
1.  Introduction
Understanding the amounts and types of microbes that can be found in the near-surface atmosphere is important 
given that airborne microbes can have important impacts on human and ecosystem health (Fröhlich-Nowoisky 
et al., 2016), including serving as allergens (Kim et al., 2018; Walser et al., 2015) or animal and plant pathogens 
(Rodríguez-Fernández et al., 2023). More generally, there is a growing interest in studying microbial dispersal 
through the atmosphere as a means by which bacteria and fungi are transported across geographic regions (Maki 
et al., 2019; Rodríguez-Fernández et al., 2023; Walters et al., 2022). We know that the amounts and types of 
bacteria and fungi found in the atmosphere can be highly variable across space and time (Barberán et al., 2015; 
Bowers et al., 2011; Šantl-Temkiv et al., 2022), with this variation often attributable to differences in atmospheric 
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that microbes are not associated with smoke plumes originating from distant fires, the microbial signal in the 
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GERING ET AL.

© 2024. American Geophysical Union. 
All Rights Reserved.

Limited Evidence for a Microbial Signal in Ground-Level 
Smoke Plumes
Sarah M. Gering1,2  , Amy P. Sullivan3, Sonia M. Kreidenweis3, Jill A. McMurray4, 
and Noah Fierer1,2 

1Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA, 2Cooperative 
Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA, 3Department of 
Atmospheric Science, Colorado State University, Fort Collins, CO, USA, 4USDA Forest Service, Bridger-Teton National 
Forest, Jackson, WY, USA

Key Points:
•	 �Using aerosol samples collected 

from the western US, we found that 
microbial DNA was not elevated in air 
masses impacted by wildfire smoke

•	 �Wildfire smoke events did not 
consistently impact the amounts 
or types of bacteria and fungi in 
near-surface aerosol samples

•	 �Contrary to expectations, we 
did not detect a microbial signal 
associated with wildfire smoke in the 
near-surface atmosphere

Supporting Information:
Supporting Information may be found in 
the online version of this article.

Correspondence to:
S. M. Gering and N. Fierer,
Sarah.Gering@colorado.edu;
Noah.Fierer@colorado.edu

Citation:
Gering, S. M., Sullivan, A. P., 
Kreidenweis, S. M., McMurray, J. 
A., & Fierer, N. (2024). Limited 
evidence for a microbial signal in 
ground-level smoke plumes. Journal of 
Geophysical Research: Atmospheres, 
129, e2023JD039416. https://doi.
org/10.1029/2023JD039416

Received 7 JUN 2023
Accepted 14 JAN 2024
Corrected 21 FEB 2024

This article was corrected on 21 FEB 2024. 
See the end of the full text for details.

Author Contributions:
Conceptualization: Sarah M. Gering, 
Noah Fierer
Data curation: Amy P. Sullivan
Formal analysis: Sarah M. Gering
Funding acquisition: Noah Fierer
Investigation: Sarah M. Gering
Methodology: Sarah M. Gering, Amy P. 
Sullivan, Jill A. McMurray, Noah Fierer
Project Administration: Noah Fierer
Resources: Noah Fierer
Supervision: Noah Fierer
Visualization: Sarah M. Gering
Writing – original draft: Sarah M. 
Gering, Noah Fierer

10.1029/2023JD039416
RESEARCH ARTICLE

1 of 14

https://orcid.org/0000-0002-3850-6790
https://orcid.org/0000-0002-6432-4261
https://doi.org/10.1029/2023JD039416
https://doi.org/10.1029/2023JD039416
https://doi.org/10.1029/2023JD039416
https://doi.org/10.1029/2023JD039416
https://doi.org/10.1029/2023JD039416
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2023JD039416&domain=pdf&date_stamp=2024-02-12


Journal of Geophysical Research: Atmospheres

GERING ET AL.

10.1029/2023JD039416

2 of 14

conditions or differences in the relative contributions of microbial source environments to the atmosphere. Impor-
tant source environments include leaf surfaces, soils, water bodies, and animals, which contribute distinct micro-
bial taxa to the near-surface atmosphere (Xie et al., 2020). Importantly, not all taxa are equally capable of being 
aerosolized and transported in the atmosphere (Burrows et al., 2009; Tong & Lighthart, 1998).

Wildfires represent a potentially important means by which microbes can be aerosolized and transported through 
the atmosphere. Incomplete combustion of soils and vegetation, combined with the intense convection often 
associated with large wildfires (Wagner et  al.,  2018) lead to microbial aerosolization in smoke plumes. This 
phenomenon has led to the introduction of the term “pyroaerobiology” (Kobziar et al., 2018), which emphasizes 
that wildfires are an under-recognized source of microbes to the atmosphere. The potential for aerosolization of 
microbes during wildfires and downwind detection in the resulting smoke plumes is of broad relevance because 
microbial allergens and pathogens could potentially be transported through the atmosphere in smoke plumes with 
corresponding impacts on populations and ecosystems distant from the wildfire (Kobziar & Thompson, 2020). As 
the intensity and severity of wildfires are expected to increase in many regions across the globe (Ellis et al., 2022) 
and smoke can travel thousands of kilometers from the wildfire source (Baars et al., 2021) it is important to under-
stand if such smoke plumes do indeed harbor microbes distinct from those found in non-smoke impacted  air.

Our objective with this study was to test whether we could detect a microbial “signal” in smoke-impacted air 
samples distant from wildfire sources. The idea that microbes can be aerosolized and are detectable in wildfire 
smoke plumes is derived from multiple lines of evidence. First, smoke captured from the burning of vegetation 
in laboratory settings and in tobacco smoke have previously been shown to contain viable bacteria and fungi 
(Larsson et al., 2008; Malayil et al., 2022; Mirskaya & Agranovski, 2020; Pauly & Paszkiewicz, 2011). Likewise, 
the air inside homes where biomass fuels are used for cooking and heating have been found to contain higher 
concentrations of bacterial endotoxins (Akila et al., 2020). Second, air samples collected near prescribed burns or 
wildfires can harbor higher concentrations of bacteria and fungi than adjacent non-smoke impacted air samples 
(Wei et al., 2019). For example, microbial cell numbers in smoke plumes above or adjacent to wildfires were 
higher than in air samples collected from outside the smoke plumes (Kobziar et al., 2022; Moore et al., 2021). 
Third, the composition of bacterial and fungal assemblages found in smoke plumes sampled near fire events 
appear to be distinct from those found in adjacent non-smoke impacted air samples (Kobziar et  al.,  2022). 
Finally, there is evidence that smoke originating from biomass burning can contain higher concentrations of 
fungi and fungal tracers (Mims & Mims, 2004; Yang et al., 2012). Together, these lines of evidence suggest 
that microbes are indeed aerosolized and emitted into the atmosphere from fire events, but what remains unde-
termined is whether these microbes are still evident as smoke plumes reach distant locations, that is, whether 
smoke-associated microbes can still be detected at the surface at sites located far from the wildfire event.

We hypothesized that there would be higher total concentrations of microbial DNA and different types of bacte-
ria and fungi, in air samples impacted by wildfire smoke than in non-smoke impacted air, with this microbial 
“signal” evident in ground-level aerosol samples collected at substantial distances from the wildfire source. We 
analyzed time-series collections of air filters from three independent sampling campaigns spanning multiple 
years that all captured smoke events, with the sampled smoke plumes estimated to have originated from wild-
fires that occurred 30–1,400 km away from the sampling site (Table S1 in Supporting Information S1). We then 
used cultivation-independent DNA-based analyses (quantitative PCR and marker gene sequencing) to quantify 
the amounts and types of bacteria and fungi found in smoke-affected versus non-smoke impacted air samples to 
determine whether we could detect smoke-associated microbes in the near-surface atmosphere. We found limited 
evidence to support our hypotheses, suggesting that, although a microbial signal might be evident in smoke 
sampled in close proximity to wildfire sources, such a signal is obscured, or at least below our threshold for 
detection, as smoke plumes are diluted across longer distances.

2.  Materials and Methods
2.1.  Sample Collection

Three independent atmospheric aerosol collection efforts were included in this study as we sought to assess the 
potential for microbial detection in smoke across multiple spatial and temporal scales (150 samples in total, 
with each of the three sample sets analyzed independently). We leveraged existing samples from sampling 
campaigns and a national air monitoring program to capture a diverse range of different wildfire-driven smoke 
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events with a high degree of variation in smoke impacts. The Boulder Lake, Wyoming (BOLA1) samples 
were collected by the Interagency Monitoring of Protected Visual Environments (IMPROVE) Network 
(IMPROVE, 2020; BOLA1 Site) from July 2 to 29 November 2020. BOLA1 filters were polytetrafluoreth-
ylene (PTFE) filters fitted to a sampling apparatus with a PM10 inlet. Filters were used for gravimetric mass 
measurements of particulate matter (PM10). The monitoring network sampled the air at ∼17 L min −1 for a 
24-hr period (midnight to midnight). Samples are taken every third day with the samplers positioned ∼4 m 
above the ground. Notably, the IMPROVE network utilizes four separate filtering apparatuses with PM2.5 
particles collected on PTFE, nylon, and quartz for chemical analysis. For microbial analysis we analyzed 
DNA recovered from the PM10 air filters that are collected concurrently alongside all PM2.5 filters used for 
chemical analyses. The PM10 air filters undergo strict handling protocols for chemical analysis to minimize 
contamination at each step of the process. This includes avoiding physical contact with the surface of filters, 
never leaving the filters exposed, and storing the filters in airtight containers. The BOLA1 samples were 
archived at room temperature for ∼10–14 months, and then shipped and stored at −20°C for 6 months until 
DNA was extracted for the microbial analyses. The aerosol chemical data associated with each sampling 
event were provided by IMPROVE and the relevant chemical metrics included in our study were PM2.5 
mass, organic carbon (OC), elemental carbon (EC) and PM10, mass concentrations (Malm et al., 1994, 2011; 
Solomon et  al.,  2014). The IMPROVE chemical data used in this study can be accessed and downloaded 
from: http://views.cira.colostate.edu/fed/default.aspx. Summarized site and sample details are found in Table 
S2 of Supporting Information S1 and more comprehensive sample metadata, including chemical smoke prox-
ies, can be found in Table S7.

Grand Teton National Park samples were collected as part of a previous study (Benedict et al., 2013) from August 
1 to 21 September 2011, at two locations, the NOAA Climate Center (NC) near Moose Junction, Wyoming 
(GT-East) and the Grand Targhee Resort (GT-West). The filter samples from these two sites were collected daily 
for 24 hr using a high-volume sampler (Themo Anderson) that stood ∼1.3 m above the ground. The samplers 
draw ambient air at ∼850 L min −1 through a two-filter assembly to isolate the ambient aerosol into particles 
with aerodynamic diameters greater than and less than 2.5 μm. An impactor in combination with a slotted filter 
collects particles greater than PM2.5, followed by a Whatman quartz filters (8”x10”) to collect the PM2.5 fraction. 
Only the PM2.5 filters were analyzed for this study. The filters were wrapped in aluminum foil and pre-baked for 
12 hr at 550°C before air sampling commenced. Blank samples were collected by loading a filter into the sampler 
for 2 min without air flow. Punches were taken from each filter to perform the chemical analyses, with meas-
urements of OC, EC, and levoglucosan conducted as described previously (Sullivan et al., 2014, 2019; Sullivan, 
Frank, Kenski, & Collett,  2011; Sullivan, Frank, Onstad, et  al.,  2011). The filters were stored at −20°C for 
∼10–11 years before subsampling for DNA extractions and microbial analyses. For all three sites included in this 
study (BOLA1, GT-West, and GT-East), we downloaded daily meteorological data from Visual Crossing Weather 
(Visual Crossing, 2022) for the sample collection periods at each site. Meteorological data used for analyses 
included minimum and maximum daily temperatures, average daily temperature, relative humidity, precipitation, 
wind gust, wind speed and wind direction. Site and sample summary details can be found in Table S2 of Support-
ing Information S1 and Table S7.

2.2.  DNA Extractions

We extracted DNA from all air filters, and the corresponding field blanks, using the DNeasy Powersoil Pro Kit 
(Qiagen). We prepared the filters by cutting ½ of the 25 mm PTFE filter from BOLA1 and one 25 mm quartz 
filter punch from GT-West and GT-East filters with flame-sterilized scissors to ensure the filter would fit into 
microcentrifuge tubes for extraction. All filter sections were individually loaded into 2 mL screw cap microcen-
trifuge tubes, pretreated with 0.5–1 mL filter-sterilized phosphate buffer saline and Tween-80 (1%), and vortexed 
for 5–10 min. The resulting supernatant was then transferred into the 2 mL Powerbead Pro Tubes included with 
the DNeasy Powersoil Pro extraction kit to which we added 800 μL of solution CD1 and heated for 30 min at 
65°C. We followed the manufacturer's extraction protocol with two modifications—the full volume of superna-
tant was transferred at every step to maximize DNA yields and the DNA was eluted into 50 μL rather than 100 μL 
DNase/RNase-free water at the final step to concentrate the DNA. Our modified DNA extraction protocol added 
in a wash buffer and a heating step, rather than bead beating alone, as recommended to improve DNA yields from 
low biomass aerosol samples (Luhung et al., 2021). Extraction blanks (n = 16) were included with every batch of 
DNA extractions to check for potential contaminants introduced during the extraction process. DNA yields were 
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visualized with PCR and gel electrophoresis and quantified using quantitative PCR (described below). DNA was 
stored at −20°C for downstream processing.

2.3.  Marker Gene Amplicon Sequencing

To characterize the bacterial and fungal communities associated with the air samples, extracted DNA was 
PCR-amplified using barcoded primer pairs to permit multiplexing using primers targeting the hypervariable V4 
region of the 16S rRNA bacterial gene (Caporaso et al., 2012) and barcoded primer pairs targeting the fungal 
internal transcribed spacer region (Emerson et al., 2015). PCRs were prepared in duplicate in 25 μL reaction 
volumes consisting of 12.5 μL Platinum™ II Hot-Start PCR Master Mix (Invitrogen, Carlsbad, CA, USA), 7.5 μL 
PCR H2O, 1 μL of each 10 μM primer, and 4 μL of template DNA. PCR cycling conditions were at 94°C for 
2 min, followed by 35 cycles of 94°C for 15 s, 60°C for 15 s and 68°C for 1 min with the final extension step 
at 72°C for 10 min. All samples were cleaned and normalized using the SequalPrep normalization kit (Thermo 
Fisher Scientific, Carlsbad, CA, USA) and pooled in equimolar concentrations to yield a ∼2  nM library for 
sequencing. Pooled libraries were sequenced on separate Illumina MiSeq runs (Illumina, California, USA) using 
a 2 × 150bp cycle kit for 16S rRNA sequencing of bacteria and the 2 × 250bp cycle kit for ITS sequencing of 
fungi at the Center for Microbial Exploration at the University of Colorado Boulder. In total, we extracted and 
sequenced 150 air samples, four field blanks (only available from GT-West), six PCR blanks, and 14 DNA extrac-
tion blanks. We included all of our associated blanks to identify potential contaminants in our pipeline.

Raw sequencing reads were processed through the DADA2 pipeline (v. 4.1., Callahan et al., 2016). Merged reads 
were quality filtered and clustered into amplicon sequence variants (ASVs) at 100% sequence identity. Bacterial 
taxonomy was assigned using a Bayesian Classifier (Wang et al., 2007) against the SILVA reference database (v. 
138.1., Quast et al., 2012; Yilmaz et al., 2014) and fungal taxonomy was assigned against the UNITE reference 
database (v. 10.05.2021, Nilsson et al., 2019). Any samples or blanks with <1,000 reads were removed from 
downstream analyses along with those ASVs represented by <10 reads in total across all samples. For the bacte-
rial analyses, this initial filtering threshold resulted in a final sample size of 150 air samples, two field blanks, 
three PCR blanks, and 12 extraction blanks (6,475,621 total reads). For the fungal analyses, the filtering threshold 
resulted in a final sample size of 150 air samples, two field blanks, zero PCR blanks and eight extraction blanks 
(3,470,739 total reads).

2.4.  Processing of Sequence Data

For the downstream analyses of the bacterial 16S rRNA gene sequence data, we furthered filtered out bacte-
rial reads associated with chloroplasts (751,334 reads; 265 ASVs), mitochondria (857,091 reads; 1,185 ASVs), 
and unidentified phyla (41,556 reads; 101 ASVs), retaining a total of 4,825,640 reads. The associated “blanks” 
contained 61,501 out of 4,825,640 total bacterial reads, with 181 ASVs shared between the blanks and all air 
samples out of a total of 17,989 ASVs. The number of reads associated with blanks made up 1.27% of reads 
associated with the air samples. We identified six ASVs, summed >2,000 reads across multiple blanks, which 
removed 8.36% of total reads across the entire bacterial data set (Table S6 in Supporting Information S1). The 
final bacterial 16S rRNA gene read count totaled 4,422,034 (4,391,782 only air) with median reads per blank of 
1,142, and median reads per air sample of 29,268. We followed a similar filtering threshold for the fungal ITS 
sequence data, retaining only those samples with >1,500 reads and ASVs with >10 reads across all samples. 
After the initial filtering step, we had 3,470,739 ITS reads. We then filtered out unidentified phyla (32,383 reads; 
299 ASVs). The associated “blanks” contained 26,807 reads out of 3,438,356 total fungal reads, with 69 ASVs 
shared between the blanks and all air samples out of a total of 8,386 ASVs. The number of fungal reads associated 
with blanks made up 0.78% of reads. Two fungal ASVs found across multiple blank samples with >1,500 reads 
were identified as lab-associated contaminants, which removed 2.6% of total reads across the fungal data set 
(Table S6 in Supporting Information S1). The final read count associated with our fungal data totaled 3,348,555 
reads with median reads per blank of 1,687 and median reads per aerosol sample of 21,914.

2.5.  Quantitative PCR

For estimating microbial biomass, we quantified bacterial and fungal gene copies using quantitative polymerase 
chain reaction (qPCR) on a Bio-Rad CFX Connect real-time system (Bio-Rad Laboratories, Hercules, CA, USA). 
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We used universal bacterial primers to target the 16S rRNA gene with 515f/806r (10 μM) and fungal primers 
FF390f/FR1r (10 μM) to target the fungal ITS region with primers and methods for qPCR previously described 
(Emerson et al., 2015). Both bacterial and fungal reaction mixtures were performed separately in 25 μL total 
reactions containing 12.5 μL 2X master mix (Thermo Scientific SYBR Green), 1.25 μL of forward and 1.25 μL 
of reverse primers, 6 μL of PCR H2O and 4 μL of gDNA. We included 2 no-template controls on each 96-well 
plate and generated standard curves using genomic DNA from Escherichia coli to calculate bacterial genome 
equivalents (R 2 = 0.98) and Aspergillus fumigatus for fungal genome equivalents (R 2 = 0.98). Bacterial qPCR 
thermocycling conditions were as follows: 95°C for 15 min, with 40 cycles of denaturation at 94°C for 45 s, 
annealing at 50°C for 1 min, and extension at 72°C for 1:30 min followed by a final extension step at 72°C for 
10 min. Fungal qPCR thermocycling conditions were the same as bacterial, except we increased the annealing 
temperature from 50°C to 55°C for 1 min. Cycle quantity values (Cq) for samples above 29 for bacteria and 31 
for fungal were excluded from microbial abundance analyses as they were below detection limits (this threshold 
also excluded all negative controls). The final sample size used for qPCR microbial abundance analyses was the 
following: (BOLA1 = 37, GT-West = 48 and GT-East = 44) and for fungi was BOLA1 = 43, GT-West = 50 and 
GT-East = 49. All qPCR results are reported as genome equivalents (either E. coli or A. fumigatus), but inter-
preted as estimates of total bacterial and fungal DNA per m −3 of air (Emerson et al., 2015).

2.6.  Microbial Analysis and Smoke Associated Taxa

We conducted all downstream data analyses in R (v. 4.2.2, R Core Team, 2022) and treated each sample set 
as independent data sets because samples from each site were collected across different years and locations. 
The R packages used for data analyses included mctoolsr (v. 0.1.1.9, Leff, 2016), tidyverse (v. 1.3.2, Wickham 
et al., 2019), dplyr (v. 1.1.0, Wickham et al., 2023), vegan (v. 2.6–5, Oksanen et al., 2023) and all visualizations 
were done with ggplot2 (v. 3.4.0, Wickham, 2016) and ggpubr (v. 0.6.0, Kassambara, 2023). We rarefied samples 
for bacterial and fungal alpha diversity analysis with bacterial data sets rarefied to 5,000 sequences per sample 
and fungal data sets rarefied to 3,000 sequences (BOLA1), and 10,000 sequences (GT-East and GT-West). All 
other microbial analyses were performed on non-rarefied data to retain as many reads as possible (McMurdie & 
Holmes, 2014).

To test for statistically significant differences at all of the sites, we performed Wilcoxon Rank Sum statistical 
tests on microbial abundance and richness between smoke and non-smoke samples. We ran Pearson correla-
tions to determine whether there was a linear relationship between elevated concentrations of OC and richness 
and abundances of microbes. We used permutational multivariate analysis of variance (PERMANOVA) with 
the “adonis2” function in vegan (Oksanen et al., 2023) for comparisons of microbial community composition 
between smoke and non-smoke samples and tested for the influence of abiotic and environmental factors on 
microbial community composition using multiple regression on distance matrices (MRM, Lichstein, 2007). Envi-
ronmental data were scaled prior to applying MRM using ecodist (v. 2.0.9, Goslee & Urban, 2007). We sought to 
identify smoke associated taxa by setting a threshold that one ASV had to appear in a minimum of three smoke 
events within each site. We conducted Kruskal Wallis (Kruskal & Wallis, 1952) tests and corrected the p-values 
for multiple comparisons using the false discovery rate (FDR) post hoc test (Benjamini & Hochberg, 1995) to 
identify ASVs found to be significantly more abundant in smoke than in non-smoke samples.

3.  Results
3.1.  Sample Set Description

We analyzed 150 air filters collected from three different locations across two different years in Wyoming (USA) 
(Figure 1). Samples were collected over 24-hr intervals at each site for 1–5 months with total volumes of filtered 
air ranging between 2.34 × 10 4 to 2.74 × 10 6 L of air per sample (Table S2 in Supporting Information S1). We 
identified “smoke impacted” samples using a combination of chemical proxies and overhead satellite imagery for 
the validation of smoke events. For BOLA1, GT-West and GT-East, we considered “smoke impacted” samples 
to be those where OC concentrations exceeded 3.5 μg C m −3 (Figures 2a–2c), noting that OC is a significant 
fraction of the total PM2.5 mass concentration and elevated PM2.5 mass concentrations were correlated with the 
presence of wildfire smoke in a recent study of smoke health impacts (Childs et al., 2022). We cross-validated the 
OC-based inferences of smoke events with satellite imagery published by the National Oceanic and Atmospheric 
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Administration Hazard Mapping System (NOAA, 2022) to confirm that overhead smoke plumes were evident at 
the sampling locations on the respective sampling dates. For the BOLA1 samples, measured PM2.5 concentrations 
were strongly correlated with OC concentrations (R 2 = 0.99, Table S3 in Supporting Information S1). We set a 
conservative minimum OC threshold at 3.5 μg C m −3 and applied the same strategy to both GT-West and GT-East 
where we only had OC measurements available to serve as a smoke proxy (Table S7). Our OC thresholds were 
secondarily validated using overhead satellite imagery of smoke, recognizing that NOAA's Hazard Mapping 
System cannot confirm smoke at ground level and cloud cover could obscure smoke events (Brey et al., 2018). 
We also note that the measured chemical proxies for smoke (OC) were strongly correlated across each sample set 
with other chemical indices including PM2.5 (as mentioned above), PM10, and levoglucosan concentrations (Table 

Figure 2.  Temporal variation in chemical proxies for smoke presence at the sampling sites. (a) BOLA1, (b) GT-West, and (c) GT-East. Organic carbon 
(>3.54 μg C m −3) thresholds were used to identify smoke events over time. The samples that were identified as impacted by smoke plumes (“smoke” samples) are 
indicated in red and the non-smoke impacted (“ambient”) air samples are indicated in black.

Figure 1.  Map of the western United States showing the three sampling sites. Each site is labeled by location: Boulder Lake, Wyoming (BOLA1), Grand Teton 
National Park West (GT-West), and Grand Teton National Park East (GT-East). Map dimensions span 40°–44°N and 107°–114°W.
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S3 in Supporting Information S1). Thus, using the chemical proxies of smoke concentration and the satellite 
imagery associated with each sampling date where smoke plumes were captured at the sampling sites, we were 
able to establish that 34 of the 150 samples had captured smoke events (Figure 2) and that those 34 smoke events 
likely originated from wildfires occurring at least 30 km away from the respective sampling locations (Table S1 
in Supporting Information S1). However, the number of smoke events captured per site varied depending on the 
site in question (BOLA1 = 8, GT-West = 8, GT-East = 18). Importantly, we recognize the limitations of using 
pre-determined threshold concentrations of smoke proxies to categorize samples into either “smoke-impacted” 
or “ambient” aerosol samples. For this reason, we complemented the categorical analyses with correlation-based 
analyses where we compared microbial metrics directly against measured concentrations of the smoke proxies, 
as detailed below.

3.2.  Microbial DNA Concentrations

We hypothesized that air samples which captured smoke events would have higher concentrations of microbial 
DNA than the non-smoke “ambient” samples. This hypothesis was not supported by our results. We found signif-
icant differences in the qPCR-based estimates of bacterial and fungal DNA concentrations between smoke and 
non-smoke impacted samples only from GT-East (Figures 3c and 3f). However, in GT-East the pattern was the 
opposite of what we expected as bacterial and fungal DNA concentrations were lower in smoke samples than 
in non-smoke samples (Wilcoxon rank sum test, p < 0.001, Figures 3c and 3f). The results from our compar-
isons between “smoke” and “non-smoke” samples were consistent with correlation-based analyses where we 
compared bacterial and fungal DNA concentrations to inferred smoke proxy concentrations (using measured OC 
concentrations as a proxy for smoke concentrations). No significant correlations were found between bacterial or 
fungal DNA concentrations and OC concentrations at any of the three sampling locations. With the exception of 

Figure 3.  Quantitative PCR-based measurements of bacterial and fungal DNA concentrations between non-smoke and smoke impacted samples across all three 
sites. Panels (a–c) include bacterial quantitative polymerase chain reaction (qPCR) results and panels (d–f) include fungal qPCR results. Panels (a and d) = Boulder 
Lake, Wyoming (BOLA1), (b and e) = Grand Teton National Park West (GT-West), and (c and f) = Grand Teton National Park East (GT- East). P values to assess the 
statistical significance of observed differences between non-smoke and smoke impacted samples were determined using Wilcoxon rank sum exact tests.
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bacterial abundances at BOLA1, all of the other sites were negatively correlated with OC concentrations (Table 
S4 in Supporting Information S1).

3.3.  Bacterial and Fungal Richness

We hypothesized that air samples that captured smoke events would have a greater diversity of taxa detected in 
smoke as compared to corresponding non-smoke impacted samples collected from the same locations. We did not 
detect a higher diversity of bacterial or fungal taxa in smoke-impacted samples compared to the corresponding 
non-smoke impacted air samples (Figure S1 in Supporting Information S1). At GT-East, bacterial richness was 
significantly lower in smoke than in non-smoke samples (Wilcoxon, p = 0.029, Figure S1c in Supporting Infor-
mation S1), while fungal richness was significantly lower in the smoke impacted samples than in the non-smoke 
impacted air samples at BOLA1 and GT-East (Wilcoxon, p < 0.05, Figures S1d and S1f in Supporting Informa-
tion S1). Likewise, if we consider smoke concentrations as a continuous variable (inferred from the measured OC 
concentrations), we found no significant correlations between smoke concentrations and either bacterial or fungal 
richness levels. Our results suggest that these ground-level smoke events are not contributing additional microbial 
diversity to the sampled air masses.

3.4.  Taxonomic Structure of the Bacterial and Fungal Assemblages

We found appreciable temporal variation in the composition and relative abundances of the bacterial and fungal 
taxa detected in the collected samples (Figure 4). Overall, the air samples were dominated by the bacterial phyla 
Actinomycetota, Pseudomonadota, Bacillota, Bacteroidota, and Chloroflexota (Figures 4a–4c), while the fungal 

Figure 4.  Changes in the proportional abundances of bacterial phyla and fungal classes across all four sites over time. Panels (a–c) include bacterial results and panels 
(d–f) include fungal results. Panels (a and d) = Boulder Lake, Wyoming (BOLA1), (b and e) = Grand Teton National Park West (GT-West), and (c and f) = Grand 
Teton National Park East (GT- East). Smoke events are outlined by dark gray borders capped with gray fire symbols.
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assemblages were dominated by Basidiomycota followed by Ascomycota, specifically, the fungal classes of 
Agaricomycetes, Tremellomycetes, Dothideomycetes and Leotiomycetes (Figures 4d–4f). We found significant 
differences in the microbial assemblages between smoke and non-smoke impacted samples at GT-East for bacte-
ria (PERMANOVA, R 2 = 0.025, Pseudo-F = 1.21, p = 0.03) and BOLA1 and GT-East for fungi (PERMANOVA, 
R 2 = 0.03, Pseudo-F = 1.53, p = 0.003 and R 2 = 0.04, Pseudo-F = 2.07, P = 0.001, respectively). However, 
the variation in the bacterial and fungal assemblages within sites was weakly associated with the presence of 
smoke (R 2 < 0.03), instead the composition of the bacterial and fungal assemblages was more strongly associated 
with variation in local atmospheric conditions (as explained below). These minimal effects of smoke plumes on 
bacterial and fungal assemblages are also qualitatively evident in Figure 4, which shows that the proportional 
abundances of major taxa varied temporally within each sample set, but the samples that captured smoke events 
do not stand out as consistently unique. Proportional abundances of all bacterial phyla and fungal classes per site 
can be found in Tables S8a–S8f.

To complement the analyses described above, we also examined the correlation between the amount of smoke on 
a given sampling date (inferred from OC concentrations) and the dissimilarity in assemblage composition. We 
found that heavier smoke days and days with little to no smoke had assemblages that were no more dissimilar than 
would be expected by chance (MRM, R 2 < 0.01 and p > 0.1 in all cases, except p = 0.08 for fungi at BOLA1, 
Table S5 in Supporting Information S1). Despite observing variation by site regarding the effect of smoke on the 
overall composition of bacterial and fungal assemblages, the compositional shifts observed over time at BOLA1 
were most strongly associated with differences in humidity and air temperature (MRM - R 2 > 0.15, p < 0.001, 
Table S5 in Supporting Information S1), which we attribute to the seasonal variation captured with the longer 
time series of the BOLA1 samples. Humidity best explained the variation in fungal assemblages at GT-West and 
GT-East (MRM—R 2 > 0.21, p < 0.001, Table S5 in Supporting Information S1). These results highlight that the 
composition of bacterial and fungal assemblages was not random, nor was smoke the main driver, but that other 
meteorological factors best explained the observed variation (Table S5 in Supporting Information S1).

3.5.  Smoke-Associated Taxa

To further investigate the potential effects of smoke events on the types of microbes found in the near-surface 
atmosphere, we determined if there were specific taxa that might be consistently more abundant in smoke versus 
non-smoke samples. These analyses were conducted on each sample set independently. Of the ASVs that met our 
criteria for inclusion in these analyses (see Methods), only a very small fraction of ASVs were significantly asso-
ciated with smoke events (Table 1) and these taxa were more likely to be rare, accounting for <0.5% of the overall 
abundance at each site with minimal taxonomic overlap between sites. At BOLA1, out of 6,630 bacterial ASVs 
and 2,318 fungal ASVs detected across all samples, only seven bacterial ASVs and one fungal ASV met our statis-
tical threshold for being considered significantly more abundant in smoke versus non-smoke samples (Kruskal 
Wallis, FDR corrected p < 0.05). These included ASVs assigned to the bacterial genera Thermoactinomyces, 
Segetibacter, Blastococcus, Solibacillus, Ammoniphilus, and Lysinibacillus and one fungal genus Phanerochaete 
(Table 1). At GT-West, we identified six bacterial ASVs and one fungal ASV (out of 7,432 bacterial and 3,928 
fungal ASVs in total) that were found to be associated with smoke events, including bacterial ASVs assigned to 
the following groups: Solibacillus, Thermoanaerobaculaceae, Pseudomonas, Amnibacterium, Intrasporangium, 
and Dydobacter, and one fungal ASV assigned to the genus Taphrina (Table 1). We did not identify any bacterial 
or fungal ASVs significantly associated with smoke (out of 7,040 bacterial and 3,730 fungal ASVs in total) at 
GT-East (Kruskal Wallis, FDR corrected p > 0.05), despite there being 18 smoke events to measure at that site 
(Figure 2).

4.  Discussion and Conclusion
There is growing interest in determining whether wildfires represent an important (and previously unrecognized) 
source of microbes to the atmosphere (Kobziar & Thompson, 2020; Kobziar et al., 2018), with wildfire smoke 
events representing a potentially important mode of microbial dispersal. However, we found limited evidence 
for a smoke-associated microbial signature in diluted smoke sampled near the ground surface. We expected to 
find elevated bacterial and fungal abundances in smoke-impacted samples as compared to non-smoke impacted 
samples, but this was not the case and, in fact, we observed lower concentrations of bacteria and fungi in the 
smoke-affected samples at some of the sites (Figure  3). This may indicate that smoke or the environmental 
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conditions surrounding smoke events diminishes the diversity and abundance of microbes found in the aerobi-
ome, a result that contradicts our initial expectation. Likewise, we expected to find that smoke plumes harbored 
distinct amounts and types of bacteria and fungi as compared to non-smoke impacted air, and while we observed 
some significant differences at two sites for fungi, and one site for bacterial, based on our PERMANOVA results 
(Figure 4), there was limited evidence to support a distinct smoke-associated microbial assemblage. Instead, we 
observed that changes in microbial composition over time was most strongly associated with changes in relative 
humidity—(Table S5 in Supporting Information S1), a result that is consistent with results from other studies 
which have examined temporal dynamics of microbes in the near-surface atmosphere (de Groot et  al.,  2021; 
Gusareva et al., 2019). We were able to identify a small number of taxa that were indicative of smoke, but it is 
important to point out that these taxa were generally rare, and only evident in two of the three sites (Table 1). At 
one of the sites (GT-East) where we had samples from 18 smoke events, we did not identify a single bacterial 
or fungal taxon associated with smoke. However, we do want to highlight that one smoke-associated bacterial 
group (members of the genus Solibacillus) were found to be indicative of smoke at both the BOLA1 and GT-West 
locations. Although this taxon was detected in low abundances (representing 0.02%–0.10% of 16S rRNA gene 
reads in smoke-impacted samples from these two sites), further investigation of this group and its potential link to 
wildfire smoke are warranted as this organism has been noted in other aerobiome studies (Ruiz-Gil et al., 2020).

Our results challenged our expectations that a clear and distinct microbial signal would be detectable in smoke 
originating from distant wildfire sources, especially considering that previous research has demonstrated the 
capacity for long-range transport of fungal pathogens and dust-associated microbes (Maki et al., 2019; Nicolaisen 
et  al.,  2017). We note that previous studies which have detected a microbial signal associated with wildfire 
smoke (Kobziar et al., 2018, 2022; Moore et al., 2021) collected samples above or in close proximity to wildfire 
events where there is a high degree of convection and atmospheric turbulence associated with wildfire events 
(Heilman, 2023). In contrast, the samples we analyzed captured smoke events originating from distant wildfire 
sources where the smoke was diluted at ground level. While we did not investigate transport along a smoke plume, 
account for the variation of smoke distance traveled, or smoke source, we expected to find a detectable microbial 
signature associated with smoke events. It is possible that the microbial signal in smoke is attenuated as smoke 
plumes travel through the atmosphere, either due to the removal or degradation of microbes (and their DNA) 
during transport or simply because any microbes that may be present in the smoke are diluted to the point where 
the signal becomes undetectable above background temporal variation in non-smoke impacted air conditions. 
Either way, although bioaerosol samples collected in close proximity to wildfire events may exhibit a measurable 

Site Phylum Genus Non-smoke, % Smoke, %

Bacteria BOLA1 Bacillota Thermoactinomyces 0.05 0.23

Bacillota Solibacillus 0.01 0.02

Bacillota Ammoniphilus 0.01 0.08

Bacillota Lysinibacillus 0.08 0.37

Actinomycetota Blastococcus 0.00 0.10

Bacteroidota Segetibacter 0.01 0.50

Fungi Basidiomycota Phanerochaete 0.08 0.49

Bacteria GT-West Bacillota Solibacillus 0.00 0.10

Acidobacteriota Thermoanaerobaculaceae 0.00 0.04

Subgroup 10

Actinomycetota Amnibacterium 0.00 0.15

Actinomycetota Intrasporangium 0.00 0.10

Bacteroidota Dyadobacter 0.00 0.06

Pseudomonadota Pseudomonas 0.01 0.05

Fungi Ascomycota Taphrina 0.00 0.11

Table 1 
Taxa Identified as Being “Smoke Associated” and the Differences in Their Relative Abundances Between Smoke-Impacted 
and Non-Smoke Air Samples
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microbial signal (Kobziar et al., 2022) a microbial signature in ground level samples collected in smoke further 
from the wildfire events was of insufficient magnitude to be evident above background temporal variation.

There are some important caveats associated with our study. First, we did not differentiate between viable and 
non-viable microbial cells with our DNA-based methods. It is possible that smoke harbors more viable cells, 
or different types of viable taxa, than would be found in non-smoke impacted air samples. Second, we sampled 
smoke plumes in the near-surface atmosphere where the dilution of smoke may have obscured any potential 
microbial signal that might be evident in samples collected from less diluted smoke plumes. Third, we took 
advantage of sample sets that happened to capture smoke events and there was important underlying variation in 
the types of wildfire events, the distances from the wildfire source, smoke concentrations, and the background 
atmospheric conditions across each of the sampling campaigns. Fourth, the samples used in this study were not 
initially collected for microbial analyses. Instead, we leveraged existing sample sets to try to capture the variabil-
ity associated with wildfire smoke originating from different sources.

We recognize the limitations associated with using archived aerosol samples, including a lack of field blanks 
distributed sufficiently across our sample sets as well as potential degradation of DNA over extended periods of 
time on preexisting air filters. To account for this underlying concern, we applied a series of quality control meas-
ures consistently across all samples during our microbial processing pipeline and were able to identify meteoro-
logical variables associated with the microbial patterns reported above. However, we do acknowledge that there 
are underlying sources of variability that we could not account for with our study design that could have contrib-
uted to challenges we had in identifying a clear microbial signal associated with ground-level smoke events.

Overall, the field of “pyroaerobiology” needs more evidence to support the emerging idea that long range micro-
bial aerosolization in smoke plumes is of ecological significance. We cannot rule out the possibility that there are 
differences between the amounts and types of microbes observed in smoke-impacted versus non-smoke impacted 
air, but those differences were not detectable with our study design. More extensive and intentional microbial 
sampling of smoke plumes from different wildfire events spanning different vegetation types, fire intensities, and 
smoke concentrations would be valuable. Moving forward, it would be useful for future studies to collect samples 
from plumes at varying distances from wildfire events (or sampling individual plumes as they move through the 
upper atmosphere) to better assess the importance of microbial dispersal in smoke and the smoke concentrations 
at which smoke-associated microbes might be detectable.
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Erratum
The originally published version of this article contained a few typographical errors in the online version. The 
PDF was unaffected. In Section 3.1 the figure citation “(Figures 2a, 2b and 2d)” in the third sentence should be 
changed to “(Figures 2a–2c).” Also in Section 3.1, the sentence beginning “We set a conservative minimum OC 
threshold . . .” should be changed to “We set a conservative minimum OC threshold at 3.5 μg C m−3 and applied 
the same strategy to both GT-West and GT-East where we only had OC measurements available to serve as a 
smoke proxy (Table S7).” In Section 3.2 the figure citation “(Figures 3d and 3h)” in the third sentence should 
be changed to “(Figures 3c and 3f).” The caption for Figure 3 should be changed from “Quantitative PCR-based 
measurements . . .” to “Quantitative PCR-based measurements of bacterial and fungal DNA concentrations 
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between non-smoke and smoke impacted samples across all three sites. Panels (a–c) include bacterial quanti-
tative polymerase chain reaction (qPCR) results and panels (d–f) include fungal qPCR results. Panels (a and d) 
= Boulder Lake, Wyoming (BOLA1), (b and e) = Grand Teton National Park West (GT-West), and (c and f) = 
Grand Teton National Park East (GT- East). P values to assess the statistical significance of observed differences 
between non-smoke and smoke impacted samples were determined using Wilcoxon rank sum exact tests.” In 
Section 4 the word “assemblages” in the fifth sentence should be corrected to “assemblage.” The errors have been 
corrected, and this may be considered the authoritative version of record.
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