Persistence of SARS-CoV-2 on N95 filtering facepiece respirators: implications for reuse

Introductory Information

In response to the shortage of N95® filtering facepiece respirators (FFRs) for healthcare workers during the COVID-19 pandemic, the Centers for Disease Control and Prevention (CDC) issued strategies for extended use and limited reuse of N95 FFRs to conserve supply. Previously worn N95 FFRs can serve as a source of pathogens, which can be transferred to the wearer while doffing and donning a respirator when practicing reuse. To reduce the risk of self-contamination when donning and doffing reused FFRs, the CDC suggested storing FFRs for five days between uses to allow for the decay of viable pathogens including SARS-CoV-2. This study assessed the persistence of the SARS-CoV-2 strain USA-WA1/2020 on N95 FFRs under controlled storage conditions for up to five days to inform the CDC guidance.

Methods Collection

Virus propagation

- Virus used: Severe Acute Respiratory Syndrome (SARS)-Coronavirus CoV-2 strain USA-WA1/2020 (WA1), obtained from BEI Resources (Manassas, VA).
- Working stocks had titers of approximately 106 tissue-culture infectious doses 50% [TCID50] per milliliter.
- Material stored as single-use vials at ≤ -80°C.

Test coupons

- Six NIOSH Approved® FFR models
 - Four NIOSH Approved and FDA-cleared Surgical N95 FFRs
 - 3M 1860 and VFlex 1804
 - Moldex 1512 and 2200
 - Two NIOSH Approved N95 FFRs
 - 3M 8210 and 8511
- Non-porous controls glass coupons (microscope cover slides)
- Rectangular coupons (2×5 cm) taken from unused FFRs.

Coupon contamination and storage conditions

- Virus suspended in
 - Complete cell culture medium
 - o Human saliva
- Ten droplets (10 μ L each droplet) applied to coupons under ambient conditions (20°C–22°C and 30%–50% RH).
- Total deposition of SARS-CoV-2 was approximately 1×10⁵ TCID50 across the outer surface of the FFR coupon.
- Coupons were allowed to dry under ambient conditions.
- Transferred to brown paper bags and stored at 20°C–22°C and at 20% (15%–25%), 45% (30%–50%), and 75% (70%–75%) RH.
- Virus on the FFR coupons and glass slides were extracted after 0-, 1-, 24-, 48-, 96-, and 120-hr timepoints.
 - Additional assessments were performed after 4-, 6-, and 12-hr post-drying when more data points were needed.

- Virus persistence was evaluated in triplicate for each tested surface, timepoint, and condition.
- Some conditions were not tested for all FFR models due to limited supply.

Virus extraction and analysis

- Coupons were removed from the paper bags and placed into individual 50-mL conical tubes containing a 10-mL extraction buffer.
- Starting volume was concentrated to approximately 0.5 mL.
- Media was added to equilibrate all washed retentates to approximately 2 mL.
- Virus viability was assessed by TCID50 assay in Vero E6 cells.
 - Samples inoculated in quintuplicate onto a single 96-well plate at 70% cell monolayer confluency.
 - \circ Plates were incubated at 37 ± 2°C and 5 ± 2% carbon dioxide for 72 ± 4 hr.
 - Observed microscopically for cytopathic effects (CPE, visible morphological changes in cell cultures caused by viral infections).
 - Used to quantitatively calculate the viral titer for each sample.
- Extraction efficiency was assessed relative to a direct spiking and quantification of the extraction medium for
 - NIOSH Approved and FDA-cleared surgical N95 FFR (3M 1860)
 - NIOSH Approved N95 FFR (3M 8511)
 - Glass control surface

Attribution

NIOSH Approved and N95 are certification marks of the U.S. Department of Health and Human Services (HHS) registered in the United States and several international jurisdictions.

Citation – Publication based on the data set:

Fisher EM; Kuhlman MR; Choi YW; Jordan TL; Sunderman M. Persistence of SARS-Co-V-2 on N95 filtering facepiece respirators: implications for reuse. J Occup Environ Hyg 2021 Dec; 18(12):570-578, DOI: 10.1080/15459624.2021.1985727.

Acknowledgements

Project support

This work was supported by the Centers for Disease Control and Prevention's (CDC) National Institute for Occupational Safety and Health (NIOSH).

Disclaimer

Mention of any company or product does not constitute endorsement by the National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention.

Authors

Edward M. Fisher, HYPERLINK "mailto:efisher@cdc.gov"efisher@cdc.g 50%

Michael R. Kuhlman, kuhlmanm@battelle.org

Young W. Choi, choiy@battelle.org

Traci L. Jordan, jordant@battelle.org

Michelle Sunderman, sunderman@battelle.org

Contact

For further information contact:

Research Branch (RB)
National Personal Protective Technology Laboratory (NPPTL)
National Institute for Occupational Safety and Health (NIOSH)
626 Cochrans Mill Road
Pittsburgh, PA 15236
ODAdmin@cdc.gov