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Abstract

Purpose of Review To discuss the effectiveness of biologics, some of which comprise the newest class of asthma controller
medications, and non-biologics in the treatment of asthma co-existing with obesity.

Recent Findings Our review of recent preliminary and published data from clinical trials revealed that obese asthmatics
respond favorably to dupilumab, mepolizumab, omalizumab, and tezepelumab, which are biologics currently indicated as add-
on maintenance therapy for severe asthma. Furthermore, clinical trials are ongoing to assess the efficacy of non-biologics in
the treatment of obese asthma, including a glucagon-like peptide-1 receptor agonist, a Janus kinase inhibitor, and probiotics.
Summary Although many biologics presently indicated as add-on maintenance therapy for severe asthma exhibit efficacy
in obese asthmatics, other phenotypes of asthma co-existing with obesity may be refractory to these medications. Thus,
to improve quality of life and asthma control, it is imperative to identify therapeutic options for all existing phenotypes of

obese asthma.
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Introduction

Asthma, a heterogenous, chronic lung disease, exists as two
endotypes [T-helper cell type-2 (Ty2) high and Ty2 low],
which can each be subdivided into multiple molecular phe-
notypes [1]. Despite the heterogeneity of asthma, endotypes
of this disease share common symptoms, including cough,
dyspnea, wheeze, persistent lung inflammation, variable
expiratory airflow limitation, and airway hyperresponsive-
ness (AHR) [2]. Asthma afflicts children and adults, and
globally, in 2019, there were 262 million asthmatics, which
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accounted for 21.6 million disability-adjusted life years
(DALYs) [3]. Although the number of deaths attributed to
asthma has decreased by 17.4% between 2010 and 2019,
asthma-related morbidity continues to rise [3].

Obesity is the excessive or abnormal accumulation of
adipose tissue in the body [4], and globally, in 2022, 160
million children and 890 million adults were obese [5].
Numerous sequelae are associated with obesity, including
cardiovascular disease, non-alcoholic fatty liver disease,
osteoarthritis, and type 2 diabetes [6]. In 2019, there were
an estimated 5 and 160 million obesity-related deaths and
DALYs, respectively, worldwide [7]. Body mass index
(BMI), which is an indirect measure of body fat that is based
on height and weight, is calculated by dividing weight in
kilograms (kg) by the square of height in meters (m) and is
used to establish the following weight categories for adults:
underweight (< 18.5 kg/m?), normal weight (18.5-24.9 kg/
m?), overweight (25-29.9 kg/m?), and obesity (>30 kg/m?)
[4]. However, in children, a weight category is assigned
based on BMI relative to other children of the same age
and sex [8].

Commencing in 1986 and continuing to the present day,
epidemiologists have demonstrated that obesity increases
the prevalence and incidence of asthma in children and
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adults [9-16]. In many, but not all studies, this relationship
appears to be stronger in females as compared to males [17].
Since asthma is frequently over-diagnosed in both obese and
non-obese individuals, it is improbable that the increased
prevalence and incidence of asthma in obesity is the result
of over-diagnoses in this population [18]. Consistent with
epidemiological data, cluster analyses of adult asthmatics
of varying nationalities have identified distinct clusters of
either T2 high or low asthmatics who are obese and pre-
dominately female [19-26]. In addition to increasing the
prevalence and incidence of asthma in children and adults,
obesity increases asthma severity and decreases quality of
life and asthma control [27-32]. Underscoring the continued
global increase in obesity and its impact on asthma mor-
bidity, Liu et al. [33] reported that the number of asthma
DALYs in overweight and obese individuals increased by
63.91% from 1990 to 2019. Although the overall number of
global asthma deaths decreased between 2010 and 2019 [3],
the number of asthma deaths specifically among overweight
and obese individuals increased by 69.69% from 1990 to
2019 [33]. Given these data, it is unsurprising that total
baseline health care costs are higher in obese as compared
to normal-weight asthmatics [34].

As mentioned in the preceding paragraph, obese asth-
matics have more severe asthma exacerbations and poorer
asthma control. According to the 2020 Focused Updates
to the Asthma Management Guidelines [35], the preferred
treatment for persistent asthma in individuals twelve years
of age and older is combination therapy: an inhaled corti-
costeroid with either a short- or long-acting f3,-adrenergic
receptor agonist. However, if these medications are insuffi-
cient to achieve satisfactory asthma control, the Guidelines
recommend that other medications be added to the treatment
regimen, including long-acting muscarinic antagonists, oral
corticosteroids, or biologics [35]. Treatment of obese asth-
matics with pharmacological interventions is challenging
since they are often refractory to standard asthma medica-
tions. For example, overweight and/or obese asthmatics,
whether children or adults, exhibit poor responsiveness to
corticosteroids as compared to normal-weight asthmatics
[21, 36, 37]. Obese asthmatics also do not respond as favora-
bly as normal-weight asthmatics to combination therapy:
inhaled corticosteroids and long-acting f3,-adrenergic recep-
tor agonists [37, 38].

Obese asthmatics who achieve weight loss through either
diet and/or surgery demonstrate improved lung function,
quality of life, and asthma control as well as a decrease in
airway responsiveness [39—43]. Because weight loss is dif-
ficult to maintain and because obese asthmatics respond
poorly to standard asthma medications [21, 36-38, 44], it
is essential to identify new pharmacological interventions
to improve the quality of life for obese asthmatics. This is
particularly important since weight loss via bariatric surgery
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reduces airway responsiveness in obese subjects with late-
onset non-atopic asthma while it has no effect on airway
responsiveness in obese subjects with early-onset atopic
asthma [45].

Biologics are products derived from living organisms that
can be used for multiple purposes, including the diagnosis,
prevention, or treatment of disease [46, 47], and in 2003, the
United States (U.S.) Food and Drug Administration (FDA)
approved the first biologic, omalizumab, for the treatment
of asthma [48]. Given that (1) obese asthmatics are often
refractory to standard asthma medications [21, 36—38] and
(2) there has been a recent explosion of biologics poten-
tially available for the treatment of asthma, we shall, in the
remainder of this review, discuss the effectiveness of biolog-
ics in the management of asthma co-existing with obesity.
We shall, for obese asthma, review biologics that fall into the
following categories: anti-immunoglobulin (Ig) E, anti-T};2,
anti-alarmin, and those that do not specifically fall into any
of the prior categories. Finally, we shall also discuss poten-
tially novel medications, other than biologics, that may be
useful for the treatment of obese asthma.

Biologics and Obese Asthma
Anti-IgE
Omalizumab

Omalizumab, a humanized anti-IgE monoclonal antibody,
is currently recommended as add-on therapy for patients
six years of age and older with severe allergic asthma [49].
By binding to circulating IgE, omalizumab prevents IgE
from engaging its high-affinity receptor, FceRI, on the sur-
face of basophils and mast cells, which degranulate when
antigen cross-links neighboring IgE-FceRI complexes [50,
51]. When basophils and mast cells are prevented from
degranulating, many of the deleterious mediators, includ-
ing cytokines, histamine, leukotrienes, and proteases, which
promote allergic inflammation, fail to enter the extracellular
milieu [51, 52].

In 2019, Oliveira et al. [53] reported that obese individu-
als with severe asthma administered omalizumab every two
to four weeks over a twelve-month period exhibited sig-
nificant improvement in lung function [i.e., forced expira-
tory volume in one second (FEV,)] and asthma control.
The administration of omalizumab also decreased the
number of asthma exacerbations and the prescribed dose of
inhaled corticosteroids. As compared to placebo, Geng et al.
[54] demonstrated that omalizumab essentially had the same
effects in obese individuals with moderate-to-severe allergic
asthma as those of Oliveira et al. [53]. In contrast, Sposato
et al. [55] reported that obesity reduced the effectiveness of
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omalizumab in severe allergic asthmatics while Gibson et al.
[56] revealed that it was significantly more probable that
obese as compared to non-obese allergic asthmatics would
be classified as non-responders to omalizumab. Although
typically reserved for severe allergic asthma, administra-
tion of omalizumab to non-atopic asthmatics, the majority
of whom were obese, reduced emergency room visits, hos-
pitalizations, and corticosteroid use [57]. Thus, omalizumab
could become a viable controller medication for select
non-atopic obese asthmatics, yet more rigorous studies are
needed.

Dupilumab

To independently initiate signal transduction and con-
sequently sequelae of atopic inflammation via the Janus
kinase-signal transducer and activator of transcription (JAK-
STAT) pathway, interleukin (IL)-4 and IL-13, which are Tj;2
cytokines, utilize, in part, the IL-4 receptor subunit alpha
(IL-4Ra) [58]. Specifically, IL-4 signals via the type I IL-4
receptor (IL-4R) complex, which is a heterodimer consist-
ing of IL-4Ra and the cytokine receptor common subunit
gamma (yc) while IL-13 signals via the type II IL-4R com-
plex, which is also a heterodimer but consists of IL-4Ra and
the IL-13 receptor subunit alpha-1 (IL-13Ral) [58]. IL-4 is
required for the differentiation of Ty2 cells, suppression of T
regulatory (T,,) cells, IgE production in B cells, and adhe-
sion of eosinophils to the walls of blood vessels while IL-13
induces airway smooth muscle contraction and proliferation
and increases expression of FceRI on the surface of mast
cells, eotaxin and mucin in bronchial epithelial cells, and
IgE in B cells [59-61]. Following antigen sensitization and
challenge, Dahm et al. [62] demonstrated that bronchoalveo-
lar lavage (BAL) IL-4 and IL-13 were significantly greater in
mice obese because of a genetic deficiency in carboxypepti-
dase E (Cpe/™ mice) as compared to lean wild-type mice.
However, in human subjects, neither sputum IL-4 nor IL-13
messenger ribonucleic acid (mRNA) expression were differ-
ent between lean and obese asthmatics [63].

Dupilumab, a human IgG, monoclonal antibody, antag-
onizes IL-4 and IL-13 signal transduction by binding to
IL-4Ra, which is expressed by hematopoietic and non-
hematopoietic cells [64, 65]. According to the Global Initia-
tive for Asthma [49], dupilumab is recommended as add-on
therapy for (1) individuals who are six years of age and older
with severe eosinophilic/Ty2-high asthma or (2) adolescents
and adults that require maintenance treatment with oral cor-
ticosteroids. Presently, preliminary data exists from one ran-
domized, double blind, placebo-controlled study in which
investigators examined the impact of BMI on the effective-
ness of dupilumab in a cohort of patients with uncontrolled,

moderate-to-severe asthma [66, 67]. Specifically, regardless
of BMI, dupilumab, as compared to placebo, significantly
improved FEV, and decreased the annualized rate of severe
asthma exacerbations.

Mepolizumab and Benralizumab

The biological response to inhaled asthma stimuli, including
air pollutants, antigens, and viruses, is partially character-
ized by secretion of IL-5, a Ty;2 cytokine, from T2 lympho-
cytes and/or group 2 innate lymphoid cells (ILC2) (Fig. 1)
[68—70]. Once released into the extracellular space, IL-5 can
bind the IL-5 receptor subunit alpha (IL-5Ra) on the surface
of eosinophils, an event that facilitates interaction with the
cytokine receptor common subunit beta (fc), which sub-
sequently leads to eosinophilopoiesis and eosinophil matu-
ration and survival [70, 71]. In asthma, eosinophils drive
AHR, mucus production, tissue injury, and airway remod-
eling [72]. Since sputum IL-5 and submucosal eosinophils
are greater in obese as compared to lean asthmatic human
subjects [63, 73], it is reasonable to speculate that currently
available monoclonal antibodies directed against either IL-5
(mepolizumab and reslizumab) or IL-5Ra (benralizumab)
for severe eosinophilic asthma could be beneficial add-on
therapy for obese asthmatics [49, 74].

In a post-hoc meta-analysis, Albers et al. [75] reported
that regardless of BMI mepolizumab as compared to placebo
(1) decreased blood eosinophil counts and the annual rate
of asthma exacerbations and (2) increased asthma control
and pre-bronchodilator FEV, in patients twelve years of age
and older with severe eosinophilic asthma. Consistent with
Albers et al. [75], preliminary data from Da Cunha et al.
[76] demonstrated that mepolizumab administration over a
twelve-month period effectively decreased blood eosinophil
counts and the number of asthma exacerbations in eleven
obese asthmatics.

To date, only preliminary data from clinical trials evalu-
ating the effectiveness of benralizumab in obese asthmat-
ics has been made publicly available, and the authors of
these reports demonstrate that benralizumab is less effec-
tive in obese as compared to non-obese asthmatics. In the
first study, a post-hoc pooled analysis of data extracted from
the SIROCCO and CALIMA clinical trials was performed,
and as compared to placebo, subcutaneous administration
of benralizumab to obese adults with severe, uncontrolled
eosinophilic asthma numerically caused (1) an improve-
ment in pre-bronchodilator FEV, and (2) a reduction in the
number of asthma exacerbations [77-79]. However, in this
same study, benralizumab significantly improved FEV and
decreased the number of asthma exacerbations in normal/
underweight and overweight asthmatics [78]. In the second
study, Nanzer et al. [80] reported that obesity impaired the
beneficial effects of benralizumab in patients with severe
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Fig. 1 Exposure of the luminal surface of the respiratory epithelium
to injurious stimuli, including air pollutants, microbes, or enzymati-
cally-active antigens leads to the release of alarmins [interleukin (IL)-
25, IL-33, and thymic stromal lymphopoietin (TSLP)] from epithelial
cells and the initiation of multiple inflammatory cascades, which are
important in the pathogenesis of asthma. By engaging their respective
receptors described in the body of this review, these alarmins stimu-
late the release of T-helper cell type-2 (Ty2) cytokines (IL-4, IL-5,
and IL-13) from group 2 innate lymphoid cells (ILC2) and T2 cells.
Once released into the extracellular space, these Ty2 cytokines sub-
sequently bind their corresponding receptor subunits, which are part
of a heterodimeric receptor complex located on the surface of various
hematopoietic and non-hematopoietic cells. Immunoglobulin (Ig) E,
which is released from B cells in response to IL-4 and IL-13, binds
its high-affinity receptor, FceRI, on the surface of basophils and mast
cells. Following antigen cross-linking of IgE-FceRI complexes on the
surface of basophils and mast cells, deleterious mediators of allergic

eosinophilic asthma. Taken together, it is unclear if benrali-
zumab significantly improves lung function and asthma con-
trol in obese asthmatics. Nevertheless, these data certainly
provide a strong rationale to pursue further clinical trials
evaluating the efficacy of benralizumab in obese individuals
with severe eosinophilic asthma.

Anti-Alarmin
Following activation of pattern recognition receptors on the
surface of airway epithelial cells or in response to cell injury

or death initiated by diverse stimuli, including air pollution,
microbes, or enzymatically-active antigens, epithelial cells
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inflammation are secreted into the extracellular milieu. Activated
dendritic cells and macrophages secrete IL-23, which stimulates
the release of IL-17A from Ty17 cells. IL-17A, in turn, initiates the
release of chemokine (C-X-C motif) ligand 1 (CXCL1), a chemot-
actic cytokine for neutrophils, from epithelial cells [99, 152], which
leads to neutrophil migration to the air spaces. Finally, tumor necro-
sis factor (TNF)-a, which is increased in asthmatic airways, causes
eosinophil and neutrophil chemotaxis [104]. The name of each bio-
logic discussed in this review has been placed next to its molecular
target, and those biologics in bold italicized red font are currently
approved by the United States Food and Drug Administration as add-
on maintenance therapy for severe asthma. Please note that this fig-
ure does not comprehensively illustrate (1) cytokine release from or
(2) the presence of cytokine receptors on each cell type shown in this
figure. This figure was created using BioRender (Toronto, Ontario,
Canada)

release constitutively expressed peptides and proteins (i.e.,
alarmins), which serve as intercellular defense signals to
heighten host defenses (Fig. 1) [§1-83]. Regarding asthma,
the most widely studied alarmins include IL-25, IL-33, and
thymic stromal lymphopoietin (TSLP), which can all drive
allergic inflammation via stimulation of Ty;2 cells and ILC2
[82, 83]. Sputum IL-25 is greater in obese as compared to
lean asthmatics while BAL IL-33 and TSLP are greater in
obese as compared to lean mice with experimental asthma
[63, 69, 84]. Neutralizing antibodies against TSLP or IL-1
receptor-like 1 (IL1RL1), which is the receptor for IL-33
and which is also known as suppression of tumorigenicity
2 (ST2), reduced phenotypic features of Ty2 inflammation
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induced by ILC2 in obese mice with antigen-induced lung
inflammation without impacting features of neutrophilic
inflammation [84]. However, Mathews et al. [69] demon-
strated that an anti-ST2 antibody reduced (1) BAL neutro-
phils, (2) features of inflammation induced by ILC2, and
(3) increases in airway responsiveness in obese mice with
experimental asthma induced by the non-atopic asthma stim-
ulus, ozone (O;). Taken together, these data suggest that
anti-alarmin biologics may be effective in the treatment of
obese asthma.

Brodalumab

Brodalumab is a human IgG, monoclonal antibody with a
high affinity for IL-17 receptor A (IL-17RA), which is used,
in part, by IL-25 in addition to IL-17A, IL-17C, IL-17F, and
the IL-17A/F heterodimer to transduce intracellular signals
[85, 86] Although currently approved to treat moderate-to-
severe plaque psoriasis that is refractory to other therapies
[85], Busse et al. [86] executed a phase 2a, randomized,
double-blind, placebo-controlled, clinical trial to assess the
effectiveness of brodalumab as a treatment for moderate-to-
severe asthma. However, as compared to placebo, brodalu-
mab did not improve lung function or symptoms scores in
the full study population. In a separate interventional clinical
trial, brodalumab demonstrated no efficacy on asthma con-
trol in adult asthmatics specifically exhibiting high broncho-
dilator reversibility [87]. Of importance, subjects in neither
study were recruited according to BMI status. Thus, given
that IL-17A and IL-25, which both use, in part, IL-17RA
to exert their biological effects, are significantly greater in
sputum of obese as compared to non-obese asthmatics [63],
future studies focusing on the effectiveness of brodalumab
in obese asthma is warranted.

Itepekimab and Astegolimab

Itepekimab is an IgG,p monoclonal antibody against IL-33,
and in 2021, Wechsler et al. [88] reported the results of a
phase 2 clinical trial evaluating the effectiveness of itepe-
kimab in the treatment of moderate-to-severe asthma. As
compared to placebo, itepekimab monotherapy significantly
improved asthma control and pre-bronchodilator FEV.
Nevertheless, the investigators did not specifically exam-
ine the impact of BMI on the effectiveness of itepekimab.
The efficacy of astegolimab, a human IgG, monoclonal
antibody directed against ST2, was assessed for the treat-
ment of severe asthma in a phase 2b, randomized, placebo-
controlled, double-blind clinical trial in which thirty-six
percent of the patients had a BMI greater than 30 kg/m?
[89]. Over the fifty-two-week trial, astegolimab, when com-
pared to placebo, improved quality of life and reduced the
number of asthma exacerbations only in participants with

low numbers of blood eosinophils. Although thirty-six per-
cent of subjects in this trial were obese, the investigators did
not specifically examine the effectiveness of astegolimab in
their obese patients. Thus, it is of interest to determine the
specificity of astegolimab in the treatment of obese asthma
with neutrophilic inflammation given the effectiveness of an
anti-ST?2 antibody in a mouse model of obese asthma that is
dominated by neutrophils [69].

Tezepelumab

To initiate intracellular signaling, TSLP requires a heterodi-
meric receptor complex consisting of cytokine receptor-like
factor 2 (CRLF2 or TSLPR) and the IL-7 receptor subunit
alpha (IL-7Ra) [90]. Tezepelumab, a human monoclonal
anti-TSLP antibody, is indicated as add-on treatment for
individuals twelve years of age and older with severe asthma
[49, 91]. To exert its beneficial effects, tezepelumab binds
free TSLP, which is then prevented from subsequently bind-
ing TSLPR [91]. Preliminary data extracted from the DES-
TINATION, NAVIGATOR, and PATHWAY clinical trials
illustrate that, regardless of an asthmatic’s baseline BMI,
tezepelumab administration reduced the annualized asthma
exacerbation rate [92-96]. Thus, this is promising evidence
that the newest asthma controller medication, tezepelumab,
may be effective in obese asthmatics.

Miscellaneous Biologics
Secukinumab

IL-17A, an extensively studied pro-inflammatory cytokine,
is produced by a plethora of cells, including Ty17, yo T,
invariant natural killer T, lymphoid-tissue inducer-like, and
Paneth cells as well as ILC3 [97, 98]. Engagement of an
IL-17A homodimer or an IL-17A/F heterodimer with the
IL-17 receptor complex, which consists of IL-17RA and IL-
17RC, leads to increased expression of neutrophil chemot-
actic cytokines, granulopoiesis factors, acute phase proteins,
and pro-inflammatory cytokines such as IL-1p and TNF-a
[99]. Sputum IL-17A is greater in obese as compared to non-
obese asthmatics while neutralization of IL-17A in geneti-
cally obese mice reduced O;-induced increases in airway
responsiveness in addition to BAL keratinocyte chemoat-
tractant (KC) and neutrophils [63, 100].

A single clinical trial evaluating the effectiveness of
secukinumab, an anti-IL-17A human IgG,x monoclonal
antibody, in poorly controlled asthma was terminated prior to
completion with the caveat that future clinical trials involv-
ing this biologic require an extensive overhaul, including
modifications to the study design, endpoints, and population
as well as the use of a different anti-IL-17A antibody [101,
102]. Thus, if further clinical trials with secukinumab are
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executed in asthmatics, it would be crucial to stratify sub-
jects via BMI given the previously aforementioned human
and animal subject data concerning the potential importance
of IL-17A in obese asthma [63, 100].

Etanercept

The deleterious effects of TNF-a in inflammatory dis-
eases, including asthma and obesity, are well established
[103-105]. Obesity increases serum TNF-a in both humans
and mice [106, 107], and a polymorphism in the promoter
region of the human gene (TNF), which leads to increased
TNF expression, is coupled to a stronger association of obe-
sity with asthma, particularly non-atopic asthma [108, 109].
However, in obese mice genetically deficient in TNF-a, the
severity of increases in airway responsiveness induced by O,
were enhanced, which implies a protective effect of TNF-a
in this animal model of non-atopic asthma [110]. In con-
trast, Kim et al. [111] reported that neutralization of TNF-«
with a polyclonal antibody decreased airway responsive-
ness in antigen sensitized and challenged mice. Consistent
with the results from pre-clinical animal studies, the effec-
tiveness of etanercept, a humanized soluble TNF receptor
fusion protein that neutralizes the effects of TNF-a, has been
inconsistent in the treatment of asthma [112]. For example,
in an open label uncontrolled clinical study involving fif-
teen patients, Howarth et al. [113], despite demonstrating
that etanercept significantly improved lung function and
decreased asthma symptoms and airway responsiveness,
reported that etanercept paradoxically led to asthma exac-
erbations and respiratory tract infections in 52.9 and 58.8%
of participants, respectively. In a randomized, double-blind,
placebo-controlled clinical trial, etanercept failed to improve
pre-bronchodilator FEV, quality of life, or asthma control
in adults with moderate-to-persistent asthma [114]. Finally,
Berry et al. [115] reported, as compared to placebo, that
subcutaneous administration of etanercept twice weekly over
a ten-week period, reduced responsiveness to methacholine,
increased pre-bronchodilator FEV, and improved quality of
life. It is important to note that none of these studies strati-
fied patients by BMLI. If, in the future, studies are designed
to specifically evaluate the efficacy of etanercept in obese
asthma, caution must be taken since anti-TNF-a therapy is
associated with statistically significant weight gain [116].

Risankizumab

IL-23, a member of the IL-12 family of cytokines, consists
of two subunits, IL-12p40, which it shares with IL.-12, and
IL-23p19, and is secreted by activated dendritic cells and
macrophages (Fig. 1) [117, 118]. The biological effects
exerted by IL-23, including differentiation of naive T
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cells to Ty17 cells, proliferation and survival of Ty17
cells, and stimulation of IL-17A release from Ty17 cells,
manifest following engagement of IL-23 with its recep-
tor, which also consists of two subunits [IL-12 receptor
subunit beta-1 (IL-12Rf1) and IL-23 receptor (IL-23R)]
[119-122]. Obesity and asthma, independently, increase
serum IL-23 in human subjects [123, 124], BAL IL-23
is increased to a greater extent in obese as compared to
lean mice following exposure to O; [100], and inhibition
of IL-17A, whose expression can be induced by IL-23,
reduces increases in airway responsiveness and BAL KC
and neutrophils induced by acute exposure to O5 [100,
125]. Contrary to this evidence supporting a role for IL-23
in the pathogenesis of obese asthma, Brightling et al. [126]
reported that, as compared to placebo, administration of
risankizumab, a humanized IgG, monoclonal antibody,
which binds to the p19 subunit of IL-23, decreased the
time to the first asthma worsening after treatment com-
menced, increased the annualized rate of asthma worsen-
ing, and had no effect on FEV, or sputum eosinophils or
neutrophils [127]. A subgroup analysis of the participants
stratified by BMI also revealed that risankizumab was inef-
fective, as compared to placebo, at lengthening the time to
the first asthma worsening [126].

Non-Biologics and Obese Asthma
Metformin

Metformin, a biguanide, is a first-line medication for the
treatment of hyperglycemia in individuals with type 2 dia-
betes [128], and in adults with both asthma and type 2
diabetes, use of metformin is associated with a decreased
number of asthma-related emergency room visits and
hospitalizations [129]. However, Shore et al. [130] dem-
onstrated that metformin administration to mice obese
because of a genetic deficiency in the long isoform of
the leptin receptor (Ob-Rb; db/db mice) had no effect on
lung inflammation or increases in airway responsiveness
induced by Os. In contrast, Guo et al. [131] reported that
metformin administration decreased BAL IL-4 and TNF-«
and lung inflammatory cell infiltrates but increased the
frequency of immunosuppressive T, cells in antigen-
sensitized and challenged CD-1 mice with dietary obesity.
The ratio of T, to Ty17 cells is reduced in obese subjects
with type 2 diabetes, a phenomenon driven by a reduc-
tion in the frequency of T, cells [132]. Thus, restoring
this imbalance, potentially through metformin, may offer
a new strategy to blunt the pro-inflammatory effects of
Ty17 cells, and consequently, alleviate symptoms in atopic
obese asthmatics.
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Semaglutide

Glucagon-like peptide-1 receptor (GLP-1R) agonists, includ-
ing semaglutide, were initially approved by the U.S. FDA for
the treatment of type 2 diabetes yet are now available for
chronic weight management [133]. Recent data illustrate the
potential for GLP-1R agonists to treat obese asthma. First,
Toki et al. [84] demonstrated that treatment of genetically
obese mice with liraglutide, a GLP-1R agonist, reduced
increases in airway responsiveness, BAL Ty2 cytokines
(IL-5 and IL-13), eotaxin, and eosinophils in addition to
BAL neutrophils and neutrophil chemotactic cytokines [IL-
17, KC, and lipopolysaccharide-induced CXC chemokine
(LIX)] following sensitization and challenge with Alter-
naria alternata extract. Second, patients with both asthma
and type 2 diabetes and with a mean BMI of 39.5 +8.6 kg/
m? that were prescribed GLP-1R agonists exhibited fewer
asthma exacerbations as compared to patients prescribed
other classes of diabetic medications [134]. To that end,
semaglutide is presently undergoing evaluation in a rand-
omized, double-blind, placebo-controlled clinical trial to
assess its effectiveness on asthma control in obese adults
with persistent asthma [135].

Povorcitinib

Over fifty cytokines, including IL-4, IL-5, IL-13, IL-23,
and TSLP, which we previously discussed in this review,
transduce intracellular signaling via proteins belonging to
the JAK-STAT family [71]. Consistent with the role of the
aforementioned cytokines driving the migration of eosino-
phils to the lungs in animal models of asthma [84, 136-138],
inhibiting JAK family members that are activated upon
engagement of these cytokines with their receptors decreases
BAL eosinophils in antigen sensitized and challenged mice
[139-142]. Currently, a phase 2 interventional clinical trial
is ongoing to assess the effect of povorcitinib, an oral small-
molecule inhibitor of JAK1, on pre-bronchodilator FEV, in
individuals with inadequately controlled moderate-to-severe
asthma [143]. From publicly available data, however, it is
unclear if the participants in this trial will be stratified by
BMI. Nevertheless, Lyu et al. [144] recently demonstrated
that reticuline, an inhibitor of JAK2-STAT3 and NF-xB
signaling, significantly decreased, in mice, antigen-induced
increases in airway responsiveness, BAL IL-5 and IL-17A,
and the number of BAL and lung tissue eosinophils and neu-
trophils [145]. Therefore, selective inhibitors of JAK-STAT
family members could be beneficial in the treatment of obese
asthma. Notwithstanding, use of JAK-STAT inhibitors in
asthma co-existing with obesity should be approached with
caution since activation of specific JAK-STAT family mem-
bers can attenuate the severity of obesity-induced sequelae,
including atherosclerosis and hepatic steatosis [146, 147].

Probiotics

According to Berg et al. [148], the microbiome is a com-
munity of microorganisms and their accompanying inter-
nal and external structural elements that exude unique
physiochemical properties while occupying a distinct
environment. Interestingly, the BAL, fecal, nasal, and
oral microbiomes of obese asthmatics are uniquely dif-
ferent from those of non-obese asthmatics and obese
non-asthmatics [149], which could influence the course
of the obese asthma phenotype, since manipulation of
the gut microbiome in obese db/db mice with antibiotics
decreases the severity of Os-induced increases in airway
responsiveness [150]. Thus, altering the gut microbiome in
obese asthmatics with supplements that maintain a healthy
community of microorganisms (i.e., probiotics) may be a
beneficial therapeutic intervention for these individuals.
Indeed, an interventional clinical trial, which is scheduled
to be completed in March of 2025, will provide data, in
part, to determine if oral probiotics improve lung func-
tion, quality of life, and asthma control in obese asthmatics
[151].

Conclusions

The expanding arsenal of biologics presents promising
options for obese asthmatics who are often poorly respon-
sive to standard asthma medications. Preliminary or pub-
lished data illustrate that select, currently available bio-
logics indicated as add-on maintenance therapy for severe
asthma (dupilumab, mepolizumab, omalizumab, and
tezepelumab) improve lung function and asthma control
and/or reduce asthma exacerbations in obese asthmatics.
In addition, the effectiveness of non-biologics, including
povorcitinib, probiotics, and semaglutide, in obese asthma
are presently being assessed. Because each of these phar-
macological interventions have different mechanisms of
action, this offers a diverse approach to the management
of obese asthma. However, since obese asthma encom-
passes diverse molecular phenotypes, it is imperative that
new therapeutics continuously be identified to successfully
treat those obese asthma phenotypes, which may be refrac-
tory to medications that already effectively treat other phe-
notypes of this disease.
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