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Abstract
Two new three-dimensional rock mass strength criteria are developed in this paper by extending an existing rock mass 
strength criterion. These criteria incorporate the effects of the intermediate principal stress, minimum principal stress and 
the anisotropy resulting from these stresses acting on the fracture system. In addition, these criteria have the capability 
of capturing the anisotropic and scale dependent behavior of the jointed rock mass strength by incorporating the effect of 
fracture geometry through the fracture tensor components. The new criteria are proposed after analyzing 284 numerical 
modeling results of the polyaxial, triaxial and biaxial compression tests conducted on the jointed rock blocks having one or 
two joint sets by the PFC3D software. Some of these simulation results were compared with experimental results to validate 
the developed PFC3D model that was used for numerical modeling of jointed blocks. In this research to have several sam-
ples with the same properties a synthetic rock material that is made out of a mixture of gypsum, sand and water was used. 
Altogether, 12 joint systems were chosen; some of them had one joint set and the rest had two joint sets. Joint sets have dif-
ferent dip angles varying from 15° to 45° at an interval of 15° with dip directions of 30° and 75° for the two joint sets. Each 
joint set also has three persistent joints with the joint spacing of 42 mm in a cubic sample of size 160 mm. The minimum 
and intermediate principal stress combination values were chosen based on the uniaxial compressive strength (UCS) value 
of the modeled intact synthetic rock. The minimum principal stress values were chosen as 0, 0.2, 0.4 and 0.6 of the UCS. 
For each minimum principal stress value, the intermediate principal stress value varies starting at the minimum principal 
stress value and increasing at an interval of 0.2 of the UCS until it is slightly lower than the strength of the sample under the 
biaxial loading condition with the same minimum principal stress value. To express the new rock mass strength criteria, it 
was also necessary to determine the intact rock strengths under the same confining stress combinations mentioned earlier. 
Therefore, the intact rock was also modeled for all three compression tests and the intact rock strengths were found for 33 
different minimum and intermediate principal stress combinations.

Keywords  Discrete element method (DEM) · Particle flow code (PFC) · Rock mass strength · Polyaxial compression test · 
Intermediate principal stress · Fracture tensor
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1  Introduction

Jointed rock masses are known as the combination of intact 
rock blocks and discontinuities. Therefore, the mechani-
cal behavior of a rock mass is affected by the mechanical 
behavior of intact rock and discontinuities in addition to the 
discontinuity geometry. The number of discontinuity sets, 
their intensity, spatial distribution of orientation, size and 
spacing, roughness, strength and deformation of asperities, 
filling, aperture, are the important properties of rock discon-
tinuities which can affect the mechanical behavior of rock 
masses. Thus, assessment of the mechanical behavior of a 
jointed rock mass is relatively more complicated compared 
to that of an intact rock due to the high number of parameters 
that affect the mechanical behavior of rock masses (Kula-
tilake 1985; Yu 2001). On the other hand, unfortunately, 
understanding of the mechanical behavior of rock masses 
is crucial to design safe and economical structures in or on 
jointed rock masses.

Moreover, due to the presence of complicated disconti-
nuity geometry patterns, the inherent statistical nature of 
discontinuity geometrical parameters, and the variabilities 
and uncertainties involved in the estimation of discontinu-
ity mechanical and geometrical properties, estimation of 
the mechanical behavior of discontinuous rock masses is 
difficult and challenging (Kulatilake 1985; Kulatilake et al. 
1993).

Analytical, Empirical, and numerical are three avail-
able approaches to estimate mechanical behavior of rock 
masses (Kulatilake et  al. 1993; Singh and Goel 2011; 
Kulatilake 2016). Analytical approaches provide ana-
lytical solutions for rock mass strength criteria based on 
selecting suitable intact rock and rock joint strength cri-
teria and applying simplified methods to combine them. 
This method is rarely applicable in dealing with field rock 
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masses, which are usually more complicated than the 
assumed simplified models (Bekaert and Maghous 1996; 
Pouya and Ghoreychi 2001).

On the other hand, the empirical approach based on one 
of the rock mass classification systems is simple and it may 
be used in complicated conditions to obtain some prelimi-
nary estimates of rock mass mechanical properties. However, 
in all rock mass classification systems, personal judgment, 
and experience play crucial roles (Bieniawski 1973; Barton 
et al. 1974; Hoek 1994). Moreover, in the rock mass clas-
sification systems, the isotropic behavior is assumed for the 
rock masses. However, most rock masses show anisotropic 
behavior due to the existence of distinct orientations of dis-
continuity sets (Kulatilake et al. 1993; Amadei 1996; Mari-
nos et al. 2005; Wu and Kulatilake 2012; Chiu et al. 2013). 
Therefore, the available rock mass strength criteria based on 
the rock mass classification systems are unable to capture the 
anisotropic behavior of rock masses as well as the effect of 
the intermediate principal stress on the rock mass strength. 
It should be mentioned that even though some research-
ers (Pan and Hudson 1988; Priest 2005; Melkoumian et al. 
2009; Zhang and Zhu 2007; Zhang 2008; Zhang et al. 2013; 
Saroglou and Tsiambaos 2008; Colak and Unlu 2004; Ismael 
et al. 2014; Yudhbir et al. 1983; Sheorey et al. 1989) tried to 
incorporate the effect of the intermediate principal stress in 
their formulations to overcome one of the above-mentioned 
shortcomings, their proposed criteria have not captured the 
effect of joint orientation and scale (resulting from joint size) 
on rock mass strength explicitly.

Ramamurthy (2001) instead of using the rock mass clas-
sification systems to quantify the effect of rock joint systems, 
proposed a joint factor parameter which is related to the 
joint frequency and the joint orientation. However, it does 
not consider the complete effect of joint orientation on rock 
mass strength resulting from multiple joint sets. In addi-
tion, this criterion does not consider the scale effect and the 
effect of the intermediate principal stress on the rock mass 
strength.

Nowadays through accessibility to extremely fast com-
puters, numerical modeling can be used as an approach to 
overcome the shortcomings of the analytical and empiri-
cal approaches by incorporating the mechanical behavior of 
intact rocks and rock joints to find the mechanical behavior 
of rock masses (Kulatilake et al. 1993; Wu and Kulatilake 
2012; Shreedharan and Kulatilake 2016). Moreover, the new 
methods such as digital photogrammetry and LiDAR can 
help to extract the geometrical properties of rock discon-
tinuities with high resolution leading to better accuracy of 
numerical modeling results (Gigli and Casagli 2011; Zheng 
et al. 2014; Kulatilake and Shu 2015). Numerical modeling 
can be used to estimate rock mass strength by incorporat-
ing fracture geometry and using constitutive models for the 
intact rock and rock joint behavior.

For jointed rock mass strength evaluation, in addition to 
the above-mentioned parameters, the boundary and environ-
mental conditions such as the in-situ stress, loading/unload-
ing stress path, loading rate, pore pressure, temperature and 
humidity. are important factors to consider (Singh and Goel 
2011). Thus, numerical modeling is very useful because of 
its power to apply different boundary conditions on the mod-
els. Polyaxial (or true-triaxial) boundary stress condition is 
one the most important conditions which can be considered 
in numerical modeling. In the polyaxial stress condition, 
three principal stresses (maximum principal stress, �1, inter-
mediate principal stress, �2, minimum principal stress, �3, ) 
are not equal 

(
𝜎1 < 𝜎2 < 𝜎3

)
 (Mehranpour and Kulatilake 

2016). Although the polyaxial stress is a common condi-
tion in the real field situation which has a significant effect 
on the jointed rock mass strength, it has been considered 
rarely in the rock mechanics literature and the effect of the 
intermediate principal stress is generally ignored. Mehran-
pour and Kulatilake (2017) clearly showed the effect of the 
intermediate principal stress on the strength of jointed rock 
by extending Jaeger’s theory and numerical modeling with 
the Particle flow code (PFC) approach, which belongs to the 
Discrete element method (DEM) category.

Because several parameters affect the strength of rock 
masses, numerous experimental tests are required to find the 
effect of these parameters on the strength of rock masses. 
That task is time consuming, very costly and impractical 
to perform in the field and laboratory. To solve this prob-
lem some researchers modeled rock masses with numeri-
cal modeling to propose new rock mass failure criteria. In 
this method, at first, a numerical model is calibrated with 
a limited number of experimental tests and physical mod-
eling of the rock masses and then the calibrated model is 
expanded to more complicated situations with more diverse 
conditions (Kulatilake et al. 1993, 2001, 2006; Pouya and 
Ghoreychi 2001; Wu and Kulatilake 2012a; He et al. 2016). 
Kulatilake et al. (1993) and Wu and Kulatilake (2012) used 
this procedure incorporating the 3DEC software, which is 
one of the well-known DEM software packages used in the 
rock mechanics field, to find the effect of the joint geometry 
parameters on the deformability properties of rock masses. 
To quantify the joint geometry parameters, they used an 
extended form of the fracture tensor concept. Kulatilake 
et al. (2001, 2006) and He et al. (2016) also extended the 
fracture tensor concept to fracture tensor components and 
developed new rock mass strength criteria.

In this paper, the same procedure is used based on experi-
mental tests and PFC3D modeling on intact rock, jointed rock 
with one joint set and jointed rock with two non-orthogonal 
joint sets to develop new rock mass strength criteria in three 
dimensions. The new criteria consider the effect of all prin-
cipal stresses in three dimensions and they are applicable 
for any type of rock mass, especially for non-sedimentary 



3540	 M. H. Mehranpour et al.

1 3

rock masses which generally have non-orthogonal fracture 
systems. This criterion also shows the anisotropic strength 
behavior of rock masses due to the dip angle and dip direc-
tion of joint sets. It should be mentioned that compared to 
other numerical methods, in the PFC, macro parameter val-
ues are not directly used in the numerical model, and micro 
parameter values applicable between the particles should be 
calibrated using the macro property values, and then these 
calibrated micro parameter values are used in PFC modeling.

To develop new rock mass strength criteria, first conven-
tional experimental tests on the intact rock and the joint as 
well as the polyaxial compression tests on the intact rock 
and jointed samples are performed on the synthetic rock 
samples. Then the micro properties of PFC3D model are cali-
brated based on the experimental test results. Afterwards, 
polyaxial, triaxial and biaxial compression tests for the intact 
rock and jointed rock blocks are simulated in the PFC3D with 
different combinations of minimum and intermediate princi-
pal stresses. After gathering results, the development of new 
rock mass failure criteria was initiated using the fracture ten-
sor concept which was introduced by Oda (1982) and devel-
oped into the fracture tensor components by Kulatilake et al. 
(1993, 2006). Fracture tensor combines the joint orientation, 
joint size, joint density for each joint set and the number of 
joint sets by a second order tensor. Thus, the fracture tensor 
can show the anisotropy and scale effects of rock masses 
which are exhibited by the presence of joints.

It should be mentioned that polyaxial and triaxial com-
pression tests were performed in the laboratory with a 

limited number of boundary stress conditions and joint set 
systems, because the experimental tests are expensive, and 
the apparatus had limited load capacity. Then, these experi-
mental tests were simulated using PFC3D and the numeri-
cal results were compared with the experimental results of 
synthetic intact rock and synthetic jointed rock blocks. If 
these two groups of results did not match, micro parameter 
values were modified until very close results were obtained 
with an acceptable error. According to these steps, estima-
tion of appropriate values for micro mechanical properties 
was done; it turned out to be one of the challenging parts 
of this project. All the above-mentioned procedures used to 
develop new rock mass strength criteria are shown in the 
flowchart given in Fig. 1.

2 � Laboratory Tests

As mentioned in the introduction, new rock mass strength 
criteria were developed based on the computational results 
obtained from the calibrated and validated PFC3D model. 
Note that the macro mechanical experimental results 
obtained for the synthetic intact rock and synthetic rock 
joints were used for the calibration of the PFC3D model. 
Besides, a limited number of polyaxial and triaxial com-
pression tests were also performed on the synthetic intact 
rock and synthetic jointed rock samples to compare with the 
numerical modeling results to validate the calibrated PFC3D 
model. In this validation procedure, it was necessary to 

Fig. 1   Used flowchart to develop a new rock mass failure criterion
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modify the micro mechanical property values if the numeri-
cal and experimental results were not similar.

2.1 � Sample Preparation

For the experimental part, to have several samples with the 
same properties, a synthetic material that was made of a 
mixture of gypsum, sand and water was used. This model 
material exhibits different mechanical properties depend-
ing on the mixture ratio. This ratio was designed to have 
the samples based on the loading limitation of the loading 
machine which was used in the laboratory. The experimental 
tests were performed at the China University of Mining and 
Technology, Beijing (CUMTB) based on the test preparation 
and loading conditions designed by the Rock Mass Mod-
eling and Computational Rock Mechanics Laboratories at 
the University of Arizona. The water to gypsum ratio of each 
sample was 0.6:1 by weight. After casting the gypsum sam-
ples in the mold, samples were kept in the room temperature 
(20 ± 2 °C) for 1 day. Then, samples were placed in a humid-
ity chamber which can control temperature and humidity at 
different levels. Samples were kept in a humidity chamber 

for a week with the temperature set to 20 ± 2 °C and the 
relative humidity set to 100%. Finally, samples were taken 
out from the humidity chamber and were kept in the room 
temperature (20 ± 2 °C) until they were used for experimen-
tal tests.

2.2 � Intact Rock Experimental Tests

In the first step of the experimental program, three uniaxial 
tests, three triaxial tests and five Brazilian tests were per-
formed on the synthetic intact rock material. Thus, from 
these tests, macro mechanical parameter values of the 
Young’s modulus, uniaxial compressive strength (UCS), 
internal friction angle, cohesion and Poisson’s ratio for 
the synthetic intact rock were obtained and the summary 
results are given in Table 1. These macro mechanical prop-
erty values were used to calibrate the micro properties of 
the synthetic intact rock. Uniaxial and triaxial compression 
tests were performed on cubic samples of side dimension 
160 mm. The polyaxial compression test facility available 
at the CUMTB (Fig. 2) was used to apply forces on all sides 
of the cubical samples. This machine has the capability to 

Table 1   Estimated macro mechanical property values for the synthetic rock from laboratory tests and PFC3D modeling results

Uniaxial strength (MPa) Tensile strength (MPa) Cohe-
sion 
(MPa)

Angle of 
internal fric-
tion (°)

Young’s modulus (GPa) Poisson’s ratio

Experimental 
tests

Range 
5.28–6.09

Avg. 5.78 Range 
1.03–1.57

Avg. 1.23 1.9 24 Range 
0.99–1.21

Avg. 1.07 0.20

PFC3D mod-
eling

5.64 1.35 2.0 22 1.03 0.22

Fig. 2   The polyaxial testing 
machine available at CUMTB
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apply a maximum force of 500 KN on each of the three 
perpendicular directions (two horizontal directions and the 
vertical direction) with 0.5% accuracy. Applied load was 
measured in each of the perpendicular directions. Two 
LVDT deformation sensors were used to measure the defor-
mation in each of the perpendicular directions. The deforma-
tion range for each direction is 150 mm with 0.4% accuracy. 
Loading, data collection and saving were done automatically 
through a data acquisition and a computer system. Figure 3 
shows the uniaxial and triaxial test results obtained from the 
polyaxial compression test facility. These test results were 
used to calibrate and validate the built PFC3D model for the 
synthetic intact rock.

2.3 � Rock Joint Experimental Tests

In addition to estimating the macro mechanical properties 
of the synthetic intact rock, it was necessary to estimate the 
macro mechanical properties of the synthetic rock joint to 
calibrate the micro mechanical properties for joints. The 
joint friction angle, �J , joint cohesion, CJ , joint normal 
stiffness, KJ

n
, and the joint shear stiffness, KJ

s
 are important 

mechanical properties of the synthetic rock joint. Several 
researchers realized that the joint normal stiffness varies 
with the normal stress acting on the joint surfaces and they 
have proposed different relations to describe this behavior 
(Shehata 1972; Goodman 1976; Bandis et al. 1983; Swan 
1983; Malama and Kulatilake 2003; Kulatilake et al. 2016). 
Kulatilake et al. (2016) developed the linear relation given 
by Eq. 1 between the joint normal stiffness and the normal 
stress acting on the joint plane, �n, and showed that it has a 
good correlation with experimental test results obtained by 
the same research group.

In Eq. 1, B is an empirical constant. Thus, instead of find-
ing the joint normal stiffness the B value should be found. In 
this research, three direct shear tests and four joint normal 
stiffness tests were performed on the synthetic rock joint to 
estimate the macro mechanical properties of the joint and 
the estimated values are given in Table 2. Figure 4 shows the 
detailed experimental test results obtained from the direct 
shear tests and joint normal stiffness tests. For the direct 
shear tests and joint normal stiffness tests cylindrical sam-
ples with 50 mm diameter and the heights of 50 mm and 
100 mm were used, respectively.

2.4 � Polyaxial and Triaxial Compression Tests

Polyaxial and triaxial compression tests were performed on a 
limited number of intact rock and jointed rock samples with 
one joint set to verify the numerical modeling performed on 
the polyaxial and triaxial compression tests with the cali-
brated PFC3D model. The same polyaxial testing machine 
explained in Sect. 2.2 was used to perform the polyaxial and 
triaxial compression tests on the cubic synthetic intact rock 

(1)KJ
n
= B�n

Fig. 3   Uniaxial and triaxial 
test results; GAA1, GAA2 and 
GAA3 (σ2 = σ3 = 0); GAA4 
(σ2 = σ3 = 0.53 MPa); GAA5 
(σ2 = σ3 = 1.11 MPa); GAA6 
(σ2 = σ3 = 1.64 MPa)
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Table 2   Estimated macro mechanical property values for the syn-
thetic rock joint from laboratory tests and PFC3D modeling results

Shear stiffness 
(GPa/m)

B (1/mm) Joint fric-
tion angle 
(°)

Experimental tests Range Avg Range Avg 27.5
0.4–0.9 0.59 19.8–36.8 28.9

PFC3D modeling 0.6 29 27
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and synthetic jointed rock samples with the dimension of 
160 mm. In the polyaxial test, first the minimum principal 
stress was applied on the sample in all three perpendicu-
lar directions. Then the stress on one lateral direction was 
kept constant (= �3) and the stress equal to the intermedi-
ate principal stress was applied in the other two directions. 
Finally, the stress in the second lateral direction was kept 
constant ( = �2 ) and the axial stress in the vertical direction 
was increased until the sample failed.

The jointed rock samples had three joints with the joint 
spacing of 42 mm, the dip direction of 30° and the dip angles 
of 15° or 30° for the different samples. Figures 5 and 6 show 
the schematic diagrams of these jointed samples as well as the 
prepared samples for experimental tests. Due to the impor-
tance of the directions of the applied principal stresses on the 
jointed samples for their polyaxial compression test, the same 
direction was used for each principal stress. For the jointed 
rock block samples, the maximum principal stress was applied 

vertically, and the other two principal stresses were applied 
horizontally where the angles between the intermediate and 
minimum principal stress directions and the joint dip direction 
were 30° and 60°, respectively (Figs. 5, 6). Table 3 and Figs. 7, 
8, 9 show the applied �2 and �3 stresses and the results of the 
above-mentioned experimental polyaxial and triaxial compres-
sion tests. Table 3 shows that for the same minimum principal 
stress, the strength of the intact rock and jointed rock increases 
with increasing intermediate principal stress. Besides, this 
table shows a strength reduction as the dip angle of the joint 
set increases from 15° to 30°under the same confining stresses.

3 � Numerical Modeling

For numerical modeling, the PFC approach was chosen. 
The PFC is a DEM based software, which uses disks (in 
2-D) or spherical elements (in 3-D) to represent particles. 

Fig. 4   a Shear stress-shear 
displacement diagrams for three 
direct shear tests, and PFC 
modeling results; b normal 
stress-joint normal deforma-
tion diagrams based on four 
experimental jointed uniaxial 
compression test results, the 
average of the exponential fit 
for normal stress-joint normal 
deformation relation, and PFC 
modeling result based on the 
Modified Smooth Joint Contact 
Model
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In this method, particles are assumed as rigid and Newton’s 
second law controls the interactions between the parti-
cles. Particles can have contact with adjacent particles and 
force–displacement law acts at contacts (Cundall and Strack 
1979; Cundall and Hart 1992). The PFC can conveniently 
model the fracture initiation and propagation between the 
particles, as well as the rupture, using the Bonded-Particle 
Models that cement particles together in representing the 
intact rock (Potyondy and Cundall 2004; Potyondy 2015). 
Moreover, in the PFC software to model the mechanical 
behavior of jointed rock masses the intact rock can be mod-
eled by the Bonded-Particle Models, and the discontinuities 
can be modeled by the Smooth-Joint Contact Model (SJCM) 
(Pierce et al. 2007). Therefore, the block breakage as well as 
joint sliding can be accommodated (Mas Ivars et al. 2011).

As stated before, in the PFC, micro parameter values 
applicable between the particles should be calibrated using 
the macro properties. Due to the presence of a higher num-
ber of micro mechanical parameters compared to the avail-
able macro properties and complex behavior of the micro 

mechanical parameters, the calibration of micro parameters 
is based on a trial and error procedure in which the micro 
mechanical parameter values are varied iteratively to match 
the macro mechanical behaviors. Therefore, the calibration 
is one of the most critical and challenging parts in modeling 
with the PFC. Several researchers such as Kulatilake et al. 
(2001), Potyondy and Cundall (2004), Cho et al. (2007), 
Yang et al. (2015) and Mehranpour and Kulatilake (2016) 
have dealt with this calibration and have indicated their find-
ings on relations between the micro and macro parameters. 
Several others have used the PFC in modeling intact rocks 
or jointed rock masses (Fakhimi 2004; Koyama and Jing 
2007; Park and Song 2009; Lee and Jeon 2011; Schöpfer 
et al. 2013; Zhang et al. 2015; Fan et al. 2015; Duan and 
Kwok 2016). However, limited efforts (Yang et al. 2015; 
Bahaaddini et al. 2015; Mehranpour and Kulatilake 2017) 
have been made on the calibration and modeling of the joints 
with the SJCM.

In this research to model the intact rock in PFC3D, among 
the different bonded particle models, the linear parallel bond 

Fig. 5   Jointed rock block sam-
ple which has three joints with 
the dip direction of 30° and the 
dip angle of 15°: a schematic 
picture and the b top, c left 
front and d right front views 
of a prepared sample for the 
experimental test (the maxi-
mum principal stress applied on 
the top face, the intermediate 
principal stress applied on the 
left front face and the minimum 
principal stress applied on the 
right front face)
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model (LPBM) was chosen for contacts. The LPBM works 
like a cement material and assumes the two adjacent parti-
cles are cemented to each other with a notional rectangular 
(2D) or cylindrical (3D) shape of contact. The major prob-
lem of LPBM is its inability to model the failure envelop for 
the whole spectrum of rock types. It can only model rocks 
with the low internal friction angles, and the low ratios of 
compressive to tensile strength. To solve this problem some 
researchers have proposed different methods and different 
models (Potyondy and Cundall 2004; Fakhimi 2004; Cho 
et al. 2007). The synthetic material which is used in this 
study has a low internal friction angle and a low ratio of 
compressive to tensile strength. Thus, the LPBM can model 
the used synthetic intact rock properly.

For the synthetic intact rock calibration process a cubic 
sample of side dimension of 160 mm with a uniform par-
ticle size distribution (the minimum particle diameter of 
2.7 mm and the maximum particle diameter of 4.48 mm) 
was created in PFC3D to model the uniaxial and triaxial 
tests mentioned in Sect. 2.2. Based on the selected particle 

size distribution, 103,663 particles and 275,824 contacts 
were produced in the cubic samples of side dimension of 
160 mm. For the Linear Parallel Bond Model used for the 
synthetic intact rock, it is necessary to calibrate the micro 
mechanical parameters of contact Young’s modulus, Ec, 
bond Young’s modulus, Ēc, contact friction coefficient, 
�, bond tensile strength, 𝜎̄c, bond shear strength, 𝜏s, the 
ratio of normal to shear stiffness for contact, kr, ratio of 
normal to shear stiffness for bond, k̄r and bond radius frac-
tion, 𝜆̄, using macro properties of the uniaxial compressive 
strength, internal friction angle, Young’s modulus, ten-
sile strength and Poisson’s ratio. Because the number of 
micro mechanical parameters is higher than the number of 
macro mechanical parameters, the assumptions of Ec = Ēc, 
kr = k̄r, 𝜎̄c = 𝜏s and 𝜆̄ = 1 were used as recommended by 
Potyondy and Cundall (2004) and Itasca (2016) to reduce 
the calibration process difficulty. As stated before, the 
calibration is a trial and error procedure. Therefore, to 
minimize the number of iterations in the calibration pro-
cess the following sequence was followed based on the 

Fig. 6   Jointed rock block sam-
ple which has three joints with 
the dip direction of 30° and the 
dip angle of 30°: a schematic 
picture and the b top, c left 
front and d right front views 
of a prepared sample for the 
experimental test (the maxi-
mum principal stress applied on 
the top face, the intermediate 
principal stress applied on the 
left front face and the minimum 
principal stress applied on the 
right front face)
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relations between micro and macro mechanical proper-
ties and the guidelines given by Yang et al. (2015) and 
Mehranpour and Kulatilake (2016). First, in the uniaxial 
compression test modeling the Young’s modulus was cali-
brated by setting the material strengths to a large value and 
varying Ec and Ēc to match the Young’s modulus. Next, 
by changing kr and k̄r, the Poisson’s ratio was matched. 
After calibrating the above-mentioned micro mechanical 
parameters, the peak strength was matched by gradually 
reducing the normal and shear bond strengths of the paral-
lel bonds. Finally, by gradual reduction of � in modeling 
of the triaxial compression tests, the internal friction angle 
was matched. The calibrated micro parameter values are 
given in Table 4 for Linear Parallel Bond Model. Table 1 
shows the obtained macro mechanical parameter values 
based on PFC3D simulations as well as from laboratory 

tests. Comparison of the two sets of values indicates the 
accuracy and capability of the particle flow approach in 
simulating the synthetic intact rock.

To model the synthetic rock joint in PFC3D, the Modi-
fied Smooth-Joint Contact model (MSJCM) was used. The 
MSJCM was proposed by Mehranpour and Kulatilake (2017) 
to overcome the shortcoming of the Smooth Joint Contact 
Model (SJCM) to capture the non-linear behavior of the joint 
closure varying with the joint normal stress. The MSJCM 
uses the linear relation between the joint normal stiffness 
and the normal contact stress given in Eq. 1 to model the 
non-linear relation between the joint normal deformation 
and the joint normal stress observed in the compression 
joint normal stiffness test. Thus, in the MSJCM instead of 
assigning a constant value to the joint normal stiffness, kJ

n
, a 

variable value is assigned which is proportional to the nor-
mal stress on the smooth-joint contact, �J

n
, according to the 

following equation.

In Eq. 2, kJ
nmin

 is the minimum value for kJ
n
, and BJ is a 

constant coefficient. It should be mentioned that kJ
nmin

 is 

included since it is impossible to have a zero value for stiff-
ness in PFC. Note that the other micro mechanical parame-
ters for the MSJCM like joint shear stiffness, kJ

s
, and joint 

friction coefficient, J, are the same as for the SJCM.
Mehranpour and Kulatilake (2017) also proposed a 

new joint contact implementation algorithm in PFC which 
is called the joint sides checking (JSC) approach to solve 
the interlocking problem. The interlocking problem was 
observed by Bahaaddini et al. (2013) and it occurs due to the 
shortcoming of the updating procedure in the PFC software 
for the contact conditions of the particles that lie around 
the intended joint plane during high shear displacements. 
The interlocking problem leads to higher values for shear 
strength and dilation angle for the joint than the correct val-
ues. It also creates unwanted fractures around the intended 

(2)kJ
n
= max

(
kJ
nmin

,BJ�J
n

)
.

Table 3   Experimental and PFC3D modeling results of the polyaxial 
and triaxial compression tests for the synthetic intact rock and the 
jointed rock blocks having three joints with the dip direction of 30° 
and joint dip angles of 15° or 30°

Sample σ3 (MPa) σ2 (MPa) σ1 (MPa) 
Experi-
mental

σ1 (MPa) 
PFC3D

Intact rock GB1 0 1.128 6.030 6.431
GB2 0 2.256 6.642 6.763

Jointed rock (dip direction = 30°)
 Dip = 15° GC15-1 1.128 3.384 8.301 8.325

GC15-2 1.128 4.512 9.075 8.475
GC15-3 2.256 2.256 9.165 9.200
GC15-4 2.256 4.512 10.792 10.761
GC15-5 2.256 7.896 10.856 11.151
GC15-6 3.384 3.384 11.266 11.447

 Dip = 30° GC30-1 1.128 5.640 8.124 7.595
GC30-2 2.256 2.256 8.304 7.742
GC30-3 2.256 5.640 9.311 9.723
GC30-4 2.256 7.896 9.578 9.779
GC30-5 3.384 3.384 9.460 9.751

Fig. 7   Experimental and 
PFC3D modeling results of the 
polyaxial compression test for 
the intact rock subjected to a 
σ3 = 0 and σ2 = 1.128 MPa, b 
σ3 = 0 MPa and σ2 = 2.256 MPa
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joint plane. In this paper, the JSC approach is used not only 
for the calibration procedure of the rock joint model but also 
for the modeling of the polyaxial, triaxial and biaxial com-
pression tests on the synthetic jointed rock block samples.

In calibrating the joint micro mechanical parameters, 
first the cylindrical synthetic rock samples with 50 mm 
diameter, and the heights of 50 and 100 mm were numeri-
cally modeled based on the linear parallel bond model 
properties given in Table 4, for the direct shear tests and 
the joint normal stiffness test, respectively. Then the 
MSJCM joint was added horizontally to each sample at the 
mid-height level with the JSC approach. Then, to calibrate 
the MSJCM the following sequence was used to minimize 
the number of iterations. First, all the micro mechanical 
parameters for MSJCM were set with low values. Then, 

kJ
nmin

 and BJ were calibrated using the joint normal stiffness 

test modeling because kJ
s
 and J values do not affect this test 

results. In the calibration of joint normal stiffness test, first 
the BJ value was gradually increased to match the curva-
ture of the normal stress-joint normal displacement dia-
gram and then by increasing the kJ

nmin
 , the total joint normal 

displacement was matched (see Fig. 4a). After kJ
nmin

 and BJ 

calibration, in the direct shear test modeling, first kJ
s
 was 

gradually increased to match KJ
s
 and finally, the J value 

was changed to match the �J value (see Fig. 4b). Table 5 
shows the calibrated micro mechanical property values of 
the MSJCM using the JSC approach based on the experi-
mental test results reported for the synthetic rock joint in 

Fig. 8   Experimental and 
PFC3D modeling results of the 
polyaxial and triaxial compres-
sion tests for the jointed rock 
block samples having one joint 
set with the joint dip direction 
of 30° and dip angle of 15° 
subjected to a σ3 = 1.128 MPa 
and σ2 = 3.384 MPa, 
b σ3 = 1.128 MPa and 
σ2 = 4.512 MPa, c 
σ3 = σ2 = 2.256 MPa, 
d σ3 = 2.256 MPa and 
σ2 = 4.512 MPa, e 
σ3 = 2.256 MPa and 
σ2 = 7.896 MPa and f 
σ3 = σ2 = 3.384 MPa
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Sect. 2.3. Table 2 shows the obtained macro mechanical 
parameter values based on the PFC3D simulations. Note 
that Table 2 also provides the macro mechanical parameter 
values obtained through experimental joint testing. Table 2 
along with Fig. 4 indicate the accuracy and capability of 
the PFC in simulating the synthetic rock joint through 
comparison of PFC3D results against the laboratory test 
results on synthetic rock joints. For further details about 

Fig. 9   Experimental and 
PFC3D modeling results of the 
polyaxial and triaxial compres-
sion tests for the jointed rock 
samples having one joint set 
with the joint dip direction 
of 30° and dip angle of 30° 
subjected to a σ3 = 1.128 MPa 
and σ2 = 5.640 MPa, b 
σ3 = σ2 = 2.256 MPa, 
c σ3 = 2.256 MPa and 
σ2 = 5.640 MPa, d 
σ3 = 2.256 MPa and 
σ2 = 7.896 MPa and e 
σ3 = σ2 = 3.384 MPa
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Table 4   Calibrated micro mechanical parameter values of the linear 
parallel bond model for the synthetic intact rock in PFC3D (minimum 
particle diameter, Dmin, maximum particle diameter, Dmax, contact 
Young’s modulus, E

c
, bond Young’s modulus, Ē

c
 contact friction 

coefficient, �, bond tensile strength, 𝜎̄
c
, bond shear strength, 𝜏

s
, the 

ratio of normal to shear stiffness for contact, kr, ratio of normal to 
shear stiffness for bond, k̄

r
 and bond radius fraction, 𝜆̄)

LPBM

Dmin = 27 mm
m

r
= Dmax∕Dmin = 1.66

E
c
= Ē = 1.25 GPa

k
r
  =  ̄k

r
= 2.5

� = 0.6 
mean 𝜎̄

c
 = mean 𝜏

s
 = 4.4 MPa

std. dev.𝜎̄
c
 = std. dev. 𝜏

s
 = 1.1 MPa

𝜆̄ = 1

Table 5   Calibrated micro 
mechanical parameter values 
of the Modified Smooth Joint 
Contact Model for the synthetic 
rock joint in PFC3D using the 
JSC approach

MSJCM

�
J = 0.5

k
J

s
(GPa∕m) = 1.0

k
J

nmin
(GPa∕m) = 4.0

B
J(1∕mm) = 31.0
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the JSC approach, MSJCM and the interlocking problem 
the reader is referred to Mehranpour and Kulatilake 
(2017).

3.1 � Polyaxial Compression Tests

In the performed numerical modeling, three different test 
types were simulated on the synthetic intact rock and syn-
thetic jointed rock blocks using PFC3D to obtain data to 
develop suitable rock mass strength criteria. In these simu-
lations like the experimental tests, cubic samples of side 
dimension 160 mm were used with micro mechanical prop-
erty values given in Tables 4 and 5. The first test type con-
ducted was the triaxial test 

(
𝜎1 > 𝜎2 = 𝜎3

)
. In simulating 

this test, the hydraulic stress equal to the minimum principal 

stress was applied on the sample until the sample reached 
the equilibrium (1st step in Fig. 10a). Then the stresses on 
the lateral faces were kept constant 

(
= �2 = �3

)
 and the 

axial stress was increased until the sample failed (2nd step 
in Fig. 10a). The second type of test simulated was the pol-
yaxial (true-triaxial) test 

(
𝜎1 > 𝜎2 > 𝜎3

)
 . In this test like in 

the conventional triaxial test, the hydraulic stress equal to the 
minimum principal stress was applied on the sample until 
the sample reached the equilibrium (1st step in Fig. 10b). 
Then the stress on one lateral direction was kept constant (
= �3

)
 and the stress equal to the intermediate principal 

stress was applied in the other two directions until the sam-
ple reached the equilibrium (2nd step in Fig. 10b). Finally, 
the stress in the second lateral direction was kept constant (
= �2

)
 and the axial stress in the vertical direction was 

Fig. 10   Different steps of apply-
ing the minor, intermediate and 
major principal stresses for the 
a triaxial compression tests, b 
polyaxial compression tests and 
c biaxial compression tests
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increased until the sample failed (3rd step in Fig. 10b). The 
third test type simulated was the biaxial test 

(
𝜎1 = 𝜎2 > 𝜎3

)
 . 

In this test like in the two previous tests, the hydraulic stress 
equal to the minimum principal stress was applied on the 
sample until the sample reached the equilibrium (1st step in 
Fig. 10c). Then the stress on one lateral direction was kept 
constant 

(
= �3

)
 and the stresses in the other two directions 

were increased until the sample failed (2nd step in Fig. 10c).
The minimum and intermediate principal stress combina-

tion values of different compression tests were chosen based 
on the UCS value of the modeled synthetic intact rock. The 
minimum principal stress values were chosen as 0, 20, 40 
and 60% of the UCS. For each minimum principal stress 
value, the intermediate principal stress value varied start-
ing at the minimum principal stress value and increasing 
at an interval of 20% of the UCS until it was slightly lower 
than the strength of the sample under the biaxial loading 
condition with the same minimum principal stress value. 
With this procedure, the applied minimum and intermediate 
principal stress combinations for samples were the same. 
Thus, the effect of joint geometry configurations on the rock 
mass strength can be evaluated properly. Moreover, because 
the strength of the synthetic intact rock is available for each 
minimum and intermediate principal stress combination, the 
normalized strength of jointed rock blocks can be obtained 
to propose a general rock mass strength criterion.

For jointed rock blocks, twelve different joint systems 
with one and two joint sets were chosen to cover different 
types of non-orthogonal fracture systems. Joint sets have 
different dip angles varying from 15° to 45° at an interval 
of 15° with dip directions of 30° and 75°. Each joint set has 
3 joints with the joint spacing of 42 mm in a cubic sample 
of size 160 mm. Figure 11 shows the PFC3D models and 
the schematic pictures of joint geometry diagrams for all 
12 jointed rock blocks. It should be mentioned that for each 
cubic sample, the minimum principal stress was applied on 
the faces with the dip directions of 90° and 270° and the 
intermediate principal stress was applied on the faces with 
the dip directions of 0° and 180°. It should be mentioned that 
because the numerical models based on the micro param-
eter values given in Tables 4 and 5 could reasonably accu-
rately model the experimental test results up to the sample 
failure (Figs. 7, 8, 9), it was not necessary to modify the 
micro parameter values given in Tables 4 and 5. For each 
rock joint system under each confining stress combination 
it took about 2 days on the average to complete an above-
mentioned numerical simulation. However, this time dura-
tion was smaller for models with lower confining stresses 
and joint systems with lower dip angles compared to that 
having higher confining stresses and higher dip angles.

Figures 12, 13, 14 and 15 show the rock block strength 
values obtained for the synthetic jointed and intact rock 
models under different minimum and intermediate principal 

stress combinations. Figure 12 shows the rock strength val-
ues obtained for the synthetic jointed rock models with one 
joint set compared to the strength of the synthetic intact 
rock model and Figs. 13, 14 and 15 show the rock strength 
values obtained for the synthetic jointed rock models with 
two joint sets under different minimum and intermediate 
principal stress combinations compared to the strength of 
the synthetic jointed rock models having one joint set with 
the same properties as the first joint set of the rock sam-
ple with two joint sets. These figures indicate that for each 
combination of the minimum and intermediate principal 
stresses, the jointed rock blocks with two joint sets and 
first joint set have resulted in a lower strength compared to 
that of the synthetic intact rock and the jointed rock blocks 
with two joint sets have resulted in a lower strength value 
compared to that of the jointed rock blocks having one joint 
set with the same properties as the first joint set of the rock 
sample with two joint sets. This means that adding of joint 
sets to a sample under the same minimum and intermedi-
ate principal stress combination reduces the strength of the 
sample.

Figure 12 also shows that the intermediate principal stress 
has a significant effect on the synthetic intact rock strength 
and it can increase the intact rock strength up to about 25%. 
Increase of the intermediate principal stress while keeping the 
minimum principal stress constant, increases the strength of 
intact rock to a peak value and then the strength decreases. 
However, in Fig. 12, 13, 14, 15 for each �3 level in the jointed 
rock models, the reduction of the strength after reaching the 
peak strength due to increase of �2 seems to be lower com-
pared to that of the intact rock model. In some plots, even the 
strength reduction does not seem to exist especially for low �3 
values and high joint set dip angles.

4 � Development of New Rock Mass Strength 
Criteria

This paper develops new rock mass strength criteria based on 
the PFC3D modeling results incorporating the fracture tensor 
concept. The fracture tensor is explained comprehensively in 
references (Oda 1982, 1984; Kulatilake et al. 1993; Wu and 
Kulatilake 2012). In the fracture tensor, it is assumed that each 
fracture to be a very thin disk having an area A with an equiva-
lent radius of r ( A = �r2 ) and two normal vectors of n and -n 
(bold italic letter represent a vector) for each side of the disk. 
To find the fracture tensor components of the modeled jointed 
rock blocks the following equations are used.

(3)Fr
ij
=

N∑
k=1

Fk
ij
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Fig. 11   The jointed rock blocks 
modeled by the PFC3D and 
the schematic pictures of joint 
systems: a, b and c have three 
joints with the dip direction of 
30° and the dip angles of 15°, 
30° and 45°, respectively; d, 
e and f have six joints formed 
from two joint sets, 30° joint 
dip direction and 15° joint dip 
angle for the first joint set and 
75° joint dip direction and 
the dip angles of 15°, 30° and 
45° for the second joint set, 
respectively; g, h and i have six 
joints formed from 2 joint sets, 
30° joint dip direction and 30° 
joint dip angle for the first joint 
set and 75° joint dip direction 
and the dip angles of 15°, 30° 
and 45° for the second joint set, 
respectively; j, k and l have six 
joints formed from two joint 
sets, 30° joint dip direction 
and 45° joint dip angle for the 
first joint set and 75° joint dip 
direction and the dip angles of 
15°, 30° and 45° for the second 
joint set, respectively; (in the 
schematic pictures, the blue 
planes are 1st joint set and red 
planes are 2nd joint set; the 
maximum principal stress, the 
intermediate principal stress and 
the minimum principal stresses 
are applied on the top face, on 
the front left face and on the 
right front face, respectively)
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Fig. 12   Polyaxial test results 
obtained from PFC3D modeling 
for the intact rock model and 
jointed rock models with one 
joint set having three joints with 
the dip direction of 30° and the 
various joint dip angles from 
15° to 45° at an interval of 15°
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Fig. 13   Polyaxial test results 
obtained from PFC3D modeling 
for the jointed rock model hav-
ing 3 joints with 30° joint dip 
direction and 15° joint dip angle 
and the jointed rock models 
having six joints formed from 
two joint sets with 30° joint dip 
direction and 15° joint dip angle 
for the first joint set and 75° 
joint dip direction and the vari-
ous joint dip angles from 15° to 
45° at an interval of 15° for the 
second joint set
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Fig. 14   Polyaxial test results 
obtained from PFC3D modeling 
for the jointed rock model 
having three joints with 30° 
joint dip direction and 30° joint 
dip angle and the jointed rock 
models having six joints formed 
from two joint sets with 30° 
joint dip direction and 30° joint 
dip angle for the first joint set 
and 75° joint dip direction and 
the various joint dip angles from 
15° to 45° at an interval of 15° 
for the second joint set
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Fig. 15   Polyaxial test results 
obtained from PFC3D modeling 
for the jointed rock model 
having three joints with 30° 
joint dip direction and 45° joint 
dip angle and the jointed rock 
models having six joints formed 
from two joint sets with 30° 
joint dip direction and 45° joint 
dip angle for the first joint set 
and 75° joint dip direction and 
the various joint dip angles from 
15° to 45° at an interval of 15° 
for the second joint set
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 where Fr
ij
 is the fracture tensor of the rock mass, Fk

ij
 is the 

fracture tensor (Fij) of the kth joint set, N is the total number 
of joint sets, m(V) is the number of fracture centers inside the 
assumed volume of V  , and ni and nj are the projection of n 
on the directions of i and j, respectively. Table 6 shows the 
computed fracture tensor components for all 12 different 
joint systems with one or two joint sets which are modeled 
using the PFC3D. In this table because the maximum, inter-
mediate and minimum principal stresses are applied in Z, Y 
and X directions, respectively, the alternate subscripts are 
also used to show the directions of the fracture tensor com-
ponents with respect to the principal stresses.

Kulatilake et al. (2006) showed that for the biaxial load-
ing in the laboratory on about 150 synthetic rock blocks hav-
ing two joint sets with 30 different joint systems in which 
the joint set dip directions were towards the intermediate 
principal stress direction, the rock mass strength, �J , under 
a constant intermediate principal stress, reduces non-linearly 
with increasing fracture tensor component in the intermediate 
principal stress direction ( F22 ). After trying various functions 
such as hyperbolic, negative power and negative exponential 
functions they proposed the following negative exponential 
equation which had the best regression fit to the experimental 
test results:

In Eq. 5, �I is the intact rock strength under the same inter-
mediate principal stress and � is an empirical coefficient which 
is a function of �2 according to Eq. 6.

(4)Fij =
1

V

m(V)∑
2�r3ninj

(5)
�J

�I
= e−�F22

where �c is the uniaxial compressive strength of the intact 
rock, p and q are empirical coefficients and �0 is the � value 
when the intermediate principal stress equals to zero.

Later He et al. (2016) extended the Kulatilake et al. (2006) 
criterion to the polyaxial compressive stress condition by Eq. 7 
based on extensive laboratory and numerical polyaxial test 
results on jointed coal blocks. In Eq. 7, F33 is the fracture ten-
sor component in the minimum principal stress direction.

They also proposed Eq. 8 for � to incorporate the effect of 
the minimum principal stress, �3, as well as the intermediate 
principal stress. Like Eq. 6, �0 is the � value for the uniaxial 
compression condition.

where p2 , q2 , p3 and q3 are empirical coefficients.
This three-dimensional criterion can predict the strength 

of jointed rock masses under different confining stresses by 
estimating the five independent coefficients through regres-
sion analyses of the data. Procedures are given in He et al. 
(2016) in detail to do that. This criterion was developed for 
non-persistent fracture systems and it captures the effect of 
scale and anisotropy due to the fracture system on rock mass 
strength. The proposed criterion by He et al. (2016) can pre-
dict the rock mass strength reasonably accurately for non-
persistent fracture systems. However, it can be extended to 
make it suitable for both non-persistent as well as persistent 

(6)
� =

�0

p
(

�2

�c

)q

+ 1

,

(7)
�J

�I
= e−�(F22+F33).

(8)� =
�0

p2

(
�2

�c

)q2
+ p3

(
�3

�c

)q3
+ 1

,

Table 6   The computed fracture 
tensor components in x, y, and 
z directions (the minimum, 
intermediate and maximum 
principal stress directions, 
respectively) for 12 joint 
systems of the jointed rock 
blocks

Joint system (Dip 
direction/Dip)

Fxx (F33) Fyy (F22) Fzz (F11) Fxy (F32) Fxz (F31) Fyz (F21)

030/15 0.060 0.179 3.326 0.103 0.446 0.772
030/30 0.230 0.690 2.759 0.398 0.796 1.380
030/45 0.446 1.337 1.783 0.772 0.891 1.544
030/15 and 075/15 0.282 0.195 6.653 0.163 1.307 1.003
030/15 and 075/30 0.840 0.235 5.835 0.312 1.845 1.147
030/15 and 075/45 1.199 0.261 4.547 0.409 1.625 1.088
030/30 and 075/15 0.453 0.706 6.086 0.458 1.657 1.610
030/30 and 075/30 1.010 0.746 5.268 0.607 2.196 1.755
030/30 and 075/45 1.369 0.722 3.980 0.703 1.976 1.696
030/45 and 075/15 0.669 1.353 5.109 0.832 1.752 1.775
030/45 and 075/30 1.226 1.393 4.292 0.981 2.291 1.919
030/45 and 075/45 1.585 1.419 3.004 1.077 2.070 1.860
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fracture systems. In He et al. (2016) criterion, for a set of 
constant values of the minimum and intermediate principal 
stresses �2 and �3, � is a constant for a specified rock mass 
irrespective of the directions of �2 and �3. . When �2 and �3 
directions rotate around the vector normal to the plane of �2 
and �3 (i.e. in �1 direction) F11 stays as a constant because 
the first invariant of the fracture tensor (F11 + F22 + F33) is 
always a constant and thus F22 + F33 also stays as a constant. 
Therefore, under the above-mentioned conditions, Eq. 7 pro-
vides a constant value and cannot capture the effect of �2 on 
F22 and �3 on F33 separately in predicting rock mass strength. 
However, this is an important issue to incorporate in pre-
dicting rock mass strength especially for persistent fracture 
systems.

In this research, Eqs. 7 and 8 are extended to capture the 
effect of �2 on F22 and �3 on F33 separately and to develop 
new rock mass strength criteria based on the results obtained 
through the jointed rock block modeling and testing under 
different minimum and intermediate stress combinations and 
joint geometry systems. The obtained results lead to the fol-
lowing observations:

(a)	 Increase of joint set dip angles, in general, reduce the 
jointed rock block strength and increase F22 and F33 . 
Thus, increase of F22 and F33 reduce the jointed rock 
block strength.

(b)	 Increase of the minimum and intermediate princi-
pal stresses reduce the effect of joint shearing on the 
jointed rock block strength. Therefore, increase of the 
minimum and intermediate principal stresses reduce 
the effects of F22 and F33. However, this reduction for 
low minimum and intermediate principal stresses is 
relatively higher compared to high minimum and inter-
mediate principal stresses.

(c)	 The effect of the minimum principal stress on the joints 
increases with decreasing angle between the dip direc-
tion angle of the joint set and the minimum principal 
stress direction. Thus, increase of F33 increases the 
effect of �3 on the joints.

(d)	 The effect of the intermediate principal stress on the 
joints increases with decreasing angle between the 
dip direction angle of the joint set and the interme-
diate principal stress direction. Thus, increase of F22 
increases the effect of �2 on the joints.

Based on the above-mentioned observations the following 
equation is proposed as a new rock mass strength criterion 
in a general form.

where f2 and f3 are monotonically decreasing functions, Sr is 
the strength ratio between the jointed rock mass strength, �J , 

(9)Sr =
�J

�I
= exp −

[
f3
(
�3∕�c

)
F33 + f2

(
�2∕�c

)
F22

]
,

under the minimum and intermediate principal stresses of �3 
and �2 and the intact rock strength, �I , under the same mini-
mum and intermediate principal stresses, �c is the uniaxial 
compressive strength of the intact rock, F22 is the fracture 
tensor component in �2 direction and, F33 is the fracture ten-
sor component in �3 direction. It should be mentioned that 
if �I for the intended �3 and �2 combination is not available, 
based on the Mehranpour and Kulatilake (2016) paper one 
of the three intact rock failure criteria out of Modified Lade, 
Modified Wiebols and Cook and Mogi is recommended to 
represent the intact rock strength value. However, because 
in this research the intact rock strength for all minimum and 
intermediate principal stress combinations is available, it is 
not necessary to use intact rock failure criteria to estimate 
the intact rock strength.

Kulatilake et al. (2006) showed that for the biaxial load-
ing a function such as given by Eq. 6 works very well for f2 
and f3. Thus, Eq. 9 can be rewritten as follows to propose the 
first new rock mass strength criterion:

where �2, �3, p2, p3, q2 and q3 are empirical coefficients. As 
an alternative, to reduce the number of coefficients, nega-
tive exponential functions are suggested for both f2 and f3. 
Thus, Eq. 9 can be rewritten as Eq. 11 with less empirical 
coefficients to propose the second new rock mass strength 
criterion.

where a2, a3, b2 and b3 are empirical coefficients.
It should be mentioned that if the joints have the same 

mechanical properties with isotropic behavior on the joint 
plane, the effect of �2 variation on F22 should be the same 
as the effect of �3 variation on F33. Therefore, under this 
condition f = f2 = f3 and Eqs. 9–11 can be simplified to 
Eqs. 12–14, respectively, as follows:

(10)

Sr =
�J

�I
= exp −

⎡
⎢⎢⎢⎣

�3

p3

�
�3

�c

�q3
+ 1

F33 +
�2

p2

�
�2

�c

�q2
+ 1

F22

⎤
⎥⎥⎥⎦
,

(11)

Sr =
�J

�I
= exp −

[
a3

(
e−b3(�3∕�c)F33

)
+ a2

(
e−b2(�2∕�c)F22

)]
,

(12)Sr =
�J

�I
= exp −

[
f
(
�3∕�c

)
F33 + f

(
�2∕�c

)
F22

]
,

(13)Sr =
�J

�I
= exp − �

⎡
⎢⎢⎢⎣

F33

p
�

�3

�c

�q

+ 1

+
F22

p
�

�2

�c

�q

+ 1

⎤
⎥⎥⎥⎦
,

(14)

Sr =
�J

�I
= exp − a

[(
e−b(�3∕�c)F33

)
+
(
e−b(�2∕�c)F22

)]
.
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In Eq. 12, f is a monotonically decreasing function and 
in Eqs. 13 and 14, �, p, q, a and b are empirical coefficients. 
Moreover, under this condition if �2 = �3, by rotating the �2 
and �3 directions around the vector normal to the plane of 
�2 and �3, the jointed rock mass strength should remain the 
same. This behavior is also captured by Eq. 12. If �2 = �3 , 
Eq. 12 can be rewritten as follows:

where F33 + F22 is always a constant if �2 and �3 directions 
rotate around the vector normal to the plane of �2 and �3. 
Therefore, the jointed rock mass strength stays the same 
under the above-mentioned conditions.

In this research because all the joints are saw cut, they have 
the same isotropic mechanical behavior on the joint plane. 
Thus, to fit the new rock mass strength criteria for the numeri-
cal modeling results and to find the accuracy of the new rock 
mass strength criteria Eqs. 13 and 14 can be used. To estimate 
the values of the coefficients in these equations an indirect 
method is used. In this method, different values are chosen 
for empirical coefficients from a grid in a reasonable range. 
Then the jointed rock mass strength corresponding to different 
�2, �3,F22 and F33 values are calculated through Eqs. 13 and 
14. Afterwards, for each equation the best combination of the 
empirical coefficients is found by maximizing the coefficient 
of determination, R2 , using the following equations:

(15)Sr =
�J

�I
= exp −

[
f
(
�3∕�c

)(
F33 + F22

)]
,

(16)R2 = 1 −
Se

St
,

where

where n is the total number of data sets, m is the number of 
parameters to be estimated, �P

J,i
 is the predicted jointed rock 

block strength from the new rock mass strength criterion 
for data set i, �PFC

J,i
 is the strength of jointed rock block from 

the PFC3D modeling for data set i, and �−PFC
J

 is the average 
strength value of all the PFC3D data.

4.1 � Fitting of the First New Rock Mass Strength 
Criterion Using Eq. 13

In Fig. 16, the obtained R2 values are shown for different 
values of p and q for selected 3 different � values. The maxi-
mum R2 is found to be 0.94, indicating a very strong fit. It 
results in the best values of 0.675, 3.16 and 0.6, for � , p and 
q, respectively. Figure 17 shows the predicted strength val-
ues versus the strength values from the PFC3D modeling for 
all 284 data points. It indicates that the suggested strength 
criterion (Eq. 13) is highly suitable to represent the PFC3D 
data.

(17)Se =
1

n − m − 1

n∑
i=1

(
�P
J,i
− �PFC

J,i

)2

,

(18)St =
1

n − 1

n∑
i=1

(
�PFC
J,i

− �
PFC

J

)2

,

Fig. 16   Obtained R2 values of the new rock mass strength criterion using Eq. 13 for different combinations of p, q on the cross-sectional planes 
of � = 0.65, � = 0.675 and � = 0.70 (color bar shows the R2 values)
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4.2 � Fitting of the Second New Rock Mass Strength 
Criterion Using Eq. 14

In Fig. 18, the obtained R2 values are shown for different 
values of a and b for the 284 data points from 12 different 
joint systems under the different minimum and intermediate 
principal stress combinations. The maximum R2 is found to 
be 0.92. It results in the best values of 0.404 and 0.972, for 
a and b, respectively. The small difference obtained between 
the R2 values using the two different functions shows that 
Eq. 14 with less empirical coefficients is also a reasonably 
good rock mass strength criterion. Figure 19 shows the pre-
dicted strength values based on Eq. 14 versus the strength 
values from the PFC3D modeling for all 284 data points. It 
indicates that the suggested strength criterion (Eq. 14) is 
highly suitable to represent the PFC3D data. Figure 20 shows 
the comparison between the predicted rock mass strengths 
from the new rock mass strength criteria using Eqs. 13 and 
14 with the numerical results for two different joint systems 
with one and two joint sets, respectively. Figure 20 shows 
that the predictions from the two strength criteria are close.

5 � Discussion

The equations given in Sect. 4 to estimate the jointed block 
strength for synthetic rock are normalized with respect to 
the synthetic intact rock strength. Therefore, the equations 
are applicable for any rock mass. The equations allow to 
estimate the normalized jointed block strength in any direc-
tion in three dimensions. By estimating the strength in dif-
ferent directions, the strength anisotropy and the minimum 
normalized jointed block strength can be estimated in three 
dimensions. The intact block strength can be estimated using 
one of the available intact rock strength criteria. To esti-
mate the parameters of the intact rock strength criterion, it 
will be necessary to perform a few laboratory tests as usual. 
To apply the equations given for normalized jointed block 
strength for any rock mass, first, the fracture geometry data 
(number of fracture sets and orientation, size and intensity 
of each set) should be collected for the intended rock mass. 
These data can be used to calculate the fracture tensor using 
Eqs. 3 and 4 as shown in Table 6. That will allow calculation 

Fig. 17   Predicted strength 
values based on the new rock 
mass strength criterion based 
on Eq. 13 versus the strength 
values from PFC3D modeling 
for all 284 data points from 12 
different joint systems having 
different boundary conditions 
(R2 = 0.94)

Fig. 18   Obtained R2 values of the new rock mass strength criterion 
using Eq. 14 for different combinations of a and b 

Fig. 19   Predicted strength value based on the new rock mass strength 
criterion using Eq.  14 versus the strength value from PFC3D for all 
284 data points from 12 different joint systems and under different 
boundary conditions (R2 = 0.92)
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of the two fracture tensor components perpendicular to the 
direction jointed block strength is desired. These two frac-
ture tensor components go into the normalized jointed block 
strength equation. The confining stresses should be applied 
based on the in-situ stress system. For the time being the 
estimated coefficient values of the equations can be used to 
estimate the jointed block strength. It is important to note 
that these coefficient values depend on the ratios of joint 
mechanical property values to intact rock property values. 
This dependence should be investigated in future research.

6 � Summary and Conclusions

In this research an attempt was made to develop a new three-
dimensional rock mass strength criterion to overcome the 
shortcomings that exist in most of the existing rock mass 
strength criteria. Most of the existing strength criteria can-
not simultaneously consider the effect of the intermediate 
principal stress on the rock mass strength as well as the 
scale dependency and anisotropy behavior of the rock mass 
strength. Although He et al. (2016) proposed a three-dimen-
sional criterion which captures the effect of the intermediate 
principal stress, scale dependency and anisotropy due to the 
fracture system on rock mass strength their criterion did not 
incorporate the effect of the stress anisotropy because it was 
developed for non-persistent fracture systems. Besides, He 

Fig. 20   Comparison of the pol-
yaxial strength results obtained 
from the PFC3D modeling with 
that obtained from the new rock 
mass strength criteria based on 
Eqs. 13 and 14, respectively, for 
the jointed rock block models a 
having 3 joints with dip angle 
and dip direction of 45° and 
30°, respectively, and b having 
six joints formed from two joint 
sets with 30° joint dip direction 
and 30° joint dip angle for the 
first joint set and 75° joint dip 
direction and 45° joint dip angle 
for the second joint set
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et al. (2016) criterion requires calibration of five empiri-
cal coefficients. However, the stress anisotropy is important 
especially in the case of fully persistent fracture systems 
(Mehranpour and Kulatilake 2017). Therefore, in this paper 
the He et al. (2016) criterion was extended to incorporate the 
effect of stress anisotropy too and to develop two new rock 
mass strength criteria.

To develop a comprehensive rock mass strength criterion, 
it is crucial to have a proper database which includes the 
effect of different factors such as the joint geometry con-
figuration including the orientation and the minimum and 
intermediate principal stresses. Due to the high cost and time 
of the experimental tests, it is very difficult if not impractical 
to have a comprehensive database only through experimen-
tal tests. Therefore, numerical modeling was incorporated 
to create this database. The other benefit of the numerical 
modeling is the possibility to investigate the effect of each 
factor separately while keeping the values of the other fac-
tors the same. In this research, PFC3D was selected for the 
numerical modeling because it can conveniently model the 
block breakage through the fracture initiation and propa-
gation using the Bonded Particle Models and joint failure 
through the joint sliding using the SJCM. In this paper, 
because of the shortcoming of the SJCM to capture the 
non-linear behavior of the joint closure due to varying joint 
normal stress, the MSJCM was used. Moreover, to solve the 
interlocking problem which occurs due to the shortcoming 
of the PFC software in the updating procedure of the contact 
conditions of the particles that lie around the intended joint 
plane during high shear displacements, the JSC approach 
was used.

Before simulating the jointed rock blocks under the pol-
yaxial, triaxial and biaxial compression tests, these tests 
were simulated on the synthetic intact rock samples to find 
the intact rock strength for selected minimum and interme-
diate principal stress combinations. Altogether 33 intact 
rock strength values for different combinations of minimum 
and intermediate principal stresses were obtained from the 
numerical modeling for the synthetic intact rock. Then, 12 
different joint systems with one and two joint sets were cho-
sen to model the jointed rock blocks under the polyaxial, 
triaxial and biaxial compression tests with the minimum and 
intermediate principal stress combinations similar to those 
conducted for the intact rock modeling. Used joint sets have 
different dip angles varying from 15° to 45° at an interval 
of 15° with dip directions of 30° and 75°. Each joint set also 
has three persistent joints with the joint spacing of 42 mm 
in a cubic sample of size 160 mm. In total 284 jointed block 
strengths were obtained from the numerical modeling of the 
jointed rock blocks. It should be mentioned that because 
the numerical and experimental test results of polyaxial and 
triaxial compression tests on the synthetic intact rock and 
jointed rock blocks showed a reasonable agreement, it was 

not necessary to update the micro mechanical properties of 
the calibrated PFC3D model.

Based on the observations from the jointed rock modeling 
results using PFC3D and the fracture tensor concept, an exist-
ing rock mass strength criterion was extended to include the 
stress anisotropy and to develop a new three-dimensional 
rock mass strength criterion in general form (Eq. 9). For 
the new general rock mass strength criterion, two functions 
were proposed: (a) given by Eq. 10 and (b) given by Eq. 11 
to obtain two specific new rock mass strength criteria. The 
new rock mass strength criterion given by Eq. 10 has six 
empirical coefficients; if the joint sets have the same iso-
tropic mechanical behavior on the joint plane, the number of 
coefficients reduces to three empirical coefficients in this cri-
terion (Eq. 13). The new rock mass strength criterion given 
by Eq. 11 has only four empirical coefficients; if the joint 
sets have the same isotropic mechanical behavior on the joint 
plane the number of coefficients reduces to two empirical 
coefficients in this criterion (Eq. 14).

Using the database created in this paper, which has 284 
data points, the empirical coefficients of �, p and q were 
estimated as 0.675, 3.16 and 0.6, respectively, through a grid 
analysis with a high R2 value of 0.94 for the new criterion 
given by Eq. 13. The empirical coefficients of a and b were 
estimated as 0.404 and 0.972, respectively, through a grid 
analysis with a high R2 value of 0.92 for the new criterion 
given by Eq. 14. Even though the first criterion was fitted 
with a slightly higher R2 value than the second criterion, it 
was less time consuming and significantly easier to estimate 
the empirical coefficients for the second criterion. Both new 
criteria clearly showed the effect of the intermediate princi-
pal stress as well as the minimum principal stress and joint 
orientation on the rock mass strength. Because the developed 
jointed block strength criteria are expressed in normalized 
form by dividing by the intact block strength, the normal-
ized jointed block strength criteria are applicable for any 
rock mass. Guidelines are given to show how the developed 
strength criteria can be applied to field rock masses.
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