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ABSTRACT
Multi-centre study is increasingly used for borrowing strength from
multiple research groups to obtain reproducible study findings.
Regression analysis is widely used for analysing multi-group stud-
ies, however, some of the regression predictors are nonlinear and/or
oftenmeasured with batch effects. Also, the group compositions are
potentially heterogeneous acrossdifferent centres. The conventional
pooled data analysis can cause biased regression estimates. This
paperproposes an integratedpartially linear regressionmodel (IPLM)
to account for predictor’s nonlinearity, general batch effect, group
composition heterogeneity, and potential measurement-error in
covariates simultaneously. A local linear regression-based approach
is employed to estimate the nonlinear component and a regular-
ization procedure is introduced to identify the predictors’ effects.
The IPLM-based method has estimation consistency and variable-
selection consistency. Moreover, it has a fast computing algorithm
and its effectiveness is supported by simulation studies. A multi-
centre Alzheimer’s disease research project is provided to illustrate
the proposed IPLM-based analysis.
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1. Introduction

The design of multi-centre study becomes increasingly used because it enables researchers
to obtain more generalizable and reproducible study findings in many fields, including
cancer study [1–7] and Alzheimer’s disease (AD) research [8–14]. Regression analysis is
widely used to analyse multi-centre studies, however, in the current literature, there is a
lack of a flexible and rigorous regression approachwith an efficient computing algorithm to
account for the complexities andmany statistical challenges simultaneously inmulti-centre
or multi-group collaborative studies.

The firstmajor challenge, as in studies of cancers and other complex human disorders, is
that potential predictors are often numerous (i.e. high-dimensional) andmany of them are
nonlinear predictors. For example, in ovarian cancer, both the mean and variance effect
of some DNA methylations are significant [15] in risk prediction. Thus it is desired to
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develop flexible regression models that can incorporate both linear and nonlinear predic-
tors, e.g., using the partially linear model (PLM) [16], Y = β∗TX + f ∗(W) + ε, where Y
is the response variable, X ∈ Rpn is the vector of pn-dimensional linear predictors (pn may
grow with sample size n) with effect parameter vector β∗,W is a nonlinear predictor, f ∗(·)
is a nonlinear function, and ε is a random error. Additionally, it is typically unknown a
priori whether the effects of the large number of linear predictors are homogeneous across
study centres. Thus, for multi-centre studies, a natural modelling choice is the following
systems of partially linear models:

Yk = (β∗ + α∗
k)

TXk + f ∗k (Wk) + εk, for 1 ≤ k ≤ K,

where K is the number of centres, β∗ is the common effect of X between centres, and
α∗
k denotes the heterogeneous effects specific to the kth centre satisfying the constraint∑K
k=1 α

∗
k = 0.

Another common challenge in multi-centre studies is that the predictors are potentially
measured with some general batch effects. For example, in genetics and genomics research,
the microarray gene expression data is typically measured with batch effects [17,18]. In
Alzheimer’s disease (AD) research, the level of the cerebrospinal fluid (CSF) Aβ42 protein
is a well-known risk factor for developing AD and have been used for decades without
the knowledge that levels of CSF Aβ42 might be measured with major batch effects. Sur-
prisingly, as shown by [11], the levels of CSF Aβ42 protein have a nonlinear cyclic seasonal
pattern overmeasurement dates. Similarly, we examined a recentmulti-centre AD research
data and found identical nonlinear cyclic pattern (Figure 2 in Section 5). One may group
levels of CSF Aβ42 protein per measurement calendar month as a batch to correct for the
seasonal batch effect. When such batch effect is ignored, the regression estimates tend to
be severely biased regardless of sample size which may lead to misleading and seemingly
contradicting study findings among independent studies. More numerical demonstrations
and details can be found in Section 4.

A further statistical challenge is that the group compositions of some key predictors in
different study centres are heterogeneous. For example, inAD research, some study cohorts
are younger while others aremuch older. According to [19], the levels of CSFAβ42 is a non-
linear function of age. In a younger cohort, we may have a significant positive correlation
while in older people we may observe a significantly negative correlation between age and
levels of CSF Aβ42. If a conventional linear model is applied in a younger versus an older
centres independently to study the relationship between age and Aβ42, a positive versus
negative slope may be reported and cause confusions. Thus, due to the interplay between
nonlinear effect and heterogeneity in group composition of some predictors (e.g., in age),
conventional single-centre analyses can potentially lead to contradictory study findings
among different centres in the presence of heterogeneity in group compositions. Instead of
single centre analysis, to overcome the adverse impact of heterogeneous composition in the
presence of nonlinear relationship, one can conduct integrated analysis by combining data
from multi-centres via suitable frequency matching or propensity score matching. In this
context, the analysis using the simple pooling of multi-centre data via the commonly-used
z-score method can cause severe biases.

Additional common issues in multi-centre studies of biomedical research and many
other applications include that the linear predictors might be high-dimensional but only a
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small set of predictors are truly informative or relevant. Thus variable selection is needed
for robust and efficient regression analysis. It is also quite common that the linear pre-
dictor Xk might have measurement errors. For example, in studies of acquired immune
deficiency syndrome (AIDs), virologic and immunologic markers including plasma con-
centrations of human immunodeficiency virus (HIV)-1 RNA and CD4+ cell counts are
oftenmeasured with errors [20]. One popular choice to account for themeasurement error
in variable selection procedure is subtracting a bias correction term from the loss function
[21,22,32]. There have been extensive research on both variable selection andmeasurement
error in regression models. Therefore, regression analysis for multi-centre studies should
also be able to effectively deal with variable selection with measurement error in addition
to account for inter-plays of other common complexities.

In practice, it is quite common that a combination of the above complexities can
occur in a single multi-centre study as demonstrated using the multi-centre study of
AD in Section 5. However, in the current literature, there is a lack of flexible and inte-
grated regression analysis that can account for the interplays of multiple complexities
(e.g., heterogeneity and nonlinearity and batch effects) in multi-centre studies simulta-
neously. In Section 2, we propose the integrated partially linear model (IPLM) that can
account for predictors’ nonlinearity, general batch effects, group composition heterogene-
ity, high-dimensionality, and measurement error simultaneously. In particular, a local
linear regression-based approach [23] is applied to estimate the nonlinear component and
a regularized procedure is introduced to select informative predictors and estimate the
predictors’ effect that can be either homogeneous or heterogeneous across study centres.
If all the predictors’ effects are homogeneous across centres, the proposed IPLM can auto-
matically reduce to one parsimonious partially linear regression model that is applicable
to all centres while simultaneously account for nonlinearity, batch effect, group composi-
tion heterogeneity, high-dimensionality, and measurement errors. The integrated analysis
facilitates generalizable and reproducible outcomes in multi-centre studies. Asymptoti-
cally, the proposed regularizedmethod yields variable selection consistency and estimation
consistency for the linear and nonlinear components, which are specified in Section 3
including the case where the number of predictors with non-zero effects in the model
can be high-dimensional and increasing with the sample size. Also, for practical applica-
tions, efficient numerical implementation of the proposedmodel and analysis method is of
crucial importance. Numerical studies are provided in Section 4 to demonstrate the effec-
tiveness of the proposed IPLM-based analysis and illustrate the disadvantages or biases
of the conventional within-group regression analysis and the direct data-pooling analysis
without suitable batch effect adjustment. Section 5 includes the analysis of a multi-centre
AD research project to illustrate the proposed procedures. A short summary is provided
in Section 6.

2. Models

For the kth centre in a multi-centre study, let Yk be the response variable, Xk the linear
predictors andWk the nonlinear predictor. However,Wk is potentially observedwith batch
effect, e.g., amyloid Aβ42 protein measured in different seasons in AD research [11] and
Xk ∈ Rpn is potentially measured with error. Instead of observing Xk andWk directly, we
actually can only observe Zk and Vk, k = 1, 2, . . . ,K. That is, we propose the following
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integrated partially linear regression model (IPLM) with heterogeneity and batch effect in
covariates for a K-centre multi-centre study:

Yk = XT
k(β

∗ + α∗
k) + f ∗k (Wk) + εk,

Zk = Xk + Uk,

Vk = Wk + gk(mk;ψ∗
k) for 1 ≤ k ≤ K,

with the constraint
∑K

k=1 α
∗
k = 0, where β∗ and α∗

k are the mean and heterogeneous effect
respectively, f ∗k (·) is the nonlinear function to be estimated, εk is the error term with mean
0 and variance σ 2

k , Uk is the measurement error independent with (Xk,Wk,mk, εk) with
mean 0 and covariance matrix �k, and �k = 0 when there is no measurement error.
gk(·;ψ∗

k) is the general batch effect. Note that the function form of gk(·;ψk) is assumed
known while the parameters ψk need to be estimated. The batch effect gk(·;ψk) does not
include intercept to ensure model identifiability and gk(·; ·) = 0 when there is no batch
effect. Themk is an observed covariate which can be part of Zk. As part of the data harmo-
nization step inmulti-centre studies, we can apply least square method to get the estimated
batch effects gk(; ψ̂k) based on the observedZk andVk, for k = 1, 2, . . . ,K. The above inte-
grated partially linear model includes the batch effect and measurement error as part of
model to increase mathematical rigour and reproducibility of the study findings.

Suppose (yki, zki, vki) are the observations from the kth group with 1 ≤ i ≤ nk. For easy
exposition, we first assume the covariance matrix �k associated with measurement error
is known. The situation where �k is unknown can be similarly treated [21]. We adjust the
batch effects and get bias-free observations (yki, zki, v′

ki), where v
′
ki = vki − gk(mki; ψ̂k) is

the nonlinear predictor after batch effect adjustment. Denoteα = (αT
1, . . . ,α

T
K)T. In cancer

studies, AD research and many other applications, the genetic and proteomic predictors
are often high-dimensional. Thus dimension-reduction and variable selectionmethods are
needed to identify informative variables for effective regression analysis. To estimate both
the linear and nonlinear components as well as identify the truly informative mean effect
and the heterogeneous effect, we proposed to use a regularized loss function. In particular,
we denote the naive square-loss function as

l(β ,α, fk(·)) =
K∑

k=1

nk∑
i=1

(
yki − zTkiβ − zTkiαk − fk(v′

ki)
)2 ,

with the constraint
∑K

k=1 αk = 0. Then the regularized square loss function is defined as
follows:

lp(β ,α, fk(·)) = l(β ,α, fk(·)) −
K∑

k=1

nk(β + αk)
T�k(β + αk) + pλβ (β) + pλα (αk), (1)

subject to the constraint
∑K

k=1 αk = 0, where pλβ (β) = λβ

∑pn
j=1 πj|βj| is the penalty term

to identify the informative mean effect, pλα (αk) = λα

∑K
k=1

∑pn
j=1 πkj|αkj| is the penalty

term to identify the informative heterogeneous effect,
∑K

k=1 nk(β + αk)
T�k(β + αk) is

the penalty term to correct the measurement error, and πj and πkj are the adaptive Lasso
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weight [24]. Note that the adaptive Lasso weight can be achieved by settingπj = 1/|β̃j| and
πkj = 1/|̃αkj|, where

(β̃ , α̃, f̃k(·)) = argminβ ,α,fk(·)l(β ,α, f (·)) −
K∑

k=1

nk(β + αk)
T�k(β + αk),

subject to the constraint
∑K

k=1 αk = 0. Importantly, without the batch effect adjustment for
Vk, the regression estimates tend to be biased, also can lead to misleading or contradictory
study findings.

If the measurement error covariance matrix �k is unknown, to estimate �k, it is com-
mon to assume that there are replicated measurements [21], i.e., we observe Zkij = Xki +
Ukij for j = 1, . . . , Jki. Let Z̄ki = J−1

ki
∑Jki

i=1 Zkij to be the sample mean of Jki replicates for
ith subject in kth group. Then a consistent moments estimate of �k is

�̂k =
nk∑
i=1

Jki∑
j=1

(Zkij − Z̄ki)(Zkij − Z̄ki)
T/

nk∑
i=1

Jki.

Thus the penalized least square is defined as to minimize the following objective function:

lp(β ,α, fk(·)) = l(β ,α, f (·)) −
K∑

k=1

nk(β + αk)
T�̂k(β + αk) + pλβ (β) + pλα (αk), (2)

subject to the constraint
∑K

k=1 αk = 0. We can estimate β and α by minimizing (2).

2.1. Constrained optimization

The optimization procedure for (1) and (2) are the same, thus in this section, we mainly
focus on solving the linear and nonlinear components in (1). To minimize (1), we have
fk(V ′

k) = E(Yk|V ′
k) − E(Zk|V ′

k)
T(β + αk). Denote mky(V ′

k) = E(Yk|V ′
k) and mkz(V ′

k) =
E(Zk|V ′

k). Then the regularized loss function (1) can be rewritten as

lp(β ,α) = l(β ,α) −
K∑

k=1

nk(β + αk)
T�k(β + αk) + pλβ (β) + pλα (αk),

where
∑K

k=1 αk = 0 and

l(β ,α) =
K∑

k=1

nk∑
i=1

(
yki − mky(v′

ki) − (zki − mkz(v′
ki))

T(β + αk)
)2 .

In this article, we use local linear regression [23] to estimate both mky(·) and mkz(·) and
the R package ‘locpol’ can be directly applied. Let m̂ky(·) and m̂kz(·) be the estimates using
local linear regression, ŷki = yki − m̂ky(v′

ki) and ẑki = zki − m̂ky(v′
ki). Thus lp(β ,α) can be
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written as

lp(β ,α) = l(β ,α) −
K∑

k=1

nk(β + αk)
T�k(β + αk) + pλβ (β) + pλα (αk), (3)

where l(β ,α) = ∑K
k=1

∑nk
i=1(̂yki − ẑTki(β + αk))

2. Next we will solve β and α alternately.
Given α, the unknown parameter β can be solved by R package ‘glmnet’. Given β , we can
apply ADMM [25] to solve α under linear constraint

∑K
k=1 αk = 0. The details are showed

in the next section. Given estimated β̂ and α̂k, the estimated nonlinear function is

f̂k(·) = m̂ky(·) − m̂kz(·)T(β̂ + α̂k).

2.2. Details of ADMM

Given β , the optimization (3) is reduced to minimize

l(β ,α) −
K∑

k=1

nk(β + αk)
T�k(β + αk) + λα

K∑
k=1

pn∑
j=1

πkj|αkj|, (4)

with the constraint
∑K

k=1 αk = 0. Then the sub-optimization (4) is equivalent tominimize

l(β ,α) −
K∑

k=1

nk(β + αk)
T�k(β + αk) + λα

K∑
k=1

pn∑
j=1

πkj|ηkj|

with constraint αk = ηk and
∑K

k=1 αk = 0. Denote η = (ηT1, . . . , η
T
K)T. The linear con-

straint
∑K

k=1 αk = 0 and αk = ηk can be rewritten as Aα + Bη = 0, where A = [1K ⊗
Ipn , IpnK]T and B = [0pnK×pn ,−IpnK]T. Note that 1K is the K-dimensional vector of ones,
0pnK×pn is the pnK × pn-dimensional matrix of zeros, Ipn and IpnK are the pn × pn and
pnK × pnK identify matrices and ⊗ represents the Kronecker product. Then the aug-
mented Lagrange multiplier is

argminα,η,�l(β ,α) −
K∑

k=1

nk(β + αk)
T�k(β + αk) + λα

K∑
k=1

pn∑
j=1

πkj|ηkj|

−�T(Aα + Bη) + δ

2
‖Aα + Bη‖22,

and the unknown parameters α, η and Lagrange multiplier parameter � can be updated
alternately. Let α(t), η(t) and �(t) denote the current estimated at iteration t. Given η(t)

and �(t), α(t+1) can be solved using the Newton–Raphson method. Given α(t+1) and
�(t), η(t+1) can be solved using the R package ‘glmnet’. Given α(t+1) and η(t+1), �(t+1)

can be updated by �(t+1) = �(t) − δ−1(Aα(t+1) + Bη(t+1)). We can stop iteration at the
convergence.
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2.3. Parsimoniousmodel

In biological mechanistic studies andmany other real applications, it is frequently assumed
that all the predictors’ effects are homogeneous across study centres, i.e.,

∑K
k=1

∑pn
j=1 α2

kj =
0 and fk(·) = f1(·) for any k = 1, . . . ,K, and thus the IPLM automatically reduces to single
partially linear regression model with batch effects in covariates. Then the penalized least
square will be reduced to

lp(β , f (·)) = l(β , f (·)) −
K∑

k=1

nkβT�̂kβ + pλβ (β), (5)

where

l(β , f (·)) =
K∑

k=1

nk∑
i=1

(
yki − zTkiβ − f (v′

ki)
)2 .

It is clear that we can build the unified model by minimizing (5) and solve β and f (·) as in
Sections 2.1 and 2.2.

3. Asymptotic properties

In this section, we will establish both the estimation and variable selection consistency
of the proposed IPLM-based inferential method. We also establish asymptotic normality
of the estimates of the parameters in the linear component of the IPLMs. We assume the
covariance matrix �k associated with measurement error is known. The situation of �k
being unknown can be similarly proved as in Liang and Li [21]. Without loss of generality,
we assume that β∗

j = 0 for j > pn,0 and α∗
kj = 0 for j > pn,0, where pn,0 is some integers

smaller than pn that may diverge to infinity as n → ∞. The following eight technical
assumptions are made first.

Assumption 3.1: The support forWk andmk are bounded for k = 1, . . . ,K.

Assumption 3.2: The bandwidth in estimatingmky(·) andmkz(·) are of order n− 1
5 .

Assumption 3.3: The covariance matrix of Xk givenWk and �k are positive definite and
have constant eigenvalues for k = 1, . . . ,K.

Assumption 3.4: The density function of Wk and the density function of (Yk,Wk) are
bounded away from 0 and have bounded continuous second derivatives.

Assumption 3.5: mky(·) andmkz(·) have bounded and continuous second derivative.

Assumption 3.6: The batch effect gk(·;ψk) is a continuous function and continuously
differentiable over ψk for k = 1, . . . ,K.

Assumption 3.7: nk = O(n) for k = 1, . . . ,K.
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Assumption 3.8: pn = p[na] where 0 ≤ a < 1/3, p is a positive integer [na] is the integer
part of na.

Assumptions 3.1–3.5 are included and discussed in Liang and Li [21]. Assumption 3.6
ensures that the batch effect adjustment using least square method is adequate. Assump-
tion 3.7 ensures that the sample size across different centres is comparable. No centre has
a dominating or negligible sample size. Assumption 3.8 indicates that dimension pn may
grow to infinity but with a smaller order than the sample size n. Note that the newly pro-
posed IPLM is more general and more complex than the linear models commonly studied
in the literature [26]. To ensure the consistency of the estimates of nonparametric com-
ponent we need pn = p[na] with 0 ≤ a < 1/3. The proof also works for a = 0 where pn
is fixed. Under this assumption, we also establish asymptotic normality of the estimates of
the parameters in the linear component of the IPLMs in Theorem 3.4.

Theorem 3.1: Under Assumptions 3.1–3.8, we have ‖β̂ − β∗‖ = Op((n/pn)−
1
2 ), ‖α̂k −

α∗
k‖ = Op((n/pn)−

1
2 ) and E|̂fk(·) − f ∗k (·)| = Op(max{n− 1

4 , (n/p3n)
− 1

2 }) for any k = 1, . . . ,
K if λβ(n/pn)−

1
2 → 0 and λα(n/pn)−

1
2 → 0 as n → ∞.

Theorem 3.1 ensures that we can estimate both the linear and nonlinear components
consistently even though there are batch effect in nonlinear predictor and can also have
measurement error in the linear predictor vector. More importantly, from the theoretical
proof in the appendix, it is clear that the estimates for both the linear and nonlinear compo-
nents are inconsistent without batch effect adjustment. Thus in real applications, we must
correct the batch effect before model fitting, e.g., adjusting the cyclic seasonal pattern of
Aβ protein in AD research. Otherwise, the study findings are potentially biased.

Theorem 3.2: Under Assumptions 3.1–3.8, we have limn→∞ P(β̂j = 0) = 1 and limn→∞
P(̂αkj = 0) = 1 for k = 1, . . . ,K and j > pn,0 if λβ(n/pn)−

1
2 → 0, λα(n/pn)−

1
2 → 0,

λβp−1
n → ∞ and λαp−1

n → ∞ as n → ∞.

Theorem 3.2 ensures that, in probability, all the informative mean and heterogeneous
effects can be identified while all non-informative predictors can be excluded in the pres-
ence of general batch effect and measurement error in covariates despite the presence of
combinations of nonlinearity, general batch effects, measurement errors, heterogeneity of
group compositions between centres, and high-dimensional predictors.

Similar to Theorem 3.1 and Theorem 3.2, both the estimation and variable selection
consistency hold when dimension pn is fixed, i.e., a = 0, pn = p. Without loss of generality,
we assume that β∗

j = 0 for j > p0 and α∗
kj = 0 for j > p0, where p0 is some integers smaller

than p.

Theorem 3.3: Under Assumptions 3.1–3.7 with pn = p, we have ‖β̂ − β∗‖ = Op(n− 1
2 ),

‖α̂k − α∗
k‖ = Op(n− 1

2 ) and E|̂fk(·) − f ∗k (·)| = Op(n− 1
4 ), limn→∞ P(β̂j = 0) = 1 and

limn→∞ P(̂αkj = 0) = 1 for any k = 1, . . . ,K and p > p0 if λβn− 1
2 → 0, λαn− 1

2 → 0,
λβ → ∞ and λα → ∞ as n → ∞.



STATISTICS 995

Denote the linear predictors’ effect for each centre as βk = β + αk. Let βkI , XkI, and
UkI to be the first p0 elements of βk, Xk and Uk, �kI to be the (p0, p0) left upper matrix of
�k, �k

X|W = cov(XkI − E(XkI|Wk)). As n → ∞, β̂kI are asymptotic normally distributed.

Theorem3.4: Under Assumptions 3.1–3.7with pn = p, ifλβn− 1
2 → 0,λαn− 1

2 → 0,λβ →
∞ and λα → ∞ as n → ∞, for any k = 1, . . . ,K, we have

√
nk�k

X|W(β̂kI − β∗
kI) → N(0,

�k), where �k = E{(XkI − E(XkI|Wk))(εk − UT
kIβ

∗
kI) + εkUkI + (�kI − UkIUT

kI)β
∗
kI}⊗2

The proofs of the above theorems can be found in the Appendix while the proof of
Theorem 3.3 was essentially the same as proof of Theorem 3.1 and 3.2, which was omitted.

4. Numerical studies

In this section, we report numerical studies conducted to demonstrate the effectiveness of
the proposed IPLM and its associated analysis algorithms. We studied numerical perfor-
mance in cases where covariates can have either homogeneous or heterogeneous effects
across centres with covariate dimensions comparable to the sample size. Also, the con-
ventional pooled data analysis (e.g., using z-scores) or individual-centre based analysis
ignores the interplay between nonlinearity and group composition heterogeneity, batch
effect, measurement error, and other data incoherence in multi-centre setting thus can
cause biased regression estimates and misleading outcomes as illustrated in numerical
examples and graphically displayed in Figure 1.

4.1. Covariates with homogeneous effects across groups

In this section, we present numerical studies considering a two group IPLM, i.e., K = 2,
and

Yk = XT
k(β

∗ + α∗
k) + f ∗k (Wk) + εk,

Zk = Xk + Uk,

Vk = Wk + gk(mk;ψ∗
k) for 1 ≤ k ≤ 2.

Here X is from a pn-dimensional normal distribution, i.e., X1i ∼ N(0,�), X2i ∼ N(0,�),
and � is the AR(1) matrix with parameter 0.5, i.e., the (j, l)th element of � is 0.5|j−l|,
which implies that the linear predictors are dependent. The measurement error Uk ∼
N(0,�k), where �k = �k/3 and �k are AR(1) matrix with parameter ρ for k = 1, 2,
i.e., the (j, l)th element of �k is ρ|j−l|. To estimate �k, two replicates of Zk, i.e., Zk and
ZR
k , are generated. Linear coefficients β∗, α∗

1 and α∗
2 are pn dimensional vectors, i.e.,

β∗ = (0.5, 0.5, 0.5, 0, . . . , 0), α∗
1 = α∗

2 = (0, 0, . . . , 0), which implies that all predictors’
effects are homogeneous. εk is the error termwith normal distribution, i.e., ε1i ∼ N(0, σ 2),
ε2i ∼ N(0, σ 2) and the nonlinear functions for the two centres are:

f ∗1 (W) = f ∗2 (W) = (W − 1)2.

Moreover,Wk has uniform distributions:

W1i ∼ U(0, 1), W2i ∼ U(1, 2),
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Table 1. Variable selection performance for simulation scenario 4.1.

(n, pn , σ , ρ) Method NM ZM NH ZH

(500, 100, 0.25, 0.25) Ada Lasso 100% 0.00% 0.00 0.00
Lasso 100% 0.00% 0.00 0.00

(500, 100, 0.5, 0.5) Ada Lasso 100% 0.00% 0.00 0.00
Lasso 100% 0.00% 0.00 0.00

(500, 250, 0.25, 0.25) Ada Lasso 100% 0.01% 0.00 0.00
Lasso 100% 0.00% 0.00 0.00

(500, 250, 0.5, 0.5) Ada Lasso 100% 0.00% 0.00 0.00
Lasso 100% 0.00% 0.00 0.00

which indicates that the group compositions are heterogeneous. For batch effect, we have

V1i = W1i + 1.6sin(m1i), V2i = W2i + 1.6sin(m2i),

wherem1i ∼ U(0,π) andm2i ∼ U(π , 2π).
We generate n observations from each group. Instead of directly observing (Yk,Xk,Wk),

we only observe (Yk,Zk,ZR
k ,mk,Vk) in each group. There aremultiple statistical challenges

in this simulated example. First, the effect of predictorWk is nonlinear, e.g., effect of some
DNA methylations in ovarian cancer risk prediction [15]. Second, the nonlinear predic-
tor Vk contains batch effects, e.g., the cyclic seasonal pattern of Aβ protein [11]. Third,
the group compositions are heterogeneous overWk. In addition, the linear predictors are
measured with measurement error.

We first apply the linear regression model

vki = aki + bksin(mki)

to get estimates b̂k and correct the batch effects by v′
ki = vki − b̂ksin(mki) to get bias-free

nonlinear predictor V ′
k. Next we use the two replicates of Zk, i.e., (Zk,ZR

k ), to estimate
�k for k = 1, 2. Then we fit IPLM (1) using (Yk,Zk,V ′

k, �̂k) to select the informa-
tive variables. We apply the Bayesian information criteria [27] (BIC) to select the best
tuning parameter and set n− 1

5 as the bandwidth in local linear regression when solv-
ing the nonlinear components. In fact, both the variable selection, linear and nonlinear
components estimation are stable around the selected bandwidth n− 1

5 in our numerical
study.

Each scenario is duplicated for B = 50 times and the variable selection by Lasso and
Adaptive Lasso approach for both mean and heterogeneous effects are summarized in
Table 1. Specifically, NM indicates the average percentage of the selected nonzero entries
in the mean vector β∗, ZM indicates the average percentage of the selected zero entries in
the mean vector β∗, NH indicates the average number of the selected nonzero entries in
the heterogeneous vector α∗

k , ZH indicates the average number of the selected zero entries
in the heterogeneous vector α∗

k . It is obvious that the variable selection performance by
Lasso and Adaptive Lasso is both excellent because it is very close to the oracle where NM
= 100%, ZM = 0.00%, NH = 0.00 and ZH = 0.00.

Using the above simulation set up, the average mean squared error (MSE) of estimated
effect for group 1 and group 2 (i.e., β̂1 and β̂2) was summarized in Table 2. Specifically, the
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Table 2. Estimation performance for simulation scenario 4.1.

(n, pn , σ , ρ) Method MSEβ1 MSEβ2

(500, 100, 0.25, 0.25) Ada Lasso 0.007 0.007
Lasso 0.007 0.007

(500, 100, 0.5, 0.5) Ada Lasso 0.008 0.007
Lasso 0.007 0.007

(500, 250, 0.25, 0.25) Ada Lasso 0.006 0.006
Lasso 0.006 0.006

(500, 250, 0.5, 0.5) Ada Lasso 0.008 0.008
Lasso 0.008 0.008

average MSE of estimated group 1 effect β̂1 and group 2 effect β̂2 was defined as

MSEβ1 = 1
B

B∑
b=1

∥∥∥β̂b
1 − β∗

1

∥∥∥2
2

and MSEβ2 = 1
B

B∑
b=1

∥∥∥β̂b
2 − β∗

2

∥∥∥2
2
,

where β̂1
b and β̂b

2 were the estimated effect from bth simulated data set. Moreover,
the mean, empirical standard deviation (denoted as SD1) and average standard devi-
ation estimated using Theorem 3.4 (denoted as SD2) of β̂11 (estimated value of first
element of β1) and β̂21 (estimated value of first element of β2), and the coverage of
the 95% confidence interval estimated using Theorem 3.4 for β11 and β21 were sum-
marized in Table 3. Note that coverage of the 95% CI is estimated by replicating each
scenario for 1000 times given the status of truly informative/non-informative variables to
achieve computational efficiency. It is reasonable to assume knowing status of the truly
informative/non-informative variables given variable selection performance is almost per-
fect in Table 1. As is well known, both Lasso and adaptive Lasso are widely used in
practice. We also used both adaptive Lasso and Lasso in our simulation studies. Wemostly
focus on adaptive Lasso in our theorems because the adaptive Lasso has desirable selec-
tion and estimation properties asymptotically as established by Zou (2006) and others
for generalized linear models. In terms of estimation, when some true regression coef-
ficient is much larger compared to other coefficients of the informative predictors, the
extremely large coefficient can be heavily penalized in Lasso leading to potentially exces-
sive bias for the Lasso estimate of the particular parameter. In comparison, the adaptive
Lasso estimation can avoid the severe bias due to excessive Lasso penalty for such large
parameter values. Of course, one would need to identify some preliminary consistent esti-
mate to properly use the adaptive Lasso. An initial preliminary consistent estimate may
not be easy to find in some applications. Also, when all informative variables have the
same effect sizes (same coefficients), the adaptive Lasso estimates would have no essen-
tial advantages over the ordinary Lasso as demonstrated by our numerical simulation and
summarized in Table 2. It is clear that the estimation performance of the adaptive Lasso
approach is essentially equivalent to the Lasso in terms of similar MSE in this setting.
Moreover, from Table 3, the empirical standard deviation SD1 and estimated standard
deviation SD2 estimated using Theorem 3.4 are quite close, and the coverage probabil-
ity of the 95% CI predicted by the asymptotic normality theory for both β11 and β21 are
close to 95%.
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Table 3. Variance and coverage for simulation scenario 4.1.

(n, pn , σ , ρ) Parameter Method Mean SD1 SD2 95% CI Coverage∗

(500, 100, 0.25, 0.25) β̂11 Ada Lasso 0.505 0.048 0.040 94.7%
Lasso 0.503 0.047 0.040 94.7%

β̂21 Ada Lasso 0.501 0.049 0.042 95.1%
Lasso 0.503 0.047 0.040 95.1%

(500, 100, 0.5, 0.5) β̂11 Ada Lasso 0.496 0.044 0.051 97.3%
Lasso 0.496 0.044 0.051 97.3%

β̂21 Ada Lasso 0.496 0.044 0.048 97.3%
Lasso 0.496 0.044 0.050 97.3%

(500, 250, 0.25, 0.25) β̂11 Ada Lasso 0.503 0.046 0.040 95.2%
Lasso 0.503 0.047 0.040 95.2%

β̂21 Ada Lasso 0.503 0.046 0.040 94.9%
Lasso 0.503 0.047 0.040 94.9%

(500, 250, 0.5, 0.5) β̂11 Ada Lasso 0.498 0.055 0.050 96.8%
Lasso 0.498 0.055 0.050 96.8%

β̂21 Ada Lasso 0.498 0.055 0.052 96.8%
Lasso 0.498 0.055 0.051 96.8%

∗Coverage estimated from 1000 replicates given status of the truly informative/non-informative variables.

Individual-group analysis can lead to contradictory findings: If we analyse data for each
group (or centre) separately, we find that the effect ofV is negative in centre 1while positive
in centre 2 in Figure 1. Thus we get contradictory study findings from different individual
group analyses. This is due to the heterogeneous group compositions ofWk. More impor-
tantly, the contradictory and misleading study findings cannot be avoided as the sample
size increases. This demonstrates the disadvantages of single group study, i.e. , the single
centre/group model study findings cannot always be generalized to other study groups. In
Figure 1, we only provide the results for one scenario, other seven scenarios show similar
pattern of results. In real applications, Wk is typically related to another measurable vari-
able ηk such as age in AD research. Thus we might be able to use frequency matching or
using propensity score matching on Wk over ηk to remove the impact of heterogeneous
group composition.

Direct pooled-data analysis can lead to misleading pattern: If we simply pool the data
from two groups together without suitable batch effect adjustment, the estimated nonlin-
ear curve (marked by the dashed line) is provided in Figure 1. The estimated nonlinear
curve, which first shows a positive upward trend and then shows a negative downward
trend, is opposite to the true pattern which is a strictly convex curve. This happens due to
a simple pooling of data without adjusting for batch effects. Thus in real applications, we
must account for the batch effects of the predictors, e.g., the seasonal cyclic pattern of CSF
Aβ in AD research. Otherwise, wemay get biased estimates andmisleading study findings.

IPLM leading to superior predictive performance: Because all predictors’ effects are
homogeneous, our method produces the unified model for two groups together. We first
apply linear regression model to adjust the batch effects of Vk and get batch effect adjust-
ment nonlinear predictorV ′

k within each group. Thenwe combine two groups together and
get a unified model. The estimated nonlinear curve is shown in Figure 1, marked by the
solid line. The estimation performance of our proposed method is much better than other
competitors because our estimated nonlinear curve is very close to the true curve, which
is marked by dot-dash line in the figure. This indicates that the estimation performance of
our proposed IPLM is superior to other competitors.
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Figure 1. Nonlinear curve estimation in simulation study.

Table 4. Variable selection performance for simulation scenario 4.2.

(n, pn , σ , ρ) Method NM ZM NH ZH

(500, 100, 0.25, 0.25) IPLM Ada Lasso 100% 0.00% 2.00 0.00
IPLM Lasso 100% 0.00% 2.00 0.00

(500, 100, 0.5, 0.5) IPLM Ada Lasso 100% 0.00% 2.00 0.00
IPLM Lasso 100% 0.02% 2.00 0.00

(500, 250, 0.25, 0.25) IPLM Ada Lasso 100% 0.00% 2.00 0.00
IPLM Lasso 100% 0.00% 2.00 0.00

(500, 250, 0.5, 0.5) IPLM Ada Lasso 100% 0.00% 2.00 0.00
IPLM Lasso 100% 0.00% 2.00 0.00

4.2. Covariates with heterogeneous effects across groups

The data generating process is the same as scenario 4.1, except that β∗ = (3, 3, 3, 0, . . . , 0),
α∗
1 = (2, 2, 0, . . . , 0), α∗

2 = (−2,−2, 0, . . . , 0), implying that some predictors’ effects are
heterogeneous. The variable selection, parameter estimation and 95% CI coverage perfor-
mance are showed in Table 4, 5, and 6. It is obvious that the variable selection performance
by Lasso and Adaptive Lasso are both excellent in Table 4 because it is very close to the
oracle where NM = 100%, ZM = 0.00%, NH = 2.00 and ZH = 0.00. For parameter esti-
mation and coverage of 95% CI predicted by the asymptotic normality theory in scenario
4.2, the performance of both Lasso and Adaptive Lasso is quite good as reported in Table 6,
which is consistent with the findings in scenario 4.1 when all effects are homogeneous.
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Table 5. Estimation performance for simulation scenario 4.2.

(n, pn , σ , ρ) Method MSEβ1 MSEβ2

(500, 100, 0.25, 0.25) Ada Lasso 0.259 0.090
Lasso 0.259 0.090

(500, 100, 0.5, 0.5) Ada Lasso 0.366 0.101
Lasso 0.376 0.111

(500, 250, 0.25, 0.25) Ada Lasso 0.279 0.060
Lasso 0.279 0.060

(500, 250, 0.5, 0.5) Ada Lasso 0.352 0.113
Lasso 0.352 0.113

Table 6. Variance and coverage for simulation scenario 4.2.

(n, pn , σ , ρ) Parameter Method Mean SD1 SD2 95% CI Coverage∗

(500, 100, 0.25, 0.25) β̂11 Ada Lasso 5.057 0.302 0.327 96.3%
Lasso 5.057 0.302 0.327 96.3%

β̂21 Ada Lasso 0.988 0.167 0.130 93.4%
Lasso 0.988 0.167 0.130 93.4%

(500, 100, 0.5, 0.5) β̂11 Ada Lasso 5.060 0.375 0.370 93.8%
Lasso 5.060 0.375 0.370 93.8%

β̂21 Ada Lasso 0.982 0.164 0.143 92.6%
Lasso 0.982 0.164 0.143 92.6%

(500, 250, 0.25, 0.25) β̂11 Ada Lasso 4.984 0.349 0.324 94.7%
Lasso 4.984 0.349 0.324 94.7%

β̂21 Ada Lasso 1.012 0.125 0.130 92.9%
Lasso 1.012 0.125 0.130 92.9%

(500, 250, 0.5, 0.5) β̂11 Ada Lasso 5.014 0.416 0.359 94.5%
Lasso 5.014 0.416 0.359 94.5%

β̂21 Ada Lasso 0.996 0.166 0.143 94.8%
Lasso 0.996 0.166 0.143 94.8%

∗Coverage is estimated from 1000 replicates given status of the truly informative/non-informative variables.

5. Real-data illustration

In this section, we illustrate how to apply the proposed IPLM-based analysis to rigorously
analyse biomarker data in a multi-centre Alzheimer’s disease (AD) research project. The
hallmarks of AD are the inter-neuron plaques and within-neuron neurofibrillary tangles
(NFT) in patients’ brain as discovered originally by Dr. Alzheimer in 1906. As is well
known, the amyloid beta 42 (Aβ42) and tau proteins in brain underlie the plaques and
NFT, respectively.Moreover, the existence of within-neuronNFT indicates the dysfunction
and/or death of neuron cells, thus high CSF tau is one of the most important biomarkers of
neurodegeneration and risk biomarkers for AD [28,29]. Additionally, among elderly per-
sons who are at risk for AD, reductions in the CSF Aβ42 are associated with brain Aβ42
deposition and often precede elevations in CSF tau levels. Therefore, there has been per-
sistent interest to investigate the relationship between CSF Aβ42 and CSF tau protein and
CSF tau can be used as a surrogate outcome variable in these AD research. Moreover, the
biological function of Aβ42 in AD is complicated and thus we include it as a nonlinear
predictor of the CSF tau. Some other widely used variables, e.g., age, gender, and APoE4ε
status, are included as linear predictors of the partially linear model.

In our analysis, two of the study centres used in de Leon et al. [30], i.e., NewYorkUniver-
sity (NYU) database and Alzheimer’s Disease Neuroimaging Initiative (ADNI) database,
are included. The NYU database contains 331 observations and ADNI database contains
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335 observations. Because the nonlinear predictor Aβ42 is measured with batch effects, i.e.,
cyclic seasonal pattern over measurement time as displayed in Figure 2, we must adjust
the batch effects of Aβ42 first for data harmonization. In the NYU and ADNI databases,
we fit the observed Aβ42 values over its measurement time t (in month) with a sine
wave Aβ42 = γ + γ1sin(t + θ) to identify the cyclic seasonal pattern. We use least square
method to estimate γ1 and θ within each study centre and both the sine waves in NYU and
ADNI are statistically significant. We then correct the cyclic seasonal pattern to remove
batch effects and obtain the corrected Aβ42 values via:

Aβ ′
42 = Aβ42 − γ̂1sin(t + θ̂ ).

Figure 2. Batch effect of Aβ42.

If we investigated the relationship between CSF Aβ42 and tau protein within each centre
alone separately, we will get seemingly contradictory findings as seen in Figure 3. From the
upper left sub-figure of Figure 3, the NYU centre data mainly shows an increasing trend
while from the lower left sub-figure we can see that the ADNI centre data mainly shows
a decreasing trend. This seemingly increasing versus decreasing contradictory pattern is
mainly due to the heterogeneous age composition in the NYU and ADNI study cohorts. In
fact, the NYU cohort has a large number of young adults and small portion of old adults
while the ADNI cohort has only older adults. Based on data from one study centre only,
e.g., the ADNI cohort, one might easily reach the conclusion of an monotone relationship
between CSF tau and CSF Aβ42 which is not generally true and clearly does not apply to
the NYU cohort. This real-data example demonstrates the limitation and disadvantage of
commonly used single-centre analysis in producing not generalizable and evenmisleading
findings.

We apply the proposed IPLM (1) and find that all predictors’ effects, including age, gen-
der and APoE4ε status, can be regarded as homogeneous between the two centres: NYU
and ADNI. Also, the biological relationship between CSF tau and Aβ proteins and the
mechanism should be largely identical across different centres [30]. Thus it is natural to
combine two study centres together and build a unified model. However, the two cen-
tres have different age distribution. More specifically, the NYU group is younger than the
ADNI group. It is known from the literature that the relationship of CSF Aβ42 and tau
protein between younger adults and older adults differs [19]. Due to the heterogeneous



1002 L. YANG AND Y. SHAO

Figure 3. Individual group and combined group analysis.

age distribution between the study centres, if we use simple pooled analysis, i.e. pooling z-
scores from the two centres as commonly used in the existing literature, the results would
be biased. To overcome the impact of the differential age distribution between NYU and
ADNI, we use an age-based frequency matching method to combine the biomarker data
together. After combining data, we fit a unified model:

taui = β1Agei + β2APoE4εi + β3Genderi + f ∗(Aβ ′
42i) + εi.

The fitted nonlinear curve f ∗(·), i.e. the effect of Aβ42 on tau protein, is shown in Figure 3.
From Figure 3, we find that the effect of Aβ42 on tau protein is clearly nonlinear. More
specifically, as the value of Aβ42 increases, the value of tau protein decreases first and then
increases. Moreover, the study findings, i.e. the nonlinear relationship between Aβ42 and
tau protein, can be expected to be more robust and achieve higher generalizability and
reproducibility because we used data from two independent study centres and the non-
linear curve fit both cohorts quite well as displayed in Figure 3. It should also be pointed
out that nonlinearity of predictors and batch effects in measuring biomarkers widely exists
between study centres. As extra examples, in AD research, Chen et al. [31] showed that
the effect of APoE4ε on the rate of decline from subjects with mild cognitive impairment
(MCI) to AD is not linear and a segmented linear model is used to model the longitudi-
nal trend instead. Also the procedure to obtain the CSF Aβ42 values is more invasive than
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measuring the blood-based Aβ42 level. Therefore, AD researchers across different centres
have started using plasma Aβ42 as non-invasive biomarkers. As reviewed in Figure 1 of
Pannee et al. [13], the plasma Aβ42 values have very low between-centre correlations indi-
cating major batch effects across centres that need to be harmonized carefully to produce
reproducible findings [13]. In short, this AD-research real-data example demonstrates that
the commonly used single-centre analysis can produce non-generalizable findings while
our newly proposed IPLM-based approach can be used in multi-centre studies to auto-
matically account for nonlinear predictors and adjust for batch effect and heterogeneity in
centre compositions yielding generally valid findings.

6. Summary

Achieving generalizable and reproducible findings inmulti-centre studies is of great impor-
tance in research. However, a general, rigorous and flexible statistical analysis method
to account for combinations of common complexities associated with multi-centre stud-
ies has been lacking. In this manuscript, we introduced the integrated partially linear
model (IPLM) and associated analysis methods. The proposed IPLM-based analysis can
account for interplays of multiple complexities commonly exist in modern multi-centre
studies, e.g., predictors having potentially nonlinear effects and heterogeneous group com-
positions, being measured with batch effects and/or potential measurement errors. We
proposed the removal of batch effect in the data-harmonization step of the multi-centre
study. We suggested a local linear regression-based constrained regularization estimation
methodwith a computationally fast implementation of the newly proposed IPLM.The pro-
posed regularized optimization method can automatically identify the predictors’ effects
that can be either homogeneous and/or heterogeneous, and can naturally yield a unified
parsimonious model when all predictors’ effects are homogeneous across study centres.
We provided simulation examples to demonstrate the effectiveness of proposed IPLM and
analysis method for variable selection and parameter estimation when covariates can have
either homogeneous or heterogeneous effects across study centres.We illustrated themajor
biases and misleading findings from the conventional individual-group based analysis
and the commonly used z-score-based data-pooling method without effective batch-effect
adjustments and accounting for composition heterogeneity. Importantly, we have estab-
lished estimation consistency and variable-selection consistency for the proposed method
in our theoremswhere the covariate dimension can diverge as the sample size increases.We
have also established asymptotic normality for the regression parameters under some suit-
able regularity conditions. The real-data application in a multi-centre Alzheimer’s disease
research project is used to illustrate the utility and effectiveness of proposed IPLM-based
analysis in practice. Specifically, the AD-research real-data example was used to demon-
strate that the commonly used individual-centre based analysis can produce misleading
findings while our newly proposed IPLM-based approach can be used in multi-centre
studies to automatically account for nonlinear predictors, heterogeneity in centre composi-
tions, and batch effects in covariates and yield generally valid findings. Also, the IPLM can
increase reproducibility by integrating potential batch-effect and/or measurement-error
removal as part of the careful regression modelling procedure while, in the existing litera-
ture, neglected or casual batch-effect removal in data pooling before any careful statistical
modelling often contributes to non-reproducible findings.
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Appendix: Technical proofs

Proof of Theorem 3.1: First, we adjust the batch effect using linear regression model. By Assump-
tion 3.6, we have

|wk(i) − v′
k(i)| = |g(mki; ψ̂k) − g(mki;ψ∗

k)| ≤ |g′(mki; ψ̃k)||ψ̂k − ψ∗
k | = Op(n− 1

2 ) (A1)

for any i = 1, . . . , nk and k = 1, . . . ,K, where ψ̃k ∈ (ψ∗
k , ψ̂k). Then by Assumption 3.1– 3.5, the

local polynomial estimates satisfy

sup
V ′
k

|m̂ky(V ′
k) − mky(V ′

k)| = op(n− 1
4 ) and sup

V ′
k

|m̂kzj(V ′
k) − mkzj(V ′

k)| = op(n− 1
4 ) (A2)

for j = 1, . . . , pn , where m̂kzj(·) andmkzj(·) are the jth element of m̂kz(·) andmkz(·).
By re-parametrization, let βk = β + αk. Thus we have β = ∑K

k=1 βk/K and αk = βk − β .
Denote� = (βT

1, . . . ,β
T
K)T. Then we can rewrite lp(β ,α) (3) as

lp(�) = l(�) −
K∑

k=1

nkβk�kβk + pλβ (�) + pλα (�),

where l(�) = ∑K
k=1

∑nk
i=1(̂yki − ẑTkiβk)

2, pλβ (�) = λβ

∑pn
j=1 |K−1 ∑K

k=1 βkj| and pλα (�) = λα∑K
k=1

∑pn
j=1 πkj|βkj − K−1 ∑K

k=1 βkj|. Denote θ = (ξ T1, . . . , ξ
T
K)T. Let rn = (n/pn)−

1
2 . We show that

for any given ζ , there exists a large enough constant C such that

P
{

inf
‖θ‖=C

lp(�∗ + rnθ) > lp(�∗)
}

≥ 1 − ζ .

Because πj and πkj are adaptive Lasso weight, we get |πj| > 0 and |πkj| > 0 for any j ≤ pn,0 and
k = 1, . . . ,K, |πj| = Op(r−1

n ) and |πkj| = Op(r−1
n ) for any j > pn,0 and k = 1, . . . ,K. For the penalty

terms pλβ (�) and pλα (�), it is easy to verify that

pλβ (�∗ + rnθ) − pλβ (�∗) ≥ λβ

pn,0∑
j=1

πj

∣∣∣∣∣
K∑

k=1

β∗
kj/K + rn

K∑
k=1

ξkj/K

∣∣∣∣∣ − λβ

pn,0∑
j=1

πj

∣∣∣∣∣
K∑

k=1

β∗
kj/K

∣∣∣∣∣

≥ −λβrn
pn,0∑
j=1

πj

∣∣∣∣∣
K∑

k=1

ξkj/K

∣∣∣∣∣ . (A3)

Similarly, we have

pλα (�∗ + rnθ) − pλα (�∗) ≥ −λαrn
K∑

k=1

pn,0∑
j=1

πkj

∣∣∣∣∣ξkj −
K∑

k=1

ξkj/K

∣∣∣∣∣ . (A4)

Next, for δl = l(�∗ + rnθ) − ∑K
k=1 nk(β

∗
k + rnθk)T�k(β

∗
k + rnθk) − l(�∗) + ∑K

k=1 nkβ
∗
k
T
�kβ

∗
k ,

we have

δl = −2rn
K∑

k=1

nk∑
i=1

(̂ykîzTki − ẑTkiβ
∗
k ẑ

T
ki + β∗

k
T
�k)ξ k + r2n

K∑
k=1

nkξTk(n
−1
k

nk∑
i=1

ẑkîzTki − �k)ξ k.
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Now we calculate the order of the first term. Note that ŷki and ẑki can be decomposed as

ŷki = yki − m̂ky(v′
ki) = yki − mky(wki) + mky(wki) − mky(v′

ki) + mky(v′
ki) − m̂ky(v′

ki),

ẑki = zki − m̂kz(v′
ki) = zki − mkz(wki) + mkz(wki) − mkz(v′

ki) + mkz(v′
ki) − m̂kz(v′

ki). (A5)

Denote ỹki = yki − mky(wki), ȳki =mky(wki) − mky(v′
ki), z̃ki = zki − mkz(wki) and z̄ki = mkz(wki) −

mkz(v′
ki). Then we can decompose the first term of δl as

∑K
k=1

∑nk
i=1{(̂yki − ỹki − ȳki)(̂zki − z̃ki −

z̄ki)T + (̂yki − ỹki − ȳki)̃zTki + (̂yki − ỹki − ȳki)z̄Tki + ỹki(̂zki − z̃ki − z̄ki)T + ȳki(̂zki − z̃ki − z̄ki)T +
(̃ykĩzTki − z̃Tkiβ

∗
k z̃

T
ki + β∗

k
T
�k) + ỹkiz̄Tki + ȳkĩzTki + ȳkiz̄Tki − z̃Tkiβ

∗
k z̄

T
ki − z̄Tkiβ

∗
k z̃

T
ki − z̄Tkiβ

∗
k z̄

T
ki − (̂zki − z̃ki

− z̄ki)Tβ∗
k (̂zki − z̃ki − z̄ki)T − z̃Tkiβ

∗
k (̂zki − z̃ki − z̄ki)T − z̄Tkiβ

∗
k (̂zki − z̃ki − z̄ki)T − (̂zki − z̃ki − z̄ki)T

β∗
k z̃

T
ki − (̂zki − z̃ki − z̄ki)Tβ∗

k z̄ki}. By Assumption 3.5 and (A1), we have ȳki = Op(n− 1
2 ) and

‖z̄ki‖ = Op((n/pn)−
1
2 ). Combining E(̃yki) = 0, E(̃zki) = 0, Equation (A2), Assumption 3.7,

Lemma A.1 in Liang and Li [21] and only the first pn,0 elements in β∗
k are nonzero, we

have
∑nk

i=1(̂yki − ỹki − ȳki)(̂zki − z̃ki − z̄ki)T = op((npn)
1
2 ),

∑nk
i=1(̂yki − ỹki − ȳki)̃zTki = op((npn)

1
2 ),∑nk

i=1(̂yki − ỹki − ȳki)z̄Tki = op((npn)
1
2 ),

∑K
k=1

∑nk
i=1 ỹki(̂zki − z̃ki − z̄ki)T = op((npn)

1
2 ),

∑nk
i=1 ȳki

(̂zki − z̃ki − z̄ki)T = op((npn)
1
2 ),

∑nk
i=1 ỹkiz̄

T
ki = op((npn)

1
2 ),

∑nk
i=1 ȳkĩz

T
ki = op((npn)

1
2 ),

∑nk
i=1 ȳkiz̄

T
ki

= op((npn)
1
2 ),

∑nk
i=1 z̃

T
kiβ

∗
k z̄

T
ki = op((npn)

1
2 ),

∑nk
i=1 z̄

T
kiβ

∗
k z̃

T
ki = op((npn)

1
2 ),

∑nk
i=1 z̄

T
kiβ

∗
k z̄

T
ki = op

((npn)
1
2 ),

∑nk
i=1(̂zki − z̃ki − z̄ki)Tβ∗

k (̂zki − z̃ki − z̄ki)T = op((npn)
1
2 ),

∑nk
i=1 z̃

T
kiβ

∗
k (̂zki − z̃ki − z̄ki)T =

op((npn)
1
2 ),

∑nk
i=1 z̄

T
kiβ

∗
k (̂zki − z̃ki − z̄ki)T = op((npn)

1
2 ),

∑nk
i=1(̂zki − z̃ki − z̄ki)Tβ∗

k z̃
T
ki = op((npn)

1
2 ),∑nk

i=1(̂zki − z̃ki − z̄ki)Tβ∗
k z̄ki = op((npn)

1
2 ). Moreover, by central limit theorem, we have

∑K
k=1

∑nk
i=1

(̃ykĩzTki − z̃Tkiβ
∗
k z̃

T
ki + β∗

k
T
�k) = Op((npn)

1
2 ). Thus

∑nk
i=1(̂ykîz

T
ki − ẑTkiβ

∗
k ẑ

T
ki + β∗

k
T
�k) = op((npn)

1
2 )

for any k = 1, . . . ,K.
For the second term of δk, we have

n−1
k

nk∑
i=1

ẑkîzTki − �k → E
[
(xki − mkz(wki))(xki − mkz(wki))

T
]
,

which is a positive definite matrix with constant eigenvalue by Assumption 3.3. Therefore, we
conclude that there exists some constants c1, c2 and c3 such that

δl ≥ c1r2nn‖θ‖22 − c2rn(npn)
1
2 ‖θ‖ − λβrnpn‖θ‖ − λαrnpn‖θ‖

≥ pn
(
c1‖θ‖22 − c2‖θ‖2 − λβ(n/pn)−

1
2 ‖θ‖ − λα(n/pn)−

1
2 ‖θ‖).

If λβ(n/pn)−
1
2 → 0 and λα(n/pn)−

1
2 → 0, we can find a large enough constant C such that δl >

0 for ‖θ‖ = C. Thus β̂k − β∗
k = Op((n/pn)−

1
2 ), which implies that β̂ − β∗ = Op((n/pn)−

1
2 ) and

α̂k − α∗
k = Op((n/pn)−

1
2 ) for any k = 1, . . . ,K.

For the nonlinear components estimation, we have m̂ky(v′
ki) − m̂kz(v′

ki)
Tβ̂k − f ∗k (wki) =

m̂ky(v′
ki) − mky(v′

ki) + mky(v′
ki) − mky(wki) + mky(wki) − (m̂kz(v′

ki) − mkz(v′
ki) + mkz(v′

ki) − mkz

(wki) + mkz(wki))
T(β̂k − β∗

k + β∗
k) − f ∗k (wki). By m̂ky(v′

ki) − mky(v′
ki) = op(n− 1

4 ), mky(v′
ki) − mky

(wki) = Op(n− 1
2 ), m̂kz(v′

ki) − mkz(v′
ki) = op(n− 1

4 ), mkz(v′
ki) − mkz(wki) = Op(n− 1

2 ), β̂k − β∗
k =

Op((n/pn)−
1
2 ) and mky(wki) = mkz(wki) + f ∗k (wki), we get m̂ky(v′

ki) − m̂kz(v′
ki)

Tβ̂k − f ∗k (wki) =
Op(max{n− 1

4 , (n/p3n)
− 1

2 }). Then the desired result can be obtained. �

Proof of Theorem 3.2: We prove Theorem 3.2 by contradiction. Suppose |β̂j| > 0 for j > pn,0. Take
the derivative for βj and get the KKT condition

K∑
k=1

nk∑
i=1

(̂yki − ẑTkiβ̂k)̂zkij +
K∑

k=1

nkβ̂
T
k�kJj = 1

2
λβπjsign(β̂j),
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where Jj is the vector of all zeros except jth element. By Theorem 3.1 and the decomposition (A5),
the left-hand side is

∑K
k=1

∑nk
i=1(̃yki + op(n− 1

4 ) − (̃zki + op(n− 1
4 ))T(β∗

k + Op((n/pn)−
1
2 )))(̃zki +

op(n− 1
4 ))j −

∑K
k=1 nk(β

∗
k + Op((n/pn)−

1
2 ))T�kJj. Then by Lemma A.1 in Liang and Li [21] and

Assumption 3.3, the left-hand side can be simplified as
K∑

k=1

nk∑
i=1

(̃
yki − z̃Tkiβ

∗
k
)
(̃zki)j −

K∑
k=1

nk(β∗
k)

T�kJj + Op((npn)
1
2 ),

which is equal to
K∑

k=1

nk∑
i=1

εkiUkij +
K∑

k=1

nk(β∗
k)

T(n−1
k UkiUT

ki − �k)Jj + Op((npn)
1
2 ).

Because n−1
k UkiUT

ki − �k = Op(n− 1
2 ), we get the left-hand side is Op((npn)

1
2 ). The right-hand side

is λβOp((n/pn)
1
2 ). We divide (npn)

1
2 on both left- and right-hand sides and get Op(1) = λβ/pn,

which is contradicted to λβ/pn → ∞. We conclude that |β̂j| = 0 for j > pn,0.
Similarly, we can prove α̂kj = 0 for any j > pn,0 and k = 1, . . . ,K. Suppose |̂αkj| > 0 for j > pn,0.

Take the derivative for αkj and get the KKT condition
nk∑
i=1

(̂yki − ẑTkiβ̂k)̂zkij + nkβ̂
T
k�kJj = 1

2
λαπkjsign(̂αkj).

Same as the proof for showing |β̂j| = 0 for j > pn,0 above, we have the left-hand side is Op((npn)
1
2 )

and the right-hand side is λαOp((n/pn)
1
2 ). We divide (npn)

1
2 on both left- and right-hand sides

and get Op(1) = λα/pn, which is contradicted to λα/pn → ∞. We conclude that |̂αkj| = 0 for j >

pn,0. �

Proof of Theorem 3.3: The proof of Theorem 3.3 was essentially the same as the proof of
Theorem 3.1 and 3.2, which was omitted here. �

Proof of Theorem 3.4: The key idea of the proof is the same as the proof of Theorem 1 in Liang and
Li [21]. Take the derivative for βkI in Equation (3) and get the KKT condition that

nk∑
i=1

(zki − m̂kz(wki))I(yki − m̂ky(wki) − (zki − m̂kz(wki))
T
IβkI) − nk�kIβkI + op(n1/2) = 0.

Same as the proof of Theorem 1 in Liang and Li [21], because

sup
Wk

|m̂ky(Wk) − mky(Wk)| = op(n− 1
4 ) and sup

Wk

|m̂kzj(Wk) − mkzj(Wk)| = op(n− 1
4 ),

β̂kI has the same asymptotic distribution as the solution of

−
nk∑
i=1

(zki − mkz(wki))I(yki − mky(wki) − (zki − mkz(wki))
T
IβkI) − nk�kIβkI + op(n1/2) = 0.

By zki − mkz(wki) = xki − E(xki|wki) + Uki and yki = (xki − mkz(wki))
T
Iβ

∗
kI + mky(wki) + εki, a

direct simplification yields that

1√
nk

nk∑
i=1

{[
xki − E(xki|wki) + Uki

]⊗2
I − �kI

}
(β̂kI − β∗

kI)

= 1√
nk

nk∑
i=1

{
[xki − E(xki|wki) + Uki

]
I(εki − UT

kI,iβ
∗
kI) + �kIβ

∗
kI

}
+ op(1).
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As n → ∞, because n−1
k

∑nk
i=1[xki − E(xki|wki) + Uki]⊗2

I → �k
X|W + �kI , we get

√
nk�k

X|W(β̂kI − β∗
kI) → N(0,�k),

where �k = E{(XkI − E(XkI |Wk))(εk − UT
kIβ

∗
kI) + εkUkI + (�kI − UkIUT

kI)β
∗
kI}⊗2. The desired

result is obtained. �


	1. Introduction
	2. Models
	2.1. Constrained optimization
	2.2. Details of ADMM
	2.3. Parsimonious model

	3. Asymptotic properties
	4. Numerical studies
	4.1. Covariates with homogeneous effects across groups
	4.2. Covariates with heterogeneous effects across groups

	5. Real-data illustration
	6. Summary
	Acknowledgements
	Disclosure statement
	Funding
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [493.483 703.304]
>> setpagedevice




