyists. In 1936, community-based safety and flight-training programs were developed by the Academy of Model Aeronautics (AMA) (<http://www.modelaircraft.org/>), 22 years before the FAA was created by the Federal Aviation Act of 1958.²² In 2014, the AMA, the AUVSI (<http://www.auvsi.org/home>), and the Small UAV coalition (<http://www.smalluavcoalition.org/>), joined the FAA in launching the Know Before You Fly campaign (<http://knowbeforeyoufly.org/>) aimed at educating recreational users about basic safety rules when operating a small UAV for enjoyment.²³

Safe use is important since hobbyists' model aircraft have come a long way from the "wood and glue" models of many years ago. Recent advances in consumer electronics, mobile technology, and battery power have led to the widespread use of small, self-powered, aerial devices chiefly for aerial photography.²⁴ Recreational UAVs have become increasingly popular because they can be outfitted with cameras, are capable of directional control by an on-the-ground operator, and do not require sophisticated training to operate.²⁵

The increased recreational use of small UAVs has led to hobbyists facing new state laws and local ordinances. These new laws and ordinances impose civil and criminal penalties for various infractions such as invasion of privacy by flying over another person or property, crashes resulting in injuries to bystanders, and use in restricted areas, including national parks, prisons, and dense urban areas.^{26,27} Use of UAVs near airports have led to near-miss incidents when aerial devices fly in close proximity to commercial airliners.²⁸ Recently, a UAV prompted closure of a runway at Gatwick airport near London.²⁹

The FAA is aware of the expanding number of state laws and local ordinances governing UAV operations. In December 2015, it issued a fact sheet recognizing the current "patchwork quilt" of differing state and local rules, and asserting the FAA's exclusive authority "to regulate the areas of airspace use, management and efficiency, air traffic control, safety, navigational facilities, and aircraft noise at its source."³⁰

Historically, the FAA has taken a voluntary approach to the use of model aircraft in the NAS. In 1981, the FAA advised persons interested in flying model aircraft for recreational use to adhere to a voluntary set of safety standards.³¹ In 2007, the FAA restated its voluntary approach to the safe operation of model aircraft in the NAS.³² In 2012, Congress enacted the FAA Modernization and Reform Act and recognized the safety efforts of the recreational UAV community by expressly prohibiting in Section 336(a) the FAA from promulgating "any rule or regulation regarding a model aircraft..."³³ In Section 336(c), Congress defined 'model aircraft' as an "unmanned aircraft that is capable of sustained flight in the atmosphere, flown within visual line of sight of the person operating the aircraft and flown for hobby or recreational purposes."³⁴

In 2015, the FAA expressed concern that as more small UAVs entered the NAS, the risk of accidents would increase. The FAA thought that registration would help identify the UAV owner in the event of an accident. The FAA then promulgated a rule requiring owners of small UAVs weighing less than 55 pounds, "used exclusively as model aircraft" or "used as other than model aircraft," to register with the FAA.³⁵ Model aircraft operators objected to registration and sued the FAA.³⁶ In May 2017, the FAA's registration rule as it applied to model aircraft owners was vacated by the U.S. Court of Appeals for the District of Columbia Circuit.³⁷ The court said that the FAA Modernization and Reform Act explicitly prohibited the FAA from promulgating any rule regarding "model aircraft."³⁸ The court's ruling applies only to UAVs flown strictly for hobby or recreational use, and does not apply the UAV use for a public or commercial purpose.³⁹

2.3 | Public sector uses

UAVs are being put to new uses by government agencies. A recent report indicates that 347 state and local police, sheriff, fire and emergency units in the U.S. have acquired UAVs.⁴⁰ UAVs are being used for various purposes including traffic management, search and rescue operations, tracking fire personnel in dangerous settings, aerial viewing of crowds for riot control, crime-scene photography, and mapping hazardous material spills.⁴¹ Use of UAVs by police departments have resulted in some states requiring that police obtain a warrant before using a UAV for commencing a search or surveillance operation.⁴² The International Association of Chiefs of Police,⁴³ the Police Foundation,⁴⁴ and the International Fire Chiefs Association,⁴⁵ have published guidelines for the public sector use of UAVs by municipal police and fire department.

2.4 | Commercial uses

Another emerging use of UAVs is as an enabling technology across many U.S. industry sectors, led by general aerial photography uses.⁴⁶ Commercial use of UAVs is still a small market compared to military and recreational uses, but rapid advances in drone technology and more permissive FAA rules for non-hobby and non-recreational purposes has led to a rise in commercial UAV use.⁴⁷

In the 2012 FAA Modernization and Reform Act, Congress directed the FAA to "determine if certain unmanned aircraft systems may operate safely in the national airspace system."⁴⁸ While the FAA developed regulations governing the uses of commercial UAVs in the NAS, businesses wishing to fly a UAV for commercial purposes were required to obtain the same airworthiness certificate as any other type of aircraft. The only other alternative was for the commercial operator to apply for a "Section 333 exemption," which was reviewed and granted by the FAA on a case-by-case basis.⁴⁹ As a result, little commercial UAV use occurred.⁵⁰ In August 2016, the FAA finalized new operating and certification requirements (known as "Part 107") to allow UAVs to operate for "non-hobby and non-recreational purposes" in the NAS.⁵¹

The new FAA rules for commercial UAVs are extensive. General requirements include reporting to the FAA within ten calendar days any serious injury or loss of consciousness to any person and any property damage, other than to the UAV itself, above \$500.00. Part 107 operating rules are extensive. The UAV must weigh less than 55 pounds, remain in visual line-of-sight of the remote pilot, operate in daylight only, stay away from bystanders, not operate over a human being unless the person is directly participating in the UAV operation, and fly at a maximum groundspeed of 100 miles per hour and at a maximum altitude of 400 feet above ground level, or if higher than 400 feet, remain within 400 feet radius of a structure. Part 107 remote pilot-in-command responsibilities include that the operator must hold a remote pilot airman certificate with a small UAV rating or be under the direct supervision of a person who holds such a certificate. Part 107 aircraft requirements state that an airworthiness certification is not required, but pre-flight checks for safe operation are required. Pilot requirements state that the operator must be 16 years old, pass an aeronautical knowledge test, and be vetted by the Transportation Security Administration (TSA).⁵²

The commercial segment of the \$100 billion UAV market is predicted to be the fastest growing between 2016 and 2020, with the construction industry accounting for the largest share of the growth.⁵³ By 2025, the U.S. commercial UAV sector is forecast to surpass five billion dollars in investments.⁵⁴ The markets for personal and commercial UAVs may be merging as many UAVs manufactured for recreational use can be adapted for commercial use in surveillance, 3D mapping and modeling.⁵⁵ Despite the technical merging of recreational and commercial UAV designs, the distinction between recreational and commercial uses is not straightforward.⁵⁶

Commercial UAVs are now being used in construction⁵⁷; agriculture and forestry⁵⁸; mining^{59–61}; warehousing⁶²; motion picture production⁶³; and transportation.⁶⁴ Robotic UAV applications are expanding capabilities for medical supply delivery⁶⁵; search and rescue in disaster management⁶⁶; remote pipeline inspection⁶⁷; and cargo shipping and consumer delivery.^{68–70} UAVs are even being studied as robotic "insect" pollinators to relieve the arduous, and costly, task of hand pollination.⁷¹ As a business tool, the applications of commercial UAVs are growing rapidly in the construction sector promising benefits for construction management.⁷²

3 | UAV USE IN CONSTRUCTION

The emerging uses of UAVs in the construction industry range from aiding with construction project planning by aerial mapping of the construction site¹¹ to extending to the actual building of structures.^{2,68} More commonly, UAVs are being used today primarily for monitoring of construction work flow and job site logistics^{53,69-70}; inspecting construction sites to assess structural integrity⁷¹; damage⁷²; and for maintenance assessments.⁴

3.1 | Monitoring

Monitoring a large construction site is a challenge for construction management. A UAV can be deployed to send video footage of site conditions to construction management faster and more efficiently than can on-the-ground personnel. Video can be converted into a three-dimensional picture of the site and then compared to computerized architectural plans to show how accurately the project is progressing.⁵³ Monitoring information obtained by a UAV also serves as a useful input in the preparation of periodic construction progress reports. UAVs can be equipped with far and near infrared cameras, radar or laser-based range finders which can greatly enhance their surveillance and monitoring capabilities at a construction site.⁷⁰ In addition, tracking moving objects on construction sites such as people, equipment, and material are being developed,⁷³ as well as equipping UAVs with the capability of mapping indoor construction environments.⁷⁴ These applications are being implemented voluntarily and generally by large construction contractors which comprise less than ten percent of the industry. Their efforts could serve as an important source of data about the safety of UAVs to workers at construction sites.

3.2 | Inspection

UAVs can inspect a large worksite more efficiently through aerial photography than on-the-ground personnel can. UAV detection of hazardous conditions, materials and dangerous structures can aid in construction site hazard identification without placing a worker at risk.⁷⁵⁻⁷⁶ Real-time UAV systems performing remote site inspections and violation detection at construction sites may be more efficient, safer and less costly than present construction site inspection methods.^{70,77} UAV inspection of awkward locations on and under bridges and along highway can not only reduce the cost of personnel inspecting the entire expanse of a highway road or structure, but also reduce the risk of working along a busy highway or erecting equipment close to the flow of traffic.

Government inspections of construction sites could also be performed by a UAV. Because inspection of the site would be quicker than an individual government inspector walking an extensive construction site, UAVs could increase the scope and frequency of inspections of construction projects by federal, state and local government agencies.⁷⁸ Once potential violations were identified by aerial imaging, then inspectors could focus their investigation on sites where the potential violations were imaged.

3.3 | Maintenance

Using UAVs in carrying out planned or reactive maintenance inspections of tall structures, such as skyscrapers, bridges, and towers where access can be costly and pose a risk to workers of falling from a great height, appears to be a clear benefit for construction managers and workers.⁴ New FAA rules permitting the commercial use of UAVs has prompted new guidelines for operating UAVs around vertical communications infrastructure.⁷⁹

3.4 | Other uses

UAVs have been proposed as material handling vehicles, transporting tools, equipment and materials at construction sites⁸⁰ or used to spray-paint or waterproof a structural component.⁸¹ UAVs can also be used to capture unique views of a structure for promotional photographic purposes.⁴

4 | UAVs AND CONSTRUCTION WORKER SAFETY

The presence of a UAV flying in close proximity to a human worker can create new hazards at a construction site, although data supporting the hazard potential of UAVs for workers are scarce. Safety professionals need to be aware of these new hazards, assess the risks arising from them, and apply controls to reduce the risks. There has been little published about the safety and health risks associated with the public or commercial use of UAVs, but the military has begun to assess the adverse health effects among remote pilots operating UAVs over conflict areas from a combination of long shifts of monotonous monitoring of a visual display screen, interrupted by activation of the UAVs weaponry with possible loss of human life.⁸² Stress reactions have been seen in military personnel arising from their work as UAV operators.⁸³

About 30 incidents of near-misses or crashes leading to human injury have been reported associated with the use of recreational UAVs.²⁷ Unstable flying conditions, operator errors, and faulty equipment may represent potential hazards to nearby workers from the commercial use of UAVs. Adding to the uncertainty about the hazards to workers from the emerging use of UAVs in construction and other industries, the arrival of autonomous or semi-autonomous UAVs may introduce new hazards arising from the absence of human control. New software algorithms for designing autonomous and semi-autonomous UAVs are in development and UAVs with new autonomous capabilities may be in use soon.⁸⁴

It is important to develop hazard identification, risk characterization and mitigation approaches to ensure the safe operation of commercial UAVs as the use of UAVs promise significant benefits for industry. These approaches might incorporate prevention-through-design concepts such as lightweight manipulators, passive compliant systems, safe actuators, and passive robotic systems. Navigation and collision avoidance systems can be included in the design of

commercial UAVs as a proactive safety measure. Collision avoidance in the three-dimensional environment is a main area of UAV design research.⁸⁵ Structural designs should consider stiffness and pliability factors that can reduce the impact force during collisions. Tools for the evaluation of UAV safety during the design⁸⁶ and certification stages⁸⁷ are being developed. As UAVs have limitations on the minimum size, weight, and structural design due to their airworthiness requirements,⁸⁸ prevention-through-design-based safety approaches have to be applied in collaboration with design engineers.

Adequate training of operators is essential to ensure the safe operation of the UAV. Operation of a UAV at a construction site should be done by a competent person similar to competent person requirement that is already a component of the Occupational Safety and Health Administration's (OSHA) general safety and health provisions at construction sites.⁸⁹ Similarly, a competent UAV operator is a person capable of identifying any potential hazard of operating a UAV in the particular construction site surroundings, especially any UAV operating condition that poses a hazard to workers on the ground. The competent UAV operator should be authorized by the construction manager to take prompt corrective measures to eliminate any hazard associated with operation of the UAV.

As the use of public and commercial UAVs gain in popularity, it will be important to review their uses to ensure that hazards and risks to workers are identified and mitigated. The emerging commercial use of UAVs in the construction industry presents a unique opportunity to develop safe approaches for the use of small, unmanned aerial vehicles. The development of approaches to the safe operation of small unmanned aerial systems, remotely piloted by worker/operators and flying in close proximity to other workers, can ensure that the management benefits of this promising new technology is shared between workers and management.

5 | FUTURE

Construction involves hazardous work. In 2015, 937 fatal work injuries occurred in the private construction industry. The Bureau of Labor Statistics (BLS) reported that in 2015 one in five worker deaths in the U.S. in 2015 due to construction hazards.⁹⁰ Any technology—including the emerging commercial use of UAVs that has the potential to reduce deaths and injuries from construction falls, toxic chemical exposures, electrical hazards, or traumatic injury from vehicle and equipment collisions during construction are welcome, but should be carefully studied. It may be too early to be certain about the safety benefits to workers of the emerging use of UAVs in construction, or in any other industry, but it is not too early to identify hazards associated with their use. As is the case with collaborative robots, "flying robots" or UAVs, proximate to human workers, may pose a potential hazard.

It will be important to collect and analyze objective data about negative safety outcomes in the future. There are several potential sources of information about injuries to workers from UAVs that may be useful. An FAA database of injuries caused by commercial UAVs, collected under Part 107 requirements, could serve as a source of

information about worker injuries. Modifications to the BLS Survey of Occupational Injuries and Illnesses (SOII) and the Census of Fatal Occupational Injuries (CFOI) could facilitate identification of UAV-related incidents affecting workers. Accident investigations by OSHA and Fatality Assessment and Control Evaluation Program (FACE) investigations by the National Institute for Occupational Safety and Health could also serve as important sources of objective data about UAV risks to workers.

It is hoped that this commentary will increase awareness about the expanding use of UAVs in public and private sector workplaces and prompt safety professionals who are involved in their early use to share their experience. Occupational safety and health professional organizations should invite speakers to further increase awareness among their members. Safety professionals, organizations and government should adopt a proactive approach to the integration of UAV technology and work collaboratively to develop best safety practices that can promote the beneficial use of this promising new technology in construction and other industries while at the same time ensuring the safety and health of workers working with, nearby, and "below" these new workplace tools.

AUTHORS' CONTRIBUTION

All authors contributed concepts for the article, provided references, and developed drafts of the manuscript. All authors contributed to and approved the final version submitted to the American Journal of Industrial Medicine.

ACKNOWLEDGMENTS

Not applicable.

FUNDING

Not applicable.

ETHICS APPROVAL AND INFORMED CONSENT

Not applicable.

DISCLOSURE (AUTHORS)

The authors declare no conflicts of interest.

DISCLOSURE BY AJIM EDITOR OF RECORD

Rodney Ehrlich declares that he has no competing or conflicts of interest in the review and publication decision regarding this article.

DISCLAIMER

The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the National Institute for

Occupational Safety and Health, the Centers for Disease Control and Prevention, or the U.S. Department of Health and Human Services.

ORCID

John Howard <http://orcid.org/0000-0002-5534-3276>

REFERENCES

1. Crook J. The world's first 3D-printed building will arrive in 2014 (and it looks awesome). TechCrunch. January 20, 2013. <https://techcrunch.com/2013/01/20/the-worlds-first-3d-printed-building-will-arrive-in-2014-and-it-looks-awesome/>. Accessed July 3, 2017.
2. Molitch-Hou M. AI build to bring artificial intelligence to additive construction. Engineering.com. October 26, 2016. <http://www.engineering.com/3DPrinting/3DPrintingArticles/ArticleID/13512/AI-Build-to-Bring-Artificial-Intelligence-to-Additive-Construction.aspx>. Accessed July 8, 2017.
3. Link J. Here comes the next big technological boom: Drones in construction. Engineering.com. January 9, 2017. <http://www.engineering.com/bim/articleid/14043/here-comes-the-next-big-technological-boom-drones-in-construction.aspx>. Accessed July 5, 2017.
4. Watson M. 10 ways to use drones in construction! BIM News. June 28, 2016. <http://construct-digital.uk/latest/10-ways-use-drones-construction/>. Accessed July 3, 2017.
5. Druley K. When drones fly: What do safety professionals need to know about this evolving technology? Safety + Health Magazine. May 28, 2017. <http://www.safetyandhealthmagazine.com/articles/15626-when-drones-fly>. Accessed June 27, 2017.
6. Gettiner D, Michel AH, Pasternack A, Koebler J, Musgrave S, Rankin J. The drone primer: A compendium of key issues. Annandale-on-the-Hudson, NY: Bard College Center for Study of the Drone; 2014. <http://dronecenter.bard.edu/publication/the-drone-primer/>. Accessed July 4, 2017.
7. Grandview Research Report. Consumer drone market analysis by product (multi-rotor, nano), by application (prosumer, toy/hobbyist, photogrammetry) and segment forecasts to Grandview Research Report. Consumer drone market analysis by product (multi-rotor, nano), by application (prosumer, toy/hobbyist, photogrammetry) and segment forecasts to 2024. Report ID: 978-1-68038-831-2. May, 2016. <http://www.grandviewresearch.com/industry-analysis/consumer-drone-market>. Accessed July 8, 2017.
8. Palmero E. Drones could grow to \$11 billion industry by 2024. Live Science. July 29, 2014. <https://www.livescience.com/47071-drone-industry-spending-report.html>. Accessed June 26, 2017.
9. Ballve M. These are the top industries that will be transformed by drones. Business Insider. July 15, 2014. <http://www.businessinsider.com/top-industries-that-will-be-transformed-by-drones-2014-6>. Accessed July 6, 2017.
10. Federal Aviation Administration. 2016. Federal Aviation Administration. 2016. Federal aerospace forecast: Fiscal years 2016 to 2036. Washington, DC: Federal Aviation Administration. https://www.faa.gov/data_research/aviation/aerospace_forecasts/medi/FY2016-36_FAA_Aerospace_Forecast.pdf. Accessed July 8, 2017.
11. Jenkins D, Vasigh B. 2013. The economic impact of unmanned aircraft systems integration in the United States. Association for Unmanned Vehicle Systems International. http://higherlogicdownload.s3.amazonaws.com/AUVSI/958c920a-7f9b-4ad2-9807-f9a4e95d1ef1/UploadedImages/New_Economic%20Report%202013%20Full.pdf. Accessed June 30, 2017.
12. Goldman Sachs. Drones reporting for work. 2016. Goldman Sachs. Drones reporting for work. 2016. <http://www.goldmansachs.com/our-thinking/technology-driving-innovation/drones/>. Accessed July 8, 2017.
13. Gartner. Gartner says almost 3 million personal and commercial drones will be shipped in Gartner. Gartner says almost 3 million personal and commercial drones will be shipped in 2017. Gartner Newsroom. February 9, 2017. <http://www.gartner.com/newsroom/id/3602317>. Accessed July 8, 2017.
14. Vardham M. Autonomous drones for geospatial professionals. Geospatial World. July 3, 2017. <https://www.geospatialworld.net/blogs/autonomous-drones-geospatial-professionals/>. Accessed July 4, 2017.
15. Murashov V, Hearl F, Howard J. Working safely with robot workers: recommendations for the new workplace. JOEH 2016;13:D61-D71.
16. Holman R. 2013. *Falling upwards: How we took to the air*. New York, NY: Pantheon Books.
17. Holmes B. The drones of the civil war. Slate. November 13, 2013. http://www.slate.com/articles/news_and_politics/history/2013/11/civil_war_hot_air_balloons_thaddeus_lowe_and_union_aerial_reconnaissance.html. Accessed July 8, 2017
18. Zaloga S. 2008. *Unmanned aerial vehicles: Robotic air warfare 1917-2007*. Oxford, UK: Osprey Publishing.
19. Brown J. Types of military drones: The best technology available today. MyDroneLab. <http://mydronelab.com/blog/types-of-military-drones.html>. Accessed July 3, 2017.
20. Etzioni A. The great drone debate. Mil Rev. 2013: March-April;2-13. http://www.armyupress.army.mil/Portals/7/military-review/Archives/English/MilitaryReview_20130430_art004.pdf. Accessed July 8, 2017.
21. Pilot/Controller Glossary. Washington, DC: Federal Aviation Administration. April Pilot/Controller Glossary. Washington, DC: Federal Aviation Administration. April 17, 2017. https://www.faa.gov/air_traffic/publications/media/pcg.pdf. Accessed July 5, 2017.
22. Mathewson D. 'Drone' hobbyists have long history of safe, responsible flying. The Hill. April 13, 2015. <http://thehill.com/blogs/congress-blog/technology/238364-drone-hobbyists-have-long-history-of-safe-responsible-flying>. Accessed July 5, 2017.
23. Lardinois F. What the FAA wants you to know before you fly your drone. TechConnect. December 22, 2014. <https://techcrunch.com/2014/12/22/what-the-faa-wants-you-to-know-before-you-fly-your-drone/>. Accessed July 6, 2017.
24. Pettew C. The sky's the limit for personal drones. Gartner Newsroom. December 16, 2015. <https://www.gartner.com/smarterwithgartner/the-skys-the-limit-for-personal-drones>. Accessed July 3, 2017.
25. LaFay M. 2015. *Drones for dummies*. Hoboken NJ: John Wiley and Sons.
26. Essex A. 2016. Taking off: State unmanned aircraft systems policies. Washington, DC: National Conference of State Legislatures. <http://www.ncsl.org/research/transportation/taking-off-state-unmanned-aircraft-systems-policies.aspx>. Accessed July 8, 2017.
27. Michel AH, Gettiner D. Drone incidents: A survey of legal cases. Annandale-on-the-Hudson, NY: Bard College Center for Study of the Drone; April, 2017. <http://dronecenter.bard.edu/drone-incidents/>. Accessed July 4, 2017.
28. Whitlock C. Close encounter on the rise as small drones gain in popularity. Washington Post. June 23, 2014. http://www.washingtonpost.com/sf/investigative/2014/06/23/close-encounters-with-small-drones-on-rise/?utm_term=.e2846ff9f551. Accessed July 4, 2017.
29. Said-Moorhouse L. Drone prompts runway closure at London's Gatwick airport. Cable News Network. July 3, 2017. <http://www.cnn.com/2017/07/03/europe/drone-london-gatwick/>. Accessed July 8, 2017

30. Federal Aviation Administration. State and local regulation of unmanned aircraft systems (UAS) Fact Sheet. 2015. Federal Aviation Administration. State and local regulation of unmanned aircraft systems (UAS) Fact Sheet. 2015. Washington, DC: Federal Aviation Administration, Office of the Chief Counsel. https://www.faa.gov/uas/resources/uas_regulations_policy/media/UAS_Fact_Sheet_Final.pdf. Accessed July 8, 2017.
31. Advisory Circular Advisory Circular 91-57. 1981. Model aircraft operating standards. Washington, DC: Department of Transportation, Federal Aviation Administration, June 9, 1981. https://www.faa.gov/documentLibrary/media/Advisory_Circular/91-57.pdf. Accessed July 3, 2017.
32. Unmanned Aircraft Operations in the National Airspace System, 72 Fed. Reg. 6689 (Feb. 13, 2007). <https://www.gpo.gov/fdsys/pkg/FR-2007-02-13/html/E7-2402.htm>. Accessed July 7, 2017.
33. United States Code. FAA Modernization and Reform Act of 2012, sec. 336(a) and (c) F, F 126 S Stat.11, F 77 F (codified S as S amended S at F 49 U.S.C. F § F 40101 note D (2012) P).
34. Registration and marking requirements for small, unmanned aircraft; final rule. 80 Fed. Reg. 78, 594 (December Registration and marking requirements for small, unmanned aircraft; final rule. 80 Fed. Reg. 78,594 (December 16, 2015). <https://www.gpo.gov/fdsys/pkg/FR-2015-12-16/pdf/2015-31750.pdf>. Accessed July 8, 2017.
35. Laing K. Drone hobbyists dispute federal aircraft definition. The Hill. March 20, 2015. <http://thehill.com/policy/transportation/236455-drone-hobbyist-dispute-federal-definition-of-aircraft>. Accessed July 6, 2017.
36. Taylor v. Huerta. No. 15-1495 (D.C. Cir. May 19, 2017). [https://www.cadc.uscourts.gov/internet/opinions.nsf/FA6F27FFAA83E20585258125004FBC13/\\$file/15-1495-1675918.pdf](https://www.cadc.uscourts.gov/internet/opinions.nsf/FA6F27FFAA83E20585258125004FBC13/$file/15-1495-1675918.pdf). Accessed July 3, 2017.
37. Negroni C. FAA can't require registration of recreational drones. Forbes. May 20, 2017. <https://www.forbes.com/sites/christinenegroni/2017/05/20/faa-cant-require-registration-of-recreational-drones/#2165f1e427c2>. Accessed July 3, 2017.
38. Plaza J. What Taylor v FAA means for commercial drone operators. Commerce News. June 12, 2017. <http://www.expuav.com/news/latest/taylor-v-faa-means-commercial-drone-operators/>. Accessed July 3, 2017.
39. Gettiger D. Public safety drones. Annandale-on-the-Hudson, NY: Bard College Center for Study of the Drone; April, 2017. <http://dronecenter.bard.edu/public-safety-drones/>. Accessed July 4, 2017.
40. Bachman J. Public drone use soared in 2016. Panama City News Herald. April 9, 2016. <http://www.newsherald.com/news/20170409/public-agency-drone-use-soared-in-2016>. Accessed July 5, 2017.
41. International Association of Chiefs of Police (IACP). International Association of Chiefs of Police (IACP). 2012. Recommended Guidelines for the use of Unmanned Aircraft. International Association of Chiefs of Police, Aviation Committee. http://www.theiacp.org/portals/0/pdfs/IACP_UAGuidelines.pdf. Accessed July 6, 2017.
42. Valdovinos M, Specht J, Zeunik J. Law enforcement & unmanned aircraft systems (UAS): Guidelines to enhance community trust. 2016. Washington, DC: Office of Community Oriented Policing Services. <https://www.policefoundation.org/wp-content/uploads/2016/11/UAS-Report.pdf>. Accessed July 6, 2017
43. International Fire Chiefs Association (IAFC). Unmanned Aerial Systems (UAS) Toolkit. International Fire Chiefs Association. International Fire Chiefs Association (IAFC). Unmanned Aerial Systems (UAS) Toolkit. International Fire Chiefs Association. 2016. <https://www.iafc.org/topics-and-tools/communications-technology/uas-toolkit>. Accessed July 6, 2017.
44. Association for Unmanned Vehicle Systems International (AUVSI). The first 1 000 commercial UAS exemptions. 2016. Association for Unmanned Vehicle Systems International (AUVSI). The first 1,000 commercial UAS exemptions. 2016. <http://auvsilink.org/advocacy/Section333.html>. Accessed July 3, 2017.
45. Give and Take. The Economist Technology Quarterly. June Give and Take. The Economist Technology Quarterly. June 10, 2017. <https://www.economist.com/news/technology-quarterly/21723001-originally-military-technology-drones-are-now-benefiting-rapid-advances>. Accessed July 8, 2017.
46. United States Code. FAA Modernization and Reform Act of 2012, sec. 333(a), 126 Stat.11, 75-76 (codified as amended at 49 U.S.C. § 40101 note (2012).
47. Michel AH, Gettiger D. Analysis of U.S. drone exemptions 2014-2015. Annandale-on-the-Hudson, NY: Bard College Center for Study of the Drone; March, 2016. <http://dronecenter.bard.edu/files/2016/03/Analysis-of-U.S.-Drone-Exemptions-2014-2015.pdf>. Accessed July 4, 2017.
48. Taking flight. The Economist. June Taking flight. The Economist. June 10, 2017. <http://www.economist.com/technology-quarterly/2017-06-08/civilian-drones>. Accessed July 8, 2017.
49. Operation and Certification of Small Unmanned Aircraft Systems; Final Rule. 81 Fed. Reg. 42064 (June 28, 2016). <https://www.gpo.gov/fdsys/pkg/FR-2016-06-28/pdf/2016-15079.pdf>. Accessed July 8, 2017.
50. Federal Aviation Administration (FAA). Summary of Small Unmanned Aircraft Rule (Part 107). FAA News. June 21, 2016. https://www.faa.gov/uas/media/Part_107_Summary.pdf. Accessed July 8, 2017.
51. McCarthy N. The commercial drone sector is set to contribute billions to the U.S. economy. Forbes. October 19, 2015. <https://www.forbes.com/sites/niallmccarthy/2015/10/19/the-commercial-drone-sector-is-set-to-contribute-billions-to-the-u-s-economy-infographic/#343f12632bdd>. Accessed July 6, 2017.
52. Karpowicz J. Enacting sensible drone regulation at the federal and local level. Commercial UAV News. April 17, 2017. <http://www.expuav.com/news/latest/enacting-sensible-drone-regulation-federal-local-level/>. Accessed July 8, 2017.
53. Knight W. New boss on construction sites is a drone. MIT Technology Review. August 25, 2015. <https://www.technologyreview.com/s/540836/new-boss-on-construction-sites-is-a-drone/>. Accessed July 4, 2017.
54. Cummings AR, McKee A, Kulkarni K, Markandey N. The rise of UAVs. *Photogramm Eng Remote Sens*. 2017;83:317-325.
55. Stringer D. How robots, drones are transforming mining and mining safety. Insurance Journal. April 14, 2014. <http://www.insurancejournal.com/news/national/2014/04/04/325475.htm>. Accessed July 8, 2017.
56. Simonite T. Mining 24 hours a day with robots. MIT Technology Review. December 28, 2016. <https://www.technologyreview.com/s/603170/mining-24-hours-a-day-with-robots/>. Accessed June 2, 2017.
57. Lee S, Choi Y. Reviews of unmanned aerial vehicle (drone) technology trends and its applications in the mining industry. *Geosys Eng* 2016;19:197-204.
58. Devaney T. Eight industries that want to fly drones. The Hill. October 15, 2014. <http://thehill.com/regulation/221788-eight-industries-that-want-to-fly-drones>. Accessed June 26, 2017.
59. Gamerman E. Drones invade Hollywood. *Wall Street Journal* March 26 2015; <https://www.wsj.com/articles/drones-invade-hollywood-1427410534>. Accessed July 8, 2017.
60. Owano N. Clinic gets approved medical supply drop in Virginia. TechExplore. July 15, 2015. <https://techxplore.com/pdf356676770.pdf>. Accessed July 12, 2017
61. Goodrich M, Morse B, Gerhardt D, et al. Supporting wilderness search and rescue using a camera-equipped mini-UAV. *J Field Robot* 2008;25:89-110.
62. Gomez C, Green DR. Small unmanned airborne systems to support oil and gas pipeline monitoring and mapping. *Arab J Geosci*. 2017;10:202-219.

63. Faust A, Palunko L, Cruz P, Fierro R, Tapia L. Automated aerial suspended cargo delivery through reinforcement learning. *Artif Intell*. 2017;247:381–398.

64. Reisenwitz C. Commercial drones in 2017: what's now and what's next. Capterra Management Blog. December 21, 2017. <http://blog.capterra.com/commercial-drone-in-2017/>. Accessed July 4, 2017.

65. Vanian, J. UPS has a new trick to make drone deliveries a reality. *Fortune*. February 21, 2017. <http://fortune.com/2017/02/21/ups-drone-deliveries-florida/>. Accessed June 26, 2017

66. Amador GJ, Hu DL. Sticky solution provide grip for the first robotic pollinator. *Chem*. 2017;2:169–170.

67. Dillow C. The construction industry is in love with drones. *Fortune*. September 13, 2016. <http://fortune.com/2016/09/13/commercial-drone-construction-industry/>. Accessed July 3, 2017.

68. Borgobello B. Flying robots to build a 6-meter tower. *New Atlas*. November 28, 2011. <http://newatlas.com/flying-robots-to-build-6-meter-tower/20639/>. Accessed June 30, 2017.

69. Koon M. Construction of Sacramento Kings arena using award-winning drone monitoring system developed at Illinois. *ICEE News*. March 1, 2016. <http://engineering.illinois.edu/news/article/15000>. Accessed May 2, 2017.

70. Irizarry J, Costa DB. Exploratory study of potential applications of unmanned aerial systems for construction management tasks. *J Manage Eng*. 2016;32:05016001.

71. Liu J, Jennesse M, Holley P. 2016. Utilizing light unmanned aerial vehicles for the inspection of curtain walls: A case study. *Construction Research Congress 2016*: 2651–2659. <http://toc.proceedings.com/31782webtoc.pdf>. Accessed July 8, 2017.

72. Choi SS, Kim EK. Design and implementation of vision-based structural safety inspection system using small unmanned aircraft. *ICACT Transact Adv Comm Technol (TACT)* 2015;4:562–567. http://icact.org/upload/2015/0426/20150426_finalpaper.pdf. Accessed June 30, 2017.

73. Fang Y, Chen J, Cho YK, Zhang P. A point cloud-vision hybrid approach for 3D location tracking of mobile construction assets. *33rd International Symposium on Automation and Robotics in Construction (ISARC 2016)*. Proceedings of the International Symposium on Automation and Robotics in Construction 2016 (Jan);33:1–7. <http://rical.ce.gatech.edu/Papers/ISARC2016-Paper115.pdf>. Accessed July 5, 2017.

74. Chirtel E, Knoll R, Le C, Mason B, Peck N, Robarge J, Lewin GC. Designing a spatially aware, autonomous quadcopter using the android control sensor system. In *Systems and Information Engineering Design Symposium (SIEDS)*, April, 2015 (pp. 35–40). IEEE. <http://ieeexplore.ieee.org/document/7117003/>. Accessed June 30, 2017.

75. Irizarry J, Gheisari M, Walker BN. Usability assessment of drone technology as safety inspection tools. *J Inform Technol Construct* 2012;17:194–212.

76. Gheisari M, Esmaeili B. 2016. Unmanned aerial systems (UAS) for construction safety applications. *Construction Research Congress 2016: Old and New Construction Technologies Converge in Historic San Juan – Proceedings of the 2016 Construction Research Congress*, CRC 2016, pp. 2642–2650. <http://ascelibrary.org/doi/pdf/10.1061/9780784479827.263>. Accessed July 5, 2017.

77. Ashour R, Taha T, Mohamed F, Habeel E, Abu Kheil Y, Elsalamouny M, et al. Site inspection drone: A solution for inspecting and regulating construction sites. In *Circuits and Systems (MWSCAS), 2016 IEEE 59th International Midwest Symposium* (pp. 1–4). IEEE. <http://ieeexplore.ieee.org/document/7870116/>?reload=true. Accessed June 30, 2017.

78. Hosier F. Could OSHA use drones for safety inspections? Safety News Alert. August 3, 2015. <http://www.safetynewsalert.com/could-osha-use-drones-for-safety-inspections/>. Accessed July 8, 2017.

79. National Association of Tower Erectors. National Association of Tower Erectors. 2017 January. Unmanned aerial systems operations around vertical communications infrastructure. 2nd Edition. <https://natehome.com/wp-content/uploads/2016/05/UAS-Operations-Document-2nd-Edition-Jan-2017-E-FILE.pdf>. Accessed July 9, 2017.

80. Kumar VRP, Balasubramanian M, Raj SJ. Robotics in construction industry. *Ind J Sci Tech*. 2016;9:1–12.

81. Dahlstrom RL, inventor; Working Drones, Inc., assignee. 2015 June 3. United States patent US 9,611,038. Mobile computing device-based guidance navigation and control for unmanned aerial vehicles and robotic systems. <http://patft.uspto.gov/netacgi/nph-Parser?Sect2=PTO1&Sect2=HITOFF&p=1&u=/netacgi/PTO/search-bool.html&r=1&f=G&l=50&d=PALL&RefSrch=yes&Query=PN/9611038>. Accessed July 8, 2017.

82. Jaffe G. The watchers: Airmen who surveil the Islamic State never get to look away. *Washington Post*. July 6, 2017. https://www.washingtonpost.com/world/national-security/the-watchers-airmen-who-surveil-the-islamic-state-never-get-to-look-away/2017/07/06/d80c37de-585f-11e7-ba90-f5875b7d1876_story.html?utm_term=.0acda21c075. Accessed July 7, 2017.

83. Bumiller E. Air Force drone operators report high levels of stress. *New York Times*. December 18, 2011. <http://www.nytimes.com/2011/12/19/world/asia/air-force-drone-operators-show-high-levels-of-stress.html>. Accessed June 30, 2017.

84. Consiglio M, Muñoz C, Hagen G, Narkawicz A, Balachandran S. ICAROUS: Integrated configurable algorithms for reliable operations of unmanned systems. *NASA Technical Reports Server*. September 25, 2016. <https://ntrs.nasa.gov/search.jsp?R=20170001936>. Accessed July 8, 2017.

85. Budiyono A, Lee G, Kim GB, Park J, Kang T, Yoon KJ. Control system design of a quad-rotor with collision detection. *Aircr Eng Aerosp Tec*. 2015;87:59–66.

86. Uhlig D, Bhamidipati K, Neogi N. 2006. Safety and reliability within UAV construction. *Proceedings of the 2006 AIAA/IEEE 25th Digital Avionics Systems Conference: 5B2-1-5B2-9*. <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4106317>. Accessed July 8, 2017

87. Denney E, Pai G. Automating the assembly of aviation safety cases. *IEEE Trans Reliab*. 2014;63:830–849.

88. Casarosa C, Galatolo R, Mengali G, Quarta A. Impact of safety requirements on the weight of civil unmanned aerial vehicles. *Aircr Eng Aerosp Tech* 2004;76:600–606.

89. Occupational Safety and Health Administration. Safety and Health Regulations for Construction. 29C.F.R. Section 1926.32(f)(1993). https://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=STANDARDS&p_id=10618. Accessed July 9, 2017.

90. Census of Fatal Occupational Injuries Summary, Census of Fatal Occupational Injuries Summary, 2015. U.S. Department of Labor, Bureau of Labor Statistics Web site. <https://www.bls.gov/news.release/cfoi.nr0.htm>. Published December 16, 2016. Accessed September 7, 2017.

How to cite this article: Howard J, Murashov V, Branche CM. Unmanned aerial vehicles in construction and worker safety. *Am J Ind Med.* 2018;61:3-10.

<https://doi.org/10.1002/ajim.22782>