

ELSEVIER

Contents lists available at ScienceDirect

American Journal of Infection Control

journal homepage: www.ajicjournal.org

Major Article

Influenza vaccination among workers—21 U.S. states, 2013

Alissa C. O'Halloran MSPH ^{a,b,*}, Peng-jun Lu MD, PhD ^b, Walter W. Williams MD, MPH ^b, Pamela Schumacher ^c, Aaron Sussell PhD ^c, Jan Birdsey MPH ^c, Winifred L. Boal MPH ^c, Marie Haring Sweeney PhD ^c, Sara E. Luckhaupt MD, MPH ^c, Carla L. Black PhD ^b, Tammy A. Santibanez PhD ^b

^a Leidos, Inc, Atlanta, GA

^b Immunization Services Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA

^c Division of Surveillance, Hazard Evaluations, and Field Studies, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH

Key Word:
Immunization

Background: Influenza illnesses can result in missed days at work and societal costs, but influenza vaccination can reduce the risk of disease. Knowledge of vaccination coverage by industry and occupation can help guide prevention efforts and be useful during influenza pandemic planning.

Methods: Data from 21 states using the 2013 Behavioral Risk Factor Surveillance System industry-occupation module were analyzed. Influenza vaccination coverage was reported by select industry and occupation groups, including health care personnel (HCP) and other occupational groups who may have first priority to receive influenza vaccination during a pandemic (tier 1). The *t* tests were used to make comparisons between groups.

Results: Influenza vaccination coverage varied by industry and occupation, with high coverage among persons in health care industries and occupations. Approximately half of persons classified as tier 1 received influenza vaccination, and vaccination coverage among tier 1 and HCP groups varied widely by state.

Conclusions: This report points to the particular industries and occupations where improvement in influenza vaccination coverage is needed. Prior to a pandemic event, more specificity on occupational codes to define exact industries and occupations in each tier group would be beneficial in implementing pandemic influenza vaccination programs and monitoring the success of these programs.

© 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

Influenza illnesses can result in missed days at work and societal costs.¹ Health care personnel (HCP) can acquire influenza infection at work from patients and may serve as sources of infection for patients, other HCP, and family members.^{2,3} Other types of workers can also acquire and spread infections at work because of close contact with coworkers or customers. The Advisory Committee on Immunization Practices recommends annual influenza vaccination for all persons aged ≥6 months (including HCP).^{2,4} A

recent study using Internet panel survey data indicated that approximately 77.3% of HCP reported influenza vaccination in the 2014–2015 season, and 40% of HCP were required to be vaccinated by their employers, with the highest rates of vaccination occurring among those with workplace requirements.⁵ Benefits of HCP influenza vaccination on patient outcomes, HCP absenteeism, and reduction of influenza infection among HCP have been documented.^{6–9}

Knowledge of influenza vaccination coverage among HCP and other occupational groups can help guide prevention efforts and be useful during an outbreak response. Additionally, influenza vaccination coverage rates can assist in influenza pandemic planning. The U.S. Department of Health and Human Services and Department of Homeland Security have developed guidance to support planning an effective and consistent pandemic response by states and communities, including prioritizing pandemic influenza vaccine based on occupation or age and health status when supplies are limited to include selected groups of persons who are critical for providing essential services during a pandemic.¹⁰ An influenza pandemic

* Address correspondence to Alissa C. O'Halloran, MSPH, Immunization Services Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, NE, Mail Stop A 19, Atlanta, GA 30329.

E-mail address: idg3@cdc.gov (A.C. O'Halloran).

Conflicts of interest: None to report.

Disclaimer: The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention.

will likely increase the burden on health care providers and institutions and may disrupt the provision of critical products and services in health care and other sectors. National and homeland security could be threatened if illness among military and other critical personnel reduces their capabilities. Therefore, highest priority groups (tier 1) are those that will be immunized first and include deployed and mission critical personnel, frontline public health responders, essential health care workers, emergency medical service providers, law enforcement personnel, fire services personnel, and high-risk populations (pregnant women, infants, and toddlers). The goal of a pandemic vaccination program is to include everyone, and those who are not included in an occupational group will be vaccinated as part of the general population based on their age and health status.¹⁰

This article updates influenza vaccination coverage estimates among select groups who likely have high exposure to the public and might be at increased risk for infection during a pandemic, provides interpandemic coverage estimates for groups in the highest tier for allocating pandemic influenza vaccines, and provides estimates of influenza vaccination coverage across specific industry sectors and occupational groups.

METHODS

The Behavioral Risk Factor Surveillance System (BRFSS) is an ongoing state-based telephone survey coordinated by state health departments in collaboration with the Centers for Disease Control and Prevention. Each year the BRFSS collects information on health conditions and risk behaviors from approximately 400,000 randomly selected persons ≥ 18 years among the noninstitutionalized, U.S. population.

In the 2013 BRFSS survey, the National Institute for Occupational Safety and Health supported an optional industry/occupation (I/O) module. Data from 21 states (including California, Florida, Illinois, Louisiana, Missouri, Massachusetts, Michigan, Minnesota, Mississippi, Montana, Nebraska, New Hampshire, New Jersey, New Mexico, New York, North Dakota, Oregon, Utah, Washington, Wisconsin, and Wyoming) that administered the 2013 BRFSS I/O module were analyzed in 2015 (Centers for Disease Control and Prevention, Behavioral Risk Factor Surveillance System Survey Data. Atlanta, Georgia: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, 2013. Source: <http://www.cdc.gov/brfss/questionnaires/index.htm>). Data from Wyoming Department of Health, Public Health Division, Behavioral Risk Factor Surveillance System, were supported in part by Centers for Disease Control and Prevention Cooperative Agreement, U58/S0000016-1 through 3 [2011-2013]. Data from Washington State Department of Health, Center for Health Statistics, Behavioral Risk Factor Surveillance System were supported in part by Centers for Disease Control and Prevention Cooperative Agreement, U58/S0000047-1 through 3 [2011-2013]. The I/O module included 2 questions asked of respondents who reported being employed for wages, self-employed, or out of work for <1 year at the time of the survey. The first question elicited the worker's occupation by asking, "What kind of work do you do (eg, registered nurse, janitor, cashier, auto mechanic)?," or for those out of work for <1 year, "What kind of work did you do?" Industry was next elicited with, "What kind of business or industry do you/did you work in (eg, hospital, elementary school, clothing manufacturing, restaurant)?" The analytic data file included both BRFSS I/O data and data from the BRFSS core, including data on demographic and access-to-care variables and variables on influenza vaccination. In the 2013 BRFSS, approximately 0.26% of the sample in the 21 states included military personnel living in residential or college housing, but the BRFSS does not collect information on deployed military personnel or those living in barracks.

The median state response rate in 2013 for the 21 states included in this report was 44.0% (median for the entire 2013 BRFSS survey, 46.4%).¹¹

I/O responses were coded to 2002 Census I/O codes, which are consistent with the federal government's standard industry and occupation classification systems.¹² The public software, NIOSH Industry and Occupation Computerized Coding System (NIOCCS, Cincinnati, OH), autocoded 40% of the BRFSS 2013 I/O data (the system currently autocodes an average of 52%-55% of data).¹³ The remainder were coded by human coders. In total, approximately 97% of BRFSS I/O data were coded by the NIOSH Industry and Occupation Computerized Coding System and human coders, whereas the other 3% could not be coded because of vague responses. In addition to the 3% not coded because of vague responses, respondents were also excluded if they refused to answer the I/O questions. Among 106,348 employed respondents with data on age (including persons out of work for <1 year), 18,757 (17.6%) were excluded from the analysis of industry and 17,872 (16.8%) from the analysis of occupation because they could not be coded for one of the reasons previously listed.

Where possible, Census codes were converted to equivalent 2002 North American Industry Classification System (NAICS) and 2000 Standard Occupational Classification (SOC) codes using standard code lists.¹⁴⁻¹⁶ These NAICS codes were used to create 20 broad industry sector groups, and the SOC codes were used to create 22 broad occupation groups and to identify specific HCP industry and occupation categories of interest for this report (there are a total of 23 broad SOC occupational groups, but SOC 55, which includes military-specific occupations, is not included in the analysis of broad SOC groups because there is no equivalent occupation code for military personnel of unknown rank).¹⁷

Tier 1 groups for allocating pandemic influenza vaccines were defined using NAICS, SOC, and Census codes for the following groups: deployed and mission critical personnel who have an essential role in national security and have a high risk of influenza exposure because of living conditions and geographic location; inpatient health care providers who play a critical role in caring for the sickest persons and have a high risk of exposure; outpatient and home health providers whose care is critical to decrease the burden on hospitals and also have a high risk of exposure; emergency services sector personnel who provide critical medical care and have increased risk of aerosol exposure and law enforcement and fire services personnel; and other groups, such as health care providers in long-term care facilities, manufacturers of pandemic vaccine and antivirals, and public health personnel.¹⁰ Because the BRFSS does not sample deployed military personnel, this tier 1 category was based on military personnel living in residential or college housing. HCP in the tier 1 groups included only clinical support occupations (physicians/surgeons, nurses, other health diagnosing and treating practitioners, health technologists-technicians, and health care support occupations) because the guidance on pandemic vaccine allocation from the U.S. Department of Health and Human Services and Department of Homeland Security describes the critical role of medical care within these occupations.¹⁰ Also, manufacturers of pandemic vaccine and antivirals are considered a tier 1 group to receive priority for vaccination, but the category included in this study includes any person employed in the pharmaceuticals and medicines industry. Additional analyses were performed on a larger set of HCP recommended by the Advisory Committee on Immunization Practices to receive influenza vaccination, which included both clinical and nonclinical HCP who worked in hospitals, outpatient care and physician offices, long-term care, or other clinical settings; a combination of NAICS and SOC codes were used to define HCP by setting and occupation. In these analyses, influenza vaccination coverage estimates were calculated for HCP overall, by demographic and access-to-care

Table 1

Influenza vaccination coverage by industry of employment among workers aged ≥ 18 years—Behavioral Risk Factor Surveillance System—2013, 21 states*

Industry sector (2002 NAICS code)	n	% [†] (95% CI)
Management of companies and enterprises (NAICS 55)	161	52.6 (34.2-70.3)
Health care and social assistance (NAICS 62)	15,574	52.4 (50.7-54.0)
Public administration (NAICS 92)	7,090	44.6 (42.4-47.0)
Educational services (NAICS 61)	10,818	37.8 (35.8-39.7)
Professional, scientific, and technical services (NAICS 54)	5,631	34.8 (32.6-37.1)
Information (NAICS 51)	1,967	33.8 (29.9-37.9)
Finance and insurance (NAICS 52)	4,111	33.0 (30.1-36.2)
Real estate and rental and leasing (NAICS 53)	1,787	31.8 (27.4-36.6)
Utilities (NAICS 22)	962	31.8 (26.2-37.9)
Manufacturing (NAICS 31-33)	5,362	30.6 (28.3-32.9)
Retail trade (NAICS 44-45)	5,782	27.5 (25.3-29.9)
Arts, entertainment, and recreation (NAICS 71)	1,733	27.2 (22.7-32.1)
Other services (except public administration) (NAICS 81)	4,606	26.7 (24.1-29.5)
Transportation and warehousing (NAICS 48-49)	3,300	25.6 (22.7-28.7)
Administrative and support and waste management and remediation services (NAICS 56)	2,527	24.6 (21.6-27.8)
Wholesale trade (NAICS 42)	1,259	24.5 (20.3-29.3)
Mining, quarrying, and oil and gas extraction (NAICS 21)	1,307	23.8 (19.4-28.8)
Agriculture, forestry, fishing, and hunting (NAICS 11)	3,298	21.9 (18.2-26.1)
Accommodation and food services (NAICS 72)	3,812	21.3 (18.8-24.1)
Construction (NAICS 23)	5,587	18.7 (16.9-20.6)

CI, confidence interval; NAICS, North American Industry Classification System (<http://www.census.gov/eos/www/naics>).

*States included California, Florida, Illinois, Louisiana, Missouri, Massachusetts, Michigan, Minnesota, Mississippi, Montana, Nebraska, New Hampshire, New Jersey, New Mexico, New York, North Dakota, Oregon, Utah, Washington, Wisconsin, and Wyoming.

[†]Weighted proportion of respondents who reported receiving an influenza vaccine in the last 12 months.

characteristics, and by specific health care occupation and setting. When reporting by specific health care industry, individual NAICS codes were used, whereas SOC codes were used to report by individual health care occupations (eg, physicians, nurses).

Respondents who reported receiving an influenza shot or vaccine that was sprayed in the nose at any time in the 12 months preceding their interview were defined as having been vaccinated for influenza. Of the 87,591 employed respondents with an available NAICS code, 917 (1.0%) were excluded because they did not have a yes or no response to the question on receipt of influenza vaccine, whereas 929 (1.1%) of the 88,476 employed respondents with an available SOC code were excluded for this reason. The percentage of respondents who reported influenza vaccination in the last 12 months was calculated using a simple weighted proportion because the purpose was not to estimate season-specific influenza vaccination coverage as has been reported previously using Kaplan-Meier methods.¹⁸ The *t* tests were used to make comparisons between groups with a significance level set at $\alpha = 0.05$. All analyses were performed using SAS version 9.3 (SAS Institute, Cary, NC) and SUDAAN version 11.0 (Research Triangle Park, NC).

RESULTS

Over the 20 broad industry sectors in Table 1, influenza vaccination coverage ranged from 18.7% among workers in the construction industry to 52.6% among workers in management of companies and enterprises. Over the 22 broad occupational groups in Table 2, influenza vaccination coverage was lowest among the farming, fishing, and forestry occupations (13.7%) and highest among health care practitioners and technical occupations (62.3%).

Table 2

Influenza vaccination coverage by occupation among workers aged ≥ 18 years—Behavioral Risk Factor Surveillance System—2013, 21 states*

Occupational group (2000 SOC major group [†])	n	% [‡] (95% CI)
Health care practitioners and technical occupations (SOC 29)	7,317	62.3 (60.0-64.5)
Legal occupations (SOC 23)	1,243	46.1 (41.5-50.9)
Life, physical, and social science occupations (SOC 19)	1,563	45.6 (40.8-50.5)
Health care support occupations (SOC 31)	2,199	42.2 (37.9-46.6)
Business and financial operations occupations (SOC 13)	3,941	40.6 (37.5-43.7)
Education, training, and library occupations (SOC 25)	7,319	38.8 (36.7-41.0)
Community and social services occupations (SOC 21)	2,048	38.3 (34.1-42.6)
Computer and mathematical occupations (SOC 15)	2,516	38.2 (34.7-41.7)
Architecture and engineering occupations (SOC 17)	2,320	35.0 (31.6-38.6)
Management occupations (SOC 11)	9,971	34.6 (32.8-36.4)
Office and administrative support occupations (SOC 43)	10,576	32.4 (30.6-34.3)
Arts, design, entertainment, sports, and media occupations (SOC 27)	2,011	31.7 (28.0-35.7)
Protective service occupations (SOC 33)	1,777	31.5 (27.5-35.8)
Personal care and service occupations (SOC 39)	2,939	29.3 (26.0-32.9)
Building and grounds cleaning maintenance occupations (SOC 37)	3,179	27.5 (24.2-31.1)
Sales and related occupations (SOC 41)	8,110	27.3 (25.4-29.3)
Production occupations (SOC 51)	3,771	25.1 (22.6-27.8)
Installation, maintenance, and repair occupations (SOC 49)	2,587	24.8 (21.5-28.5)
Transportation and material moving occupations (SOC 53)	3,954	23.9 (21.2-26.9)
Food preparation- and serving-related occupations (SOC 35)	2,823	21.9 (18.8-25.2)
Construction and extraction occupations (SOC 47)	4,603	18.8 (16.6-21.3)
Farming, fishing, and forestry occupations (SOC 45)	780	13.7 (9.7-18.9)

CI, confidence interval; SOC, Standard Occupation Classification (<http://www.bls.gov/soc/>).

*States included California, Florida, Illinois, Louisiana, Missouri, Massachusetts, Michigan, Minnesota, Mississippi, Montana, Nebraska, New Hampshire, New Jersey, New Mexico, New York, North Dakota, Oregon, Utah, Washington, Wisconsin, and Wyoming.

[†]SOC 55 is not included because coding of military personnel was not compatible with the SOC coding scheme.

[‡]Weighted proportion of respondents who reported receiving an influenza vaccine in the last 12 months.

Among the industries and occupations classified as tier 1, influenza vaccination coverage was 56.1% among all tier 1 groups combined, 66.5% among deployed and mission critical personnel, 48.5% among public health personnel, 67.4% among inpatient health care providers, 54.5% among outpatient and home health providers, 48.4% among health care providers in long-term care facilities, 36.5% among emergency services sector personnel, and 37.7% among manufacturers of pharmaceuticals and medicines (including pandemic vaccine and antivirals) (Table 3).

When each non-HCP tier 1 group was compared with each health care tier 1 group, non-HCP tier 1 groups had significantly lower influenza vaccination coverage ($P < .05$ by *t* test) than health care tier 1 groups with a few exceptions. When comparing inpatient health care providers with deployed and mission critical personnel, public health personnel with outpatient and home health providers, public health personnel with providers in long-term care facilities, and manufacturers of pandemic vaccine and antivirals with providers in long-term care facilities, influenza vaccination coverage rates were similar ($P = .79$, $P = .18$, $P = .98$, and $P = .09$, respectively) (Table 3).

Table 3

Influenza vaccination coverage by tier 1 occupational groups* among workers aged ≥18 years—Behavioral Risk Factor Surveillance System—2013, 21 states†

Tier 1 target group	2002 NAICS, 2002 Census, or 2000 SOC description (NAICS or Census or SOC code)	n	%‡ (95% CI)
Total	All codes described in the table	10,256	56.1 (54.1-58.1)
Deployed and mission critical personnel§	National Security and International Affairs/DOD (NAICS 928 and Census 9590),¶ Army, Air Force, Navy, Marines, U.S. Coast Guard, unknown military branch (NAICS 928110, excluding Census 9870)	905	66.5 (59.8-72.5)
Public health personnel	Administration of human resource programs** (NAICS 923)	612	48.5 (40.8-56.3)
Inpatient health care providers	Hospitals†† (NAICS 622)	3,417	67.4 (64.2-70.5)
Outpatient and home health providers	Outpatient care centers†† (NAICS 6214), physician offices†† (NAICS 6211), health practitioner offices††‡‡ (NAICS 6213§§), home health care services†† (NAICS 6216)	2,985	54.5 (50.5-58.5)
Health care providers in long-term care facilities	Nursing care facilities†† (NAICS 6231)	910	48.4 (41.0-55.8)
Emergency services sector personnel	Other health care services (emergency medical technicians, paramedics) (NAICS 621 and SOC 29-2041), justice, public order, and safety activities (protective service) (NAICS 922 and 92115 and SOC 33)	1,169	36.5 (31.2-42.2)
Manufacturers of pandemic vaccine and antivirals	Pharmaceuticals and medicines (NAICS 3254)	258	37.7 (28.3-48.0)

CI, confidence interval; DOD, Department of Defense; NAICS, North American Industry Classification System (<http://www.census.gov/eos/www/naics/>); SOC, Standard Occupation Classification (<http://www.bls.gov/soc/>).

*Tier 1 occupational groups are defined by the U.S. Department of Health and Human Services and Department of Homeland Security which include the following groups: deployed and mission critical personnel who have an essential role in national security and have a high risk of influenza exposure because of living conditions and geographic location; inpatient health care providers who play a critical role in caring for the sickest persons and have a high risk of exposure; outpatient and home health providers whose care is critical to decrease the burden on hospitals and also have a high risk of exposure; emergency services sector personnel who provide critical medical care and have increased risk of aerosol exposure; and other groups such as health care providers in long-term care facilities, manufacturers of pandemic vaccine and antivirals, and public health personnel.

†States included California, Florida, Illinois, Louisiana, Missouri, Massachusetts, Michigan, Minnesota, Mississippi, Montana, Nebraska, New Hampshire, New Jersey, New Mexico, New York, North Dakota, Oregon, Utah, Washington, Wisconsin, and Wyoming.

‡Weighted proportion of respondents who reported receiving an influenza vaccine in the last 12 months.

§The tier 1 definition is deployed military and mission critical personnel, but the Behavioral Risk Factor Surveillance System excludes military personnel deployed or living in military housing. Military personnel living in residential or college housing in the United States are included.

¶May include national security and international affairs (Department of Defense) from tier 2 (essential support and sustainment personnel, intelligence services, border protection personnel, other domestic national security personnel, or other active duty and essential support).

**City, state, and federal health departments, including the Centers for Disease Control and Prevention.

††Restricted to physicians and surgeons, nurse practitioners and nurses, other health diagnosing and treating practitioners, health technologists and technicians, and health care support occupations working in these industries.

‡‡Medical laboratories, blood banks, dialysis centers, and magnetic resonance imaging centers.

§§Excludes NAICS 62131 and 62132.

Among all HCP, influenza vaccination coverage was 55.1%, whereas only 29.7% of non-HCP were vaccinated (Table 4). Among HCP and non-HCP, those with higher education, higher annual household income, a personal health care provider, and health insurance had statistically significantly higher influenza vaccination coverage than the reference groups. Influenza vaccination coverage was lower among non-Hispanic blacks and Hispanics compared with whites among HCP and non-HCP (Table 4).

Compared with all other HCP occupations, physicians and surgeons had significantly higher influenza vaccination coverage (75.8%). Influenza vaccination coverage was higher among workers in hospitals (65.5%) than among workers in outpatient care centers and physician offices (52.8%), other clinical settings (46.7%), and long-term care facilities (41.6%) (Table 5).

Influenza vaccination among tier 1 occupations and industries and among HCP varied by state. Among persons employed in tier 1 occupations or industries, influenza coverage ranged from 43.3% in Florida to 68.7% in Minnesota, with a median of 57.1%. Among HCP, influenza vaccination coverage ranged from 41.1% in Florida to 69.5% in North Dakota, with a median of 56.3%. (Data on state-based vaccination coverage rates are available to readers on request.)

DISCUSSION

Influenza vaccination coverage varied widely by industry and occupation. Compared with the 2009-2010 influenza season,¹⁹ the broad industry and occupation categories with the highest and lowest seasonal influenza vaccination coverage in this study were similar; however, different analytic approaches were used to estimate coverage. Besides the health care and social assistance industry, the public administration industry had high influenza coverage in this study and in the 2009-2010 season, whereas the construction

industry had among the lowest.¹⁹ Additionally, influenza vaccination coverage was <30% among some occupations with frequent contact with the public, such as food preparation and serving, sales, personal care, and service occupations, even though there have been relatively high rates of influenza-like illness documented in these occupations.¹⁹ Vaccination coverage among non-HCP within the highest household income level is significantly lower than HCP in the same income strata, indicating that within non-HCP occupations or industries, having higher income alone is not enough to achieve coverage rates comparable with HCP. Influenza vaccination has been shown to be cost-effective and inexpensive for large employers, and offering vaccination in workplaces where coverage is low may increase coverage rates in these groups.²⁰ Access-based workplace interventions, such as vaccination promotion materials, on-site vaccination events, and free vaccinations for employees, increased influenza vaccination rates among restaurant employees.²¹ Also, the Community Preventive Services Task Force recommends interventions with on-site, reduced cost, and actively promoted influenza vaccinations for non-HCP, and also recommends interventions with on-site, free, and actively promoted influenza vaccinations for HCP.²² In a 2012 survey of large U.S. companies, most offered on-site vaccination; however, fewer than half reported offering access to vaccination at all worksites within the company.²⁰

Findings from this report were similar to previous studies on demographic and access to care factors related to influenza vaccination in the general population^{23,24} and among HCP,²⁵ including racial and ethnic vaccination differences. In particular, vaccination coverage among HCP with a personal care provider and health insurance was higher than among HCP without a personal provider or insurance.²⁵ In the general population, higher education, having health insurance and a usual place for health care, and having ≥1 physician visits

Table 4

Influenza vaccination coverage by health care personnel status, demographic, and access to care characteristics among workers aged ≥ 18 years—Behavioral Risk Factor Surveillance System – 2013, 21 states*

Characteristic	Health care personnel†		Nonhealth care personnel‡	
	n	%§ (95% CI)	n	%§ (95% CI)
Total	13,610	55.1 (53.4-56.9)	73,064	29.7 (29.0-30.4)¶
Age, y				
18-49**	6,730	52.5 (50.1-54.9)	36,142	24.6 (23.8-25.5)¶
50-64	5,623	59.5 (56.8-62.2)††	29,364	36.3 (35.1-37.5)¶,††
≥ 65	1,257	58.7 (53.2-63.9)††	7,558	53.3 (50.7-55.9)††
Sex				
Male**	2,807	54.7 (50.9-58.6)	37,442	27.4 (26.5-28.3)¶
Female	10,803	55.3 (53.3-57.2)	35,622	32.9 (31.9-34.0)¶,††
Race/ethnicity				
White**	10,668	58.8 (57.0-60.6)	58,459	32.1 (31.4-32.8)*
Black	1,226	39.7 (34.9-44.8)††	4,324	23.1 (20.9-25.5)¶,††
Hispanic	806	46.3 (39.6-53.1)††	5,618	25.3 (23.2-27.5)¶,††
Other	767	65.6 (58.0-72.4)	3,735	29.6 (26.5-32.8)¶
Education				
Less than high school**	304	37.3 (28.9-46.7)	3,553	22.8 (20.2-25.5)¶
High school graduate or GED	2,090	50.9 (46.5-55.3)††	18,171	24.8 (23.5-26.1)¶
Some college or technical school	4,296	52.2 (49.1-55.4)††	20,182	27.5 (26.4-28.8)¶,††
College graduate	6,912	61.2 (58.8-63.6)††	31,064	38.5 (37.5-39.6)¶,††
Income				
$<\$20,000$ **	963	33.4 (28.1-39.1)	6,860	20.1 (18.3-22.0)¶
$\$20,000$ to $<\$50,000$	3,783	48.0 (44.8-51.3)††	20,963	24.9 (23.6-26.2)¶,††
$\$50,000$ to $<\$75,000$	2,367	55.2 (50.8-59.6)††	12,708	30.8 (29.1-32.5)¶,††
$\geq \$75,000$	5,555	64.5 (61.8-67.1)††	27,088	37.1 (36.0-38.2)¶,††
High-risk conditions‡				
Yes	3,286	57.4 (53.8-61.0)	16,545	39.1 (37.5-40.7)¶,††
No**	10,228	54.4 (52.4-56.4)	55,823	27.5 (26.8-28.3)¶
Have personal health care provider				
Yes	11,790	58.6 (56.7-60.5)††	56,882	35.0 (34.2-35.8)¶,††
No**	1,803	35.4 (31.2-39.7)	15,971	15.4 (14.3-16.6)¶
Have medical insurance				
Yes	12,422	58.4 (56.6-60.2)††	62,902	33.8 (33.0-34.5)¶,††
No**	1,167	30.0 (24.9-35.7)	9,947	12.6 (11.4-13.9)¶

CI, confidence interval; GED, General Educational Development; NAICS, North American Industry Classification System (<http://www.census.gov/eos/www/naics/>).

*States included California, Florida, Illinois, Louisiana, Missouri, Massachusetts, Michigan, Minnesota, Mississippi, Montana, Nebraska, New Hampshire, New Jersey, New Mexico, New York, North Dakota, Oregon, Utah, Washington, Wisconsin, and Wyoming.

†Clinical and nonclinical staff working in hospitals (NAICS 622), outpatient care and physician offices (NAICS 6214 and 6211), long-term care facilities (NAICS 6216, 6231, 6232, 6233, and 6239), and other clinical settings (NAICS 6212, 62131, 62132, 6213, 6215, and 6219).

‡Other employed adults not classified as health care personnel.

§Weighted proportion of respondents who reported receiving an influenza vaccine in the last 12 months.

¶P < .05 by t test for comparisons between health care personnel and nonhealth care personnel within each level of each characteristic.

**Reference level.

††P < .05 by t test for comparisons within each variable with the indicated reference level.

‡‡Adults who reported having at least 1 or >1 of the following: asthma, diabetes, myocardial infarction, angina or coronary heart disease, chronic obstructive pulmonary disease, emphysema or chronic bronchitis, or cancer (excluding skin cancer).

in the previous year were independently associated with receipt of these vaccines.^{23,24} Differences in attitudes toward vaccination, vaccine-seeking behaviors, likelihood of a provider recommendation, quality of care received, and other factors might contribute to racial and ethnic vaccination differences.^{23,24,26-30}

Persons in health care occupations had the highest influenza vaccination coverage of all broad occupations. Higher coverage rates in these groups could in part be because of workplace vaccination requirements, promotions in health care settings, or employers making vaccination available at the workplace at no cost for multiple days. Offering vaccines on-site, free of charge, and actively promoting influenza vaccination has been shown to be effective in increasing influenza vaccination coverage among HCP and in decreasing cases of influenza among HCP and patients when implemented alone or as a part of a multicomponent intervention.²² According to an Internet panel survey from the 2013-2014 influenza season, approximately 74% of HCP reported that their workplace either required or promoted influenza vaccination.³¹ Requirements were highest in hospital settings, which also had the highest reported coverage rates, which might be because of the Centers for Medicare and Medicaid Services requirement in place since January

2013 to report HCP influenza vaccination levels as part of its hospital quality reporting programs.^{31,32} Despite having high coverage rates among the broad industries and occupations in this study, only about half of persons in the health care and social assistance industry reported influenza vaccination. In certain specific occupations or industry settings, such as health care support occupations or long-term care facilities, coverage was even lower. HCP in long-term care facilities have been most likely to report that their employer neither required nor promoted influenza vaccination and least likely to report that their employer made influenza vaccination available at no cost for multiple days.³¹ Although vaccination requirements have been associated with higher influenza vaccination coverage, offering vaccination on-site, at no cost, and actively promoting vaccination might also improve vaccination among HCP.^{22,31}

Among tier 1 target groups, slightly more than half of all persons were vaccinated for influenza. Overall, influenza vaccination coverage rates among tier 1 target groups were similar to 2009-2010 seasonal influenza coverage rates previously published for nontier 1 target groups in broader industries.¹⁹ Based on this previous study, influenza A (H1N1) virus vaccination coverage rates were lower than the seasonal coverage rates for each I/O.¹⁹ Increasing coverage among

Table 5

Influenza vaccination coverage by health care occupation and occupational setting among health care personnel aged ≥ 18 years—Behavioral Risk Factor Surveillance System – 2013, 21 states*

Occupation and occupational setting (2000 SOC code or 2002 NAICS code)	n	% [†] (95% CI)
Occupation	13,610	55.1 (53.4-56.9)
Physicians and surgeons (SOC 29-1060)	732	75.8 (69.7-81.0)
Nurse practitioners and registered nurses (SOC 29-1111)	3,208	67.8 (64.6-70.9) ^{‡,§}
Other health diagnosing and treating practitioners [¶] (SOC 29-1000 ^{**})	914	51.2 (43.9-58.5) ^{‡,§}
Health technologists and technicians ^{††} (SOC 29-2000 ^{##})	1,262	59.6 (54.2-64.7) ^{‡,§}
Health care support occupations ^{§§} (SOC 31-0000 ^{¶¶})	1,874	45.3 (40.6-50.1) ^{‡,§}
Nonclinical occupations (All other SOC ^{***})	5,620	49.9 (47.3-52.6) ^{‡,§}
Health care industry setting		
Hospitals (NAICS 622)	5,319	65.5 (62.9-68.0)
Outpatient care centers and physician offices (NAICS 6214 and 6211)	4,559	52.8 (49.6-56.0) ^{‡,††}
Long-term care facilities ^{##} (NAICS 6216, 6231, 6232, 6233, and 6239)	2,562	41.6 (37.6-45.6) ^{‡,††}
Other clinical settings ^{§§§} (NAICS 6212, 62131, 62132, 6213, 6215, and 6219)	1,170	46.7 (40.8-52.7) ^{‡,††}

CI, confidence interval; NAICS, North American Industry Classification System (<http://www.census.gov/eos/www/naics/>); SOC, Standard Occupation Classification (<http://www.bls.gov/soc/>).

*States included California, Florida, Illinois, Louisiana, Missouri, Massachusetts, Michigan, Minnesota, Mississippi, Montana, Nebraska, New Hampshire, New Jersey, New Mexico, New York, North Dakota, Oregon, Utah, Washington, Wisconsin, and Wyoming.

[†]Weighted proportion of respondents who reported receiving an influenza vaccination in the last 12 months.

[‡]Statistical significance.

[§]P < .05 by t test for comparisons within occupation, with physicians and surgeons as the reference level.

[¶]Including chiropractors, dentists, dieticians, nutritionists, optometrists, pharmacists, physician assistants, podiatrists, therapists (audiologists, occupational therapists, physical therapists, radiation therapists, recreational therapists, respiratory therapists, speech-language pathologists, and other therapists), and other health diagnosing and treating practitioners.

^{**}Excluding SOC 29-1060, 29-1111, and 29-1131.

^{††}Including clinical laboratory technologists and technicians, dental hygienists, diagnostic-related technologists and technicians, emergency medical technicians and paramedics, health diagnosing and treating practitioner support technicians, medical records and health information technicians, opticians, and other health technologists and technicians.

^{##}Excluding SOC 29-2056.

^{§§}Including nursing, psychiatric, and home health aides; occupational and physical therapist assistants and aides; massage therapists; dental assistants; medical assistants; and so forth.

^{¶¶}Excluding SOC 31-9096.

^{***}Includes all other occupations who work in HCP settings (hospitals, outpatient care and physician offices, long-term care facilities, and other clinical settings).

^{†††}P < .05 by t test for comparisons within occupational setting, with hospitals as the reference level.

^{§§§}Including home health care services, nursing care facilities, and residential care facilities (without nursing).

^{¶¶¶}Including dentist, chiropractor, optometrist, and other health practitioner offices; and other health care services.

these target groups may prevent disruption in products and services in health care, emergency services, national security, and other sectors during a pandemic.¹⁰ Using vaccine allocation strategies tailored to the specific event, such as factoring in the event-specific disease virulence, vaccine production rates, and public demand, would also be an important consideration during a pandemic.³³ Such tailored strategies would need to be developed.

Wide variation in state influenza vaccination was observed among tier 1 occupations and HCP among the 21 states for which I/O data were available. Some states with the lowest and highest influenza coverage had relatively low or high vaccination coverage rates among the general population in recent seasons.³⁴ Variation

in state coverage could be caused by differing medical care delivery infrastructure, population norms, and effectiveness of state and local immunization programs among states.³⁵

There were several limitations to this study. First, respondents with vague responses and those who refused to answer the I/O questions (17%-18%) were excluded from industry and occupation estimations, creating a potential for bias. Second, industry and occupation codes used to identify tier 1 groups were broadly based, and it is possible that some workers who should be classified as tier 2 were included in our estimates of tier 1 groups. During an actual pandemic event, this could be resolved by specifying occupational codes within the relevant industries (eg, specific occupations within the national security and international affairs and Department of Defense category); however, these selected occupations may vary depending on particular needs during a specific pandemic. Based on lessons learned from the 2009 influenza A (H1N1) virus pandemic vaccination campaigns, 35% of immunization program managers stated that during a future pandemic event similar to the 2009 influenza A (H1N1) virus pandemic, they would change their vaccination allocation strategy, including specifying whether HCP includes fire and police personnel, school nurses, or even teachers.³³ Additionally, the BRFSS does not collect information from deployed military personnel; therefore, estimates for this occupational group were based on a small number of military personnel sampled by the BRFSS who lived in residential or college housing. Third, influenza vaccination status was based on self-report and therefore subject to recall bias. However, self-reported seasonal influenza vaccination has been shown to have relatively high agreement with vaccination status from medical records.³⁶⁻³⁹ Additionally, only seasonal influenza vaccination was estimated and generalized for pandemic planning; rates from seasonal influenza may provide an idea of groups needing improvement and the relative rates of influenza vaccination for various industry and occupational groups. Finally, response rates were low; although the median state response rate was 44%, in some states the response rate was as low as 31%. A low response rate can result in nonresponse bias if respondents and nonrespondents differ in their vaccination rates, and survey weights are not able to fully account for such differences.

CONCLUSIONS

Influenza vaccination can reduce transmission of influenza disease among workers. This report documents the particular industries and occupations where improvement in vaccination is needed. Prior to a pandemic event, more specificity on occupational codes to define exact industries and occupations in each tier group would be beneficial in implementing pandemic influenza vaccination programs and monitoring the success of these programs because broad labeling of these categories creates difficulty in distinguishing tier 1 versus tier 2 individuals within the same industry.

References

1. Molinari NA, Ortega-Sánchez IR, Messonnier ML, Thompson WW, Wortley PM, Weintraub E, et al. The annual impact of seasonal influenza in the US: measuring disease burden and costs. *Vaccine* 2007;25:5086-96.
2. Advisory Committee on Immunization Practices, Centers for Disease Control and Prevention. Immunization of health-care personnel: recommendations of the Advisory Committee on Immunization Practices (ACIP). *MMWR Recomm Rep* 2011;60:1-45.
3. Pearson ML, Bridges CB, Harper SA, Healthcare Infection Control Practices Advisory Committee, Advisory Committee on Immunization Practices. Influenza vaccination of health-care personnel: recommendations of the Healthcare Infection Control Practices Advisory Committee (HICPAC) and the Advisory Committee on Immunization Practices (ACIP). *MMWR Recomm Rep* 2006;55:1-16.
4. Grohskopf LA, Sokolow LZ, Olsen SJ, Bresee JS, Broder KR, Karron RA. Prevention and control of influenza with vaccines: recommendations of the Advisory

Committee on Immunization Practices, United States, 2015-16 Influenza Season. MMWR Morb Mortal Wkly Rep 2015;64:818-25.

5. Black CL, Yue X, Ball SW, Donahue SM, Israel D, de Perio MA, et al. Influenza vaccination coverage among health care personnel—United States, 2014–15 influenza season. MMWR Morb Mortal Wkly Rep 2015;64:993-9.
6. Carman WF, Elder AG, Wallace LA, McAulay K, Walker A, Murray GD, et al. Effects of influenza vaccination of health-care workers on mortality of elderly people in long-term care: a randomised controlled trial. Lancet 2000;355:93-7.
7. Potter J, Stott DJ, Roberts MA, Elder AG, O'Donnell B, Knight PV, et al. Influenza vaccination of health care workers in long-term-care hospitals reduces the mortality of elderly patients. J Infect Dis 1997;175:1-6.
8. Saxon H, Virtanen M. Randomized, placebo-controlled double blind study on the efficacy of influenza immunization on absenteeism of health care workers. Pediatr Infect Dis J 1999;18:779-83.
9. Wilde JA, McMillan JA, Serwint J, Butta J, O'Riordan MA, Steinhoff MC. Effectiveness of influenza vaccine in health care professionals: a randomized trial. JAMA 1999;281:908-13.
10. Department of Health and Human Services and Department of Homeland Security. Guidance on allocating and targeting pandemic influenza vaccine. 2008. Available from: <https://www.cdc.gov/flu/pandemic-resources/pdf/allocatingtargetingpandemicvaccine.pdf>. Accessed January 31, 2017.
11. Centers for Disease Control and Prevention. Behavioral Risk Factor Surveillance System 2013 Summary Data Quality Report. 2014. Available from: http://www.cdc.gov/brfss/annual_data/2013/pdf/2013_dqr.pdf. Accessed July 1, 2016.
12. United States Census Bureau. Census 2002 Industry and Occupation Codes. 2002. Available from: <http://www.bls.gov/tus/census02icodes.pdf>. Accessed July 1, 2016.
13. Centers for Disease Control and Prevention. NIOSH Industry and Occupation Computerized Coding System (NIODCS). 2016. Available from: <http://www.cdc.gov/niosh/topics/coding/overview.html>. Accessed July 1, 2016.
14. United States Census Bureau. North American Industry Classification System (NAICS). Available from: <http://www.census.gov/eos/www/naics/>. Accessed July 1, 2016.
15. United States Department of Labor, Bureau of Labor Statistics. Standard Occupational Classification. Available from: <http://www.bls.gov/soc/>. Accessed July 1, 2016.
16. Centers for Disease Control and Prevention. The National Institute for Occupational Safety and Health (NIOSH) Industry and Occupation Coding. 2016. Available from: <http://www.cdc.gov/niosh/topics/coding/nioccsuserdocumentation.html>. Accessed September 8, 2016.
17. Centers for Disease Control and Prevention. Instruction manual for industry and occupation coding. 2002. Available from: <http://www.cdc.gov/niosh/topics/coding/pdfs/iancodingmanual2002.pdf>. Accessed July 15, 2016.
18. Centers for Disease Control and Prevention. FluVaxView. 2016. Available from: <http://www.cdc.gov/flu/fluview/>. Accessed January 7, 2016.
19. Luckhaupt SE, Calvert GM, Li J, Sweeney M, Santibanez TA. Prevalence of influenza-like illness and seasonal and pandemic H1N1 influenza vaccination coverage among workers—United States, 2009–10 influenza season. MMWR Morb Mortal Wkly Rep 2014;63:217-21.
20. Graves MA, Harris JR, Hannon PA, Hammerback K, Ahmed F, Zhou C. Workplace-based influenza vaccination promotion practices among large employers in the United States. J Occup Environ Med 2014;56:397-402.
21. Graves MC, Harris JR, Hannon PA, Hammerback K, Parrish AT, Ahmed F, et al. Promoting influenza vaccination to restaurant employees. Am J Health Promot 2016;30:498-500.
22. Community Preventive Services Task Force. Guide to Community Preventive Services. Increasing appropriate vaccination. Available from: <http://www.thecommunityguide.org/vaccines/index.html>. Accessed August 2, 2016.
23. Lu PJ, O'Halloran A, Williams WW, Lindley MC, Farrall S, Bridges CB. Racial and ethnic disparities in vaccination coverage among adult populations in the U.S. Am J Prev Med 2015;49(Suppl):S412-25.
24. Williams WW, Lu PJ, O'Halloran A, Kim DK, Grohskopf LA, Pilishvili T, et al. Surveillance of vaccination coverage among adult populations—United States, 2014. MMWR Surveill Summ 2016;65:1-36.
25. Walker FJ, Singleton JA, Lu P, Wooten KG, Strikas RA. Influenza vaccination of healthcare workers in the United States, 1989–2002. Infect Control Hosp Epidemiol 2006;27:257-65.
26. Bach PB, Pham HH, Schrag D, Tate RC, Hargraves JL. Primary care physicians who treat blacks and whites. N Engl J Med 2004;351:575-84.
27. Gemson DH, Elinson J, Messeri P. Differences in physician prevention practice patterns for white and minority patients. J Community Health 1988;13:53-64.
28. Lindley MC, Wortley PM, Winston CA, Bardenheier BH. The role of attitudes in understanding disparities in adult influenza vaccination. Am J Prev Med 2006;31:281-5.
29. Link MW, Ahluwalia IB, Euler GL, Bridges CB, Chu SY, Wortley PM. Racial and ethnic disparities in influenza vaccination coverage among adults during the 2004–2005 season. Am J Epidemiol 2006;163:571-8.
30. Schneider EC, Zaslavsky AM, Epstein AM. Racial disparities in the quality of care for enrollees in Medicare managed care. JAMA 2002;287:1288-94.
31. Black CL, Yue X, Ball SW, Donahue SM, Israel D, de Perio MA, et al. Influenza vaccination coverage among health care personnel—United States, 2013–14 influenza season. MMWR Morb Mortal Wkly Rep 2014;63:805-11.
32. Lindley MC, Bridges CB, Strikas RA, Kalayil Ej, Woods LO, Pollock D, et al. Influenza vaccination performance measurement among acute care hospital-based health care personnel—United States, 2013–14 influenza season. MMWR Morb Mortal Wkly Rep 2014;63:812-5.
33. Seib K, Chamberlain A, Wells K, Curran E, Whitney EA, Orenstein WA, et al. Challenges and changes: immunization program managers share perspectives in a 2012 national survey about the US immunization system since the H1N1 pandemic response. Hum Vaccin Immunother 2014;10:2915-21.
34. Centers for Disease Control and Prevention. 2010–11 through 2013–14 State, Regional, and National Vaccination Trend Report. 2016. Available from: <https://www.cdc.gov/flu/fluview/reportshtml/trends/index.html>. Accessed January 31, 2017.
35. Centers for Disease Control and Prevention. Interim results: state-specific seasonal influenza vaccination coverage—United States, August 2009–January 2010. MMWR Morb Mortal Wkly Rep 2010;59:477-84.
36. Mac Donald R, Baken L, Nelson A, Nichol KL. Validation of self-report of influenza and pneumococcal vaccination status in elderly outpatients. Am J Prev Med 1999;16:173-7.
37. Mangtani P, Shah A, Roberts JA. Validation of influenza and pneumococcal vaccine status in adults based on self-report. Epidemiol Infect 2007;135:139-43.
38. Rolnick SJ, Parker ED, Nordin JD, Hedblom BD, Wei F, Kerby T, et al. Self-report compared to electronic medical record across eight adult vaccines: do results vary by demographic factors? Vaccine 2013;31:3928-35.
39. Zimmerman RK, Raymund M, Janosky JE, Nowalk MP, Fine MJ. Sensitivity and specificity of patient self-report of influenza and pneumococcal polysaccharide vaccinations among elderly outpatients in diverse patient care strata. Vaccine 2003;21:1486-91.