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ABSTRACT
The prevalence and severity of many diseases differs by sex, potentially due to sex-specific 
patterns in DNA methylation. Autosomal sex-specific differences in DNA methylation have been 
observed in cord blood and placental tissue but are not well studied in saliva or in diverse 
populations. We sought to characterize sex-specific DNA methylation on autosomal chromosomes 
in saliva samples from children in the Future of Families and Child Wellbeing Study, a multi-ethnic 
prospective birth cohort containing an oversampling of Black, Hispanic and low-income families. 
DNA methylation from saliva samples was analysed on 796 children (50.6% male) at both ages 9 
and 15 with DNA methylation measured using the Illumina HumanMethylation 450k array. An 
epigenome-wide association analysis of the age 9 samples identified 8,430 sex-differentiated 
autosomal DNA methylation sites (P < 2.4 × 10−7), of which 76.2% had higher DNA methylation 
in female children. The strongest sex-difference was in the cg26921482 probe, in the AMDHD2 
gene, with 30.6% higher DNA methylation in female compared to male children (P < 1 × 10−300). 
Treating the age 15 samples as an internal replication set, we observed highly consistent results 
between the ages 9 and 15 measurements, indicating stable and replicable sex-differentiation. 
Further, we directly compared our results to previously published DNA methylation sex differ
ences in both cord blood and saliva and again found strong consistency. Our findings support 
widespread and robust sex-differential DNA methylation across age, human tissues, and popula
tions. These findings help inform our understanding of potential biological processes contributing 
to sex differences in human physiology and disease.
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Introduction

Health and disease outcomes differ between male and 
female children. For example, infectious diseases tend 
to show greater severity in male children than female 
children, purportedly due to the influence of sex hor
mones on immune function [1]. Neuropsychiatric 
disorders, including autism spectrum disorder, bipo
lar disorder, and schizophrenia, show differential pre
valence by sex, a phenomenon linked to brain 
development differences in youth and adolescence 
[2,3]. Sex differences are largely attributed to the 
genetic contribution of the sex chromosomes but are 
also influenced by sex hormones [4], differential gene 

expression [5], metabolites [6], and epigenetic pat
terns, including DNA methylation [4]. Widespread 
differences in autosomal gene expression between 
sexes are noted across numerous human tissues, 
although the effect sizes are small [7].

DNA methylation (DNAm), the addition of 
a methyl group onto the fifth carbon of 
a cytosine residue in DNA, is itself associated 
with modulation of gene expression [8]. DNAm 
is involved in genomic imprinting, in which genes 
are expressed in a parent-dependent manner, and 
in X chromosome inactivation, the silencing of 
gene expression on the X chromosome in female 
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mammalian cells to achieve dosage compensation 
[8]. Many DNAm sites remain stable over the life 
course and many other sites may change with 
development, age, and environmental inputs [9]. 
Thus, DNAm can be an informative biomarker for 
disease, developmental stage, and environmental 
exposures [10] and may play a crucial role in sex- 
specific health outcomes in children.

Sex differences in DNAm are expected on the 
X chromosome in humans due to X chromosome 
inactivation (Hall et al., 2014; Duncan et al., 2018). 
However, sex differences in DNAm have also been 
reported on autosomal chromosomes in numerous 
tissues including blood [7,11–13], buccal cells 
[14,15], the prefrontal cortex [16], and the pla
centa [17,18]. The number of differentially methy
lated sites ranged from a few hundred to nearly ten 
thousand in these studies, depending on the tissue, 
DNAm array, and available sample sizes. All tis
sues except for placenta had a larger proportion of 
sites with higher DNAm in female subjects com
pared to male subjects. A recent meta-analysis 
identified 31,727 autosomal DNAm sites that 
were differentially methylated by sex in cord 
blood tissue of newborns and subsequently repli
cated in peripheral blood tissue samples [13]. 
Further investigation of sex-specific DNAm pat
terns across autosomes can elucidate the under
lying genes and biological mechanisms that 
contribute to sex differences in disease and health 
outcomes.

Most prior studies of sex and DNAm were 
cross-sectional investigations of either newborns 
or adults of European descent. The methylation 
profiles of adults are subject to accumulated life
time exposures, which can alter inherited DNAm 
states and confound sex-specific profiles. Studies 
confined to single ancestry groups potentially limit 
generalizability. Moreover, few studies have biolo
gical samples at multiple time points on the same 
individuals. Studies that have analysed sex differ
ences in DNAm over time are based on cord blood 
and peripheral blood samples and identified lar
gely stable sex-specific DNAm patterns from birth 
to late adolescence [13,19]. Few epigenetic studies 
of sex difference have been conducted in children 
and adolescents using saliva [15,20], a more easily 
collected tissue [21]. Those that have been con
ducted, favour non-diverse, convenience samples. 

In a volunteer sample of saliva tissue from 118 
children aged 9–14, 5,273 sites were differentially 
methylated by sex (FDR < 0.05) using the EPIC 
BeadChip [15]. However, larger and more diverse 
studies of autosomal DNAm in the saliva of chil
dren are warranted to gain biologic insights.

This paper aims to characterize autosomal 
DNAm sex differences in saliva in a large, popula
tion-based sample from the Future of Families and 
Child Wellbeing Study (FFCW), a longitudinal 
cohort of racially diverse children born to unmar
ried parents across large cities in the United States 
[22]. We analysed DNAm data assayed on the 
Illumina HumanMethylation 450k BeadArray 
from saliva samples obtained at two distinct time 
points, ages 9 and 15, on the same set of children 
assayed at the same time. We tested for sex- 
specific differences across the genome at both 
ages, evaluated consistency across the time points, 
and compared with results from prior studies of 
sex-differential DNAm in children.

Methods

Future of Families and Child Wellbeing (FFCW) 
study

The FFCW Study is a cohort study of 4,898 chil
dren from 20 cities in the United States [22]. 
FFCW was designed to investigate the environ
mental and social factors that shape the develop
ment of at-risk children and contains an 
oversampling of Black, Hispanic and low-income 
families [22]. Study personnel obtained baseline 
information on child participants and parents 
and/or caregivers at the time of the child’s birth, 
between 1998 and 2000. Follow-up data was col
lected at key developmental stages: ages one, three, 
five, nine, and fifteen. Interviewers collected infor
mation on relationships, attitudes, behaviours, 
mental and physical health, clinical health, eco
nomic and employment status, neighbourhood 
characteristics, and demographic variables of par
ents and/or caregivers and children at each time 
point. Further details on the study design can be 
found at https://ffcws.princeton.edu/. At age 9 and 
age 15, the focal children were interviewed directly 
and saliva samples were taken from children 
whose primary caregivers provided informed 
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consent. The original participant data collection 
was approved by the Princeton University 
Institutional Review Board and this secondary 
data analysis was approved by the University of 
Michigan Institutional Review Board 
(HUM00129826). For this analysis, we accessed 
survey data through the Future of Families and 
Child Wellbeing website.

A total of 3,400 FFCW children had survey data 
available at age 9, and 2,881 of these children 
provided a saliva sample. The FFCW study mea
sured DNAm on 837 of these children at age 9. Of 
those with methylation data at age 9, 817 children 
had methylation data for their age 15 saliva sam
ple. Of these 817 children, we excluded those with 
discordant sex and those missing data for variables 
of interest: sex, poverty ratio, mother’s self- 
reported race/ethnicity, mother’s education, 
mother’s health status, and mother’s smoking sta
tus – all at baseline – and child’s age in months 
and child’s BMI at age 9. We treated the age 9 
DNAm data as a discovery dataset and the age 15 
DNAm data as an internal replication dataset.

Demographic measurements

Numerous measurements were collected on FFCW 
children and caregivers. We selected the following 
variables measured at child’s birth for inclusion in 
this analysis: child’s biological sex (male or female) 
as reported by the mother; child’s birth city 
(Detroit/Toledo/Chicago vs. other); the mother’s 
poverty status, computed as the ratio of the 
mother’s reported household income to the 
United States Census Bureau national poverty 
threshold for the prior year; self-reported race/ 
ethnicity (White non-Hispanic, Black non- 
Hispanic, Hispanic, or Other) and education level 
(less than high school, high school or equivalent, 
some college or technical school, or college/grad
uate school) of both the mother and father; mater
nal smoking habits during pregnancy (none, less 
than 1 pack per day, ≥1 packs per day), and self- 
reported maternal health status at baseline (within 
48 hours of giving birth: great, very good, good, 
fair/poor). The BMI of the mother and focal child 
was collected at the home interview visits at age 9 
and age 15. The child’s precise age in months was 
also recorded at the home interviews. Child’s birth 

city was dichotomized as Detroit/Toledo/Chicago 
vs. other because a subset of FFCW children were 
oversampled for DNAm measurements for use in 
the Study of Adolescent Neurodevelopment 
[23,24], which investigated neurodevelopment 
among children primarily from Detroit, Toledo, 
and Chicago.

DNA methylation data
Saliva samples were collected at ages 9 and 15 

using the Oragene® DNA Self-Collection Kit (DNA 
Genotek Inc., Ontario, Canada) and shipped to 
Princeton University for extraction and proces
sing. Samples from both time points were plated 
and processed simultaneously on the Illumina 
HumanMethylation450k BeadChip (Illumina, San 
Diego, CA). This array contains probes for 485,512 
DNAm sites across the genome [25]. Plates con
tained a mix of age 9 and age 15 samples to 
mitigate potential batch effects.

DNAm image data was processed using the 
minfi package [26] and the enmix package [27] in 
R statistical software (version 3.5). The image data 
pairs (n = 1,811) were read into an RGChannelset 
using minfi and the enmix preprocessENmix func
tion applied RELIC to correct for dye bias and out 
of band normalization to correct for background 
noise. The rcp function from enmix used applied 
linear regression calibration between correlated 
Type I and Type II probe pairs to adjust for probe- 
type bias. For every sample, we measured the 
DNAm level at each site across the epigenome 
via a beta (β) value: the ratio of methylated fluor
escent signal to total fluorescent signal (methy
lated + unmethylated signal) [28]. The β-value is 
a continuous measure between 0 and 1 and is 
interpreted as the proportion of DNA copies that 
are methylated at a given locus for an individual. 
A value of 0 indicates all DNA copies are 
unmethylated at a given site, and a value of 1 
denotes all DNA copies are methylated at that 
site [29]. We define the beta matrix as the set of 
beta-values across all probes for all samples.

We performed probe-level quality control filter
ing on the beta matrix, including both the age 9 
and age 15 methylation data, and was visualized 
using a flow chart. We removed probes with 
a detection p-value >0.01 or methylated/unmethy
lated bead count <4 in more than 5% of samples 
(n = 47,930 probes) using ewastools [30]. We then 
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removed the remaining SNP probes (n = 59) and 
cross-reactive probes (n = 27,141 probes), identi
fied via a Basic Local Alignment Search Tool 
(BLAST) search based on a list of known cross- 
reactive probes [31]. N = 410,447 probes remained 
after filtering. We identified gap probes 
(outCutoff = 0.01, threshold = 0.05) with multi- 
modal distributions and probes mapping to sex 
chromosomes using the minfi package in 
Bioconductor [26]. We annotated DNAm sites to 
genomic features using the Islands UCSC dataset 
from the IlluminaHumanMethylation450kanno. 
ilmn12.hg19 package in Bioconductor [32]. The 
hg19 genome build was used for gene annotation.

Individual children were filtered out based on 
the following criteria: >10% of sites with 
a detection p-value >0.01 or bead count <4 after 
removing previously mentioned poor quality 
probes (n = 34), discordant mother-reported sex 
and DNA methylation-predicted sex (n = 11), and 
if two sequential samples from the same individual 
exhibited genetic discordance between visits (n =  
27). We removed samples with outlier methylation 
values, identified using the enmix QCinfo function 
(n = 6). We also removed technical replicates (one 
each from 49 pairs, preferentially selecting the first 
run sample as the ‘original’). After individual-level 
filtering, there were N = 796 children left. 
A sample dropped due to quality control at age 9 
also eliminated the age 15 sample from analysis 
and vice versa.

We estimated the cell-type proportion in each 
saliva sample using the Houseman algorithm 
implemented in the estimateLC function in the 
ewastools package [30], using the children’s saliva 
reference panel [33]. This method uses a reference 
DNAm database and employs linear constrained 
projection to infer the proportion of epithelial and 
immune cells in saliva tissue [34].

Statistical analysis

All analyses were performed using R statistical 
software (version 4.0.3). Code to conduct analyses 
is available online (https://github.com/bakulski 
lab). We conducted analyses separately on the 
age 9 discovery data and the age 15 internal repli
cation data. We calculated bivariate descriptive 
statistics and compared the distributions of 

demographic variables between the analytic sam
ples (N = 796) and excluded samples (N = 2,604), 
and subsequently between male (N = 403) and 
female (N = 393) children in the analytic sample. 
We used Pearson’s chi-squared test for categorical 
variables and Wilcoxon rank-sum test for contin
uous variables using the gtsummary package [35] 
in R.

We conducted principal component (PC) ana
lyses of the autosomal DNAm data. Variables with 
ANOVA association p-value <0.05 for one of the 
top three principal components were considered as 
potential confounding variables and included as 
covariates in regression modelling.

Sex-specific differential methylation analysis

We first tested for global DNAm differences by sex 
among autosomal sites. We computed a global 
methylation score per sample, defined as the aver
age beta-value per child across all probes. We 
tested for sex differences in the global methylation 
scores using a mixed effects model adjusting for 
potential confounding variables identified through 
the principal component analysis: main effect 
terms for epithelial cell proportion and mother’s 
race/ethnicity, and a random effect for plating 
batch.

We then performed an epigenome-wide asso
ciation analysis (EWAS) to identify differences in 
individual methylation sites between male and 
female children. We excluded gap probes from 
this analysis. For each probe, we fit a linear 
model using the lmFit function in the limma 
package [36] with methylation beta-value as the 
outcome and the sex of the child as the exposure 
of interest. We included fixed effect terms to 
control for epithelial cell proportion and 
mother’s self-reported race/ethnicity, and 
a random effect term for sample plate using the 
correlation argument in lmFit. The between-plate 
correlation was estimated using the 
duplicateCorrelation function in limma. The 
same model was used for both the age 9 discov
ery data and the age 15 replication data. The 
lmFit algorithm uses an empirical Bayes 
approach that computes a moderated t-statistic 
for each probe, for which the standard error is 
smoothed across all probes in the array for 
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a more efficient standard error estimate [36]. We 
used an epigenome-wide p-value significance 
threshold of 2.4 × 10−7 which is recommended 
for epigenome-wide association studies per
formed on the Illumina 450K array [37]. As 
a secondary analysis, we ran the same main 
model using only DNAm sites located on the 
X chromosome.

Sensitivity analyses

We performed a sensitivity analysis on the age 9 
sex-specific EWAS to confirm that the covariates 
included in our models properly accounted for 
latent sources of variation in the DNAm data. 
We estimated data-derived surrogate variables in 
the age 9 methylation beta matrix after protecting 
the effects of sex, epithelial cell proportion, and 
mother’s race/ethnicity using the sva function 
from the sva package [38]. We added the resulting 
top 10 surrogate variables to a model including 
sex, epithelial cell proportion, and mother’s race. 
We then compared the magnitude and significance 
of the sex regression parameters between the main 
model and the surrogate variable-adjusted model 
using Spearman’s correlation.

A second sensitivity analysis was performed to 
address the potential effects of birth city on 
DNAm due to pollution and/or environmental 
differences. We repeated the EWAS analysis 
including a fixed effect term for Study of 
Adolescent Neurodevelopment oversampled birth 
city (Detroit/Toledo/Chicago vs Other) in addition 
to the original list of potential confounding vari
ables. We compared the sex-difference regression 
parameters to those from the main model.

Differential methylation region analysis

We used the DMRcate package [39] to identify 
differentially methylated regions between males 
and females. We used the recommended para
meters lambda = 1,000 and C = 2, corresponding 
to a region being defined as a collection of at 
least two significant DNAm sites identified from 
the previous single-site analysis (P < 2.4×10−7) that 
were no more than 1,000 base pairs apart.

Gene set enrichment analysis

Gene ontology enrichment analysis was performed 
on sites that were significant in the age 9 sex- 
specific discovery analysis. We used the gometh 
function in the missMethyl package [40], which 
takes probe names and links them to DNAm 
sites on the 450K array and their corresponding 
Entrez gene IDs. The function employs Wallenius’ 
noncentral hypergeometric test and accounts for 
the uneven DNAm site distribution across genes. 
We report gene ontology terms overrepresented at 
FDR < 0.05.

Genomic feature enrichment analysis

We performed genomic feature enrichment analy
sis to determine the CpG island locations and 
regulatory elements that were enriched for differ
entially methylated sites identified at age 9. We 
mapped each DNAm site to North Shore, South 
Shore, North Shelf, South Shelf, CpG Island, or 
Open Sea regions using the Islands UCSC dataset 
from the IlluminaHumanMethylation450kanno. 
ilmn12.hg19 package [32]. We used a chi-square 
test of homogeneity to determine enrichment or 
underrepresentation of significant sites in each 
region, with the expected proportion per region 
equal to the proportion of all sites located in the 
given region. Enrichment analysis was performed 
for hypermethylated sites in males and hyper
methylated sites in females individually, and as 
a whole. We next used the eFORGE tool [41] to 
determine enrichment of age 9 differentially 
methylated sites across 15 different chromatin 
states from the Roadmap Epigenomics database, 
using recommended parameters of a 1,000 bp 
window size, a background repetition of 1,000, 
a strict p-value threshold of 0.01, and a marginal 
p-value threshold of 0.05. We tested the top 1,000 
(the maximum allowable number of probes) most 
significant sites hypermethylated in males and 
females, separately.

Internal replication using age 15 data

We performed an internal replication of the age 9 
results using the age 15 data. We used the same 
procedures described for the age 9 data to detect 
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gap probes. We performed a sex-specific methyla
tion regression analysis across all autosomal sites 
passing QC in the age 15 data, employing the same 
main model. We tested each epigenome-wide sig
nificant age 9 site for replication in the age 15 data. 
We defined an age 9 site as replicated if the age 15 
p-value for the site had a p-value smaller than 
a Bonferroni-corrected threshold accounting for 
the number of significant probes in the age 9 
data and consistent direction of effect with the 
age 9 analysis. We also identified sites with sex- 
specific DNAm in the age 15 data using the epi
genome-wide significance threshold of 2.4 × 10−7. 
We additionally conducted differential methyla
tion region analysis and enrichment analyses for 
the age 15 data using the approaches described 
above.

Comparison to cord blood tissue

We compared our age 9 DNAm EWAS results in 
this FFCW analysis to a published set of differen
tially methylated sites from a meta-analysis in per
ipheral blood tissue in children aged 5.5 to 10 y 
across 9 cohorts from the Pregnancy and 
Childbirth Epigenetics (PACE) consortium [13]. 
Specifically, we used 40,219 DNAm sites identified 
as significant (P < 1.3×10−7) in a sample of N =  
8,438 newborns and replicated in an independent 
group of N = 4,268 older children (P < 1.1×10−6). 
The main model was fit on methylation beta- 
values and adjusted for sex, white blood cell pro
portion, and batch [13]. We used Spearman’s cor
relation to compare adjusted effect estimates 
between the two studies.

Comparison to saliva tissue in prior study

We compared our age 9 DNAm EWAS results in 
this FFCW analysis to a published set of differen
tially methylated sites identified in saliva samples 
of N = 118 children aged 9–14  years using the 
EPIC BeadChip [15]. Participants were recruited 
from the San Francisco Bay Area, with 54% of the 
sample reporting as Caucasian. The main model 
adjusted for sex, age, ethnicity and estimated cell- 
type proportion. We compared adjusted effect esti
mates for sex using Spearman’s correlation.

Results

Study sample characteristics

The analytic cohort was composed of 796 children 
from the FFCW cohort with both age 9 and age 15 
methylation measurements that passed quality 
control, and non-missing data for covariates of 
interest (Supplemental Figure S1). The analytic 
cohort was 50.6% male (n = 403) and 49.3% female 
(n = 393). The overall median poverty index was 
1.4, with nearly 35% of the children born to 
families in poverty (poverty index < 1). The largest 
proportion (17.7%) of the cohort was born in 
Detroit, followed by Richmond, Austin, and 
Oakland (9.3%, 7.7%, 7.0%, respectively). In this 
sample, 55% of mothers self-reported as Black 
non-Hispanic; 21% of mothers were Hispanic, 
20% identified as White non-Hispanic, and 3.4% 
reported as other. At baseline, 62% of mothers 
reported having a high-school degree or less. 
Further, 80% of mothers reported no smoking 
behaviours at baseline. Male and female children 
had comparable values for poverty index, maternal 
self-reported race, maternal education level, and 
maternal smoking status at birth (Table 1). The 
median age 9 BMI was slightly higher in female 
children than male children, 18.4 compared to 
17.8. We did not observe practical differences in 
demographics between the children in the analytic 
cohort with the broader FFCW cohort 
(Supplemental Table S1).

DNA methylation data

We identified 410,447 DNAm sites that passed 
probe-level quality control filtering for both age 
9 and age 15 measurements (Supplemental 
Figure S2), including 401,545 autosomal sites. 
We excluded n = 8,896 sex-chromosome specific 
sites from the main analysis. The distribution of 
average beta-values across samples per site at 
age 9 was bimodal with ~70% of sites having 
beta-value ≤0.10 (10% DNAm) or ≥0.90 (90% 
DNAm). The peaks correspond to sites that are 
either unmethylated in all samples (beta = 0) or 
methylated in all samples (beta = 1) 
(Supplemental Figure S3A). The distribution 
of average beta-values was similar in the age 15 
methylation data (Supplemental Figure S3A). 
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We identified 12,581 sites inferred to be gap 
probes in age 9 data and 11,485 sites in age 15 
data (Supplemental Figure S3B), leaving a total 
of 391,980 sites for the age 9 analyses and 
392,967 sites for the age 15 analyses. Principal 
component analysis of the methylation data 
revealed that cell-type composition, sex, and 
sample plate were associated with individual 
PCs (Supplemental Figure S4) and were thus 
controlled for in subsequent sex-specific ana
lyses. We also adjusted for mother’s self- 
reported race/ethnicity to account for race/eth
nic and/or ancestry differences in DNAm 

patterns, which have been reported in the litera
ture [42,43].

Sex-specific DNA methylation differences at age 
9

We first compared global methylation between 
male and female children. Overall, the mean global 
methylation at age 9 was 49.35% (median: 
49.56%), with female children having slightly 
higher mean global methylation than male chil
dren (49.31% vs 49.27%). After adjusting for age, 
cell-type proportion, sample plate, and mother’s 

Table 1. Future of Families and Child Wellbeing Study sample characteristics at age 9, by sex (N = 796).

Characteristic
Overall 

N = 7961 Male, N = 4031 Female, N = 3931 p-value2

Sample
Child’s age (months) 110 (108,113) 110 (108, 113) 110 (108, 114) 0.30
Child’s BMI (kg/m2) 18.0 (16.4,21.6) 17.8 (16.4, 20.7) 18.4 (16.4, 22.4) 0.05
Child’s birth city3 0.30

Detroit/Toledo/Chicago 180 (22.6%) 85 (21.0%) 95 (24.0%)
Other 616 (77.4%) 318 (79.0%) 298 (76.0%)

Poverty index3 1.4 (0.7, 2.7) 1.5 (0.7, 2.8) 1.4 (0.7, 2.7) 0.70
Mother’s BMI3 (kg/m2) 31 (26, 37) 30 (26, 35) 32 (26, 35) 0.20

Missing 88 43 45
Mother’s race/ethnicity3 0.60

Black, non-Hispanic 438 (55.0%) 217 (53.8%) 221 (56.2%)
Hispanic 170 (21.4%) 87 (21.6%) 83 (21.1%)
White, non-Hispanic 161 (20.2%) 82 (20.3%) 79 (20.1%)
Other 27 (3.4%) 17 (4.2%) 10 (2.5%)

Mother’s education3 0.50
Less than high school 263 (33.0%) 128 (31.8%) 135 (34.4%)
High school or equivalent 226 (28.4%) 122 (30.3%) 104 (26.5%)
Some college or technical accreditation 219 (27.5%) 105 (26.1%) 114 (29.0%)
College or graduate school 88 (11.1%) 48 (11.9%) 40 (10.2%)

Mother’s overall health3 0.50
Great 249 (31.3%) 120 (29.8%) 129 (32.8%)
Very good 283 (35.6%) 149 (37.0%) 134 (34.1%)
Good 209 (26.3%) 102 (25.3%) 107 (27.2%)
Fair/poor 55 (6.9%) 32 (7.9%) 23 (5.9%)

Mother’s smoking habits3 0.90
1+ packs per day 18 (2.3%) 8 (2.0%) 10 (2.5%)
<1 pack per day 144 (18.1%) 74 (18.4%) 70 (17.8%)
None 634 (79.6%) 321 (79.7%) 313 (79.6%)

Father’s race/ethnicity3 0.90
Black, non-Hispanic 450 (56.5%) 227 (56.3%) 223 (56.7%)
Hispanic 170 (21.4%) 83 (20.6%) 87 (22.1%)
White, non-Hispanic 146 (18.3%) 75 (18.6%) 71 (18.1%)
Other 26 (3.3%) 15 (3.8%) 11 (2.8%)
Missing 4 3 1

Saliva sample
Average global DNAm (%) 49.55 (49.01, 49.90) 49.51 (49.02, 49.90) 49.56 (48.98, 49.90) 0.60§

Proportion epithelial cells 0.00 (0.00, 0.01) 0.00 (0.00, 0.02) 0.00 (0.00, 0.00) 0.20
Proportion immune cells 1.00 (0.99, 1.00) 1.00 (0.98, 1.00) 1.00 (1.00, 1.00) 0.20

Note: 1Median (25%,75%); n (%). 
2Wilcoxon rank sum test; Pearson’s Chi-squared test; Fisher’s exact test. 
3Measured at baseline (birth of the child). 
Continuous variables are presented as Median (25th percentile, 75th percentile) and categorical variables are presented as Count (%). Wilcoxon rank 

sum test is used to test for differences in continuous variables, and Pearson’s chi-squared test is used to test for differences by sex for categorical 
variables. The number of children with missing values per variable are presented under the Missing category. The absence of a Missing category 
under a variable indicates there are no missing values. 

DNAm: DNA methylation. 
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race/ethnicity, the mean global beta-value was 
slightly higher though not significant in female 
children (bsex = 0.03, P = 0.48).

We next performed a probe-level Epigenome- 
wide Association Analysis to identify individual 
sites with differential methylation between sexes, 
controlling for cell-type proportion, batch and 
mother’s race/ethnicity. We identified 8,430 auto
somal DNAm sites differentially methylated by sex 
at age 9 of the 391,980 sites tested (P < 2.4×10−7; 
Figure 1A), indicating widespread differential 
methylation by sex in saliva. The majority of the 
significant sites (n = 6,425, 76.22%) had higher 
average methylation in female children compared 
to male children, and an average adjusted absolute 
difference of 2.8%. Notably, the mean beta-values 
for significant sites have a roughly uniform distri
bution across the [0,1] interval, which differs from 
the bimodal pattern of mean beta-values observed 
across all sites (Figure 1b). We present full results 
for each CpG site ranked by association p-value in 
Supplemental Table S2. The two most significant 
sites, cg26921482 and cg11643285, were both 
hyper-methylated in female children and anno
tated to the AMDHD2 and RFTN1 genes, respec
tively. The third most significant site, cg02325951, 
was hypermethylated in males and mapped to the 
FOXN3 gene. Additionally, we found that 91.6% 
(8,151 of 8,896) of X chromosome sites were dif
ferentially methylated by sex with an average 
adjusted absolute difference of 22.2%.

Our sensitivity analysis using surrogate variable 
adjustment produced p-values (r = 0.81) and sex- 
effect estimates (r = 0.93) strongly correlated with 
the main analysis, indicating that controlling for 
cell-type composition, sample plate, and maternal 
race/ethnicity was likely sufficient. The sex regres
sion parameter estimates were nearly identical 
(Supplemental Figure S5) and 83.4% of all sig
nificant sites were common to both models. 
Moreover, accounting for the birth city of the 
child resulted in little change in the sex-effect 
estimates (r = 0.99).

Enrichment in genomic features among 
differentially methylated probes at age 9

The differentially methylated sites for which 
females had greater DNAm than males were 

enriched for biological processes related to 
behaviour (PFDR <0.001), cell–cell signalling 
(PFDR = 0.022), and regulation of ion transport 
(PFDR = 0.041). These sites were also enriched in 
repressive polycomb regions (PFDR <0.01), 
which have been characterized by repressed 
gene expression [44]. Conversely, sites with 
higher methylation in males were enriched in 
active transcriptional start sites (PFDR <0.01). 
None of the biological process gene ontology 
terms achieved FDR < 0.05 for sites hypermethy
lated in males. Differentially methylated sites 
were enriched within North Shore and South 
Shore regions, as well as CpG islands, but 
underrepresented in Shelves and Open Sea 
regions for both the female-hypermethylated 
sites and the male-hypermethylated sites 
(Supplemental Table S3). This pattern of 
enrichment remained the same for significant 
sites overall (Figure 1c).

Differentially methylated regions at age 9

We conducted differentially methylated region 
(DMR) analysis to identify gene-associated clusters 
of differentially methylated sites. We identified 
1,499 DMRs between female and male children, 
with 1,197 regions (79.9%) characterized by higher 
average DNAm in female children. The regions of 
strongest significance were HLA-DQB2, SCAND3, 
PPP1R3G and RP11-373N24.2 (top 15 regions pre
sented in Supplemental Table S4). The DMR 
annotated to PPP1R3G was also identified in new
born cord blood tissue [13,45]. Among significant 
DMRs with the largest positive mean difference in 
sex were PPFIA3 and ZPBP2. PPFIA3 is involved 
in axon guidance and mammary gland develop
ment, while ZPBP2 (Zona Pellucida-Binding 
Protein), expressed in the testis, is associated 
with sperm – oocyte binding during fertiliza
tion [46].

Replication in age 15 methylation data

We used the age 15 DNAm data as an internal 
replication set to confirm the strong sex-specific 
methylation in saliva at age 9. It is important 
here to reiterate that the age 9 and age 15 
samples were plated and processed at the same 
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Figure 1. characteristics of differentially methylated sites in the Future of Families and Child Wellbeing Study sample, age 9 (N =  
796). a: Adjusted difference in autosomal DNA methylation between female and male children for each site (n = 391,980 sites) in the 
Fragile Families and Child Wellbeing Study sample, age 9 (N = 796). Effect sizes and -log10 p-values are from the main model 
containing fixed effects for sex, epithelial cell proportion, and mother’s race/ethnicity and a random effect for sample plate. Positive 
effect sizes indicate sites for which DNA methylation was higher in female children, while negative effect sizes represent sites for 
which DNA methylation was higher in male children at age 9. 8,430 sites achieved genome-wide significance at P = 2.4× 10–7 

(horizontal dotted line), with n = 6,425 (76.2%) having higher methylation in female participants. b: Distributions of mean DNAM for 
differentially methylated sites (n = 8,430; dashed line) and remaining sites (n = 383,550). c: Distribution of differentially methylated 
sites in relation to CpG islands. Fragile Families and Child Wellbeing Study sample, age 9 (N = 796).
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time. Average beta-values for individual sites 
were strongly correlated between age 9 and age 
15 (Spearman Correlation = 0.9997; 
Supplemental Figure S3A). Gap probe identifi
cation was largely concordant (Supplemental 
Figure S3B) with 79.14% of gap probes identi
fied at age 9 also flagged at age 15 and 86.69% of 
gap probes identified at age 15 flagged at age 9.

Of the 8,430 sites significant in the age 9 analy
sis, 7,421 (88%) were replicated among the age 15 
DNAm data (Bonferroni alpha = 0.05/8430 =  
5.93×10−6 and consistent direction of effect). Of 
the significant differentially methylated sites at age 
9, the top 419 sites, ranked by p-value, were repli
cated at age 15 using the Bonferroni-corrected 
significance threshold. Of the 1,009 sites that did 
not replicate at this threshold, 99.8% had the same 
direction of effect in the age 9 and age 15 data. Ten 
sites were excluded during age 15 QC and not 
tested. Full results for each CpG site for age 15 
can be seen in Supplemental Table S2 (ranked by 
age 9 p-value).

We found that 64.31% of all significant DNAm 
sites were common to both time points at the 
epigenome-wide significance level and had the 
same direction of effect and similar magnitudes 
(Spearman correlation = 0.99). The sex-difference 
effect sizes between the two time points were 
moderately correlated (r = 0.53; Figure 2a) across 

time points, while adjusting for cell-type propor
tion, plating, and race/ethnicity differences. Thus, 
DNAm sites that were found significant at age 9 
were likely to be significant at age 15. DNAm sites 
found significant at only one time point had 
p-values only marginally above the significance 
threshold at the other time point (Figure 2b). 
We identified 1,845 probes that were significant 
at the epigenome-wide significance level in the 
age 15 data that were not significant at age 9. Of 
these, 98.1% had the same direction of effect at 
age 9. Differentially methylated region analysis 
using the age 15 data identified 1,552 differen
tially methylated regions, resulting in a 71.46% 
concordance of region-associated overlapping 
genes across time points (Supplementary 
Table S5).

Comparison to cord blood tissue

Solomon et al. reported 40,219 sites differentially 
methylated by sex in peripheral blood tissue of 
children aged 5.5 to 10 y old at a p-value thresh
old of 1.1 × 10−6 in the PACE cohort [13]. Of 
these sites, 37413 were also tested in our analy
sis. Sites that were not tested (n = 2,806) were 
excluded as either a gap probe (n = 214) or due 
to quality control procedures (n = 2,592). We 
found a high correlation (Spearman correlation  

Figure 2. comparison of adjusted sex differences in autosomal DNA methylation between ages 9 and 15 in the Future of Families 
and Child Wellbeing Study (N = 796, n = 390,659 sites). a: Correlation of adjusted difference in autosomal DNA methylation (%) by 
sex between ages 9 and 15 in the Future of Families and Child Wellbeing Study (n = 390,659 sites). Effect sizes at each time point are 
from the main model adjusting for sex, epithelial cell proportion, mother’s race/ethnicity at baseline and a random effect for plate. 
Positive percentages are sites for which female children had higher DNA methylation than males. Spearman’s correlation = 0.53. b: 
Miami plot of sex-specific DNAm analyses at ages 9 and 15 in the Future of Families and Child Wellbeing Study sample (N = 796). 
P-values are reported from the main model containing sex, epithelial cell proportion, maternal race/ethnicity at baseline, and 
a random effect for sample plate. A threshold of P = 2.4 × 10–7 is used for genome-wide significance.
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= 0.89) between sex-difference effect sizes from 
the age 9 analysis of saliva tissue and the per
ipheral blood tissue analysis (Figure 3) [13]. 
Two DNAm sites were identified in the ten 
most significant sites in both analyses: 
cg26921482 on chromosome 16, TBC1D24/ 
AMDHD2; cg17238319 on chromosome 3, 
RFTN1.

Comparison to saliva tissue

Moore et al. reported 5,273 sites differentially 
methylated by sex (FDR <0.05) in saliva tissue 
of children aged 9–14 y [15]. A total of n =  
794,811 sites were tested using the EPIC 
BeadChip. Of the 5,273 significant sites, 1,885 
sites were not tested in our analysis due to the 
use of different BeadChip technologies or 
removal during quality control. Of the 3,388 
significant sites tested in both analyses, 2,476 
sites were significant in both (73%). Of the 912 
sites that were not significant in both analyses, 
862 (94.5%) sites had the same direction of 
effect, but magnitudes of effect were lowly cor
related (Spearman correlation = 0.25). The effect 
estimates of the n = 3,388 commonly tested sites 
were moderately correlated (Spearman 
Correlation = 0.48).

Discussion

In a large, diverse sample of children (n = 796), we 
observed widespread and consistent autosomal 
DNAm differences in saliva between male and 
female children at ages 9 and 15. Specifically, we 
observed 8,430 sex-associated (P < 2.4×10−7) autoso
mal DNAm sites, and the majority (76.2%) of sites 
had higher DNAm in female children. Sex-specific 
DNAm sites were annotated to genes enriched for 
biologic pathways including behaviour, cell signal
ling, and ion transport. These findings were consis
tent across DNAm measurement time points 
(Spearman correlation = 0.53) and consistent with 
prior literature in cord blood (Spearman correlation  
= 0.82) and saliva (Spearman correlation = 0.48). 
Taken together, these findings suggest that sex- 
specific DNAm differences on autosomal chromo
somes are largely robust to tissue and age and gen
eralize across populations.

Our findings are consistent with previous 
reports. Our strongest association was 
cg26921482, annotated to the Amidohydrolase 
Domain Containing 2 (AMDHD2) gene, in which 
female participants had 30.6% higher DNAm. The 
Pregnancy And Childhood Epigenetics 
Consortium similarly observed that female infants 
had 23% higher DNAm at cg26921482 in cord 
blood at birth relative to male infants [13]. 
Although these studies differ in tissues, develop
mental time periods, and demographics, the 
observed DNAm differences are large in magni
tude (23–30%) and consistent in direction. 
AMDHD2 codes for a protein involved in amino- 
sugar metabolism and the hexosamine biosyn
thetic pathway, which is a minor branch of glyco
lysis [47]. The hexosamine biosynthetic pathway 
may play a role in insulin resistance and diabetes 
[48]. The Human Protein Atlas reports the 
AMDHD2 protein is present in higher levels in 
endocrine tissues and in male tissues including the 
testes [49]. In addition, the newborn Pregnancy 
and Childbirth Epigenetics consortium study 
observed a sex-specific differentially methylated 
position (cg11092486) annotated to the Protein 
Phosphatase 1 Regulatory Subunit 3 G 
(PPP1R3G) gene with 15.2% lower DNAm in 
male participants relative to female [13]. We also 

Figure 3. comparison of adjusted differences in DNA methyla
tion between saliva tissue from the Future of Families cohort 
and cord blood tissue from Solomon et al., 2022 (Spearman 
correlation = 0.89).
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observed a sex-specific differentially methylated 
region associated with the PPP1R3G gene. The 
PPP1R3G protein plays a role in glycogen bio
synthesis and lipid metabolism [50]. DNAm dif
ferences at an AMDHD2 site and in the PPP1R3G 
region by sex are consistent across tissues and 
developmental time, with implications for 
metabolism.

We observed that sex-specific DNAm sites were 
more likely to occur at the shores of CpG islands. 
For example, 10.4% of the DNAm array was anno
tated to the South Shore, while 18.3% of our sex- 
specific sites were annotated to the South Shore. 
Prior findings in pancreatic islet cells suggest that 
sex-specific differential DNAm mainly occurs at 
CpG shores, and not in CpG islands [51]. Our sex- 
specific differentially methylated sites were 
enriched for repressive polycomb chromatin state 
regions, which are associated with repressed gene 
expression [44], and which play important roles in 
development and stem cells [52], as well as 
Alzheimer’s disease and cancer [53]. Enrichment 
in repressive polycomb regions may suggest that 
these DNAm differences have implications for 
gene expression, and future studies may be able 
to link DNAm and RNA levels.

Many diseases and disorders have a sex-specific 
bias in risk or prevalence, and these same condi
tions have DNA methylation implicated in their 
pathophysiology. For example, schizophrenia is 
1.4-times more likely to occur among males than 
females [54]. DNAm differences have been 
observed in brain tissue and blood comparing 
patients with schizophrenia to subjects without 
the disorder [55,56]. Furthermore, emerging evi
dence demonstrates the schizophrenia DNAm sig
natures may have sex-specific differences in 
DNAm [57]. Similarly, most autoimmune disor
ders are more common in women, including lupus 
and rheumatoid arthritis [58]. DNAm regulates 
immune cell differentiation, and dysregulation 
can induce immune cell auto reactivity, affecting 
the risk of autoimmune disorders [59].

Our study had several limitations, which may 
support future opportunities for research. Our 
study time period with at children ages 9 and 15 
likely spanned the pubertal window for many chil
dren [60]. We were not able to include the timing 
of pubertal onset or duration in our models, and 

future studies may be able to track DNAm changes 
throughout puberty. We observed high correlation 
(Pearson correlation = 0.56) but not perfect corre
lation between sex-specific associations at the ages 
9 and 15 time points, and other cohorts may be 
able to investigate longitudinal changes during this 
period, sensitive to pubertal differences. Though 
we tested for replication with prior studies in other 
tissues, we were not able to identify many other 
diverse cohorts with saliva DNAm for formal 
meta-analysis. The widespread findings observed 
in saliva in this cohort warrant a future meta- 
analysis and epigenetics consortia may be able to 
help facilitate these collaborations. We focused on 
autosomal chromosomes and provided results on 
sex chromosomes in the supplement to support 
further inquiries.

Because of our large sample size, our DNAm 
measures required several plates and thus potential 
technical artefacts resulting from batch effects. 
Consistent with other studies [61], we observed 
technical variation in the DNAm measures by 
sample plate (Supplemental Figure S3a) and we 
adjusted for sample plate by incorporating 
a random effect term in our regression models. 
Importantly, the FFCW samples were randomized 
across plates by demographic factors including sex. 
To account for potential unmeasured confounding 
or technical variation, we additionally performed 
a sensitivity analysis using surrogate variables, and 
observed that our findings were robust.

Several factors contribute to the strength and 
breadth of this study. First, the study sample includes 
non-Hispanic Black and Hispanic participants who 
are currently underrepresented in genetic and epige
netic research [62]. Ensuring the participation of 
diverse populations in research is important to assess 
the generalizability of findings [62]. Second, the 
study sample size of 796 is larger than many previous 
single cohort epigenome-wide association studies, 
which increases the study power to detect associa
tions. Third, the study design includes repeated 
DNAm measures, which allowed us to assess persis
tence and reliability of measures. Importantly, sam
ples from both ages were processed at the same time 
in the laboratory and participant paired samples 
from ages 9 and 15 were measured on the same slides 
(and thus plates), which minimized technical batch 
effects with respect to participant age. Fourth, we 
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assessed participant sex using two methods (ques
tionnaire and chromosome detection). Fifth, we 
detected DNAm in saliva, which is an emerging 
tissue type for epidemiologic research particularly 
in children because of the ease of collection. Sixth, 
we used a quantitative genome-wide array to detect 
DNAm that has been shown to have high reprodu
cibility [63], and which is commonly used in epige
netic epidemiology [64] to promote replication. 
Seventh, we performed numerous sensitivity ana
lyses, including surrogate variable analysis, pathway 
enrichment, and chromatin state enrichment to 
assess the robustness of the findings and increase 
the biologic interpretation of the findings. Eighth, 
to assess replication, we compared our findings to 
prior publications in cord blood and saliva [13]. 
Together, the study population, design, and analytic 
approach are major strengths of this study.

In conclusion, we assessed autosomal sex- 
specific differential DNAm in children’s saliva at 
two time points in a large and diverse study 
population. We observed thousands of positions 
with differential DNAm, with predominantly 
higher DNAm in female samples. Our findings 
were also consistent with prior reports in other 
tissue types. Epigenetic epidemiology studies 
should take care to account for sex-specific 
DNAm patterns, even on autosomal chromo
somes. Sex-specific DNAm positions were 
enriched for pathways of behaviour and ion reg
ulation, which may connect to different responses 
in these pathways by sex. Many diseases and dis
orders have prevalence differences by sex, and 
DNAm may be a marker or mediator linking 
sex and health.
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