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Systematic review of mechanistic evidence for TiO2 nanoparticle-induced 
lung carcinogenicity

Susann Wolfa , Krishnan Sriramb , Laura M. A. Camassaa , Dhruba Pathakb , Helene L. Binga, 
Benedicte Mohra , Shan Zienolddiny-Naruia  and Johanna Samulin Erdema 
aNational Institute of Occupational Health, Oslo, Norway; bNational Institute for Occupational Safety and Health, Morgantown, WV, USA

ABSTRACT
Nano-sized titanium dioxide particles (TiO2 NPs) are a high-production volume nanomaterial 
widely used in the paints, cosmetics, food and photovoltaics industry. However, the potential 
carcinogenic effects of TiO2 NPs in the lung are still unclear despite the vast number of in vitro 
and in vivo studies investigating TiO2 NPs. Here, we systematically reviewed the existing in vitro 
and in vivo mechanistic evidence of TiO2 NP lung carcinogenicity using the ten key characteristics 
of carcinogens for identifying and classifying carcinogens. A total of 346 studies qualified for the 
quality and reliability assessment, of which 206 were considered good quality. Using a weight-of-
evidence approach, these studies provided mainly moderate to high confidence for the biological 
endpoints regarding genotoxicity, oxidative stress and chronic inflammation. A limited number of 
studies investigated other endpoints important to carcinogenesis, relating to proliferation and 
transformation, epigenetic alterations and receptor-mediated effects. In summary, TiO2 NPs might 
possess the ability to induce chronic inflammation and oxidative stress, but it was challenging to 
compare the findings in the studies due to the wide variety of TiO2 NPs differing in their 
physicochemical characteristics, formulation, exposure scenarios/test systems, and experimental 
protocols. Given the limited number of high-quality and high-reliability studies identified within 
this review, there is a lack of good enough mechanistic evidence for TiO2 NP lung carcinogenicity. 
Future toxicology/carcinogenicity research must consider including positive controls, endotoxin 
testing (where necessary), statistical power analysis, and relevant biological endpoints, to improve 
the study quality and provide reliable data for evaluating TiO2 NP-induced lung carcinogenicity.

Background

Titanium dioxide nanoparticles (TiO2 NPs) are among 
the most produced nanomaterials worldwide, with 
increasing global use in many applications, e.g. inks 
and paints, photocatalysts, food and plastic colo-
rants, drug delivery applications, sunscreens, and 
cosmetic products, owing to their unique physico-
chemical properties (Shi et  al. 2013; Wang, 
Sanderson, and Wang 2007). Given the predicted 
increase in demand in the future (Research Markets 
2021), occupational and environmental exposure to 
these NPs is also anticipated to increase. Human 
exposure routes for NPs include oral, pulmonary, 
and dermal exposure. In the workplace, the most 
relevant route of exposure to NPs is via inhalation, 

which can result in lung inflammation and fibrosis 
and, over time, potentially lead to lung cancer 
development.

TiO2 particles have traditionally been considered 
low-soluble, low-toxicity particles, which is why they 
have been included as ‘negative control’ in many 
early in vitro and in vivo studies (Dankovic, Kuempel, 
and Wheeler 2007; Shi et  al. 2013). However, studies 
investigating nano-sized TiO2 have commonly shown 
cytotoxic effects via oxidative stress responses, DNA 
damage, apoptosis (Brandão et  al. 2020; Grande and 
Tucci 2016; Wani and Shadab 2020), changes in the 
cell cycle (Chang et  al. 2022) and inflammation 
(Schanen et  al. 2009). Furthermore, epidemiological 
studies on workers handling TiO2 (nano)particles 
suggest that TiO2 exposure may lead to 
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inflammation, DNA damage and oxidative stress 
responses in the lungs of the workers (Bergamaschi 
et al. 2022; Liou et al. 2017; Liou et al. 2016; Pelclova, 
Zdimal, Kacer, et  al. 2016; Pelclova, Zdimal, Fenclova, 
et  al. 2016). These studies, however, have often poor 
characterization of the TiO2 exposure. Thus, it is 
unclear whether the exposure includes other mate-
rials than TiO2 and which size distribution and purity 
the particles have.

While there is substantial research on the toxicity 
of TiO2 NPs, there still needs to be consensus on 
the mechanisms of action following pulmonary 
exposure to TiO2 NPs. The in vitro and in vivo studies 
present contradictory results, most probably due to 
differences in the physicochemical parameters of 
the TiO2 NPs tested, the exposure system, and the 
study design/experimental protocol. It is well known 
that the physicochemical parameters of NPs, such 
as particle size, shape, chemical composition, sur-
face area, agglomeration/aggregation state, and 
purity, influence the reactivity of the particles when 
in contact with biological systems (Nel et  al. 2006; 
Nel et  al. 2009; Oberdörster, Oberdörster, and 
Oberdörster 2005).

In 2006, the International Agency for Research 
on Cancer (IARC) classified TiO2 as possibly carcino-
genic to humans (Group 2B) (IARC 2010). However, 
the classification does not distinguish between bulk 
material and nano-sized forms. Based on the IARC 
monograph for evaluating carcinogenic risks to 
humans from carbon black, titanium dioxide, and 
talc, this classification concluded that ‘there is inad-
equate evidence in humans for the carcinogenicity 
of titanium dioxide’. At the same time, there is ‘suf-
ficient evidence from experimental animals for the 
carcinogenicity of titanium dioxide’ (IARC 2010). 
IARC compiled existing data from epidemiological 
and animal studies. Critical for the evaluation by 
IARC were two animal studies that observed lung 
tumors in rats after two years of chronic exposure 
to 250 mg/m3 of fine-sized rutile TiO2 (Lee, 
Trochimowicz, and Reinhardt 1985) and to 10 mg/
m3 of P25 (mixture of anatase/rutile) TiO2 NPs 
(Heinrich et  al. 1995).

Similar to IARC, in 2017, the European Chemicals 
Agency (ECHA) classified certain forms of TiO2 pow-
der, where 1% (w/w) or more of the particles have 
an aerodynamic diameter of ≤ 10 µm, as a Carc 2, 
H351 (inhalation) category 2 suspected human car-
cinogen (RAC 2017). Despite the classification from 
both IARC and ECHA, the mechanisms by which 
TiO2 causes carcinogenicity in the lung are not fully 
understood, and there are uncertainties regarding 

the carcinogenic potential of nano-sized TiO2 follow-
ing inhalation. There is major concern that NPs, 
including TiO2 NPs, can induce genotoxic outcomes, 
which are associated with an increased risk of can-
cer development (DeMarini 2019). However, it is also 
important to characterize the non-genotoxic effects 
contributing to carcinogenesis. In 2016, IARC intro-
duced a ‘key characteristics of human carcinogens’ 
approach. This approach is used within the larger 
framework of IARC to evaluate the mechanistic evi-
dence of carcinogenicity for chemicals and other 
agents. The key characteristics (KCs) are a set of 10 
chemical (agent) specific properties for cancer haz-
ard identification, as outlined by Hanahan and 
Weinberg (Hanahan and Weinberg 2011). These 
properties include ‘is electrophilic or can be meta-
bolically activated to an electrophilic’, ‘is genotoxic’, 
‘alters DNA repair or causes genomic instability’, 
‘induces epigenetic changes’, ‘induces oxidative 
stress’, ‘induces chronic inflammation’, ‘is immuno-
suppressive’, ‘modulates receptor-mediated effects’, 
‘causes immortalization’, ‘alters cell proliferation, cell 
death, or nutrient supply’ (Smith et  al. 2016).

The use of KCs of carcinogens by IARC may prove 
helpful in identifying and classifying carcinogens. 
The lack of a systematic literature evaluation and 
consideration of a study’s scientific quality and reli-
ability present a weakness in evaluating carcinogens 
by IARC using the KCs (Goodman and Lynch 2017). 
Using the concept of KCs alone as a tool for assess-
ing cancer hazards cannot predict cancer better 
than chance alone (Becker et  al. 2017). Mechanistic 
evidence is critical to understanding human cancer. 
With the international effort to reduce the use of 
animals in toxicity testing and reliance on develop-
ing high-throughput in vitro assays, cancer hazard 
evaluations and risk assessments done by regulatory 
bodies are likely to rely more on mechanistic data. 
Mechanistic studies have increased in volume, diver-
sity and relevance to cancer hazard evaluation. For 
in vitro and in vivo mechanistic studies to be useful 
for cancer hazard evaluation, they must be of high 
quality, reliable and have significant biological end-
points relevant to cancer development. There are 
existing frameworks for the study quality assessment 
of in vitro and in vivo studies, such as the Klimisch 
system (Klimisch, Andreae, and Tillmann 1997), the 
Toxicological Data Reliability Assessment Tool 
(ToxRTool) (Schneider et  al. 2009), and the Science 
in Risk Assessment and Policy (SciRAP) tool (Roth, 
Zilliacus, and Beronius 2021). Likewise, weight-of-ev-
idence approaches can be used to assess the reli-
ability and relevance of the existing evidence. No 
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published analysis has examined the in vitro and in 
vivo evidence for TiO2 NP lung carcinogenicity using 
the KCs of carcinogens. Utilizing a systematic eval-
uation of the scientific peer-reviewed literature, a 
quality and reliability assessment, and a weight-of-ev-
idence approach, we evaluated the mechanistic data 
from in vitro and in vivo studies associated with 
pulmonary exposure to TiO2 NPs. Specifically, the 
efforts were to (a) identify the KCs TiO2 NPs exhibit 
and (b) identify knowledge gaps regarding in vitro 
and in vivo mechanistic evidence and future research 
needs to decrease the uncertainties regarding the 
carcinogenic potential of TiO2 NPs in the lung. Thus, 
the major objective of this systematic review was 
to compile the existing in vitro and in vivo evidence 
on TiO2 NP toxicity and carcinogenicity with the 
intent to address the following Population, Exposure, 
Comparator, Outcome and Study (PECOS) framework 
question: ‘Using the 10 key characteristics of carcin-
ogens, is there mechanistic evidence from in vitro 
and in vivo studies between 2006 and 2023 that 
supports TiO2 NP carcinogenicity in the lung?’ 
Considerations regarding the TiO2 NP physicochem-
ical characteristics, and study design/experimental 
protocols are discussed.

Systematic literature search

A systematic literature review, based on PECOS and 
Preferred Reporting Items for Systematic Reviews 
and Meta-Analysis (Prisma) Methodology (Page et  al. 
2021a; Page et  al. 2021b), was performed in order 
to identify existing in vitro and in vivo data on the 
mechanisms of TiO2 NP toxicity relevant to the onset 
of lung carcinogenesis. Four databases were con-
sidered for the literature search: PubMed, Embase, 
Web of Science and TOXicology information onLINE 
(TOXLINE). Based on the ten KCs of carcinogens 
(Smith et  al. 2016) and the search terms for these 
provided by Guyton et  al. (2018), our literature 
search included peer-reviewed literature from 2006 
to April 2023 and was divided into six search strings 
using the modified KCs after Guyton et  al. (2018): 
(1) Genotoxicity (the agent is genotoxic, and/or 
alters DNA repair or causes genomic instability); (2) 
Epigenetics (induces epigenetic alterations); (3) 
Oxidative stress (induces oxidative stress); (4) Chronic 
inflammation (induces chronic inflammation and/or 
is immunosuppressive); (5) Receptor-mediated 
effects (modulation of receptor-mediated effects 
and/or hormones); (6) Cell proliferation/Apoptosis 
(alters cell proliferation, cell death or nutrient sup-
ply, and/or causes immortalization). The search 

terms for each KC are listed (Additional file 1 in 
Supplementary Appendix). The general inclusion 
criteria for the literature search were: (a) not a 
review and (b) limited to 2006–2023. The exclusion 
criteria were (a) abstracts only, (b) articles preceding 
2006, (c) manuscript in a language other than 
English, (d) manuscripts that did not meet the scor-
ing criteria. The references were collected, managed 
and screened using Covidence [Covidence system-
atic review software, Veritas Health Innovation, 
Melbourne, Australia] and Microsoft Excel software. 
Duplicate studies were removed automatically by 
Covidence and manually by the reviewers during 
the different stages of processing and screening of 
the references.

Screening

In the screening process (i.e. title/abstract and 
full-text screening), relevant publications were iden-
tified by two independent reviewers. At the end of 
the screening, any conflicts were resolved through 
discussion between the two reviewers or by having 
a third reviewer, if necessary. Before starting the title/
abstract screening, a decision tree (Figure 1) for the 
screening criteria was defined and applied. Articles 
not meeting the inclusion criteria (as outlined in 
Figure 1) were excluded when the two reviewers 
agreed upon the decision. Articles that fulfilled the 
inclusion criteria were collected for full-text screening. 
At that stage, it was decided to group the articles 
based on their exposure route and the target organ 
affected. Pulmonary exposure and the upper and 
lower airways, including immune cells in the airways, 
were relevant in the current review. References 
reporting other exposure routes like oral, dermal, or 
systemic routes were excluded. The following addi-
tional criteria were defined for qualification of the 
full-text articles. They must include information on: 
1) TiO2 NPs (pristine, no doping or coating that would 
change the surface properties); 2) aerodynamic par-
ticle size of starting material (needed to be <100 nm) 
and hydrodynamic diameter of the material in sus-
pension or aerodynamic measurements; 3) cell type 
(if in vitro); 4) route of administration (if in vivo); 5) 
number of replicates or number of animals; 6) par-
ticle dose; 7) post-exposure time point(s); 8) method(s) 
for assessing the biological effect(s)/KC(s); and 9) 
statistical analysis with appropriate tests. Publications 
lacking information on one or more of the above 
criteria were excluded when two reviewers agreed 
upon the decision. References that fulfilled the cri-
teria were included in a reference database. Duplicate 

https://doi.org/10.1080/17435390.2024.2384408


440 S. WOLF ET AL.

references overlapping the six search strings were 
manually removed.

Quality and reliability assessment

The quality and reliability of the full-text articles were 
assessed by two independent reviewers using the 
Toxicological data Reliability Assessment Tool 
(ToxRTool) software (Schneider et  al. 2009), which 
helps assign Klimisch reliability categories (Klimisch, 

Andreae, and Tillmann 1997). Following the principles 
of the ToxRTool, together with expert judgment, each 
study was assigned a reliability category 1 (reliable 
without restrictions), 2 (reliable with restrictions), or 
3 (unreliable). The ToxRTool consists of two parts, 
one for evaluating in vitro data and one for in vivo 
data. Publications reporting both in vitro and in vivo 
data were separately scored. In that sense, a publi-
cation could be assigned two distinct Klimisch cate-
gories if it presented both in vitro and in vivo data.

Figure 1.  Decision tree for title/abstract screening.
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The ToxRTool template (excel format) was modi-
fied to include information on NP characterization 
(adapted and modified from (Card and Magnuson 
2010; Fernández-Cruz et  al. 2018); see Additional 
file 2 in Supplementary Appendix). Considering var-
ious recommendations on which NP parameters 
should be evaluated when conducting toxicological 
studies (Card and Magnuson 2010), changing expec-
tations of reviewers/journals over time (more com-
prehensive NP characterization in recent studies) 
and a wide time frame from 2006 to 2023 included 
in the present review, it was decided to include 
publications reporting a ‘minimum set’ of NP param-
eters relevant to TiO2 NPs to be assigned a Klimisch 
category 1 or 2. Information on NP parameters 
could be given in a publication (provided by the 
supplier or the authors) or in a recent paper (e.g. 
published within 3–5 years) that is cited in the pub-
lication. These NP parameters were particle size and 
size distribution (in water/buffer/cell culture medium 
or air); particle shape; and crystalline phase (anatase, 
mixture of anatase/rutile or rutile). This decision was 
based on evaluating all qualified full-text articles to 
minimize selection bias.

In addition, the measurement of endotoxin con-
tamination of the TiO2 NP formulations was consid-
ered very important and mandatory in question 2 
of the ToxRTool (‘Is the purity of the substance 
given?’). Including relevant positive controls for the 
assays and the TiO2 NPs was considered important 
but could not be taken into account in the quality 
assessment as many studies would have been 
excluded (Klimisch category 3) as ‘positive controls’ 
were considered indispensable by the ToxRTool. 
Similar to the above screening process, any conflicts 
regarding the Klimisch category were resolved 
through discussion between the two reviewers or 
using a third reviewer, if necessary.

Data extraction

Data extraction, adapted from (Rolo et  al. 2022), 
was performed on studies assigned a Klimisch cat-
egory 1 or 2, by two reviewers: one doer and one 
reviewer. Any conflicts were resolved by discussion. 
A complete list of studies used in the in vitro and 
in vivo databases is provided in additional tables 
(Additional file 3 and 4 in Supplementary Appendix). 
A list of excluded in vitro and in vivo studies assigned 
a Klimisch category 3 is also provided in additional 
tables (Additional file 5 and 6 in Supplementary 
Appendix). The extraction database was curated for 
consistency.

Weight-of-evidence approach

A significant challenge, especially with the in vitro 
assays, is the question of biological relevance to 
humans. A recent study by Smith et  al. (2020) 
described current and emerging in vitro assays to 
measure the KCs, which are reflected in most stud-
ies included in the current review. To ‘score’ the 
biological relevance in humans, the assays/end-
points investigated to study the respective KCs were 
evaluated by a weight-of-evidence approach regard-
ing their association with carcinogenic hazard. 
Evidence-weighting assumptions for genotoxicity 
endpoints were based on a previously published 
review (Kirkland et  al. 2022), while assumptions for 
the other KCs were based on expert judgment. The 
tables with the default weighting for the different 
KCs are provided (Additional file 7 in Supplementary 
Appendix). The general weight descriptors are as 
follows: negligible level of confidence (the endpoint 
is not linked to an adverse effect relevant to the 
respective KC); low level of confidence (the endpoint 
is indicative of the KC but not directly linked to 
mechanisms associated with carcinogenicity); mod-
erate level of confidence (the endpoint is potentially 
relevant for carcinogenicity or subject to secondary 
cytotoxicity); high level of confidence (the endpoint 
has been shown to play a significant role in the 
process of carcinogenicity). All extracted references 
were reviewed for their assays/endpoints and the 
default weight-of-evidence of the respective end-
point. Only those publications reporting assays/
endpoints with a default weighting of ‘moderate’ or 
‘high’ (Additional file 8 and 9 in Supplementary 
Appendix) were reviewed in detail and considered 
in synthesizing evidence for TiO2 NP lung carcino-
genicity. A list of in vitro and in vivo studies with a 
negligible or low confidence was also compiled 
(Additional file 10 in Supplementary Appendix). 
These studies were not considered for data synthesis.

It should be noted that some publications con-
tained assays/endpoints with ‘moderate’ or ‘high’ 
confidence that were reviewed in detail. However, 
the same publication could contain endpoints (for 
the same or different KC) with ‘low’ or ‘negligible’ 
confidence that were not reviewed. Due to the high 
number of studies considered in the current review, 
a wide range of study protocols, various assays/
endpoints, and differences in the physicochemical 
properties of the NPs, the in vitro and in vivo studies 
were not evaluated on a single level by the 
weight-of-evidence approach. The reliability and 
relevance were discussed for each key characteristic. 

https://doi.org/10.1080/17435390.2024.2384408
https://doi.org/10.1080/17435390.2024.2384408
https://doi.org/10.1080/17435390.2024.2384408
https://doi.org/10.1080/17435390.2024.2384408
https://doi.org/10.1080/17435390.2024.2384408
https://doi.org/10.1080/17435390.2024.2384408
https://doi.org/10.1080/17435390.2024.2384408
https://doi.org/10.1080/17435390.2024.2384408
https://doi.org/10.1080/17435390.2024.2384408
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Based on this analysis, a summary of the outcome 
for each KC, grouped by crystalline phase of the 
TiO2 NPs, was compiled. It was outside the scope 
of this narrative systematic review to make in-depth 
weight-of-evidence assessments.

Results

The systematic literature search yielded 20,722 arti-
cles among the four databases (PubMed, Embase, 
Web of Science and TOXLINE) with 15,489 articles 
screened for title/abstract. An overview of the arti-
cles obtained, screened and excluded is shown in 
the PRISMA chart (Figure 2). In the full-text screen-
ing, 1,842 articles were assessed for eligibility, with 
932 articles excluded based on the exclusion criteria: 
review (n = 15), abstract only (n = 16), wrong inter-
vention/KC (n = 85), wrong study design (n = 88), not 
English language (n = 4), wrong exposure/not pris-
tine TiO2 NPs (n = 95), wrong route of administration/
cell type (n = 612), wrong date (n = 14), withdrawn 
study (n = 3). Thus, 910 articles from the six search 
strings were eligible for further processing. After 
removing overlapping studies in the six search 
strings, 346 articles were included in the quality 
and reliability assessment using the ToxRTool (Figure 
2), of which 262 articles reported in vitro data and 
103 articles reported in vivo data. As stated above, 
some articles included both in vitro and in vivo data.

Of the 262 in vitro studies assessed with the 
ToxRTool, nearly a third of the studies (36.6%, 
96/262) were assigned Klimisch category 1, while 
14.9% (39/262) were assigned Klimisch category 2. 
Almost half of the studies (48.5%, 127/262) were 
assigned Klimisch category 3, of which the majority 
of studies (62.2%, 79/127) lacked TiO2 NP charac-
terization in the dispersion/delivery medium (Figure 
3, left). Other reasons for Klimisch category 3 (i.e. 
exclusion) were: too few biological replicates (13.4%, 
17/127); missing number of replicates (10.2%, 
13/127); lack of statistical method for the respective 
KC (9.4%, 12/127); and substantial flaws in study 
design, data presentation and/or interpretation 
(4.7%, 6/127) (Figure 3, left).

Of the 103 in vivo studies, 59.2% (61/103) were 
assigned Klimisch category 1 and only 9.7% (10/103) 
were assigned Klimisch category 2. A third of studies 
(31.1%, 32/103) were assigned Klimisch category 3 
and were thus excluded. Like the in vitro studies, 
most in vivo studies (75%, 24/32) lacked the TiO2 
NP characterization in the dispersion/delivery 
medium or aerodynamic measurements (Figure 3, 
right). Other reasons for Klimisch category 3 and 

exclusion were: number of animals/replicates too 
low (15.6%, 5/32); missing number of animals (3.1%, 
1/32); and lack of statistical method for the respec-
tive KC (6.3%, 2/32) (Figure 3, right).

Most of the 135 included in vitro studies reported 
on oxidative stress, chronic inflammation and geno-
toxicity (Figure 4). Fewer studies investigated pro-
liferation/apoptosis/cell cycle/transformation and 
epigenetic effects of TiO2 NP exposure, while only 
one in vitro study reported receptor-mediated 
effects. From the 71 in vivo studies, a clear majority 
reported chronic inflammation, while some studies 
looked at oxidative stress, genotoxicity and prolif-
eration/apoptosis/cell cycle/transformation (Figure 
4). Two studies investigated epigenetic changes due 
to TiO2 NP exposure, whereas only one in vivo study 
reported receptor-mediated effects.

About 70% of the in vitro studies reporting chronic 
inflammation (47/65) and oxidative stress (48/68) were 
assigned Klimisch category 1 (Figure 5), while for geno-
toxicity it was 83% (39/47) of the studies. For prolifer-
ation/apoptosis/cell cycle/transformation and 
epigenetics, about 55% (15/27 and 6/11, respectively) 
of the in vitro studies were assigned Klimisch category 
1. The sole in vitro study on receptor-mediated effects 
was assigned Klimisch category 2 (Figure 5). For the 
in vivo studies, between 84% and 92% of the studies 
reporting chronic inflammation (56/66), oxidative stress 
(16/19), proliferation/apoptosis/cell cycle/transformation 
(6/7) and genotoxicity (12/13) were assigned Klimisch 
category 1. The sole in vivo study on receptor-mediated 
effects was assigned Klimisch category 1, while the 
two studies on epigenetic changes were assigned 
Klimisch category 1 and 2 (Figure 5).

Regarding the TiO2 NP characteristics, several 
physicochemical parameters including particle size, 
crystalline phase, aerodynamic diameter, hydrody-
namic diameter, surface area, and surface charge 
were provided to a different degree in these pub-
lications. Most in vitro studies assessed the anatase 
(56.3%, 76/135) and mixture of anatase/rutile (45.2%, 
61/135) with a primary particle size below 25 nm 
(69.6%, 94/135) (Table 1).

Only 10.4% (14/135) of publications studied rutile 
TiO2 NPs. In addition, TiO2 NPs with primary particle 
sizes of 25–50 nm and 50–100 nm were studied in 
28.1% (38/135) and 23% (31/185) of the publica-
tions, respectively. The hydrodynamic diameter of 
the TiO2 NPs, most often measured using DLS, was 
over 100 nm in most in vitro studies. Although 35.6% 
(48/135) of studies lacked information about the 
hydrodynamic diameter in water or buffer solution, 
these studies measured the hydrodynamic diameter 
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in cell culture exposure medium as it was a criterion 
to include these measurements in either water, buf-
fer solution or cell culture exposure medium. 

Information about the specific surface area and 
charge was missing in about 41% (56/135) of in 
vitro studies. Most studies observed a negative 

Figure 2.  PRISMA Chart showing the number of articles identified, screened and included during the systematic literature search 
and screening (title/abstract and fulltext). Reasons for exclusion during fulltext screening are given.
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surface charge of the TiO2 NPs investigated (Table 
1). In the in vivo studies, the anatase (52.9%, 37/70) 
and mixture of anatase/rutile (37.1%, 26/70) crys-
talline phase of TiO2 NPs were frequently studied. 
All studies included information about the primary 
particle size, and the majority (94.3%, 66/70) inves-
tigated TiO2 NPs less than 25 nm. However, when in 
solution, the hydrodynamic diameter of the TiO2 

NPs increased above 100 nm in most of the studies. 
The specific surface area of the TiO2 NPs was indi-
cated in 27.1% (19/70) of the studies, whereas infor-
mation about surface charge was missing in 72.8% 
(51/70) of the publications (Table 2).

Sorted by KC, most in vitro and in vivo studies did 
not report the endotoxin level in the TiO2 NP formula-
tions (Figure 6). About 80%–90% of in vitro studies 

Figure 3.  Reasons for exclusion of in vitro and in vivo studies in the quality and reliability assessment process using the ToxRTool. 
These studies were assigned Klimisch category 3 and were not included in the subsequent synthesis of data. The total number 
and percentages (in parenthesis) of the in vitro studies (left) and in vivo studies (right) excluded for the respective reason are 
presented in the pie chart.

Figure 4. O verview of the number of in vitro (green) and in vivo (orange) studies reporting TiO2 NPs and the respective KC, that 
were assigned Klimisch category 1 or 2 and were thus included in the data synthesis for evaluating the carcinogenic potential of 
TiO2 NPs in the lung.
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reporting genotoxicity (43/47), oxidative stress (54/68) 
and proliferation/apoptosis/cell cycle/transformation 
(22/27) did not include endotoxin measurement, whereas 
none of the studies investigating epigenetic changes 
and receptor-mediated effects mentioned this informa-
tion. For chronic inflammation, two third (66.2%, 43/65) 
of the in vitro studies did not report the level of endo-
toxin in the TiO2 NP formulations. Similarly, roughly 
70%–85% of in vivo studies investigating genotoxicity 
(11/13), oxidative stress (16/19), proliferation/apoptosis/

cell cycle/transformation (5/7) and chronic inflammation 
(55/66) did not include endotoxin measurement, whereas 
none of the epigenetic studies did. The sole in vivo study 
on receptor-mediated effects reported the endotoxin 
level in the TiO2 NP formulations (Figure 6).

Mechanistic evidence

Based on a weight-of-evidence approach, the assays/
endpoints investigated for each KC were assigned a 

Figure 5. O verview of the number of in vitro and in vivo studies in Klimisch category 1 or 2, sorted by KC.

Table 1.  Physicochemical properties of the TiO2 NPs used in the in vitro studies in 
Klimisch category 1 or 2.
TiO2 NP characteristic Categories # of studies

Crystalline phase Anatase 76
Mixture 61
Rutile 14
Other 2

NA 13
Primary size (nm) <25 94

25–50 38
50–100 31

NA 11
Hydrodynamic diameter (nm) <25 3

25–50 3
50–100 13

>100 73
NA 48a

Specific surface area (SSA, m2/g) <50 36
50–100 39

>100 40
NA 57

Surface charge (Zeta potential, mV) Negative 92
Positive 19

NA 55
aThese studies lacked information about the hydrodynamic diameter in either water or a buffer solution. 

They included information about the hydrodynamic diameter in cell culture exposure medium.
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level of confidence. A list of in vitro and in vivo studies 
with moderate or high confidence in the endpoints 
investigated, sorted by KC and including the Klimisch 
category and the level of confidence, is tabulated 
(Additional file 8 and 9 in Supplementary Appendix). 
These tables also include the crystalline phase of the 
TiO2 NPs, the endpoints and the main findings. A list 
of in vitro and in vivo studies with negligible or low 
confidence was also compiled (Additional file 10 in 

Supplementary Appendix). These studies were not 
considered for the data synthesis.

The following paragraphs give a summary of the 
in vitro and in vivo studies in Klimisch category 1 
or 2 investigating the respective KCs. Further, in an 
attempt to group the effects of TiO2 NPs, the studies 
were sorted by the crystalline phase of the TiO2 
NPs, and a summary of the outcome for each KC is 
presented.

Table 2.  Physicochemical properties of the TiO2 NPs used in the in vivo studies in Klimisch category 1 or 2.
TiO2 NP characteristic Categories # of studies

Crystalline phase Anatase 37
Mixture 26
Rutile 12
Other 1

NA 8
Primary size (nm) <25 66

25–50 16
50–100 7

NA 0
Hydrodynamic diameter (nm) <25 5

25–50 12
50–100 10

>100 59
NA 0

Specific surface area (SSA, m2/g) <50 12
50–100 33

>100 31
NA 19

Surface charge (Zeta potential, mV) Negative 9
Positive 15

NA 51

Figure 6. O verview of the number of in vitro and in vivo studies in Klimisch category 1 or 2, that included endotoxin measure-
ment of the TiO2 NPs, sorted by KC.

https://doi.org/10.1080/17435390.2024.2384408
https://doi.org/10.1080/17435390.2024.2384408
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Genotoxicity

It is well-established that genotoxicity is linked to 
the development of cancer (Smith et  al. 2016). An 
agent is considered genotoxic when it causes DNA 
damage (including DNA adducts, DNA strand breaks, 
DNA crosslinks and DNA alkylation), induces muta-
tions (alterations to the genome), or both. The 
genotoxicity endpoints were assigned confidence 
based on a previously published study (Kirkland 
et  al. 2022). For in vitro studies, the micronucleus 
formation and HPRT gene mutation were considered 
as relevant endpoint for carcinogenesis. For in vivo 
studies, mainly the comet and DNA peroxidation 
assay were considered a high level of confidence.

Anatase TiO2 NPs were the most investigated TiO2 
NP type in genotoxicity studies, with a similar 
amount of in vitro and in vivo studies. While some 
in vitro studies did not observe any changes in 
micronucleus formation (García-Rodríguez et  al. 
2019; Ghosh et  al. 2017; Louro et  al. 2019), the in 
vitro evidence favors increased DNA damage, i.e. 
micronucleus formation and HPRT gene mutation 
following anatase TiO2 NP exposure (Chen et  al. 
2014; Di Bucchianico et  al. 2017; Falck et  al. 2009; 
Jain et  al. 2017; Kurzawa-Zegota et  al. 2017; 
Medina-Reyes et  al. 2019; Srivastava et  al. 2013). 
However, two studies reporting increased DNA dam-
age were assigned Klimisch category 2 (Di 
Bucchianico et  al. 2017; Falck et  al. 2009). In vivo, 
there is inconclusive evidence regarding the geno-
toxic potential of anatase TiO2 NPs. Using DNA 
strand breaks as an endpoint assessed by comet 
assay, two short-term studies using intratracheal 
injection of TiO2 NPs in rats and head-only inhalation 
in mice found increased DNA damage (Han et  al. 
2020; Larsen et al. 2016). However, the particle doses 
used in these studies were quite high, which might 
not be relevant to human occupational exposure 
scenarios. Another study observed a dose-dependent 
increase in DNA peroxidation in mice following 
repeated intratracheal instillation with TiO2 NPs for 
90 d (Li et al. 2013). This study was assigned Klimisch 
category 2 and must be interpreted cautiously. Naya 
et  al. (Naya et  al. 2012) showed that single and 
repeated intratracheal instillation of TiO2 NPs in rats 
did not change the % tail DNA in lung epithelial 
cells. Similarly, no DNA damage in mice was observed 
after 3 d (Murugadoss et  al., 2020) and 180 d 
(Danielsen et  al. 2020) following single exposure to 
TiO2 NPs and after repeated whole-body inhalation 
exposure (Lindberg et  al. 2012).

In vitro, a mixture of anatase/rutile TiO2 NPs at 
10–40 µg/cm2 induced micronucleus formation in 

A549 cells after 72 h (Stoccoro et  al. 2017). However, 
the most in vitro genotoxicity studies did not find 
any effect on micronucleus formation or HPRT gene 
mutation (Brandão et  al. 2020; Ghosh et  al. 2017; 
Kazimirova et  al. 2020; Prasad et  al. 2013; Tavares 
et  al. 2014). For mixture (anatase/rutile) TiO2 NPs, 
only one in vivo study in Klimisch category 1 and 
with a moderate confidence was identified (Relier 
et  al. 2017). Using a repeated (3 doses once every 
four days) endotracheal instillation paradigm, the 
study found a statistically significant increase in 
DNA lesions in the rat lung after 35 d after exposure 
to the two highest doses (2.5 and 10 mg/kg) of TiO2 
NPs tested. Double-strand breaks increased 2 h after 
exposure at the highest dose (Relier et  al. 2017).

Only one in vitro study investigating rutile TiO2 
NPs was identified (Corradi et  al. 2012). However, 
results for the micronucleus assay using A549 cells 
were unavailable as NP agglomeration obscured the 
analysis. In vivo, three studies on rutile TiO2 NPs 
were identified, each reporting a different outcome 
(Hadrup et al. 2017; Li et al. 2018; Wallin et al. 2017), 
rendering the mechanistic evidence for rutile TiO2 
NP genotoxicity inconclusive. Measuring 8-OHdG 
levels in lung DNA showed no significant difference 
between the TiO2 NP inhalation group (up to 
1.84 mg/m3) and controls after 6 months (Li et  al. 
2018). On the other hand, using the comet assay 
as endpoint for genotoxicity, one study using intra-
tracheal instillation (67 µg/mouse) found a lower 
level of DNA strand breaks as compared to the con-
trols after 24 h (Hadrup et  al. 2017), while another 
instillation study showed increased levels of DNA 
strand breaks in the lung tissue of TiO2-exposed 
mice (18–162 µg/mouse) after 1 and 28 d 
post-exposure (Wallin et  al. 2017).

Overall, there is inconclusive evidence for geno-
toxicity following exposure to anatase, mixture 
anatase/rutile and rutile TiO2 NPs, with a tendency 
to ‘increased effect’ following exposure to anatase 
TiO2 NPs (Figure 7).

Epidemiological studies suggest increased 
8-OHdG levels in exhaled breath condensates 
(Pelclova, Zdimal, Fenclova, et  al. 2016) and white 
blood cells (Liou et  al. 2017). However, these find-
ings are difficult to compare to the mechanistic 
evidence due to the poor TiO2 exposure character-
ization (i.e. size distribution and purity).

Oxidative stress

In healthy cells, there is a balance between gener-
ating reactive oxygen species (ROS) and 
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counteracting anti-oxidant mechanisms. Following 
chemical exposure or other cell stress/injury, this 
balance can be disturbed in favor of the generation 
of ROS, which can eventually result in oxidative 
stress. The generation of ROS has been implicated 
as a major mechanism of carcinogens. However, as 
non-carcinogens can also induce oxidative stress, 
which has been associated with several (non-cancer) 
chronic diseases and pathological conditions such 
as cardiovascular disease, neurodegenerative dis-
ease, and chronic inflammation, this KC has to be 
interpreted with caution unless other KCs 
accompany it.

For the in vitro evidence, only intracellular ROS 
levels and lipid peroxidation were considered rele-
vant endpoints for carcinogenesis. In contrast, in 
vivo studies investigating intracellular ROS levels, 
lipid peroxidation, protein levels of oxidative 
stress-related genes and anti-oxidant mechanisms 
were considered to have a moderate or high con-
fidence level.

Anatase and a mixture of anatase/rutile TiO2 NPs 
were the most investigated TiO2 NPs in studies 
regarding oxidative stress, with more than three- to 
six-fold more in vitro data than in vivo studies. For 
rutile TiO2 NPs, only one in vivo study was identified, 
whereas nine in vitro studies investigated this par-
ticle type. Although quite some evidence shows no 
effect on oxidative stress responses, overall, most 
studies reported increased oxidative stress following 
TiO2 NP exposure. The in vitro evidence supports 
increased oxidative stress responses following TiO2 
NP exposure. Several studies have shown that 

short-term, submerged exposure of bronchial and 
alveolar epithelial cells with anatase TiO2 NPs 
resulted in increased intracellular ROS and/or lipid 
peroxidation (Ahmad et  al. 2018; Andersson et  al. 
2011; Aueviriyavit et  al. 2012; Bai, Chen, and Gao 
2015; Chen et  al. 2022; De Matteis et  al. 2016; 
Ekstrand-Hammarström et  al. 2012; Hussain et  al. 
2009; Hussain et  al. 2010; Ma et  al. 2017; Park, Lee, 
Lee, et  al. 2014; Shi et  al. 2010; Srivastava et  al. 
2011; Srivastava et  al. 2013; Sweeney et  al. 2015; 
Yuan et  al. 2021). Air-liquid-interface (ALI) TiO2 NP 
exposure of a co-culture of A549/THP-1 cells has 
also been demonstrated increased intracellular ROS 
production after 24 h (Loret et  al. 2016; Loret et  al. 
2018). Furthermore, increased oxidative stress 
responses have been observed following anatase 
TiO2 NP exposure of lung fibroblasts (Hamzeh and 
Sunahara 2013; Jain et al. 2017) and various immune 
cell-models (Chen et  al. 2018; Dinesh et  al. 2017; 
Kolling et  al. 2020; Schanen et  al. 2013; Tada-Oikawa 
et  al. 2016; Xiong et  al. 2013), while others have 
not reported any changes regarding oxidative stress 
responses in lung epithelial cells and immune 
cell-models (Alinovi et  al. 2017; Ahamed, Akhtar, 
and Alhadlaq 2019; Belade et  al. 2015; Danielsen 
et  al. 2015; Ghosh et  al. 2017; Johnston et  al. 2015; 
Kose et  al. 2020; Kose et  al. 2021; Spigoni et  al. 
2015; Vergaro et  al. 2016). In vivo, several studies 
showed increased oxidative stress responses follow-
ing anatase TiO2 NP exposure. Single intratracheal 
injection of 200–1000 mg/kg TiO2 NPs increased ROS 
production and lipid peroxidation (Han et  al. 2020). 
However, this study used very high particle doses, 

Figure 7.  Bubble charts indicating the outcome ‘decreased effect’ (violet), ‘no effect’ (blue) and ‘increased effect’ (yellow) for the 
respective KC reported in TiO2 NP in vitro and in vivo studies with moderate or high confidence in the biological endpoints 
assessed. The bubble size indicates the number of studies reporting the respective outcome for at least one dose and time point 
following anatase TiO2 NP (A); mixture anatase/rutile TiO2 NP (B); and rutile TiO2 NP (C) exposure.
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which might not be relevant in real-life exposure 
scenarios. Other studies using single nose-only inha-
lation reported increased lipid peroxidation after 
exposure to 7–10 mg/m3 TiO2 NPs (Noël et  al. 2012; 
Noël et  al. 2013), and elevated ROS and reactive 
nitrogen species (RNS) level in lung tissue of mice 
were found after repeated intranasal instillation of 
2.5–10 mg/kg anatase TiO2 NPs (Zhou et  al. 2019). 
Repeated intratracheal instillation was found to 
result in increased lipid peroxidation (Li et  al. 2013; 
Horváth et al. 2018; Papp et al. 2020; Sun, Tan, Zhou, 
et  al. 2012), increased ROS production (Li et  al. 
2013), and increased levels of heme oxygenase-1 
(HO-1) protein (Sun, Tan, Ze, et  al. 2012). However, 
other studies did not observe changes in oxidative 
stress effects following a single intratracheal or oro-
pharyngeal exposure to anatase TiO2 NPs (Loret 
et  al. 2018; Murugadoss et  al., 2020; Roulet 
et  al. 2012).

For mixture TiO2 NPs, an increase of intracellular 
ROS and/or lipid peroxidation was described follow-
ing short-term, submerged exposure of lung epi-
thelial cells (Andersson et al. 2011; Armand, Tarantini, 
et  al. 2016; Ekstrand-Hammarström et  al. 2012; 
Gandamalla, Lingabathula, and Yellu 2019; 
Guadagnini et  al. 2015; Hussain et  al. 2009), lung 
fibroblasts (Hamzeh and Sunahara 2013; Nica et  al. 
2022) and various macrophage cell-models, includ-
ing THP-1 cells (Tada-Oikawa et  al. 2016; Hanot-Roy 
et  al. 2016; Pavlin et  al. 2022; Tada-Oikawa et  al. 
2020), RAW264.7 cells (Dhupal et  al. 2018; Hu et  al. 
2019; Xiong et  al. 2013), bone marrow-derived mac-
rophages (Kolling et  al. 2020; Tsugita, Morimoto, 
and Nakayama 2017) and alveolar macrophages 
(Park, Lee, Shim, et  al. 2014; Scherbart et  al. 2011). 
Single exposure of a co-culture of A549/THP-1 cells 
at ALI to a mixture of TiO2 NPs (3–20 µg/cm2) 
resulted in increased intracellular levels of ROS after 
24 h (Loret et  al. 2016), while continuous exposure 
of the same co-culture model to low doses of TiO2 
NPs (0.1–3 µg/cm2) induced significant oxidative 
stress responses (Loret et al. 2018). However, another 
study using A549 cells at ALI could not detect 
changes in intracellular levels of ROS following 
exposure to a mixture of TiO2 NPs (0.7–25.8 µg/cm2) 
(Hufnagel et  al. 2020). Likewise, some studies could 
not detect changes in oxidative stress responses 
following short-term submerged exposure of lung 
epithelial cells and immune cells to a mixture of 
TiO2 NPs (Bacova et  al. 2022; Ghosh et  al. 2017; 
Hufnagel et  al. 2020; Kose et  al. 2020; Kose et  al. 
2021; Poon et  al. 2020; Vergaro et  al. 2016; Wan 
et  al. 2012). The in vivo evidence for oxidative stress 

responses after exposure to a mixture of TiO2 NPs 
is inconclusive. Both single whole-body inhalation 
(1 mg/m3) and intratracheal instillation (800 µg/rats) 
of rats with mixture TiO2 NPs resulted in increased 
levels of HO-1 in lung tissue and bronchioalveolar 
lavage fluid (BALF) (Baisch et  al. 2014; Yoshiura et  al. 
2015), whereas single nose-only inhalation of rats 
to 20 mg/m3 mixture TiO2 NPs showed increased 
lipid peroxidation (Noël et  al. 2013). On the other 
hand, single and repeated intratracheal instillation 
with mixture TiO2 NPs had no effect on intracellular 
ROS production (Loret et  al. 2018) and glutathione 
levels in the lung tissue (Relier et  al. 2017).

Using rutile TiO2 NPs, one in vitro study showed 
no effect on oxidative stress responses after 
short-term, submerged exposure of A549 cells 
(Andersson et  al. 2011). In contrast, the majority of 
studies observed increased intracellular ROS levels 
after exposure of lung epithelial cells (Aueviriyavit 
et   al .  2012;  De Matteis  et   al .  2016; 
Ekstrand-Hammarström et  al. 2012; Pearce, Okon, 
and Watson-Wright 2020; Sweeney et  al. 2015), lung 
fibroblasts (Hamzeh and Sunahara 2013) and 
immune cells (Danielsen et  al. 2015; Tada-Oikawa 
et  al. 2016) to TiO2 NPs. In vivo, intratracheal instil-
lation of rutile TiO2 NPs increased HO-1 in BALF of 
rats up to 7 d post-exposure (Morimoto et  al. 2016).

In summary, there is much evidence that expo-
sure to anatase TiO2 NPs increased oxidative stress 
(Figure 7). Similar to anatase, for the mixture of 
anatase/rutile TiO2 NPs, there is substantial evidence 
for increased induction of oxidative stress. Increased 
oxidative stress has also been observed for rutile 
TiO2 NPs, although the number of studies was far 
less than for anatase or mixture of anatase/rutile 
TiO2 NPs (Figure 7).

The few epidemiological studies available support 
oxidative stress as a possible mechanism of TiO2 
exposure. Accordingly, one study investigating 
TiO2-handling workers suggest that TiO2 exposure 
may lead to lower antioxidant enzyme activity (Liou 
et  al. 2016). Another study investigating workers 
handling nanomaterials, including TiO2, found 
increased lipid peroxidation in exhaled breath con-
densate (Liou et  al. 2017). These studies are, how-
ever, difficult to compare to the mechanistic 
evidence due to poor or lacking characterization of 
TiO2 exposure.

Chronic inflammation

Chronic inflammation is a long-term reaction to an 
inflammatory stimulus that involves the continuous 
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recruitment of mononuclear leukocytes (monocytes 
and lymphocytes) and is accompanied by tissue 
injury due to a sustained inflammatory environment. 
Chronic inflammation can last several weeks, 
months, or even a lifetime in the case of some 
chronic inflammatory disorders and plays a central 
role in the development and progression of several 
chronic diseases, including diabetes, asthma, cardio-
vascular diseases and cancer (Zhong and Shi 2019). 
Epidemiological studies on TiO2-handling workers 
suggest that TiO2 exposure may lead to a subtle 
alteration of lung pathobiology (Bergamaschi et  al. 
2022), inflammation and fibrotic changes in the 
lungs (Pelclova, Zdimal, Fenclova, et  al. 2016). The 
mechanistic evidence for chronic inflammation is 
only derived from in vivo data as the in vitro end-
points most commonly used to study inflammation, 
such as gene expression of inflammation-related 
markers, cytokine release or nitric oxide production, 
together with short post-exposure time points and 
missing feedback loops/regulatory mechanisms, 
might not be of relevance for ‘chronic inflammation’ 
and in vivo carcinogenesis, and was given a negli-
gible or low level of confidence. Thus, these studies 
were not included in the data synthesis. For the in 
vivo studies, protein levels of cytokines, BALF cell 
count, and lung histology were considered end-
points of moderate or high confidence. It is to be 
further noted that the in vivo studies differed 
amongst each other concerning the physicochemical 
particle characteristics, formulation method, particle 
doses tested, exposure scenario (single vs. repeated 
exposure), and post-exposure time points, which 
made it nearly impossible to compare the study 
findings in a meaningful manner. However, in an 
attempt to group the results, exposure scenarios 
and the main outcomes were considered.

For anatase TiO2 NPs, most studies showed evi-
dence that exposure to these TiO2 NPs results in 
chronic inflammation. Single intratracheal instilla-
tion/nebulization/injection in rat and mice has been 
shown to result in dose-dependent short-term neu-
trophil influx which declined after several days/
weeks, with histological changes showing inflam-
matory cell infiltration, thickening of the alveolar 
wall, and increased protein levels of cytokines such 
as TNFα, IL-6, MCP-1, IL-1, IL-12 and IL-10 
(Aragao-Santiago et  al. 2016; Danielsen et  al. 2020; 
Han et  al. 2020; Hashizume et  al. 2016; Kobayashi 
et  al. 2009; Loret et  al. 2018; Liu et  al. 2010; Park, 
Lee, Shim, et  al. 2014; Rahman et  al. 2017). 
Short-term increase in neutrophils in BALF was also 
described following single nose-only inhalation of 

rats (Noël et  al. 2013; Noël et  al. 2012). An increased 
number of total bronchioalveolar lavage (BAL) cells 
and macrophages was observed following single 
whole-body inhalation in mice (Grassian, 
Adamcakova-Dodd, et  al.  2007; Grassian, 
O’Shaughnessy, et  al. 2007). A study using repeated 
intranasal exposure of mice to 20 mg/kg TiO2 NPs 
for 30 d described changes in the morphology and 
histology in the lungs (Ma et  al. 2019). Similar 
pathological findings, including infiltration of inflam-
matory cells and thickening of the pulmonary inter-
stitium and edema, were observed following 
repeated intranasal exposure of mice for 90 days (Li 
et  al. 2013). Additionally, another study reported 
similar histopathological changes, an increased num-
ber of cells in BAL, and increased levels of inflam-
matory cytokines after repeated intranasal exposure 
for 90 d (Yu et  al. 2014). Repeated intranasal expo-
sure for 6 and 9 months showed increased inflam-
matory cytokine levels (Hong et  al. 2015; Zhou et  al. 
2019), indicating a sustained inflammatory response. 
Repeated whole-body inhalation in mice with 
28.5 mg/m3 for 5 d resulted in increased neutrophil 
influx, whereas repeated whole-body inhalation with 
25-50 mg/m3 for 13 weeks and 32 mg/m3 for 26 weeks 
led to increased neutrophil influx, increased number 
of lymphocytes and enlarged particle-laden macro-
phages (Yamano et  al. 2022a; Yamano et  al. 2022b). 
However, some studies did not show changes in 
inflammation following single oropharyngeal aspi-
ration (Kim et  al. 2014; Murugadoss et  al., 2020), 
intratracheal instillation (Okada et  al. 2016; Roulet 
et  al. 2012; Roursgaard et  al. 2011; Rushton et  al. 
2010), nose-only (Scarino et  al. 2012) or head-only 
inhalation (Larsen et  al. 2016), which could be due 
to different particle characteristics, the formulation 
method, various exposure doses or other experi-
mental parameters.

The in vivo mechanistic evidence for chronic 
inflammation following exposure to a mixture of 
TiO2 NPs favors increased inflammatory responses. 
Single intratracheal instillation with mixture TiO2 
NPs has been reported to result in elevated levels 
of eosinophils and neutrophils, increased total num-
ber of BAL cells, and an early and transient increase 
in several inflammatory cytokines (Gustafsson et  al. 
2011; Hashizume et  al. 2016; Kobayashi et  al. 2016; 
Loret et  al. 2018; Okada et  al. 2016; Park et  al. 2009; 
Rahman et  al. 2017; Rushton et  al. 2010; Sager, 
Kommineni, and Castranova 2008; Warheit et  al. 
2007; Yoshiura et  al. 2015). An increased number of 
neutrophils, macrophages and eosinophils has also 
been reported following single nose-only inhalation 
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in mice and rats (Jonasson et  al. 2013; Noël et  al. 
2013). In contrast, elevated protein levels of IL-1β 
and IL-6 and increased neutrophil influx have been 
found after single whole-body inhalation of mixture 
TiO2 NPs (Baisch et  al.  2014; Grassian, 
Adamcakova-Dodd, et  al. 2007). Repeated intratra-
cheal exposure with mixture TiO2 NPs resulted in 
increased number of neutrophils and elevated levels 
of inflammatory cytokines (Abdulnasser Harfoush 
et  al. 2020; Relier et  al. 2017) and extensive disrup-
tion of alveolar septa, macrophage accumulation, 
and slight alveolar thickness (Chang et  al. 2014). An 
acute inflammatory response was reported after 
nose-only inhalation of rats with 10 mg/m3 mixture 
TiO2 NPs, which decreased over 180 days 
post-exposure (Chézeau et  al. 2019; Chézeau et  al. 
2018). Another nose-only inhalation study with rats 
showed an increased neutrophil influx, which was 
still elevated 70 d post-exposure (Gustafsson et  al. 
2014). Repeated whole-body inhalation in rats with 
4.1 mg/m3 TiO2 NPs increased the number of alveolar 
macrophages and showed mild inflammation (Okada 
et  al. 2019). In contrast, two other whole-body inha-
lation studies did not observe any changes in 
inflammatory responses (Rossi et  al. 2010; Scuri 
et  al. 2010). One study using repeated nose-only 
inhalation was identified that reported reduced 
white blood cell count after exposure to mixture 
TiO2 NPs (Eydner et  al. 2012).

Although fewer studies on rutile TiO2 NPs regard-
ing chronic inflammation were found, the evidence 
suggests that intratracheal instillation/nebulization/
spraying with rutile TiO2 NPs increased the total 
number of cells in BAL, led to acute neutrophil 
influx which decreased over time, and increased 
levels of CCL3 and IL-6, while repeated exposure to 
rutile TiO2 NPs for several weeks resulted in an 
increased number of neutrophils and macrophages, 
and increased levels of CINC1 and CINC2 in BAL of 
mice (Hadrup et  al. 2017; Hashizume et  al. 2016; 
Morimoto et  al. 2016; Roursgaard et  al. 2011; Saber 
et  al. 2019; Sagawa et  al. 2021; Tomonaga et  al. 
2020; Wang et  al. 2021; Wallin et  al. 2017). Two 
studies that showed no inflammatory responses due 
to rutile TiO2 NP exposure were identified 
(Aragao-Santiago et  al. 2016; Morimoto et  al. 2016).

In conclusion, for anatase TiO2 NPs, there is much 
evidence that exposure to these TiO2 NPs resulted 
in increased inflammation (Figure 7). However, some 
studies could not detect inflammatory responses. 
Substantial evidence exists for increased inflamma-
tory responses for a mixture of anatase/rutile and 
rutile TiO2 NPs. However, there were fewer studies 

for rutile TiO2 NPs than for a mixture of anatase/
rutile TiO2 NPs (Figure 7).

The in vivo evidence for TiO2-induced chronic 
inflammation supports the findings from epidemi-
ological studies (Bergamaschi et  al. 2022; Pelclova, 
Zdimal, Fenclova, et  al. 2016). However, direct com-
parison of the experimental data with the epidemi-
ological studies is hampered by the often poor 
characterization of TiO2 exposure in these studies.

Proliferation/apoptosis/cell cycle/transformation

Alterations in replication and/or cell cycle control, 
and evasion of apoptosis have been implicated in 
the development of cancer (Smith et  al. 2016). In 
vitro, population doubling and BrdU incorporation 
assay were considered relevant for carcinogenesis, 
while, for in vivo studies, DNA fragmentation, apop-
totic and anti-apoptotic protein levels (apoptosis), 
and Ki67 staining (proliferation) were considered 
relevant endpoints with moderate to high confi-
dence. More studies investigating transformation 
and cell cycle with relevant endpoints are needed 
as the mechanistic evidence for proliferation/apop-
tosis/cell cycle/transformation is limited.

For anatase TiO2 NPs, there is in vivo evidence 
that repeated intratracheal instillation of rats for 
5 days per week for 6 weeks resulted in a 
dose-dependent increase in TUNEL-positive (that is, 
apoptotic) cells at 10 mg/kg and 18 mg/kg TiO2 NPs 
(Papp et  al. 2020). Using the RasH2 mouse model, 
a 26-week inhalation study did not find evidence 
for carcinogenicity of TiO2 NPs in the lung (Yamano 
et  al. 2022a). The results from this study indicated 
that the cell proliferative ability (i.e. proliferative 
marker Ki67 index) of alveolar epithelial cells type 
2 was not increased by 2–32 mg/m3 anatase TiO2 
NPs (Yamano et  al. 2022a). In another long-term 
(13 weeks) inhalation study using rats, the same 
authors reported an increased cell proliferative abil-
ity of alveolar epithelial cells type 2 following 50 mg/
m3 TiO2 exposure (Yamano et  al. 2022b). Together, 
these results indicate a potential for increased cell 
proliferation in the alveoli following long-term inha-
lation to higher doses of anatase TiO2 NPs.

For the mixture anatase/rutile TiO2 NPs, two in 
vitro studies investigating proliferation have been 
identified (Armand, Tarantini, et  al. 2016; Armand, 
Biola-Clier, et  al. 2016). Using population doubling 
and the BrdU incorporation assay as measures for 
proliferation, both studies showed that continuous 
exposure for 2 months of A549 cells to TiO2 NPs 
(1–50 µg/ml) led to a dose-dependent decrease in 
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the proliferation rate of the A549 cells (Armand, 
Tarantini, et al. 2016; Armand, Biola-Clier, et al. 2016).

In summary, for anatase TiO2 NPs, the evidence 
for proliferation/apoptosis/cell cycle/transformation 
is inconclusive, with a tendency to ‘increased effect’ 
(Figure 7). Decreased proliferation was observed 
following the exposure to a mixture of TiO2 NPs. No 
mechanistic evidence was identified regarding ‘pro-
liferation/apoptosis/cell cycle/transformation’ for 
rutile TiO2 NPs (Figure 7).

Epigenetic changes

Epigenetic alterations, including changes in DNA 
methylation levels, chromatin compaction states, 
and histone modifications, can impact cancer devel-
opment as these alterations affect gene expression 
and DNA repair dynamics (Herceg et  al. 2013; Smith 
et  al. 2016). Epigenetic alterations can be a primary 
mechanism, but also be induced by other biological 
responses, such as chronic inflammation. For both 
in vitro and in vivo epigenetic studies, global (or 
overall) DNA methylation and RNA methylation 
(m6A levels) were considered moderate to high con-
fidence. Similar to the KC ‘proliferation/apoptosis/
cell cycle/transformation’, the mechanistic in vitro 
and in vivo evidence for epigenetic changes is rel-
atively scarce.

Nevertheless, for anatase TiO2 NPs, the available 
evidence collectively points to a DNA hypometh-
ylation. After 24 h, significant DNA hypomethyl-
ation in BEAS-2B cells was observed for anatase 
TiO2 NPs at 3.25 and 25 µg/ml (Ghosh et  al. 2017). 
Another study with A549 and 16HBE cells showed 
that anatase TiO2 NPs reduced genomic DNA 
methylation levels in these cells at 1–100 µg/ml 
after 48 h (Ma et  al. 2017). Repeated exposure to 
TiO2 NPs at 20 mg/kg for 30 days resulted in sig-
nificant global hypomethylation in young mice 
(5 weeks old), whereas no significant changes 
were observed in adult mice (10 weeks old) (Ma 
et  al. 2019).

The evidence for epigenetic alterations for a mix-
ture of TiO2 NPs is inconclusive. It is to be noted 
that only in vitro evidence for mixture TiO2 NPs was 
identified. One study observed no changes in the 
overall DNA methylation level in A549 cells exposed 
to TiO2 NPs for 4 h, 24 h or 48 h (Biola-Clier et  al. 
2017). In contrast, two other studies observed DNA 
hypomethylation after 24 h exposure of bronchial 
epithelial cells to 25 µg/ml TiO2 NPs (Ghosh et  al. 
2017) and after 72 h exposure of A549 cells to 
10–40 µg/cm2 TiO2 NPs (Stoccoro et  al. 2017).

Even though these studies indicate a similar pat-
tern for anatase TiO2 NPs, and partially for mixture 
TiO2 NPs regarding epigenetic changes, more studies 
are warranted to confirm the observed changes in 
the DNA methylome.

Overall, a decreased effect following anatase TiO2 
NP exposure was found in studies investigating epi-
genetic changes (Figure 7). The findings regarding 
epigenetic changes were inconclusive for the mix-
ture of anatase/rutile TiO2 NPs. No mechanistic evi-
dence regarding epigenetic changes for rutile TiO2 
NPs could be identified (Figure 7).

Receptor-mediated effects

Receptor activation effects can be divided into acti-
vation of cell-surface receptors and intracellular 
receptor activation. Cell-surface receptor activation 
induces intracellular signal transduction pathways 
resulting in a biological response, while the activation 
of intracellular receptors initiates the translocation of 
these receptors into the nucleus where they bind to 
DNA and act as transcription factors for relevant tar-
get genes. The most relevant molecular pathways 
that are regulated through ligand-receptor interaction 
include cell proliferation, apoptosis, and xenobiotic 
metabolism (Smith et  al. 2016). In our study, only 
one in vitro and one in vivo study investigating 
receptor-mediated effects were assessed to their 
quality and reliability with the ToxRTool and the 
weight-of-evidence approach. As both studies (Ho 
et al. 2017; Jeon et al. 2021) examined only the gene 
expression levels of AhR/PPAR/LXR, they were con-
sidered negligible and low confidence studies, 
respectively. Thus, no reliable and relevant mecha-
nistic evidence on receptor-mediated effects of TiO2 
NPs in the lung is available.

Level of evidence

Overall, taking the challenges and limitations of the 
in vitro and in vivo studies into account, the mech-
anistic evidence identified in this review suggests 
that TiO2 NPs might possess the ability to induce 
chronic inflammation and oxidative stress. It was 
therefore rated as sufficient mechanistic evidence 
(Figure 8, marked in green). For genotoxicity, the in 
vivo data is inconclusive for all the TiO2 NP types, 
whereas there is sufficient evidence that anatase 
TiO2 NPs induce HPRT gene mutations and micro-
nucleus formation in vitro. Nevertheless, the overall 
evidence was rated as limited (Figure 8, marked in 
orange) since there is no consensus between the 
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in vitro and in vivo evidence. The mechanistic evi-
dence for the KCs ‘epigenetic changes’ and ‘prolif-
eration/apoptosis/cell cycle/transformation’ is 
inconclusive. There were only a few studies identi-
fied investigating the effect of TiO2 NPs on these 
KCs. More studies are needed to confirm the 
observed effects. Thus, the mechanistic evidence 
was rated inadequate (Figure 8, marked in grey). 
For receptor-mediated changes, there is no reliable 
and relevant mechanistic evidence for TiO2 NPs 
available. It was therefore also rated inadequate 
(Figure 8, marked in grey).

Discussion

The present study identified the existing in vitro and 
in vivo mechanistic evidence, from 2006-2023, of 
TiO2 NP lung carcinogenicity using the ten key char-
acteristics of carcinogens for identifying and classi-
fying carcinogens.

Regarding the evidence presented in this review, 
there is quite some variation in (a) the relevance 
and quality/reliability of studies concerning TiO2 NPs 
and the respective KCs; (b) the effect of TiO2 NPs 
on each KC; (c) the amount of mechanistic evidence 
for each KC and d) the number of studies regarding 
anatase, mixture and rutile TiO2 NPs. Using a 
weight-of-evidence approach, we evaluated the 
studies regarding their biological relevance and 

reliability. Evidence-weighting assumptions were 
mainly based on expert judgment regarding the 
biological relevance of the assays/endpoints for car-
cinogenesis. This could have led to a more stringent 
sorting of studies.

For some KCs, the predictability of in vitro assays 
relative to in vivo studies represents a challenge, 
especially for the KC ‘chronic inflammation’. The in 
vitro studies investigating chronic inflammation were 
considered not biologically relevant for in vivo car-
cinogenesis and excluded from data synthesis. The 
majority of these studies were not designed in a 
way that they could predict sustained change nor 
determine the magnitude of change required to 
initiate carcinogenesis. This makes it difficult to 
assess whether the observed changes persist over 
time and are sufficient for the development of can-
cer. However, it is to be noted that also some  
in vivo studies might not consider relevant exposure 
scenarios to detect sustained changes.

There are some challenges and limitations to the 
quality and reliability of the in vitro and in vivo stud-
ies investigating TiO2 NP toxicity/carcinogenicity. 
Nearly half of the in vitro studies were considered 
unreliable (Klimisch category 3), whereas a third of 
studies were assigned Klimisch category 1. Half of 
the in vivo studies were reliable without restriction 
(Klimisch category 1), while a third was unreliable 
and thus was excluded. These results indicate a 

Figure 8. O verview of the level of evidence for the mechanisms of TiO2 NP lung carcinogenicity, based on the modified key 
characteristics (KCs) addressed in this study. Sufficient evidence (green) could be identified for KC ‘chronic inflammation’ and 
‘oxidative stress’. Limited evidence (orange) was found for ‘genotoxicity’. Inadequate evidence was identified for ‘epigenetic 
changes’, ‘proliferation/apoptosis/cell cycle/transformation’ and ‘receptor-mediated effects’. Figure created with BioRender.com.

http://BioRender.com
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skewness between in vitro and in vivo studies, which 
could partly be due to more stringent standards 
when conducting animal research.

The challenges and limitations of the studies also 
influence the effects/outcome of TiO2 NPs on each 
KC. There are differences in starting material (pri-
mary size and surface functionalization vary), various 
methods for NP dispersion, physicochemical char-
acterization, exposure paradigms (i.e. exposure sce-
narios/cell systems and post-exposure time points), 
and a wide range of particle doses, which makes it 
very challenging to compare these studies. The 
inconsistent effects observed for the different KCs 
are likely due to the various physicochemical char-
acteristics of the TiO2 NPs. This review included only 
studies that investigated ‘pristine’ TiO2 NPs without 
any doping or coating layer. However, the exact 
composition of the TiO2 NPs is not always reported 
in the studies.

Furthermore, the TiO2 NP dispersion and sonica-
tion methods vary between studies. This might have 
influenced the observed mechanisms. Using a stan-
dardized protocol for dispersion and sonication of 
TiO2 NP formulations would aid in the comparison 
of studies. However, as mechanistic studies usually 
vary in the study design and hypotheses to be 
answered, using a standardized protocol for disper-
sion and sonication might not always be applicable.

We recognize that there might be some limita-
tions regarding the methodological consideration 
of the physicochemical properties using the 
ToxRTool, which includes both in vitro and in vivo 
studies, but was not explicitly designed to evaluate 
studies with NPs. As NPs have unique physicochem-
ical properties that vary depending on numerous 
factors such as temperature, medium composition, 
solvent, etc., characterizing these properties is very 
important in toxicity/carcinogenicity studies. We 
chose to include a minimum set of physicochemical 
characteristics in the ToxRTool. Setting a lower 
threshold for exclusion by including more than the 
minimum set of NP parameters required, e.g. by 
including a separate nano score (Card and Magnuson 
2010), would have resulted in the exclusion of too 
many articles, which, in our opinion, would have 
introduced an unreasonably high bias. However, we 
recognize that these NP parameters are TiO2 
NP-specific and might differ for other NP types.

Another aspect to consider is the inclusion of 
appropriate positive controls to verify the function-
ality of the test system, NP assay interference controls 
and endotoxin measurements. As mentioned above, 
a positive control for the assay and the TiO2 NPs is 

indispensable in the ToxRTool. For genotoxicity, for 
example, most studies did not include a positive 
control for the test system, which is particularly 
important when negative results for TiO2 NPs were 
obtained. Further, nanoparticles have been shown to 
interfere with various assay systems, e.g. fluores-
cence/absorbance-based assays. However, only very 
few studies tested the interference potential of the 
TiO2 NPs, thus reducing the reliability of these studies.

A significant issue when studying nanoparticle 
toxicity/carcinogenicity is the potential contamina-
tion of the particles with biological components, 
such as endotoxin or other bacterial components. 
Strikingly, most studies did not provide information 
regarding the endotoxin level in the TiO2 NP disper-
sion. Endotoxin measurement was included in our 
modified ToxRTool when evaluating the in vitro and 
in vivo TiO2 NP studies as endotoxin contamination 
can directly induce immune responses and thus also 
indirectly affect other endpoints, such as in vivo 
mutagenicity. In vitro evidence shows that endotox-
ins affect immunological responses (Chapekar et  al. 
1996; Li et  al. 2020; Sweet and Hume 1996). Most 
studies investigating ‘chronic inflammation’ did not 
include and/or report the inclusion of endotoxin 
measurements. In addition, endotoxins have been 
shown to induce oxidative stress responses, which 
is linked to various toxicity endpoints, in several cell 
types. Thus, it is likely that endotoxin contamination 
of NPs affects endpoints other than immunotoxicity 
(Esch et  al. 2010). For genotoxicity, very few studies 
included endotoxin measurements for the TiO2 NPs, 
making it difficult to assess if the effect is due to 
the particles or any potential biological contamina-
tion. Although endotoxin is not of highest concern 
in genotoxicity studies, it has been shown that it 
can affect inflammatory responses and the induction 
of oxidative stress. Genotoxicity can be a primary 
mechanism or a secondary effect due to physiolog-
ical stress or cytotoxicity (Kirkland et  al. 2022). Some 
studies showed effects for genotoxicity and oxidative 
stress responses, apoptosis or inflammatory 
responses (Armand, Tarantini, et  al. 2016; Hamzeh 
and Sunahara 2013; Jain et  al. 2017). Thus, the 
observed genotoxic effects occurred secondary to 
physiological stress. For studies that solely investi-
gated genotoxic endpoints, it cannot be concluded 
whether the effect was primary or secondary due 
to cytotoxic effects. Thus, the measurement of endo-
toxin levels might also be relevant for genotoxicity 
studies. Roughly 70% of all studies (i.e. including all 
KCs) did not include endotoxin measurements, 
which is concerning regarding the confounding 
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adverse effects of endotoxin. This could be partly 
due to the unawareness of the importance of bio-
logical contamination in NP formulations in older 
studies (before 2015). However, newer studies (from 
2015 to 2023) lacked endotoxin measurements. As 
endotoxin contamination may be a significant con-
founding factor in toxicity studies using NPs, toxicity 
studies lacking information regarding the endotoxin 
level in NP formulations should be interpreted 
cautiously.

Our analysis shows that the mechanistic evidence 
for each KC is quite variable. Inflammatory responses 
and oxidative stress, followed by genotoxicity, are 
the most investigated outcomes in both in vitro and 
in vivo studies with TiO2 NPs. There are several rea-
sons for that: high focus on these endpoints based 
on earlier research findings; easy availability of assay 
kits; standardized assays/tests available for some end-
points; high relevance for short-term exposure (which 
most studies focused on, but which makes these 
results questionable for carcinogenesis) and other 
practical/historical reasons (e.g. NPs are supposed to 
be more reactive than bigger particles, so oxidative 
stress is the first choice of test). The few epidemio-
logical studies on TiO2-handling workers also focused 
on endpoints such as inflammatory responses, oxi-
dative stress and genotoxicity. This could be due to 
similar reasons as mentioned for the mechanistic 
studies. On the other hand, epigenetic changes and 
proliferation/apoptosis/cell cycle/transformation have 
been less investigated in in vitro and in vivo studies, 
which could be due to less focus on these KCs; 
higher testing costs; more time-consuming methods; 
unavailability of instrumentation etc. No reliable and 
relevant mechanistic evidence on receptor-mediated 
effects of TiO2 NPs in the lung is available. As the 
activation of intracellular receptors, such as the AhR, 
is involved in processes such as inflammation, cell 
proliferation and differentiation, it is critical to include 
relevant endpoints investigating receptor-mediated 
effects in future toxicity/carcinogenicity studies on 
TiO2 NPs in order to evaluate the relevance of this 
KC in TiO2 NP carcinogenicity. Standardizing and val-
idating methods investigating epigenetic changes, 
receptor-mediated effects and proliferation/apoptosis/
cell cycle and transformation may further contribute 
to a more robust and bias-free evaluation process 
and should be included in future research efforts.

In addition to the ten defined KCs used in this 
study, alternative mechanisms of action may be rel-
evant for TiO2 NP carcinogenicity in the lung, which 
were not addressed here. These could include angio-
genic effects,  non-mutational epigenetic 

reprogramming, polymorphic microbiomes, senes-
cent cells or unlocking phenotypic plasticity. The 
last four ‘mechanisms’ are emerging hallmarks and 
enabling characteristics of cancer described by 
Hanahan (2022). More research is needed to see if 
these mechanisms could play a role in TiO2 NP lung 
carcinogenicity.

Conclusion

Our analysis showed that most of the studies inves-
tigated oxidative stress, chronic inflammation and 
genotoxicity following pulmonary exposure to TiO2 
NPs, whereas there is only few data available on 
other mechanisms of importance in carcinogenesis, 
such as proliferation and transformation, epigenetic 
alterations and receptor-mediated effects. Overall, 
improvements in study quality and reliability, includ-
ing the consideration of appropriate positive controls, 
NP interference controls, endotoxin measurement 
(where necessary), statistical power and relevant 
assays/endpoints, are needed if mechanistic evidence 
is to be used in the evaluation of TiO2 NP carcino-
genicity in the lung. Specifically, there is a need for 
more physiologically relevant, long-term studies using 
appropriate particle doses, particularly relevant for 
occupational exposure. Taking the challenges and 
limitations of the in vitro and in vivo studies into 
consideration, TiO2 NPs might possess the ability to 
induce chronic inflammation and oxidative stress. 
Given the limited number of high-quality and 
high-reliability studies identified in this review, there 
is a lack of good enough mechanistic evidence for 
TiO2 NP lung carcinogenicity.
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