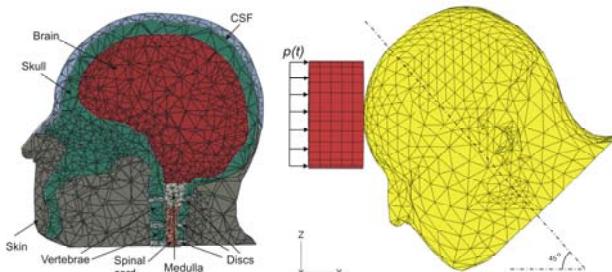


AN IMPROVED FINITE ELEMENT MODEL TO SIMULATE THE BRAIN ACCELERATION DUE TO A FRONT IMPACT

*John Z. Wu, Christopher S. Pan, and Bryan M. Wimer
National Institute for Occupational Safety and Health, Morgantown, WV, USA.


Introduction

Traumatic brain injuries (TBI) are among the most common severely disabling injuries in the U.S. Approximately 1.7 million cases occurred in civilians annually during 2002-2006¹. The Finite Element (FE) method has been widely used to investigate the injury mechanism of TBI, because it is technically difficult to quantify the responses of the brain tissues to impact in experiments. One of the technical challenges to build a FE model of a human head is the modeling of the cerebrospinal fluid (CSF) of the brain. The CSF is a body fluid that occupies the subarachnoid space and the ventricular system around the brain and spinal cord. In the current study, we proposed an improved FE model of human head-brain complex, in which we applied membrane elements to construct the CSF layer.

Methods

The FE model was constructed using the meshes available in an existing, generic data base (Materialise, Leuven, Belgium) and it included all of the essential anatomical

structures of a human head, i.e., skin, scalp, skull, cerebrospinal fluid (CSF) layer, brain, medulla, spinal cord, cervical vertebrae, and discs (Fig. 1, Left). The CSF was constructed using membrane elements, whereas all other components were constructed using three-dimensional continuous solid elements. The entire FE model was constructed by using a commercially available

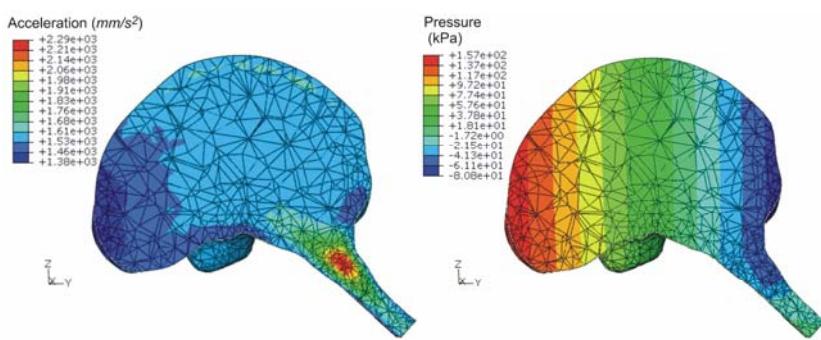


Figure 1. FE model of the head-brain complex. Left: Cross-sectional view of the model. Right: Set-up of the numerical calibration test.

software ABAQUS (version 6.9); no other advanced mesh software was needed to generate the current FE model. The scalp, skull bone, cervical discs, and vertebral bone were considered to be linearly elastic. The CSF was considered as an elastic and incompressible medium with a small shear modulus. The skin, brain, medulla, and spinal cord were considered to be hyperelastic and viscoelastic.

The set-up of the numerical test was to mimic cadaveric tests (Fig. 1, Right). The object impacted the head at the forehead and in the mid-sagittal plane. The impacting object was cylindrical and had a diameter of 50 mm and a height of 30 mm. The impact force, as measured in the previous experiment, was applied uniformly at the back of the cylindrical impact pad [$p(t)$]. The pressures in the brain tissues at four locations, as well

as the head accelerations calculated using the proposed model, will be compared with the experimental data and simulations in the literature.

Figure 2. Simulated distributions of the acceleration (Left) and intracranial pressure (Right) across the brain tissues at $t=6\text{ ms}$, when the impact force reached the maximum.

data² and the simulation³ in the literature, indicating that the physical effects of the CSF layer have been accounted for in the proposed modeling approach (results not shown). Our simulation results indicated that the maximal acceleration magnitude was not on the surface of the brain tissues, but in the core of the medulla region of the brain (Fig. 2, left), while the maximal/minimal pressure values were found on the surface of the brain (Fig. 2, right).

Results

The predicted time histories of the intracranial pressures at frontal, posterior fossa, parietal, and occipital positions using our model agree well with the experimental

Discussion

The acceleration of the brain tissue has been used as the injury criteria in the ergonomic design. The well accepted head injury criteria (HIC) is based on the time histories of the accelerations obtained in the experiments⁴. However, the accelerations are measured on the skin surface in conventional engineering analysis. Our analysis indicated that the maximal acceleration at the skin surface will be approximately 12% lower than that in the brain, which appears in the medulla region. Our findings are also consistent with the clinical observations⁵ that the medulla appeared to be one of the most vulnerable parts during a TBI.

References

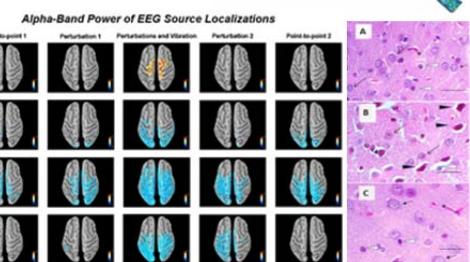
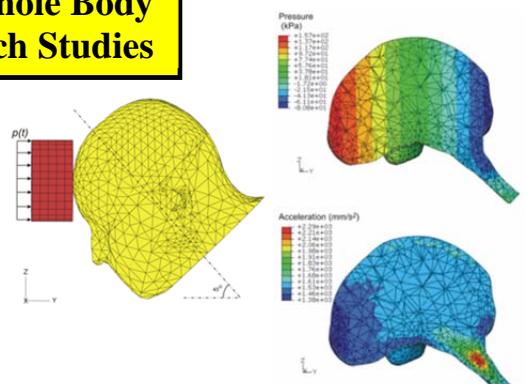
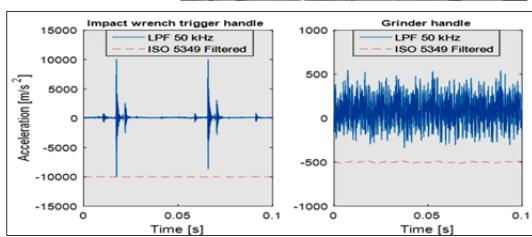
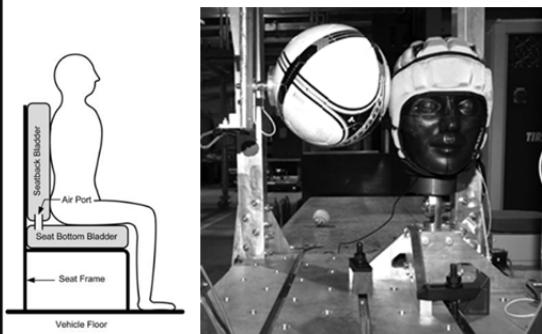
1. CDC, 2007. Traumatic Brain Injury in the United States – Emergency Department Visits, Hospitalizations, and Deaths 2002-2006. <http://www.cdc.gov/traumaticbraininjury/>.
2. Nahum A, Smith R, Ward C, *Proceedings of the 21st Stapp Car Crash Conference*, 1977, pp. 339–366.
3. Horgan TJ, Gilchrist MD. *Int J of Crashworthiness*, 8 (4) (2003) 353–66.
4. Eppinger R. *A Prospective View of Head Injury Research*. 1996, Ch. 5, pp. 39–45.
5. Zivkovic V, Nikolic S, Strajina V, Djonic D, Babic D, Djuric M. *Med Sci Law* 52 (2) (2012) 107–11.

Disclaimers: The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the National Institute for Occupational Safety & Health. The mention of trade names, commercial products, or organizations does not imply endorsement by the US Government.

Program & Proceedings

6th American Conference on Human Vibration

Venue: Marquette University Alumni Memorial Union

Teaming physicians/health professionals, engineers and research scientists in academia, government and industry to understand and prevent vibration disease and engage the next generation of students

Distinguished Keynote Speaker: Massimo Bovenzi, MD

Samples of the Hand Arm, Whole Body and Impact Vibration Research Studies

Proceedings of the

Sixth American Conference on Human Vibration

June 8 – 10, 2016

Jointly hosted by the
Medical College of Wisconsin
and
Marquette University

Venue
Marquette Alumni Memorial Union
Milwaukee, Wisconsin, U.S.A

Co-chaired by
Danny A. Riley, PhD
Department of Cell Biology, Neurobiology & Anatomy
and Physical Medicine & Rehabilitation
Medical College of Wisconsin
and
Brian D. Schmit, PhD
Department of Biomedical Engineering
Marquette University
Medical College of Wisconsin