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Why soft contacts are stickier when breaking than

when making them

Antoine Sanner'%3%, Nityanshu Kumar*?, Ali Dhinojwala4, Tevis D. B. Jacobs®, Lars Pastewka

Soft solids are sticky. They attract each other and spontaneously form a large area of contact. Their force of attraction
is higher when separating than when forming contact, a phenomenon known as adhesion hysteresis. The common
explanation for this hysteresis is viscoelastic energy dissipation or contact aging. Here, we use experiments and
simulations to show that it emerges even for perfectly elastic solids. Pinning by surface roughness triggers the
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stick-slip motion of the contact line, dissipating energy. We derive a simple and general parameter-free equation
that quantitatively describes contact formation in the presence of roughness. Our results highlight the crucial role
of surface roughness and present a fundamental shift in our understanding of soft adhesion.

INTRODUCTION

Insects, pick-and-place manufacturing, engineered adhesives,
and soft robots use soft materials to stick to surfaces even in the
presence of roughness. These materials stick to each other because
of attractive van der Waals or capillary interactions at small scales
(1). The strength of these interactions is commonly described by the
intrinsic work of adhesion wiy, the energy that is gained by these
interactions per surface area of intimate contact. This work of adhe-
sion is most typically measured from the pull-off force Fpunofr =
—3nwineR/2 of a soft spherical probe (see Fig. 1A) with radius R
which makes a circular contact with radius a (see Fig. 1B) (2). For
hard solids, the measured apparent work of adhesion is smaller than
the intrinsic value wiy because roughness limits the area of intimate
contact to the highest protrusions (3, 4). In contrast, soft solids are
sticky because they can deform to come into contact with a large
portion of the rough topography. The overall strength of the adhe-
sive joint is then determined by the balance of the energy gained by
making contact and the elastic energy spent in conforming to the
surface. Following Persson and Tosatti (5), energy conservation im-
plies that surface roughness reduces the apparent work of ad-
hesion to

Wpr = Wint — €

(1)

where e is the elastic energy per unit contact area required to conform
to the roughness (Fig. 1C). As shown in Fig. 1D, experiments typi-
cally follow different paths during approach and retraction, leading
to different apparent values for work of adhesion for making and
breaking contact, Wappr and wrerr. This adhesion hysteresis (6, 7) contra-
dicts Persson and Tosatti’s balance of energy, which gives the same
value wpr for approach and retraction. The common explanation for
this hysteresis is either contact aging or viscoelasticity (1, 8).

In this article, we show that adhesion hysteresis emerges even for
perfectly elastic contacts and in the absence of contact aging and
viscoelasticity because of surface roughness. We present a crack
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perturbation model (9-11) and experimental observations that reveal
discrete jumps of the contact perimeter. These stick-slip instabilities
are triggered by local differences in fracture energy between roughness
peaks and valleys. Pinning of the contact perimeter (12-14) retards
both its advancement when coming into contact and its retraction
when pulling away. Our model quantitatively reproduces the hysteresis
observed in experiments and allows us to derive analytical predictions
for its magnitude, accounting for realistic rough geometries across
orders of magnitude in length scale (15, 16). For soft spherical probes,
we can describe the circular contact perimeter as a crack. The crack
front is in equilibrium when Griffith’s criterion is fulfilled (17): The
energy per unit area required locally for opening the crack, the fracture
energy Wi, is equal to the energy released from the elastic deforma-
tion, GOA = w},DA, where dA is the contact area swept out by the
moving crack front. A more common way of writing this equation is

2)
where both the elastic energy release rate G and the fracture energy
Wioc should be interpreted as forces per unit crack length. Johnson,
Kendall, and Roberts (JKR) (2) derived the expression for the energy
release rate G for a smooth spherical indenter, G = Gykr(b, a).
Equation 2 then allows the evaluation of not just the pull-off force,
but of all functional dependencies between rigid-body displacement
b, contact radius a, and normal force F during contact.

For smooth spheres, the fracture energy is the intrinsic work of
adhesion, wj,c = Win, which for chemically homogeneous contacts
does not vary with position. We will show below that surface rough-
ness can be transformed into a field wjoc(x, y), which describes the
fluctuation of the effective fracture energy in the equivalent smooth
contact. Since the process of opening and closing adhesive contacts
is locally reversible, the fracture energy wjo. can be interpreted as an
effective local work of adhesion. Equation 2 must then hold indepen-
dently for each point on the contact perimeter. We start our analysis
by assuming that wi,c(x, y) varies with position and by showing that
this is sufficient to yield a hysteresis in the adhesive contact cycle.

G= Wioc

RESULTS

Axisymmetric chemical heterogeneity

We first demonstrate the physical origin of the adhesion hysteresis
using a simplified surface that has concentric rings of high and low
adhesion energy, similar to the models by Guduru (18), Kesari and
Lew (19, 20), and Popov (21). Rather than being random, wjoc(a)
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Fig. 1. Phenomenology of adhesive contact. (A) Many contacts can be described
as spheres making contact with a flat surface. For soft materials, microscopic
interactions are strong enough that the solids deform substantially near the con-
tact edge. The darker gray region illustrates the contact during approach and the
lighter gray region the contact at the same rigid-body penetration during retraction,
indicating a hysteresis between approach and retraction. (B) The contact forms a
circle for contacting spheres, and its radius a can be measured from in situ optical
images of the contact area. (C) Most natural and technical surfaces are rough so
the solid needs to elastically deform to come into conforming contact. (D) The
contact radius is larger and the normal force is more adhesive (negative) during
retraction than during approach, as is also shown schematically in (A). The pull-
off force is the most negative force on these curves.

varies in concentric rings of wavelength d as a function of distance a
from the apex of the contacting sphere (Fig. 2A). Figure 2B shows
Wioc(a) alongside Gyxr(b, a) for a fixed displacement b. Because of
the spatial variations of wi,, there are multiple solutions to Eq. 2
indicated by the labels A and B. Moving into contact from the solution
denoted by A leads to an instability where the solution A disappears, at
which the contact radius jumps to the next ring of wi,(a). This samples
thelower values of wjo shown by the greenlinein Fig. 2B. Conversely,
moving out of contact progresses along a different path that samples
the higher values of wi,c(a), shown by the red line. The combination
of fluctuations in wje. and the elastic restoring force Gjky acts like a
ratchet resisting the growing and shrinking of the contact area and
leads to a stick-slip motion of the contact line. The line is pinned by
the first strong-enough obstacle it encounters, so that it is pinned at
a low contact radius when the contact area grows and at a high radius
when it shrinks.

In the limit of roughness with a small wavelength, d — 0, Gjkr
does not decrease substantially before the contact line arrests at the
next peak (see Fig. 2C). In this limit, the contact line samples the
minimum values wapp: of Wioc during approach and the maximum
values wre, during retraction. The functional relationship between
b, a, and F then becomes identical to the JKR solution for smooth
bodies (see equations S4 to S7), but with an apparent work of adhesion
that is decreased during approach (wqppr) and increased during retrac-
tion (Wrey; see Fig. 2D). In this limit, the hysteresis wretr — Wappr
becomes equal to the peak-to-peak amplitude of wiy.(a) (19).

Random chemical heterogeneity

The next step in complexity is moving from a simplified axisymmetric
surface to a surface with random variation of the fracture energy
Wioc(%, ¥), where the contact line is no longer perfectly circular (see
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Fig. 3A). The energy release rate G at a given point now depends on
the whole shape of the contact a(s), where s is the length of the cor-
responding path along the contact circle. On the basis of the crack
perturbation theory by Gao and Rice (9, 10, 22), we recently derived
the approximate expression (9, 11)

G(s) = Gyepla(s)] + c-A,)2a(s) (3)

for the energy-release rate. Equation 3 has a simple interpretation:
The adhesive contact line, a(s), behaves like an elastic line. The frac-
tional Laplacian (=Ay)Y? of the contact shape a(s) (see also equa-
tion $35) yields a nonzero restoring force when the contact perimeter is
no longer circular. This fractional Laplacian can be interpreted as a
generalized curvature, and the prefactor ¢ as the bending stiffness of
the line. In the limit of a stiff line, ¢ — oo, the contact remains circular
while in the opposite limit, ¢ — 0, each point s along the contact
perimeter can move independently because the restoring force
disappears.

Section S1D derives Eq. 3 and shows that near equilibrium,
where G(s) = wins, the bending stiffness ¢ of the elastic contact line is
equal to win.. Note that counterintuitively, the bending stiffness does
not depend on the elastic modulus of the bulk but only on the intrinsic
work of adhesion. Equations 2 and 3 describe the perimeter of the
contact as an elastic line pinned by the random field wj,c(x, y) and
thereby establish an analogy between adhesion and other depinning
phenomena (12-14, 23).

The numerical solution of Egs. 2 and 3 (see section S2) on a random
field wioc(x, y) with a lateral correlation of length d yields force-area
curves similar to those of our axisymmetric model (Fig. 3, B and C).
The key difference is that the contact line now advances and recedes
in jumps (Fig. 3A) that are localized over a characteristic length ¢,
the Larkin length (12-14, 23, 24). Between these jumps, the contact
line is pinned. At the same rigid-body penetration, pinning occurs
at lower contact radii during approach than during retraction, leading
to a hysteresis in apparent adhesion described by two JKR curves with
constant apparent work of adhesion wapp, and wiet, (Fig. 3C), similar
to the curves obtained from our one-dimensional (1D) axisymmetric
model (Fig. 2D).

Our numerical data in fig. S5 show that the magnitude of hysteresis,
— Wappr & mes, where mes = ((Wy. — (W ))?), is the variance
of the random field wi,. To understand this expression, we first discuss
the virtual limit ¢ — 0 where the line is floppy and deviations from
circularity are not penalized. Floppy lines (¢ < wyps) can freely distort
and meander along valleys during approach (green line in Fig. 3D)
and peaks during retraction (purple line). Because of this biased
sampling of the work of adhesion along the line, the contact radius
is larger during retraction than during approach. In this individual-
pinning limit (14, 25, 26), each angle 0 along the contact perimeter
independently yields our 1D model and we obtain Wretr — Wappr
Wrms. In the opposite limit, ¢ — oo, the line is stiff and the contact
remains circular (dashed line), randomly sampling as many regions
of low and high adhesion. The fluctuations average out along the
perimeter so that there is no hysteresis, Wretr — Wappr = 0. The contact
radius is then obtained from the JKR expression evaluated for the
spatially averaged work of adhesion, (wioc).

Our simulations (and experiments as shown below) are in an inter-
mediate regime characterized by local jumps over length £ or N = ¢/d
pinning sites. The line is effectively rigid over the Larkin length ¢

Wretr
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Fig. 2. Simplified axisymmetric contact demonstrating the physical origin of the adhesion hysteresis. The indenter is a perfect sphere with axisymmetric heteroge-
neity in local adhesion wioc(a). (A) Cross section of the contact at rigid-body penetration b = 0 (top) and top view of the axisymmetric work-of-adhesion heterogeneity
Wioc(a) (bottom). The blue color indicates regions of high adhesion. (B) Elastic energy release rates in an approach-retraction cycle for a sinusoidal work of adhesion wioc(a)
with wavelength d = 0.36 (gray line). The black line shows the elastic energy release rate Gkg(b, a) as a function of contact radius for fixed rigid-body penetration b = 0.
Fluctuations of wiec(a) lead to several metastable states A and B at fixed b. Arrows indicate elastic instabilities where the contact radius jumps between metastable states.
(C) Energy release rates in an approach-retraction cycle for a work-of-adhesion heterogeneity with smaller wavelength d = 0.05. For short wavelengths, the works of adhesion
sampled during approach (light green curve) and retraction (light red curve) stay close to the constant values Wappr and Wiet. (D) The contact radius and the normal force
during an approach-retraction cycle for wavelength d = 0.36 (darker colors) and d = 0.05 (lighter colors). The dashed lines are the prediction by the JKR theory using Wyt
and w;ppy for the work of adhesion. The solid black line corresponds to increasing energy release rates at fixed rigid-body penetration b = 0. Energy release rates are displayed in
units of the average work of adhesion and lengths and forces have been nondimensionalized following the conventions of (47, 48) as described in the Supplementary Materials.
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Fig. 3. Simulation of crack-front pinning by two-dimensional random heterogeneity. (A) Evolution of the contact line during retraction in a crack-front simulation on
a two-dimensional random work-of-adhesion field. Each colored patch corresponds to an elastic instability during which the perimeter jumps between two pinned con-
figurations (dark lines), and the color scale represents the energy dissipated during each instability. The Larkin length £ corresponds to the smallest extent of these jumps
along the perimeter and increases for weaker heterogeneity or for a stiffer line. (B) Contact radius as a function of the normal force in the simulation shown at the top of
(A). The elastic instabilities lead to sudden jumps in the contact area and in the normal force. The solid black line corresponds to increasing energy release rates at fixed
rigid-body penetration b = 0 and points A and B show that the contact radius is higher during retraction than during approach. The red arrows show the jump-in and
jump-out-of-contact instabilities. (C) Contact radius as a function of the normal force in a simulation on a random chemical heterogeneity with a smaller feature size and
Wims/C &~ 0.45. The dashed lines are JKR curves with work of adhesion wapr and wiet, predicted by our theory Eq. 6. (D) Contact lines at rigid-body penetration b = 0 on the
random work-of-adhesion heterogeneity shown by the blue color map. Floppy lines are pinned at higher contact radii during retraction (purple line) than during retrac-
tion (green line) because they meander predominantly between regions of low adhesion (white patches) during approach and between regions of high adhesion (dark
blue patches) during retraction. In the limit of a rigid line, the perimeter is perfectly circular (dashed line), randomly sampling as many regions of low and high adhesion.

and hence samples a coarse-grained work-of-adhesion field w9 with  stable configuration (12, 13). The equilibrium condition §G = Wiﬁq)s
wl) = ems /. /N because the fluctuations average out stochastically ~ then yields

over the rigid sections. From the line elasticity, Eq. 3 and section S1D, N « (¢/w,.)? @
we obtain that an excursion of the contact line by distance 6a over “

this length leads to a restoring force 8G o« cda/{, which must balance  where we used € = Nd. This means that the magnitude of the hysteresis

WEQS. We note that 8a =~ d, which is the distance to the closest local must scale as
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exactly as observed in our simulations. Identical results were ob-
tained previously for cracks in heterogeneous media (14, 27).

Topographic roughness

The final step in describing the adhesion hysteresis on real surfaces
is to relate the random height variations h(x, y), which describe the
rough topography, to spatial variations in the fracture energy wioc(x, y).
For this, we need to consider excursions of the contact line normal
to the surface in addition to the lateral excursions that are described
by the contact radius a(8) (see Fig. 4). First, note that the solid is
always dilated near the crack tip. To conform to a valley, the elastic
solid needs to stretch even more, requiring elastic energy. Using the
same arguments that lead to Eq. 1, this additional elastic energy
manifests as an effectively decreased local work of adhesion wjq..
Conversely, conforming to a peak decreases the overall strain near
the crack tip and releases elastic energy, leading to an increased
equivalent work of adhesion. While this intuitive picture approximately
describes the relationship between heights and local adhesion, the
quantitative value of the local adhesion wjo. depends nonlocally on
the topographic field h(x, y) via an integral transformation derived
in section S1 (B and C). Section S3 also shows that a crack-front
simulation that uses wi,c(x, y) yields results virtually indistinguishable
from an exact boundary-element calculation on the rough topog-

raphy h(x, ).

Comparison to experiments

We contacted a rough nanodiamond film with a polydimethylsiloxane
(PDMS) hemispherical lens while optically tracing the contact pe-
rimeter (see Materials and Methods). The nanodiamond film was
characterized from atomic to macroscopic length scales using a
variety of techniques, as described in (15, 16). The resulting power
spectral density (PSD) (28) comprehensively describes the topography
of the film and is shown in Fig. 5A. This experiment is compared to
a simulation carried out on a roughness field with an identical PSD,
leaving winc as the only free parameter. We determine wiy by fitting

A

~

Wioe < Wing

_—

Fig. 4. Mapping topographic roughness to equivalent chemical heterogeneity.
The contact of a rough sphere (A) is equivalent to the contact of a sphere with a
work-of-adhesion heterogeneity wo. (B). The solid is stretched at the crack tip and
surface roughness perturbs this elastic deformation. The associated perturbation of
the elastic energy can equivalently be described by fluctuations of the work of
adhesion.
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the approach curves of the simulation and of the experiment. This
yields win = 63 mJ m™2, within the range expected for van der Waals
interaction.

Our experiments show the same instabilities as the simulations.
The trace of the contact line in Fig. 5B shows the jerky motion of the
line for both, with comparable amplitudes of deviations from the
ideal contact circle. Videos of the contact area in the indentation
experiment (movie S1) show the stick-slip motion of the contact
line, similar to our simulations and to observations by Lyashenko
and Pohrt (29) on contact with rubber membranes. The fundamental
hysteresis mechanism in our model, elastic instabilities, and stick-
slip motion of the contact line are clearly present in the experiment.

Measurements of the mean contact radius as a function of normal
force also agree with our simulation results (Fig. 5C). While the
simulation was adjusted to follow the experimental data during the
approach, the match is almost perfect by adjusting only a single pa-
rameter, wine. The functional form of the experiment during approach
is hence JKR-like with an apparent wypp =~ 29 mJ/ m>. During retraction,
we observe the same phenomenology: From the point of largest normal
force, the sphere retracts first at a constant contact radius before
starting to follow a JKR-like curve with an increased work of adhesion
Wretr & 106 mJ/m”. While the simulation retracts at slightly different
forces, corresponding to ~71 mJ/m?, the order of magnitude of the
hysteresis is correctly predicted from our simple elastic model.

DISCUSSION

The matching order of magnitude between our model and the experi-
ment shows that elastic instabilities are an important contribution to
the adhesion hysteresis of the real contact. The larger hysteresis in
the experiment may originate from other dissipation mechanisms.
When repeating the experiment in the absence of surface roughness
on hydrophobically functionalized surfaces (see Materials and Methods
and fig. S7), a hysteresis of Wappr — Wretr & 21 mJ/m? remains. This
value corresponds to half of the difference between the measured and
the predicted hysteresis. Because these experiments are carried out
on smooth contacts, this remaining hysteresis must come from
material-specific dissipation processes, most likely viscoelasticity.

We expect the viscoelastic contribution to the hysteresis in the
rough contact to be at most as large as on the smooth surface. Visco-
elastic energy dissipation increases the apparent work of adhesion at
high crack speeds (30, 31). While the average crack velocities are
similar in both experiments, in the rough contact, the local velocity
deviates substantially from the average. It either vanishes when the
crack front is pinned or is orders of magnitude higher than the average
during an instability. When it is pinned, the crack front is immobile
and the viscoelastic effects are lower than in the smooth reference
experiment. During an instability, the crack accelerates, until dissi-
pation mechanisms such as viscoelasticity become active. However,
the total energy dissipated during the instability is predetermined by
the energy difference between the quasi-static pinned configurations
just before and just after the instability; see Fig. 3A. Any viscoelastic
contribution to the adhesive force is determined by the pinned con-
figurations of the crack, where viscoelastic effects are at most as
large as in the smooth contact.

Besides material-specific dissipation, quantitative differences could
come from approximations or intrinsic assumptions of our model,
such as the assumption of fully conforming contact. Contacts con-
form if the energy needed to fully conform to the surface roughness
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Fig. 5. Crack-front pinning explains adhesion hysteresis on real-world surfaces with multiscale roughness. (A) Power spectral density (PSD) of a nanocrystalline
diamond (NCD) film extracted from more than 60 measurements (16), combining stylus profilometry, atomic force microscopy (AFM), and transmission electron micros-
copy (TEM). Black bars indicate the range of scales that dominate hE"m’s (Eq. 8). (B) Position of the perimeter in the contact between a rubber sphere and a rough surface
during approach. The perimeters on the left side are extracted from the experiment on NCD shown in Fig. 1, and the right side shows equilibrium positions of the perim-
eter in a crack perturbation simulation (see sections S1 and S2) on random roughness similar to NCD. The contact perimeter is pinned where the black lines are close to
each other, while regions with a low density of lines indicate where the contact perimeter accelerates during an instability. The simulation predicts instabilities of various
sizes, reaching a lateral extent up to several tens of micrometers. In the experiment, only the largest instabilities and the largest features of the contact line are visible
because of the limited resolution of the camera and because we removed image noise using a spatially averaging filter. The positions of the perimeter are shown from
jump into contact until the force reaches 0.64 mN. (C) Contact radius and normal force during approach and retraction of the experiment (diamonds) and simulation
(continuous line) shown in (B). We extracted the intrinsic work of adhesion win; = 63 mJ/m? used in the simulation by fitting the work of approach. Figure $6 shows that

the PSD of the synthetic random roughness used in the simulation is close to the PSD of NCD at the length scales that dominate h

is much lower than the gain in surface energy, eej < wint (3, 32). For
eel S Wine such as in our experiments, deep valleys may not enter into
contact and leave penny-shaped microcracks within the perimeter
of the contact. These microcracks likely increase the adhesion hysteresis
and the pull-off force because the movement of the additional contact
lines in the interior of these microcracks will also be subject to pinning
by the topographic roughness. However, many experiments report a
decrease of pull-oft force with increasing roughness as, for example,
reported in the classic adhesion experiment by Fuller and Tabor
(33). These experiments may be within this limit eg > Wiy, where
only partial contact is established within the contact circle (4, 32,
34-36). Unlike the theory presented here for conforming contacts
and our understanding of nonadhesive contact (3), there is presently
no unifying theory that quantitatively describes adhesion in partial
contact. Large-scale simulations with boundary-element methods
are needed to better understand this intermediate regime (4, 35-39).

We now show that simple analytic estimates can be obtained from
our crack-front model. The equivalent work-of-adhesion field has the
property that its mean corresponds to the Persson-Tosatti expres-
sion (Eq. 1). Furthermore, it has local fluctuations with amplitude
Wims = v/ 2Win€ which determine the adhesion hysteresis; see Eq. 5.
This equation means that the main parameter determining the hyster-
esis is e. We carried out crack-front simulations on self-affine ran-
domly rough topographies (Fig. 3C and section S4) to confirm that the
apparent work of adhesion during approach and retraction is given by
€ * keel

Woser = Wine — (6)
and to determine the numerical constant k ~ 3. We parametrically
varied the roughness to confirm that the main parameter determining
adhesion hysteresis is eg.

This expression allows us to connect the adhesion hysteresis to
the statistical parameters of the rough topography. The elastic energy
for fully conformal contact can be written as

!
E [ h(l /2)]2

- rms

e
el 4

™)
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(1/2)

ms *

where E’ is the elastic contact modulus (40) and hgr{f Jisa geometric

descriptor of the rough topography. In terms of the 2D PSD (28)
C™°, we define

o 1 - o iso P
o 2=_Jd2q 4114 ) (8)

rms A2
where § is the wave vector. This expression contains the root mean
square (rms) amplitude of the topography, h%) , the rms gradient of
the topography, h{!) , as well as arbitrary derivatives of order «. The
elastic energy is given by the roughness parameter hgr{f ), which is
intermediate between rms heights and rms gradients.

For most natural and engineered surfaces, h£11n/52 ) depends on the
large scales, like the rms height, because of their Hurst exponent
H > 0.5 (5, 41-43). Our model is then consistent with the increase
in pull-off force with hyy, reported in (19, 44). We note that most
measurements report insufficient details on surface roughness to al-
low definite conclusions on the applicability of a certain contact
model. The range of length scales that dominate hﬁln/f) in our own ex-
periments is at the transition between power-law scaling and the flat
roll-off at 2 um, a length scale that is accessible with an atomic-force
microscope. We illustrate the respective scales that contribute to hgﬁzs
in Fig. 5A.

The work performed on a soft indenter during the approach-
retraction cycle is dissipated in elastic instabilities triggered by
surface roughness. The dissipated energy is the difference in en-
ergy between the pinned configurations just before and just after
the instability. This pinning of the contact line explains why adhesion
is always stronger when breaking a soft contact than when making
it, even in the absence of material-specific dissipation. Roughness
peaks increase local adhesion, which pins the contact line and in-
creases the pull-off force. By describing rough adhesion as the pin-
ning of an elastic line, we were able to derive parameter-free,
quantitative expressions for the hysteresis in terms of a simple
statistical roughness parameter. This analysis paves the way to bet-
ter understanding the role of surface roughness in adhesion and
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provides guidance for which scales of roughness to control to tune
adhesion.

MATERIALS AND METHODS

Crack perturbation simulations

We use a crack perturbation model (9-11) to compute the energy
release rate at the perimeter of the contact and solve for equilibrium
with the local (equivalent) fracture energy wio. using the algorithm
by Rosso and Krauth (45). The derivation of the crack perturbation
equations and the mapping from surface roughness to the equivalent
work-of-adhesion heterogeneity is provided in the Supplementary
Materials.

Rough substrate
We contacted the PDMS lens against a nanocrystalline diamond
(NCD) film of known roughness. The diamond film was deposited
on a silicon wafer by chemical vapor deposition and, subsequently,
hydrogen-terminated to avoid polar interactions and hydrogen bond
formation between the PDMS lens and the rough substrate. The
roughness of the film was determined by combining measurements
from the millimeter to atomic scales using a stylus profilometer, atomic
force microscopy (AFM), and transmission electron microscopy
(TEM). The full experimental dataset along with the averaged PSD
shown in Fig. 5B is available online (46). Details on the film growth
and the multiscale topography characterization are provided in (15, 16).
Evaluating Eq. 8 requires the 2D or isotropic PSD of the surface
topography, while only the 1D PSD is known. Following (7, 28), we
converted the 1D PSD C'® to the isotropic 2D PSD using the ap-
proximation C*°(q) ~ nC'°(q)/q.

Synthesis of PDMS hemispheres

We synthesized PDMS hemispheres of 0.7-MPa Young’s modulus by
hydrosilylation addition reaction. Vinyl-terminated PDMS V-41
(weight-averaged molar mass M, = 62,700 g/mol) as a monomer,
tetrakis(dimethylsiloxy)silane as a tetra-functional cross-linker, and
platinum carbonyl cyclo-vinyl methyl siloxane as a catalyst were
procured from Gelest Inc. Monomer and cross-linker were first
mixed in a molar ratio of 4:4 in an aluminum pan. The catalyst was
added as 0.1 wt % of the total mixture, and lastly, the batch was degassed
in a vacuum chamber for 5 min. Hemispherical lenses were cast on
fluorinated glass dishes using a needle and a syringe and cured at 60°C
for 3 days. Since the PDMS mixture has a higher surface energy than
the fluorinated surface, the drops maintain a contact angle on the
surface, giving the shape of a hemispherical lens. After the curing
reaction, the lenses were transferred to cellulose extraction thimble
for Soxhlet extraction where toluene refluxes at 130°C for 48 hours.
PDMS lenses were again transferred to a fluorinated dish and dried
in air for 12 hours. Last, the lenses were vacuum-dried at 60°C for
16 hours and then used for experiments. Before using the lens in the
experiment, the radius of curvature R = 1.25 mm was measured by
fitting a three-point circle to a profile image obtained using an optical
microscope (Olympus).

Indentation experiment

We measured the force and area during the approach and retraction
of a PDMS hemisphere against a rough diamond film using the setup
of Dalvi et al. (7). The lens and the substrate were approached at a
constant rate of 60 nm/s until a repulsive force of 1 mN, and then

Sanner et al., Sci. Adv. 10, eadl1277 (2024) 6 March 2024

retracted with the same rate. The PDMS hemisphere is transparent,
allowing simultaneous measurement of the force and of the contact
area (Fig. 1B). The video recording, provided in movie S1, has a
frame interval of 0.3 s, but Fig. 5C shows values for the force and
contact radius at intervals of &30 s. To remove the influence of
roughness, we also carried out reference experiments on a flat sili-
con wafer covered with hydrophobic octadecyltrichlorosilane (see
fig. S7). The Young’s modulus E = 0.7 MPa of the PDMS sphere was
obtained by fitting the JKR theory to these experiments [see also (7)].

Extraction of contact line from video

We extracted the perimeter from each time frame of the video of the
contact area. The contact area appears as a bright region in the vid-
eo, and we defined the contact perimeter as a contour line of a fixed
level of gray. At the length scale of a few pixels, the position of the
line is affected by noise in the image. To reduce the effect of noise on
the position of the line, we subtracted the image of the contact area
at maximum penetration and subsequently applied a spatial Gauss-
ian filter of variance 2 pixels. The lines shown in Fig. 5B therefore
only reflect the position of the perimeter on coarse scales. Movie S2
shows that these lines match the shape of the contact area at large
scales and follow the same intermittent motion. The original video
is available in the Supplementary Materials (movie S1).

Supplementary Materials
This PDF file includes:

Sections S1 to S4

Figs.S1to S7

Legends for movies S1 and S2
References

Other Supplementary Material for this manuscript includes the following:
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