

Risk Factors for *Bartonella* Seroreactivity Among Veterinary Professionals in the Pacific
Northwest

Natalie Thiel

A thesis
submitted in partial fulfillment of the
requirements for the degree of

Master of Public Health

University of Washington

2021

Committee:

Peter Rabinowitz

Marissa Baker

Beth Lipton

Program Authorized to Offer Degree:

Environmental and Occupational Health Sciences

©Copyright 2021

Natalie Thiel

University of Washington

Abstract

Risk Factors for *Bartonella* Seroreactivity Among Veterinary Workers in the Pacific Northwest

Natalie Thiel

Chair of the Supervisory Committee:

Dr. Peter Rabinowitz

Department of Environmental and Occupational Health Sciences

Exposure to zoonotic disease is a significant occupational risk in veterinary medicine. In this study, we characterized PPE use, injury frequency, and *Bartonella* seroreactivity in Washington State veterinary workers. Using a job exposure matrix developed to reflect occupational risk factors for exposure to *Bartonella* and multiple logistic regression, we explored determinants of risk for *Bartonella* seroreactivity. Depending on the [titer](#) cutoff used, *Bartonella* seroreactivity was between 24.0% and 55.2%. No significant predictors of seroreactivity were found, though the relationship between high-risk status and increased seroreactivity for some *Bartonella* species approached significance. The predictive power of the model was likely limited by the small sample size and high level of exposure to risk factors [foref](#) most participants. Given the high proportion of veterinarians seroreactive to one or more of the three *Bartonella* spp. known to infect dogs and cats in the United States, and the unclear relationship between occupational risk factors and seroreactivity, more research is needed in this area.

Background

Veterinarians and other veterinary ~~care~~ workers face occupational exposure to zoonotic pathogens on a daily basis. Exposure to zoonotic disease is an occupational risk implicit in veterinary medicine. While zoonotic infections can be subclinical, they can also be severe—even life-threatening—or significantly impact individuals' quality of life. In a survey of members of the Oregon Veterinary Medicine Association, almost one half (47.2%) of respondents reported having contracted a zoonotic disease during their career (1). In a 2012 study of Canadian veterinarians, 176.7% reported that they had been diagnosed with or treated for a zoonotic disease in the past five years (2). Authors of a 2021A recent systematic review and meta-analysis of veterinary occupational hazards found a pooled proportion estimate of zoonotic disease infection of 17% among veterinarians, with proportions up to about 31%, 26%, and 24% for specific infections such as bartonellosis, Q fever, and viral infection, respectively (3). Despite these risks, surveys have reported Zoonotic infection is of particular concern in veterinarians because of generally low use or of personal protective equipment (PPE) and insufficient lack of comprehensive infection prevention and control (IPC) planning in the profession veterinary workplaces (4, 5, 6). According to a survey of over 2,000 veterinarians in the United States, almost all 92-98.5% of veterinarians(92-99%) engage in needle recapping; less than one-quarter ($<25\%$) reported using appropriate PPE when handling patients with dermatologic (17.9%), gastrointestinal (21.4%), respiratory (6.3%), or neurologic symptoms (16.5%); and only just over one-half (55.2%) always wash their hands before eating or drinking at work (7). As a result, veterinary ~~care~~ workers remain While the majority of the zoonotic diseases experienced by veterinarians are relatively mild and treatable, the frequency of infection and exposure in

Commented [LB1]: Use the term 'veterinary workers' in the abstract so would be consistent.

Commented [LB2]: Add actual percentage

veterinarians indicates that this population is particularly vulnerable to emerging and reemerging zoonotic diseases, although the magnitude of the risk remains poorly understood.

Bartonella is one such reemerging zoonotic diseasepathogen that has been associated with occupational veterinary exposures (8, 9). *Bartonella* species are fastidious, slow-growing, gram-negative bacteria that typically cause long-lasting intraerythrocytic and endotheliotropic infections (10). Since its reclassification in 1993, the genus has grown by over forty species and new members are regularly proposed (11). *Bartonella* is of particular relevance to veterinarians veterinary workers because of the presence of these bacteria in blood, tissues, and pathological effusions in companion animals such as dogs, cats, and rodents, and livestock such as cattle (12, 11). *Bartonella* seropositivity is particularly common in domestic cats—studies have documented 30-40% seroreactivity for *B. henselae* and the presence of several other *Bartonella* species (13)in domestic cats. In humans, *Bartonella* infection can cause illness with a wide range of severity. *B. henselae* infections are typically characterized by self-limited, regional lymphadenopathy (also known as 'cat scratch disease'), but can also cause more severe, disseminated disease, particularly in immunocompromised individuals (14). Other *Bartonella* species have been implicated in chronic rheumatic disease manifestations (15, 16). *Bartonella* has been well characterized as a cause of acute infection, but little is known about the possible health effects of subclinical infection or regular exposure to the pathogen as an occupational risk. Because of the expanding number of *Bartonella* species, the spectrum of disease they can cause, and their presence in companion animals and livestock, *Bartonella* should be considered has been proposed as a serious, previously underrecognized threat, particularly to veterinary workers (17)ians. (REF).

Commented [EBB3]: Could reference the three veterinary studies above- maggi, lantos and otoe and/or the case report I wrote on whether *Bartonella* contributed to the deaths of two veterinarians.

Formatted: Font: Italic

Sequential and potentially life-time studies are needed to correlate the occupational risk of zoonotic exposure to actual health outcomes. In order to protect veterinary professionals from the threat of emerging zoonotic diseases, we first need to understand the prevalence of and risk factors for zoonotic infection in this population. Many surveys of occupational healthzoonotic risks disease infor veterinary workers have been conducted, however, these surveys do not necessarily include zoonotic disease or investigate specific zoonotic infections. Surveys that do include and specify zoonotic disease often rely on self-reported (and frequently, self-diagnosed) symptoms and testing at a single point in time, making the identification of subclinical manifestations difficult and the misclassification of infection likely. Studies that investigate specific zoonotic diseases and measure infection prevalence more quantitatively are needed. In the current study, we measured seroreactivity to *Bartonella henselae*, *B. kohlerae*, and *B. vinsonii* subsp. *berkhoffii* in a sample of 96 veterinarians at a from Washington State Veterinary Medical Association conference. Using a job exposure matrix (JEM) developed from an accompanying survey, we estimated occupational risk of factors for exposure to *Bartonella* to explore determinants of risk for *Bartonella* seroreactivity.

Methods

This study was designed and carried out as a cross-sectional convenience survey of veterinarians in the Pacific Northwest. A self-administered survey of veterinary practice characteristics, work practices, exposure to potentially infectious materials, injuries, and health outcomes was distributed to 96 veterinary professionals at thea 2019 Pacific Northwest Veterinary medicine Ceonference of by the Washington Veterinary Medical Association. A blood sample was also collected from each participant and analyzed by immunofluorescence

assay (IFA) for antibodies specific to *Bartonella henselae*, *B. kohlerae*, and *B.vinsonii* subsp. *berkhoffii*.

Laboratory Methods

Bartonella vinsonii subsp. *berkhoffii*, *B. henselae*, and *B. koehlerae* antibodies were determined in the Intracellular Pathogens Research Laboratory (IPRL) at North Carolina State University (North Carolina, USA) using cell culture grown bacteria as antigens and following standard immunofluorescent antibody assay (IFA) techniques as previously described (9, 18) (Oteo et al., 2017; Portillo et al 2020). A canine isolate of *B. vinsonii* subsp. *berkhoffii* genotype II (NCSU 95CO-08, Winnie), and feline isolates of *B. henselae* SA2 strain (NCSU 95FO-099, Missy) and *B. koehlerae* (NCSU 09FO-01, Trillium) were passed from agar plate grown cultures into *Bartonella*-permissive cell lines, i.e., the DH82 (a canine monocyteoid) cell line for strains *B. henselae* SA2 and *B. koehlerae* and Vero cells (a mammalian fibroblast cell line) for *B. vinsonii* subsp. *berkhoffii* genotype II, for IFA testing. For each antigen, heavily infected cell cultures were spotted onto 30-well Teflon-coated slides (Cell-Line/Thermo Scientific), air-dried, acetone-fixed, and stored frozen. Fluorescein conjugated goat anti-human IgG (Cappel, ICN) was used to detect bacteria within cells using a fluorescent microscope (Carl Zeiss Microscopy, LLC, Thornwood, NY). Serum samples diluted in a phosphate-buffered saline (PBS) solution containing normal goat serum, Tween-20, and powdered nonfat dry milk to block nonspecific antigen binding sites were first screened at dilutions of 1:16 to 1:64. All sera that were reactive at a reciprocal titer of 64 were further tested with two-fold dilutions to an endpoint titer. To avoid confusion with possible nonspecific binding found at low dilutions, a cutoffs of 1:64 and 1:128 whereas selected as a seroreactive titers.

[Job Exposure Matrix](#)

Formatted: Not Highlight

We created a job exposure matrix (JEM) for occupational exposure risk by combining measures of reported PPE use and reported animal-related injury (including bites and scratches) from the survey (Appendix I). Use score for PPE was determined by assessing reported glove, surgical mask, eye shield, and other PPE use (“other” PPE was rare, but included heavy gloves and squeeze chutes~~define what other could be here~~) for nine tasks where exposure to blood, saliva, needle sticks, or animal bites and scratches could occur, on a 0-4 scale (0 = never use, 4 = always use). Scores on each tasks were summed to create a total PPE use score with a maximum of 144 points. High PPE use was defined as ≥ 37 points (average of > 4 points per task, e.g. multiple pieces of PPE sometimes or one piece of PPE always), moderate PPE use as 19-36 points (average of > 2 and ≤ 4 points per task, e.g. no more than multiple pieces of PPE rarely or one piece of PPE often), and low PPE use as 0-18 points (average of ≤ 2 points per task, e.g. no more than two pieces of PPE rarely or one piece of PPE sometimes). Score for occupational injury was assigned by assessing frequency of animal injury and needle stick injury in the past year on a scale of 0-5 (0 = never, 5 = daily). Scores were summed for a total injury score with a maximum of 10 points. A low injury score was defined as ≤ 3 points (e.g. no more than monthly for one type of injury or every six months for two types), moderate injury score as 4-6 points (e.g. daily for one type of injury or monthly for two types), and high injury score as ≥ 7 points (e.g. at least weekly for one type of injury and monthly for the other). To create a total overall risk score, PPE use scores were reverse coded, with high use assigned a value of 1, moderate use assigned a value of 2, and low use assigned a value of 3. Low injury was assigned a value of 1, moderate injury a value of 32, and high injury was assigned a value of 3. The two categories (PPE use and injury) were summed to create the overall risk score. Low overall risk was defined

as 0-32 total points (high PPE use and low injury), moderate total risk as 4 total points, and high total risk as 5-6 total points (low PPE use and high injury).

Logistic Regression Model

We then generated a logistic regression model including total risk level, career length, cat ownership, and dog ownership as possible predictors of overall *Bartonella* seroreactivity at the 1:128 cut-off ($\text{Logit}(p) = \beta_0 + \beta_1 X_{\text{risklevel}} + \beta_3 X_{\text{careerlength}} + \beta_4 X_{\text{petcat}} + \beta_4 X_{\text{petdog}}$). The same model was used also for the outcomes *B. henselae* seroreactivity, *B. kohlerae* seroreactivity, and *B. vinsonii* subsp. *berkhoffii* seroreactivity. A chi-squared test was used to assess the relationship between *Bartonella* seroreactivity and general health rating.

Results

Participant characteristics

Most of the 96 participants were veterinarians, though practice owners, veterinary technicians, practice managers, and students were also included (Table 1). The sample was mostly female and of white race/ethnicity. Categories for jobs and race were not mutually exclusive. Age ranged from 23 to 71 years, with a mean age of 48.2. The mean career length for participants was 22.326 years. As Table 1 and 2 show, exposure to cats and dogs was high for the majority of the sample: almost all participants work with cats and/or dogs and most have a pet cat and/or dog. Scratches were the most common occupational injury for most participants. The most common animal source of injury was cats.

← Formatted: Indent: First line: 0"

Table 1. Demographic characteristics.

Demographic characteristics	n (%)	Percent	Mean	SD
Age			46.6	13.1
Gender				
Female		<u>82 (85.4%)</u>		
Male		<u>12 (12.5%)</u>		
Other		<u>2 (2.1%)</u>		
Race/ethnicity*				
White		<u>82 (84.4%)</u>		
Black		0		
Hispanic		<u>2 (2.1%)</u>		
Asian		<u>3 (3.1%)</u>		
American Indian/Alaska Native		0		
Native Hawaiian/Pacific Islander		<u>1 (1.0%)</u>		
Other		<u>1 (1.0%)</u>		
Pet ownership*				
Cat		<u>71 (74.0%)</u>		
Dog		<u>72 (75%)</u>		

*Participants could check more than one category; some participants did not answer
Participants were veterinary professionals

Commented [MB4]: Could you add n (%)? Were respondents able to check multiple race/ethnicity? If so, that should be mentioned. Race/ethnicity doesn't add up to 100, so presumably some folks declined to answer, so that should be added too

Commented [LB5R4]: Agree- see comment above also

Table 2. Occupational characteristics.

Occupational characteristics	n (%)	Percent	Mean	SD
Length of career (years)			22.3	12.6
Job title*				
Owner		<u>27 (28.1%)</u>		
Veterinarian		<u>76 (79.2%)</u>		
Veterinary technician		<u>9 (9.4%)</u>		
Veterinary assistant		0		
Veterinary student		<u>1 (1.0%)</u>		
Practice manager		<u>3 (3.1%)</u>		
Other**		<u>6 (6.3%)</u>		
Practice type*				
Small animal		<u>81 (84.4%)</u>		
Large animal		<u>3 (3.1%)</u>		
Mixed practice		<u>13 (13.5%)</u>		
Other**		<u>11 (11.5%)</u>		

Commented [MB6]: Again, I would do n (%) to summarize these

Formatted: Line spacing: single

Occupational cat/dog exposure*	
Cat	<u>85</u> .494 (97.9%)
Dog	<u>92</u> (95.8%)12.5
Most common injury type*	
Bite	<u>8</u> (8.3%)
Scratch	<u>70</u> (72.9%)
Kick	<u>5</u> (5.2%)
Needle stick	<u>16</u> (16.7%)
Other	<u>6</u> (6.3%)22
Most common animal injury source*	
Cat	<u>50</u> (52.1%)
Dog	<u>29</u> (30.2%)27.1
Other	<u>16</u> (16.7%)

*Participants could check more than one category

**Other jobs included technical services vet, state/army vet, department chair/instructor, public health vet; other practice types included exotic animals, zoos

Formatted: Line spacing: single

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt

Overall, most participants (93.8%) reported being in excellent or good health (Table 3).

However, manyest participants also reported being diagnosed with a health condition such as allergies, arthritis, or a chronic musculoskeletal disorder (Table 4). (Table 1). Only one participant reported being formally diagnosed with bartonellosis.

Table 43. Reported health status.

Self-reported health	<u>n (%)</u> *Percent
Health rating	
Excellent	<u>35</u> (36.5%)
Good	<u>55</u> (57.3%)
Fair	<u>6</u> (6.3%)
Poor	0
Diagnoses*	
Allergies	<u>42</u> (43.8%)
Chronic Musculoskeletal Disorder	<u>34</u> (35.4%)
Arthritis	<u>27</u> (28.1%)

Zoonotic infection*	<u>18 (18.8%)</u>
Asthma	<u>16 (16.7%)</u>
Dermatitis	<u>12 (12.5%)</u>
Immunocompromising Disorder	<u>6 (6.3%)</u>
Other	<u>10 (10.4%)</u>

*Participants could check more than one category

***Zoonotic infections included ringworm, cryptosporidiosis, salmonellosis, psittacosis, roundworms, and bartonellosis.

← Formatted: Line spacing: single

Bartonella Seroreactivity

At the 1:64 titer cutoff, 545.2% of participants were seroreactive to at least one

Bartonella species (32.3% for *B. henselae*, 36.5% for *B. kohlerae*, and 24.0% for *B. vinsonii* subsp. *berkhoffii*). At the 1:128 cutoff, 24.0% of participants were seroreactive to positive for at least one *Bartonella* species (11.5% for *B. henselae*, 15.6% for *B. kohlerae*, and 8.3% for *B. vinsonii* subsp. *berkhoffii*). 26 (27.1%), 17 (17.7%) and 10 (10.4%) participants were reactive to one, two or three *Bartonella* species, respectively. Forty-four 44 (46.0%) participants were not seroreactive (IFA titers <1:64) to any of the three IFA antigens *Bartonella* species.

Correlation of Seroreactivity and Risk Factors

No significant predictors of seroreactivity were found using the initial logistic regression model, likely because of the small sample size, the lack of variability in risk factors, and the limited sensitivity of *Bartonella* IFA. In a model comparing high risk to both low and moderate risk instead of all risk categories to each other, values approaching or achieving significance were found for the relationship between high risk and general *Bartonella* seroreactivity, as well as *B. kohlerae* seroreactivity (Table 2). A significant inverse relationship between career length and general *Bartonella* seroreactivity was observed in this high-risk model (OR = 0.51 [0.27-

0.98], $p = 0.043$). No significant relationship between *Bartonella* seroreactivity and general health rating was found.

Table 4. Association between high total risk status and *Bartonella* status.

Species	OR	95% CI	P-value
All <i>Bartonella</i>	2.95	0.99-8.79	0.052
<i>B. henselae</i>	2.03	0.49-8.32	0.33
<i>B. koehlerae</i>	3.35	1.01-11.18	0.049
<i>B. vinsonii</i> subsp. <i>berkhoffii</i>	2.00	0.41-9.84	0.39

Discussion:

Because few serosurveys of *Bartonella* in veterinary workers have been conducted, it is difficult to compare our findings to existing literature. However, our seroreactivity findings are comparable to a 2017 serosurvey of *Bartonella* in veterinary workers by Oteo et al. (9). At the 1:64 cutoff point, we found that 32.7% of participants were seroreactive to *B. henselae* and 36.5% were seroreactive to *B. koehlerae*, similar to Oteo's findings of 37.1% and 41.6%. Our results differed for *B. vinsonii* subsp. *berkhoffii*. We found that 24.0% of participants were seroreactive to *B. vinsonii* subsp. *berkhoffii*, while Oteo found a much higher percentage of 56.2. At the 1:128 cutoff, we found similar seroreactivity to *B. henselae* (11.5% vs. 10.1%), higher seroreactivity to *B. koehlerae* (15.6% vs. 10.1%), and lower seroreactivity to *B. vinsonii* subsp. *berkhoffii* (8.3% vs. 12.4%).

Formatted: Font: Italic

Formatted: Indent: First line: 0.5"

Formatted: Font: Italic

Both these sets of findings support the claim that seroreactivity to *Bartonella* may be higher in veterinarians than in the general population, though seroreactivity can only be directly compared for *B. henselae* due to the lack of human serosurveys of *B. kohlerae* and *B. vinsonii* subsp. *berkhoffii*. A serosurvey of healthy adults in Korea found an overall prevalence of 15.0% (1:64 cutoff), and a serosurvey of children in Jordan found a prevalence of 11% (1:64 cutoff) (19, 20). However, a serosurvey of healthy students in Germany found that 30% (1:64 cutoff) were seroreactive to *B. henselae*, similar to the 32.3% prevalence in our sample of veterinary workers (21). Further research will be necessary to determine more definitive estimates of seroprevalence, particularly for different geographical area before a confident comparison can be made.

Overall, relationships between hypothesized risk factors and seroreactivity were not significant in our original logistic regression model. However, there was a trend toward increasing seroreactivity with increasing risk level. This trend was more visible when comparing high risk participants to all other participants (combining low and moderate risk participants), and significant or near-significant relationships were found between high risk level and general *Bartonella* seroreactivity (OR = 2.95, $p = 0.052$) as well as *B. kohlerae* seroreactivity (OR = 3.35, $p < 0.05$). Cat and dog ownership were not significant predictors of seroreactivity. In the high risk model, a significant inverse relationship was found between career length and seroreactivity (OR = 0.51, $p = 0.043$). While this is contrary to the expected trend of higher seroprevalence for more experienced veterinarians because of greater cumulative exposure, it reflects serosurveys in cats which have shown that older cats tend to have lower rates of seroreactivity than younger cats (22). This could be due to less robust immune responses to *Bartonella* in older cats and humans. However, since little is known about *Bartonella* antibody

kinetics, it is also possible that *Bartonella* antibodies are not very long-lasting and are more common in younger veterinarians or that older veterinarians are mounting a weaker immune response. Further research into the durability of *Bartonella* antibodies is needed.

Because of the small sample size and homogeneity of exposure to risk factors in the sample, it is not surprising that we were unable to identify few significant risk factors for *Bartonella* seroreactivity. A post-hoc power calculation revealed that even using the more sensitive 1:64 cutoff, our sample size was insufficient to detect significant relationships for a true odds ratio of less than or equal to two (23). Despite this limitation, we still observed positive odds ratios, ranging from 2.X to 3.X, of about two to three for multiple types of *Bartonella* seroreactivity according to increasing JEM risk level, indicating that low PPE use and high frequency of animal injury and needle sticks could be risk factors for *Bartonella* seroreactivity. Using a more heterogeneous sample with respect to exposure to risk factors and including practice type or frequency of occupational exposure to cats and dogs in future JEMs could also help clarify these relationships.

One of the strengths of this study is the use of serology instead of self-reported illness or PCR to estimate *Bartonella* infection, since *Bartonella* infection can be very mild and may not prompt a visit to the doctor. Serology likely captures more previous infections. This study is also strong in its inclusion of *B. kohlerae* and *B. vinsonii* subsp. *berkhoffii* as well as *B. henselae*. Including these species of *Bartonella* reveals that *B. kohlerae* may be even more common in veterinary workers than *B. henselae* and should be considered when assessing veterinary *Bartonella* exposures. Future research should use serology and include these less-studied species to give a clearer picture of the risk posed to veterinary workers by *Bartonella*. Another key strength is the use of a risk assessment framework based on PPE use and occupational injury

frequency. This is a novel approach—examining the health risks of veterinary workers based on occupational characteristics—and is important for understanding how we may prevent *Bartonella* infections rather than just detecting them.

Overall, this study supports the claim that *Bartonella* is an emerging infectious disease that should be further explored and monitored in this population. While reducing illness from *Bartonella* is worthwhile in itself, *Bartonella* can also be used as an indicator of risk posed by other emerging infectious diseases and to evaluate the effectiveness of PPE use and injury prevention against blood and saliva-borne zoonotic infections in general. making this work important for public health. Future research that includes multiple *Bartonella* species, uses serology in addition to self-report or PCR measures testing, and compares veterinary workers with a wide range of work practices and animal exposures will hopefully clarify the role of *Bartonella* in human and animal health. and guide inform interventions that improve the safety of veterinary workplaces, and ultimately decrease the burden of *Bartonella* in this population, positively impacting occupational and public health.

Formatted: Font: Italic

Acknowledgments

Research reported in this thesis was supported by the National Institute for Occupational Safety and Health (NIOSH) under Federal Training Grant T42OH008433. The content is solely the responsibility of the authors and does not necessarily represent the official views of NIOSH.

References

1. Jackson J, Villarroel A. A Survey of The Risk of Zoonoses for Veterinarians. *Zoonoses and Public Health*. 2012;59(3):193–201.

2. Epp T, Waldner C. Occupational health hazards in veterinary medicine: Zoonoses and other biological hazards. *Can Vet J*. 2012 Feb;53(2):144–50.
3. Adebowale O, Fasanmi O, Awosile B, Afolabi M, Fasina FO. Systematic review and meta-analysis of veterinary-related occupational exposures to hazards. *Open Veterinary Science*. 2021 Mar 1;2:6–22.
4. Murphy CP, Reid-Smith RJ, Weese JS, McEwen SA. Evaluation of Specific Infection Control Practices Used by Companion Animal Veterinarians in Community Veterinary Practices in Southern Ontario. *Zoonoses and Public Health*. 2010;57(6):429–38.
5. Attard K, Burrows E, Kotiranta-Harris K, Hedlefs R, Ketheesan N, Govan B. Veterinary infection control in Australia: is there control? *Australian Veterinary Journal*. 2012 Nov 1;90(11):438–41.
6. Lipton BA, Hopkins SG, Koehler JE, DiGiacomo RF. A survey of veterinarian involvement in zoonotic disease prevention practices. *J Am Vet Med Assoc*. 2008 Oct 15;233(8):1242–9.
7. Wright JG, Jung S, Holman RC, Marano NN, McQuiston JH. Infection control practices and zoonotic disease risks among veterinarians in the United States. *Journal of the American Veterinary Medical Association*. 2008 Jun 15;232(12):1863–72.
8. Lantos PM, Maggi RG, Ferguson B, Varkey J, Park LP, Breitschwerdt EB, et al. Detection of *Bartonella* Species in the Blood of Veterinarians and Veterinary Technicians: A Newly Recognized Occupational Hazard? *Vector-Borne and Zoonotic Diseases*. 2014 Jul 29;14(8):563–70.

9. Oteo JA, Maggi R, Portillo A, Bradley J, García-Álvarez L, San-Martín M, et al. Prevalence of *Bartonella* spp. by culture, PCR and serology, in veterinary personnel from Spain. *Parasites Vectors.* 2017 Nov 7;10(1):553.
10. Basic biology of *Bartonella* species - UpToDate [Internet]. [cited 2021 Apr 21]. Available from: <https://www.uptodate.com/contents/basic-biology-of-bartonella-species#H9>
11. Okaro U, Addisu A, Casanas B, Anderson B. *Bartonella* Species, an Emerging Cause of Blood-Culture-Negative Endocarditis. *Clinical Microbiology Reviews.* 2017 Jul 1;30(3):709–46.
12. Chomel BB, Boulouis H-J, Maruyama S, Breitschwerdt EB. *Bartonella* Spp. in Pets and Effect on Human Health. *Emerg Infect Dis.* 2006 Mar;12(3):389–94.
13. Fabbi M, De Giuli L, Tranquillo M, Bragoni R, Casiraghi M, Genchi C. Prevalence of *Bartonella henselae* in Italian stray cats: evaluation of serology to assess the risk of transmission of *Bartonella* to humans. *J Clin Microbiol.* 2004 Jan;42(1):264–8.
14. Mosepele M, Mazo D, Cohn J. *Bartonella* Infection in Immunocompromised Hosts: Immunology of Vascular Infection and Vasoproliferation. *Clin Dev Immunol* [Internet]. 2012 [cited 2021 Apr 6];2012. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3227422/>
15. Maggi RG, Mozayeni BR, Pultorak EL, Hegarty BC, Bradley JM, Correa M, et al. *Bartonella* spp. Bacteremia and Rheumatic Symptoms in Patients from Lyme Disease–endemic Region. *Emerg Infect Dis.* 2012 May;18(5):783–91.

16. Mozayeni BR, Maggi RG, Bradley JM, Breitschwerdt EB. Rheumatological presentation of *Bartonella koehlerae* and *Bartonella henselae* bacteremias. *Medicine (Baltimore)* [Internet]. 2018 Apr 27 [cited 2021 May 25];97(17). Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5944489/>

17. Breitschwerdt EB. Did *Bartonella henselae* contribute to the deaths of two veterinarians? *Parasites & Vectors*. 2015 Jun 12;8(1):317.

18. Portillo A, Maggi R, Oteo JA, Bradley J, García-Álvarez L, San-Martín M, et al. *Bartonella* spp. Prevalence (Serology, Culture, and PCR) in Sanitary Workers in La Rioja Spain. *Pathogens*. 2020 Mar 4;9(3).

19. Kwon HY, Im JH, Lee SM, Baek JH, Durey A, Park S-G, et al. The seroprevalence of *Bartonella henselae* in healthy adults in Korea. *Korean J Intern Med*. 2017 May;32(3):530–5.

20. Al-Majali AM, Al-Qudah KM. Seroprevalence of *Bartonella henselae* and *Bartonella quintana* infections in children from Central and Northern Jordan. *Saudi Med J*. 2004 Nov;25(11):1664–9.

21. Sander A, Posselt M, Oberle K, Bredt W. Seroprevalence of Antibodies to *Bartonella henselae* in Patients with Cat Scratch Disease and in Healthy Controls: Evaluation and Comparison of Two Commercial Serological Tests. *Clin Diagn Lab Immunol*. 1998 Jul;5(4):486–90.

22. CDC. *Bartonella* for veterinarians | CDC [Internet]. Centers for Disease Control and Prevention. 2020 [cited 2021 Apr 6]. Available from: <https://www.cdc.gov/bartonella/veterinarians/index.html>

23. Faul F, Erdfelder E, Buchner A, Lang, A.-G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. *Behavior Research Methods*. 2009. (41): 1149-60.

Appendix Table I. PPE scoring system for the job exposure matrix.

Task	Glove use	Surgical mask use	Eye shield use	Other PPE use	PPE score
Cystocentesis	0 = never 1 = rarely 2 = sometimes 3 = often 4 = always	0-4	0-4	0-4	0-16
Drawing blood					
Prepping blood work					
Restraining patient					
Placing/removing IV					
Setting up/examining ear or skin cytology					
Cleaning surgical suites/instruments					
Performing dentistry					
Monitoring anesthetized patients					
Total PPE score					0-144

Appendix Table 2. Injury scoring system for the job exposure matrix.

Injury type	Daily	Weekly	Monthly	Every 6 months	Once a year	Never	Injury score
Animal injury	5	4	3	2	1	0	0-5
Sharps injury							
Total injury score							0-10