An outbreak of hantavirus pulmonary syndrome occurred in the Sobradinho Indian settlement of the Kayabí ethnic group in northern Mato Grosso during December 2009–January 2010. We conducted a retrospective study to clarify the outbreak’s epidemiologic and clinical characteristics. Results suggest a relationship between the outbreak and deforestation and farming expansion in indigenous areas.
Hantavirus pulmonary syndrome (HPS) was first identified in 1993 in the semi-arid southwestern region of the United States known as the Four Corners (
HPS is associated with American wild rodents of the family
In Brazil, areas of deforestation and environmental change, which have resulted from economic growth and agricultural production in the past 20 years, has had an effect on the number of HPS cases (
An outbreak of identified HPS cases occurred in the Sobradinho Indian settlement of the Kayabí ethnic group within the Xingu Indigenous Park in northern Mato Grosso during December 2009–January 2010. We conducted a retrospective study to clarify the epidemiologic and clinical characteristics of the outbreak.
The Xingu Indigenous Park was created in 1961 and occupies 2.9 million acres of the Amazon region in the state of Mato Grosso (
The Sobradinho Indian settlement is located in the far northern region of Mato Grosso (11°15′30´´S, 53°44′53´´W), and the settlement is part of the Xingu Indigenous Park (
Xingu Indigenous Park and the Sobradinho Indian settlement, Mato Grosso State, Brazil.
We analyzed documents and also examined all the notification forms of patients with confirmed cases of HPS during December 2009–January 2010 who were likely infected in the Sobradinho Indian settlement, as well as all the documented records of the epidemiologic investigation from the office of the State Health Secretary of Mato Grosso. Data from medical records were not used. The study was approved by the Committee of Ethics in Research.
Indigenous areas in Brazil were considered to be unaffected by hantavirus until the beginning of February 2010, when serologic tests were performed on blood samples from 3 patients who lived in the Sobradinho Indian settlement. We used ELISAs to test the samples for IgG with the specific antigen for Sin Nombre virus and for IgM with the Laguna Negra and Andes viruses.
The first notification that aroused suspicion of hantavirus infection occurred on January 12, 2010, in patients from the Sobradinho Indian settlement. The 33 samples collected during an epidemiologic investigation were tested for hantavirus antibodies. Of the samples, 17 (51.5%) were from inhabitants of a single home (house 3) while the outbreak was being investigated. Of the 33 samples that underwent serologic testing, 17 (51.1%) were positive for hantavirus antibodies,9 (52.9%) were positive for IgM/IgG, and 8 (47.1%) were positive only for IgG.
Of the 17 examined persons who lived in house 3, 11 (64.7%) had positive serologic test results for hantavirus and survived: 7 (41.2%) had IgM/IgG antibodies, and 4 (23.5%) had IgG antibodies. In addition, a member of this family (mother) died on January 11, 2010 (
Genogram for residents of house 3 and other persons infected during the hantavirus outbreak in the Sobradinho Indian settlement, January 2010, Mato Grosso State, Brazil. HPS, hantavirus pulmonary syndrome; HCPS, hantavirus cardiopulmonary syndrome.
The other 6 infected persons who did not live in house 3 would go to this house on a daily basis, and these persons exhibited unspecified signs and symptoms. As a consequence, they underwent serologic testing. Four tested persons were positive for IgG; 2 tested positive for IgM/IgG (
A 38-year-old woman, who lived with 7 patients with symptoms, died on January 11; she exhibited the same initial symptoms and reported insufficient breathing before her death. She received no assistance and was buried inside a hut in accordance with her cultural traditions.
Cases occurred equally in male and female patients. Patient ages ranged from 1 to 38 years, with an average of 13.7 years (
| Characteristic | No. (%) male | No. (%) female | No. (%) total | |
|---|---|---|---|---|
| Age, y | ||||
| <5 | 2 (22.2) | – | 2 (11.1) | |
| 5–10 | 3 (33.3 | 3 (33.3) | 6 (33.3) | |
| 11–15 | 3 (33.3) | 3 (33.3) | 6 (33.3) | |
| 16– 20 | 1 (11.1) | – | 1 (5.6) | |
| >20 | – | 3 (33.3) | 3 (16.7) | |
| Criterion of confirmation | ||||
| Laboratorial | 9 (100.0) | 8 (88.9) | 17 (94.4) | |
| Clinical and epidemiologic | – | 1 (11.1) | 1 (5.6) | |
| Hospitalization | ||||
| Hospital stay | 3 (33.3) | 3 (33.3) | 6 (33.3) | |
| Observations at house I | 2 (22.2) | 3 (33.3) | 5 (27.8) | |
| Never left Indian settlement | 4 (44.4) | 3 (33.3) | 7 (38.9) | |
| Evolution | ||||
| Cure | 9 (100.0) | 8 (88.9) | 17 (94.4) | |
| Death | – | 1 (11.1) | 1 (5.6) | |
| Total | 9 (50.0) | 9 (50.0) | 18 (100.0) | |
*HPS, hantavirus pulmonary syndrome; –, none. Source: Health State Secretary of Mato Grosso, 2011.
| Interval, d | No. patients | Minimum | Median | Maximum | Average | SD | CI | CV |
|---|---|---|---|---|---|---|---|---|
| Between symptoms and notification | 17 | 3 | 43.00 | 53 | 35.65 | 18.76 | 26.00–45.30 | 52.64 |
| Between symptoms and first collection of for serologic testing | 16 | 6 | 43.50 | 54 | 36.25 | 18.66 | 26.31 – 46.19 | 51.47 |
| Between symptoms and hospitalization | 6 | 3 | 3.00 | 4 | 3.17 | 0.41 | 2.74 – 3.60 | 12.89 |
| Duration of hospitalization | 6 | 4 | 4.00 | 10 | 6.00 | 3.10 | 2.75 – 9.25 | 51.64 |
*HPS, hantavirus pulmonary syndrome; CV, coefficient of variance.
During this outbreak, pulmonary disease developed in 6 patients, and 5 survived. The symptoms preceding the death of 1 patient were recorded by her husband, who drew attention to her breathing difficulty and intense sudoresis. These symptoms could have been signs of circulatory shock.
The time between the onset of the symptoms and hospitalization was, on average, 3.17 days (median3) (
The hantaviruses known to circulate in this area are the strains Castelo dos Sonhos
In all of these cases, the home was the likely environment where infection occurred. However, other situations in which persons are at risk for infection include the following: harvesting and transportation of grains (30.0%) on plantations, house cleaning in a wilderness area (100.0%), contact with wild rodents and their excreta (100.0%), and contact with persons with HPS (90.0%).
Patients have become infected during housecleaning, when hantavirusesin rodent excreta could have been swept into the air. This supposition is supported by the fact that the infection was detected in the woman who did the cleaning and in children and adolescents who were also in the house. Other risky situations include agricultural activities, the management and storage of grains, and the direct contact with wild rodents and their excreta.
Disease awareness and information campaigns targeted toward the prevention of hantaviruses in the Xingu Indigenous Park should be intensified, given the risk of the potential presence of infected rodents in other Indian settlements. As HPS has become recognized in Brazilian indigenous areas, new studies should be conducted to evaluate the serum prevalence among indigenous peoples. Such surveillance will allow identification of the possible reservoirs and the prevalence of hantaviruses in the area.
We thank the inhabitants of the Sobradinho Indian settlement in Xingu Indigenous Park, the health team members of Xingu Indigenous Park, especially Claudimari Slavieiro, Marilúcia Marques dos Santos e Pólo Base Diauarum/Convênio Fundação Nacional de Saúde e Universidade de São Paulo and José Ferreira de Figueiredo from Distrito Sanitário Especial Indígena Cuiabá; State Health Secretary of Mato Grosso; the laboratory professionals at theMato Grosso laboratory; the professional staff and researchers at the Evandro Chagas Institute/Fundação Oswaldo Cruz–Pará; the technical team for hantaviruses and rodent-associated diseases at Fundação Nacional de Saúde and the Federal University of Mato Grosso.
Dr Terças teaches biomedicine at the University Center Cândido Rondon in Cuiabá, Mato Grosso, Brazil. She also conducts research in the Laboratory of Hantaviroses and Rickettsioses, Oswaldo Cruz Institute. She is especially interested in diagnosis, epidemiology, and prevention of hantavirus infections and emerging diseases.