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Abstract

The US Gulf region is heavily reliant on metal-emitting petrochemical and manufacturing industries. We sought to charac-
terize associations between residential proximity to metal-emitting sites and toenail metal concentration in men from four
US states along the Gulf of Mexico with particular attention to potential differential exposure burden by race. We measured
toenail concentrations of arsenic, chromium, lead, manganese, mercury, and selenium using inductively coupled plasma mass
spectrometry in 413 non-smoking men from the Gulf Long-term Follow-Up Study (2011-2013). Point sources of industrial
metal emissions were identified using the US EPA’s National Emissions Inventory (NEI) database and mapped to geocoded
participant residential addresses. For each metal, we examined relationships between toenail metal concentrations and linear
distance to the nearest metal emitting site, inverse distance weighted number of emissions sites, and inverse distance weighted
volume of air metal emissions within 30 km radial buffers of participant residences using multivariable linear regression.
Results were stratified by self-reported race. Compared to self-identified White participants, Black participants lived closer
to NEI sites but had 23-70% lower toenail concentrations of arsenic, chromium, mercury, manganese, and selenium adjust-
ing for personal/behavioral factors. Toenail lead concentration was positively associated with residential proximity to lead-
emitting NEI sites though the relationship was significantly attenuated after adjustment for neighborhood-level socioeconomic
factors such as poverty level and age of housing stock. Residential proximity to lead-emitting NEI sites in the Gulf region
is associated with a higher body burden of lead as measured in the toenail. This relationship may be driven in part by non-
NEI factors related to residence in industry-adjacent neighborhoods. Further research into dietary/occupational exposures
is needed to explain the unexpected racial disparities in metal body burden in this population.
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Pollutant metals and metalloids, hereafter referred to as
“metals", exist ubiquitously in the environment but concen-
trate in densely populated areas as a result of anthropogenic
emissions from industry, agriculture, fossil fuel combustion,
and waste disposal (Tchounwou et al. 2012). Since these ele-
ments do not degrade, their accumulation in the environment
greatly increases the risk of chronic human exposure. The
degree of metal toxicity is determined by the chemical type,
dose, and route of exposure, but a wealth of evidence points
to numerous adverse health effects associated with a wide
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range of metal exposures across the life course (Jusko et al.
2008; Attreed et al. 2017; Vahter et al. 2002; Wright and
Baccarelli 2007). Since metal exposures often have anthro-
pogenic origins, the rapidly evolving commercial uses for
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metals in industrial processes have raised concerns about
chronic metal exposure for communities residing proximal
to industrial areas (Tchounwou et al. 2012).

The concentration of industrial operations in the US
Gulf of Mexico region presents a heightened risk of chronic
ambient metal exposure. Metal byproducts from large-scale
chemical, plastics, paper, and electrical manufacturing con-
stitute some of the largest point sources of ambient envi-
ronmental metal exposure in the Gulf region (Hassaan et al.
2016; Ha et al. 2014). In 2014, across Louisiana, Alabama,
Mississippi, and Florida, more than 23 types of industries
released more than 129 million pounds of various metals
directly into the air, soil, and water (US EPA 2013). This
concentration of industries, coupled with the Gulf region’s
extensive history of racial segregation, raises concerns of
disproportionate metal exposures which may further exacer-
bate existing health disparities in the region. While histori-
cally marginalized and low-income communities have been
shown to bear disproportionate burdens of environmental
pollution in the US (Apelberg et al. 2005; Hajat et al. 2015;
Trottier et al. 2023; Jones et al. 2022), few studies have
assessed the impact of industrial emissions on human metal
exposure using biomonitoring. To our knowledge, no such
studies have been conducted in the uniquely vulnerable US
Gulf region.

In this study, we examined the relationship between resi-
dential proximity to industry-reported air metal emissions
and toenail metal concentration in a multi-state sample of
men from the Gulf Long-term Follow-up (GuLF) Study.
Analyses were stratified by self-reported race in considera-
tion of potential metal exposure disparities related to the
persistent effects of the area’s extensive history of racial
segregation.

Methods
Study Population

The Gulf Long-term Follow-up (GuLF) Study (2011-2013)
is a large prospective cohort study (n = 33,608) of short- and
long-term health effects related to oil spill exposures from
the 2010 Deepwater Horizon (DWH) disaster (Kwok et al.
2017). Participants comprise individuals who either worked
on the oil spill for at least one day (oil spill cleanup workers)
or who took part in mandatory worker safety training but did
not work on the spill (non-workers). Details about GuLF
Study enrollment and cohort follow-up have been previously
published (Kwok et al. 2017; Engel et al. 2017).

This research was conducted in a sample of 413 non-
smoking men from the larger GuLF Study who provided
toenail samples at a clinical exam visit 2 — 6 years (median
4.6 years) after the end of reported cleanup from the DWH
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disaster. Current smokers at the time of toenail sample col-
lection were excluded to maximize the sensitivity of toenail
samples to the ambient industrial metal exposures of inter-
est. Detailed selection criteria for the subsample in this study
have been reported previously and participants comprise a
subset of GuLF participants with other collected biomarkers
to maximize information overlap (Lin et al. 2023). Briefly,
between August 2014 and June 2016, 3,401 individuals who
lived within 60 miles of study clinics in Mobile, Alabama,
or New Orleans, Louisiana participated in a clinical exam
in which trained examiners collected health, diet, work his-
tory, and residential address, as well as toenail biospeci-
mens, anthropometric measures, and neurobehavioral test
results. The geographic distribution of participants in the
analytic sample is shown in Fig. 1. Toenail samples were
self-collected by study participants using stainless steel clip-
pers, placed in paper envelopes, and stored at room tempera-
ture in the GuLF Study biorepository until analysis in 2021.
Of participants who completed a neurobehavioral exam and
provided sufficient toenail samples (n =2,734), we included
those with previously measured liver and kidney function/
injury biomarkers, selected on the basis of oil spill exposures
(n=1679), to maximize GuLF Study biomarker overlap. We
further excluded self-reported current smokers to focus our
analysis. This resulted in a final analytical population of 413
participants in this study.

Toenail Metals Analysis

Toenail samples were analyzed for 18 metals/metalloids
(aluminum (Al), antimony (Sb), arsenic (As), cadmium
(Cd), calcium (Ca), chromium (Cr), cobalt (Co), copper
(Cu), iron (Fe), lead (Pb), magnesium (Mg), manganese
(Mn), mercury (Hg), molybdenum (Mo), nickel (Ni), sele-
nium (Se), vanadium (V), and zinc (Zn)) using inductively
coupled plasma mass spectrometry (ICP-MS). Roughly 1 —2
toenail clippings (median 25 mg) were randomly selected
from each participant’s total sample for metals analysis. This
sub-sampling method maximizes sample conservation and
has demonstrated reliable results in previous findings (Lin
et al. 2023).

Details about the toenail metal analysis process are
described elsewhere (Lin et al. 2023). In brief, toenail sam-
ples were cleaned using a multi-stage wash process involv-
ing 30% acetone, 1% Triton X-100 solution, and Milli-Q
water. Cleaned toenail samples were digested using an open
vessel microwave assisted digestion method adapted from
the Dartmouth Trace Element Analysis Core (Andrew et al.
2020). Briefly, samples were digested with 0.5 ml nitric acid
(HNO;, OptimaTM grade) and 0.2 ml of hydrogen peroxide
(H,O,, OptimaTM grade) and heated to 110 °C before being
diluted with 0.5% hydrochloric acid (HCI) for analysis by
ICP-MS (8800 ICP-MS Triple Quad; Agilent technologies,
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Inc., Santa Clara, CA). Data quality was monitored via mul-
tipoint calibration curves for each analyte at the beginning
and end of each batch, analysis of laboratory and digestion
blanks, duplicates, spikes, and comparison with two refer-
ence materials: human hair Japan NIES #13 (National Insti-
tute for Environmental Studies, Ibaraki, Japan) and caprine
horn NYS RM 1801 (New York State Department of Health
Wadsworth Center, Albany, NY).

This analysis focused on elements that were both detected
in>85% of toenail samples and reported by the National
Emissions Inventory (NEI) (As, Cr, Hg, Mn, Pb, Se). Nickel
(Ni) was excluded despite high detection (100%) and NEI
reporting because our previous reliability study found no
correlation between toenail Ni concentrations from the same
person over two time points ~ 3 years apart, suggesting that
the toenail matrix may not be a good biomarker of long-term
Ni exposure (Lin et al. 2023). The average between-batch
coefficient of variation across metals was 11% and ranged
from 3% (Pb) to 18% (Hg). The limit of detection (LOD) for
each metal was calculated using 3 times the standard devia-
tion of digestion blanks (n=7) for each batch. The average
LOD for each metal across batches ranged from 0.0003 ug/g
for As to 0.0016 pg/g for Cr (Supplemental Table 1). Sam-
ples below the LOD (As, n=54; Cr, n=29; Pb, n=25; Mn,
n=28; Hg, n=25, Se, n=4) were assigned a value of the
batch-specific LOD divided by \/ 2 (Helsel 2005).

National Emissions inventory
Sources of anthropogenic metal emissions were identi-

fied using the National Emissions Inventory (NEI), the
US Environmental Protection Agency’s (EPA) most

comprehensive database of annual criteria, precursor, and
hazardous air pollutant emissions (National Emissions
Inventory 2014). Estimates provided by the NEI are com-
piled using reporting data provided by State, Local, and
Tribal air agencies that are supplemented by information
from the Toxics Release Inventory, the Acid Rain Pro-
gram, and EPA’s regulatory air toxics data. We abstracted
all records of reported emissions of available metals (As,
Cr, Hg, Mn, Pb, Se) from the 2014 NEI point source
database and geocoded participant residential addresses
relative to the locations of NEI sources to assess potential
associations between residential NEI proximity and toenail
metal concentration.

We assigned exposure to point sources of metal emis-
sions using 3 different proximity metrics. First, we assessed
linear distance measured as the Euclidean distance between
the address of residence at the clinical exam and the nearest
metal-emitting NEI site (Distance km). Second, we assessed
an inverse distance weighted sum of the number of sites
within a 30km radial buffer of the participants’ residential
address (Site IDW) using Eq. 1.

1(d; < 30km)

D (1)

j y

where d=distance indexed by i for the participant and j for
the NEI site.

Third, we calculated the sum of the inverse distance
weighted pounds of emissions within 30 km of the par-
ticipants’ residences (Emissions IDW) following the same
logic as the Site IDW score. For each residential address, we
summed the reported volume of emissions at each NEI site
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divided by the distance from the residence for all the NEI
sites within a 30 km radius of the residence.

Statistical Methods

We used multivariable linear regression to estimate the dif-
ference in the log, -transformed toenail metal concentra-
tions and 95% confidence interval (CI) per unit increase in
each of the NEI proximity metrics (Distance km, Site IDW,
and Emissions IDW scores). Models were adjusted for indi-
vidual-level physiological or behavioral factors that could
influence toenail metal concentration including age (years),
cigarette smoking history (former/never), body mass index
(BMI) (continuous), passive smoke exposure (> 30 min of
smoke exposure per day on average), employment status
(working, unemployed/retired), and state of residence. All
individual-level covariate data were ascertained from the
GuLF Study clinical exam and follow-up questionnaires
closest to the time of toenail collection.

Analyses were stratified by self-reported race and income
to assess potential disparities related to the effects of his-
toric segregation and persistent racism in this area. Given
the small proportion of participants in other racial catego-
ries, analyses of racial disparities focused on comparisons
between the White and Black participant groups. As only 11
of the 413 participants in this study identified as Hispanic,
we did account for Hispanic ethnicity.

In secondary analyses, we additionally adjusted for social
factors such as individual level of educational attainment and
neighborhood-level variables (median household income,
percent of households below the poverty level, and median
year that structures were built) using data from the 2014
American Community Survey (ACS) at the census block
group level to address potential influence from unmeasured
confounders related to residential proximity to industry.
Social variables were each included in separate models to
reduce the impact of collinearity. Beta estimates for all mod-
els were converted to percent differences using the formula
(107 = 1) = 100

Sensitivity Analyses

Toenail samples analyzed in this study were collected
2 — 6 years (median: 4.6) after the end of self-reported oil
spill cleanup work and thus are well beyond the expected
exposure window relevant to oil spill cleanup exposure.
However, given the occupational origins of this cohort, we
conducted sensitivity analyses including cleanup-related
cumulative total average hydrocarbon (Cumulative THC;
ppm) inhalation exposure estimates as a proxy of oil spill
cleanup involvement and intensity in our models.
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Results

Toenail metal concentrations of the metals of interest were
not associated with oil spill cleanup involvement or tim-
ing of toenail sample collection relative to cleanup activity.
Thus, metals reported in the toenail are interpreted to reflect
non-oil spill related exposures.

Participant Characteristics

Forty-six percent (n=191) of participants in this study self-
identified as Black, 46% (n=190) identified as White, and
the remaining 8% (n=32) identified as one of the follow-
ing: Asian, American Indian/Alaskan Native, Mixed Race,
or Other. Analyses for the 32 participants who identified as
something other than White or Black were also excluded
since there were very few participants in each of the racial
sub-categories in this group. On average, White participants
were older, had higher educational attainment, higher annual
household income, were more frequently former smokers
and currently employed compared to Black participants.
There were also differences in racial makeup by state, with
the majority (53%) of Black participants residing in Ala-
bama and White participants having more even distribution
across the 4 states (Table 1). Forty-nine percent of Black
participants lived within 3 km of a metal-emitting NEI site
compared to just 17% of White participants. Racial differ-
ences in residential proximity to metal-emitting NEI sites
persisted after accounting for income, with Black partici-
pants living closer to metal-emitting NEI sites than White
participants within every income category (Supplemental
Fig. 1).

Industrial Determinants

We observed significant associations between NEI sources
of metal exposure and toenail metal concentrations for Pb
and Hg. No significant associations with NEI sites were
observed for any of the remaining metals tested (As, Cr, Mn,
and Se). Other personal and behavioral factors associated
with toenail Pb and Hg concentrations are provided in Sup-
plemental Table 2. Notably, toenail Pb concentrations were
significantly inversely associated with participant education
and neighborhood median structure age. Oil spill cleanup
involvement was not related to toenail metal concentrations
of any of the elements of interest in this study.

Lead (Pb)

Distance to the nearest Pb-emitting NEI site and density
of NEI sites within 30 km of the residence (measured by
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Table 1 Participant
characteristics by self-reported
race

Total (n=413)
n (%)

White (n=190)
n (%)

Black (n=191)
n (%)

Age

20-39 120 (29) 42 (22) 71 (37)

40-59 222 (54) 100 (52) 104 (54)

60-69 71 (17) 48 (25) 16 (9)
Highest educational attainment

< High school 80 (19) 30 (16) 36 (19)

High school or equivalent 149 (36) 61 (32) 83 (43)

Some college 124 (30) 53 (27) 61 (32)

> College graduate 60 (15) 46 (24) 11 (6)
Annual Household Income

<$20,000 130 (31) 33(17) 91 (48)

$20,000-$49,999 140 (34) 56 (29) 69 (35)

> $50,000 120 (29) 89 (46) 21 (11)

N/A 23 (6) 12 (6) 10 (5)
Smoking history

Never 274 (66) 102 (54) 149 (78)

Former 139 (33) 88 (46) 42 (22)

Passive smoke exposure

<30 min/day 323 (78) 146 (77) 152 (80)

> 30 min/day 86 (21) 44 (23) 36 (19)

N/A 4 (1) 0 (0) 3(1)
Employment status

Working 253 (61) 136 (72) 96 (50)

Unemployed 123 (30) 31 (16) 85 (45)

Student/retired/other 37(09) 23 (12) 10 (5)
State of residence

AL 176 (43) 71 (38) 101 (53)

FL 55 (13) 33(17) 15 (8)

LA 111 (27) 61 (32) 35(18)

MS 70 (17) 24 (13) 39 (21)
Cumulative total average hydrocarbon (THC; ppm)

Median (GSD) 91.6 (6.0) 85.4 (6.7) 102.2 (5.0)

the Site IDW score) were positively associated with toenail ~ Mercury (Hg)

Pb concentration. For every 1 km increase in the distance
from the home to the nearest Pb NEI site, we observed
— 5.10% (95% CI: — 9.07, — 0.95) change in toenail Pb
concentration after adjusting for personal and behavioral
characteristics such as age, BMI, smoking history, passive
smoke exposure, and employment status. Similarly, for
every 1 unit increase in Site IDW score (higher NEI den-
sity around the home), we observed 64.5% (95% CI: 16.6,
132) higher toenail Pb concentrations after adjusting for
personal and behavioral characteristics. Emissions volume
from nearby NEI sites (measured by the Emissions IDW
score) was positively related to toenail Pb concentration
but the association was not statistically significant (Fig. 2).

Unexpectedly, proximity to Hg emitting NEI sites was
inversely associated with toenail Hg concentration. For
every 1 unit increase in Site IDW score (higher density),
toenail Hg concentrations changed by — 47.4% (95%
CI: — 66.9, — 16.4). We observed a similar trend with
emissions volume. For every unit increase in Emissions
IDW score (more emissions), we observed — 2.62% (95%
CI: — 4.61, — 0.66) changes in toenail Hg concentration
(Fig. 2). Distance to the nearest Hg NEI site was not sig-
nificantly associated with toenail Hg concentration.

@ Springer
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Fig.2 Relationship between industrial determinants of metal expo-
sure (Distance, Site IDW, Emissions IDW) and toenail metal concen-
trations adjusted for age, cigarette smoking history, body mass index
(continuous BMI), passive smoke exposure (>30 mins of smoke
exposure per day on average), employment status (working, unem-

Stratification by Race

Given the racial differences in residential proximity to NEI
sites in this study, we stratified analyses by race to exam-
ine the potential inequities in metal exposure burden from
metal-emitting NEI sites. The change in toenail Pb concen-
tration associated with a one unit increase in Pb Site IDW
score was stronger among Black participants (110%, 95%
CI: 17.5, 275) compared to White participants (52.5%, 95%
CI: — 11.6, 163). The relationships for Hg Site and Emis-
sions IDW scores were similarly driven by stronger associa-
tions among Black participants. For every 1 unit increase in
Hg Site IDW score, we observed — 72.1% (95% CI: — 88.5,
— 32.5) change in toenail Hg among Black participants
and — 3.52% (95% CI: — 47.1, 76.0) among White partici-
pants. Similarly, for every 1 unit increase in Hg Emissions
IDW score, we observed — 4.70% (95% CI: — 8.17, — 1.09)
change in toenail Hg among Black participants compared to
—0.81% (95% CI: — 3.29, 1.73) among White participants
(Supplemental Fig. 2).

Secondary Analysis

Since industrial sites tend to concentrate in disadvantaged
neighborhoods that may also experience disproportionate
exposures to metals through other non-industrial sources, we
additionally adjusted for individual-level and neighborhood-
level socioeconomic variables to understand the extent to
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ployed/retired), and state of residence. Distance (km) = linear resi-
dential distance from the closest NEI site. Site IDW = inverse dis-
tance weighted number of sites within 30 km of residence. Emissions
IDW = inverse distance weighted volume of emissions within 30 km
of residence

which observed associations could be reasonably attributed
to metal exposures from unmeasured, non-NEI sources.

After additionally adjusting for individual-level educa-
tional attainment, distance from the nearest Pb-emitting
NEI site and density of Pb NEI sites within 30 km of the
residence remained significantly associated with toenail
Pb concentration at -5.10% (95% CI: — 9.07, — 0.95) and
64.5% (95% CI: 16.6, 132), respectively. After adjusting for
neighborhood-level social factors including the percent of
residents living below the poverty line and the median year
that structures are built within the census block group, the
association remained in the expected direction but the effect
was significantly attenuated (Fig. 3). Greater attenuation was
observed after adjusting for the census block group median
structure age (— 2.07%, 95% CI: — 6.83, 2.92) than after
adjusting for census block group percent below poverty level
(= 3.83%, 95% CI: — 8.00, 0.53). The same trends were
observed for Pb Site IDW (Fig. 3).

Inverse associations between toenail Hg and Site/Emis-
sions IDW scores remained after adjustment for individual
level of education but were also attenuated after adjust-
ment for neighborhood-level SES factors such as census
block poverty rate and median year that structures were
built (Fig. 3). Unlike for Pb, the attenuated inverse associa-
tions between Site IDW score and toenail Hg concentration
remained statistically significant after adjustment for census
block group poverty rate (— 39.8%, 95% CI: — 62.5, — 3.32).
The Emissions IDW score variable for Hg also remained
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Fig.3 Associations between significant toenail lead and mercury
industrial determinants and toenail concentrations additionally
adjusted for individual and neighborhood level SES variables (each

statistically significant after adjusting for census block group
poverty rate (— 2.45%, 95% CI: — 4.45, — 0.41) and the
median year that structures were built within the census
block group (— 2.20%, 95% CI: — 4.21, — 0.14).

Differences in Toenail Metal Concentration by Race

Despite greater proximity of Black residences near metal-
emitting NEI sites, concentrations of all toenail metals
tested except for Pb were significantly lower among Black
participants (As (— 70.4%, 95% CI: — 83.1, — 48.3), Cr
(— 46.8%, 95% CI. — 65.7, — 17.4), Hg (— 54.8%, 95% CI.:
- 69.7, — 32.6), Mn (— 47.8%, 95% CI: — 65.3, — 21.5),
and Se (— 22.8,95% CI: — 36.9, — 5.57) compared to White
participants after adjusting for personal and environmental
factors such as age, BMI, smoking history, passive smoke
exposure, work status and state of residence. Median toenail
Pb concentration was also lower among Black participants
(—28.3%, 95% CI: — 56.9, 19.3), but the difference was not
statistically significant (Fig. 4).

We also examined differences in toenail metal concentra-
tion by income group and found that participants making
less than or equal to $20,000 a year had toenail Pb concen-
trations that were 121% (95% CI: 18.7, 312) higher than
those reporting making more than $50,000 a year. Signifi-
cant differences in toenail metal concentration were also
observed for Cr and Hg with those making less than $20,000
a year having toenail Cr and Hg concentrations that were

Education

@ Poverty rate Structure year

in separate model). Individual Education = years of education from
GuLF Study survey. CBG = census block group, data from 2014 ACS

AS - ®

Cr- °

Hg - o
Pb- .
Mn - PN
Se - —
-80 60 -40 -20 0 20

Percent difference Black vs White

Fig.4 Differences in toenail metal concentrations comparing Black
participants to White participants adjusted for age, BMI, smoking his-
tory, passive smoke exposure, work status, and state of residence
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45.7% (95% CI: 6.82, 68.4) and 64.7% (95% CI: 41.8, 78.5)
lower, respectively, than those making more than $50,000 a
year (Supplemental Fig. 3).

Comparisons with GuLF Study Blood Metal
Measurements

To verify unexpected racial differences in metal body bur-
den in this population, we examined blood metal concen-
trations from an existing GuLF study that collected whole
blood samples from 1,058 participants at the home visit,
2 — 4 years prior to toenail sample collection. Blood sam-
ples were primarily collected for the assessment of oil spill
cleanup-related benzene, toluene, ethylbenzene, and xylenes
(BTEX) exposures but were additionally analyzed for Hg,
Mn, Pb, and Se using ICP-MS. Blood concentrations of As
and Cr were not measured. Among the 723 participants who
were male and within the same age range as this study, we
observed racial differences consistent with those observed
using the toenail metal biomarker. Blood concentrations of
Pb were not significantly different by race but concentrations
of Hg, Mn, and Se were significantly lower among Black
participants than White participants adjusting for age, BMI,
smoking history, passive smoke exposure, and employment
status (Supplemental Fig. 4).

Discussion

In this multi-state study of industrial metal exposures in the
US Gulf, we found significant associations between residen-
tial proximity to NEI sites and toenail Hg/Pb concentrations
as well as differences in residential proximity to NEI sites
by self-reported race. Closer proximity and higher density
of Pb-emitting NEI sites around the home were positively
associated with toenail Pb concentration. On the other
hand, residence farther from Hg NEI sites and exposure to
lower volumes of NEI Hg emissions were associated with
higher toenail Hg concentration. Despite greater residential
proximity to metal-emitting NEI sites across every income
category among Black participants, we found lower toenail
concentrations of both toxic (As, Hg) and essential metals
(Mn, Se, and Zn) in Black participants compared to White
participants in this study.

Positive associations between residential proximity to
Pb NEI sites and toenail Pb concentration were appreciably
attenuated after the adjustment of census block group SES
factors (percent of population below the poverty line and
the median year that housing structures were built). There
was also no association between inverse distance weighted
volume of emissions and toenail Pb concentration suggest-
ing that the relationship between residential proximity to
Pb-emitting NEI sites may be, in part, driven by the fact
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that neighborhoods closer to metal-emitting sites are more
likely to experience co-occurring exposures or other social
stressors that may exacerbate their exposures to Pb. This
phenomenon has been documented in previous studies in
the US showing that industry-adjacent neighborhoods typi-
cally receive fewer public works maintenance or remediation
projects, have older housing stock, and have limited bargain-
ing power to prevent toxic environmental exposures from
ending up in their communities (Geron et al. 2022; Tyrrell
et al. 2013). In race-stratified analyses, we found stronger
associations between proximity to metal-emitting NEI sites
and toenail Pb and Hg concentrations among Black partici-
pants compared to White participants. Thus, consistent with
known outcomes of historic redlining and other practices
that promoted segregation, Black participants in this region
may experience disproportionate burden of metal exposures
from NEI sites. These findings add to a growing literature
evidencing disproportionate distributions of industrial pol-
lution burden among individuals from minoritized racial and
ethnic groups in the US (Tyrrell et al. 2013; Mohai et al.
2009).

We suspect that dietary or non-spill cleanup-related occu-
pational exposures, which were not well captured in the
GuLF Study surveys, may explain the unexpected direction
of metal exposure disparities observed in this study. Since
the predominant sources of exposure to Hg, Mn, and Se are
through the diet (Martins et al. 2020; Rose et al. 2010), dif-
ferences in toenail concentrations of these elements may
be attributable to dietary or nutritional differences across
racial groups. As Hg in the toenail is largely comprised of
methyl mercury (a common indicator of seafood intake)
in non-occupational settings (Rose et al. 2010; Castro-
Gonzélez and Méndez-Armenta 2008), it is possible that
environmental Hg exposure from ambient industrial expo-
sures is masked by seafood intake related Hg exposures in
this coastal population. As such, the relationship between
Hg NEI proximity metrics and toenail Hg concentration in
this study may reflect income-related seafood intake differ-
ences in this group with those living in higher SES neighbor-
hoods, farther away from NEI sites, also consuming more
seafood. The greatest sources of As exposure in the general
population is through contaminated drinking water (Chung
et al. 2014). Thus, it is possible that racial differences in
toenail As concentration may be explained by differences in
drinking water sources by neighborhoods of residence. On
the other hand, Cr exposure is most often associated with
occupational exposures or industrial processes (Sun et al.
2015; Wilbur et al. 2012). Studies with detailed occupational
exposure data may be needed to explain racial differences in
toenail Cr observed in this study.

This work expands the evidence supporting the use of
toenail samples for metal exposure assessment. Specifi-
cally, we show the utility of toenail samples for capturing
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ambient Pb exposure trends. Significant inverse associations
observed between toenail Pb concentration and the median
year that structures were built within the residential cen-
sus block group highlight a well-documented relationship
between older housing stock and the greater exposure to
Pb through outdated exposure sources such as lead paint
or pipes (Hauptman et al. 2023). Racial differences in toe-
nail concentrations of Hg, Mn, Pb, and Se were also cor-
roborated by blood metal measurements in the GuLF Study.
The consistency of metal exposure trends across matrices in
the GuLF Study provides additional confidence for the reli-
ability of the toenail metal biomarker, which has previously
received pushback surrounding concerns about the lack of
analytical standardization and potential for exogenous con-
tamination (Gutiérrez-Gonzélez et al. 2019). Among the
metals unmeasured in GuLF blood samples, As has been
validated as a biomarker of chronic exposure in the toenail
(Slotnick and Nriagu 2006; Martinez-Morata et al. 2023).
No studies have been conducted to validate toenail Cr as
a biomarker of Cr exposure, but our previous toenail reli-
ability study found strong agreement in Cr measurements
across triplicate toenail samples thus providing analytical
confidence in this measurement (Lin et al. 2023).

Compared to median concentrations reported in the
National Health and Nutrition Examination Survey
(NHANES) among White men of the same age range from
the same period, median blood Hg concentrations from
White GuLF Study participants were marginally higher,
which may be reflect higher locally caught seafood con-
sumption in Gulf states (Sathiakumar et al. 2017) (Supple-
mental Fig. 5). Blood concentrations of Mn, Pb, and Se from
the GuLF Study were comparable to concentrations reported
in NHANES (Supplemental Fig. 5).

A limitation of this work is the use of residential prox-
imity from industry-reported air emissions sites and emis-
sions volumes as the exposure metrics. There is no simple
conversion of release quantity from NEI sites to the actual
dose received by individuals since multiple processes can
affect their fate and transport and determine how humans
are eventually exposed to these pollutants (Maantay 2002;
Brender et al. 2011; Huang and Batterman 2000). Fur-
thermore, reporting to the NEI database is voluntary and
designed for regulatory purposes. As such, data are limited
to annual aggregate values and lack temporal or spatial vari-
ability. Another limitation is our use of socially constructed
variables like race to delineate differences between groups,
which may not perfectly capture differences in the way peo-
ple experience environmental injustices. However, we do so
in this study in efforts to describe the persistent effects of a
long history of racial segregation and racist zoning laws in
this region.

Limitations in emissions reporting and lack of detailed
dietary/occupational information can muddy geospatial

patterns of NEI metal exposures; however, our findings
advance our understanding of environmental metal expo-
sure assessment in two ways. First, consistency of metal
exposure trends across biomarker matrices and positive
associations between toenail Pb and neighborhood housing
age provide substantial contributions to the validation of
toenail samples for metal exposure assessment, specifically
for Pb. Second, consistency in the of the directions of toe-
nail Pb concentration and Pb NEI proximity across multiple
proximity metrics and adjustments are suggestive of a posi-
tive contribution from Pb-emitting industries on Pb body
burden in this region. These findings highlight the impor-
tance of prioritizing continued Pb mitigation interventions
in industry-proximal neighborhoods where residents can be
co-exposed to Pb from multiple sources that may have det-
rimental consequences on health and well-being.

Conclusion

This study identified racial disparities in residential proxim-
ity to metal-emitting NEI sites in the US Gulf region and
highlighted unexpectedly higher toenail concentrations of
both toxic (As, Hg) and essential (Cr, Mn, Se) metals in
White participants compared to Black participants. The con-
sistency in metal trends observed across exposure matrices
and the confirmation of associations between toenail Pb
with neighborhood housing age in the expected direction
also provide additional confidence for the continued use of
toenail samples for Pb exposure assessment on a population
level. We highlight concerns about elevated Pb exposures
in industry-proximate neighborhoods regardless of whether
the exposures are coming directly from the facilities or from
other factors related to industry-adjacent residence. Inter-
ventions to reduce metal exposure in this population should
focus particular attention on disparities by race and income.
Further studies focusing on diet and occupation should be
conducted to pinpoint—and mitigate where appropriate—
the sources of the unexpected metal exposure disparities in
this population.
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