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Abstract

Two new three-dimensional rock mass strength criteria are developed in this paper by extending an existing rock mass
strength criterion. These criteria incorporate the effects of the intermediate principal stress, minimum principal stress and
the anisotropy resulting from these stresses acting on the fracture system. In addition, these criteria have the capability
of capturing the anisotropic and scale dependent behavior of the jointed rock mass strength by incorporating the effect of
fracture geometry through the fracture tensor components. The new criteria are proposed after analyzing 284 numerical
modeling results of the polyaxial, triaxial and biaxial compression tests conducted on the jointed rock blocks having one or
two joint sets by the PFCP software. Some of these simulation results were compared with experimental results to validate
the developed PFC>P model that was used for numerical modeling of jointed blocks. In this research to have several sam-
ples with the same properties a synthetic rock material that is made out of a mixture of gypsum, sand and water was used.
Altogether, 12 joint systems were chosen; some of them had one joint set and the rest had two joint sets. Joint sets have dif-
ferent dip angles varying from 15° to 45° at an interval of 15° with dip directions of 30° and 75° for the two joint sets. Each
joint set also has three persistent joints with the joint spacing of 42 mm in a cubic sample of size 160 mm. The minimum
and intermediate principal stress combination values were chosen based on the uniaxial compressive strength (UCS) value
of the modeled intact synthetic rock. The minimum principal stress values were chosen as 0, 0.2, 0.4 and 0.6 of the UCS.
For each minimum principal stress value, the intermediate principal stress value varies starting at the minimum principal
stress value and increasing at an interval of 0.2 of the UCS until it is slightly lower than the strength of the sample under the
biaxial loading condition with the same minimum principal stress value. To express the new rock mass strength criteria, it
was also necessary to determine the intact rock strengths under the same confining stress combinations mentioned earlier.
Therefore, the intact rock was also modeled for all three compression tests and the intact rock strengths were found for 33
different minimum and intermediate principal stress combinations.

Keywords Discrete element method (DEM) - Particle flow code (PFC) - Rock mass strength - Polyaxial compression test -
Intermediate principal stress - Fracture tensor
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Jointed rock mass and intact rock
strengths, respectively

Predicted jointed rock block strength
from the new rock mass strength crite-
rion for data set i
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the PFC>P modeling for data set i
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Normal stress
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1 Introduction

Jointed rock masses are known as the combination of intact
rock blocks and discontinuities. Therefore, the mechani-
cal behavior of a rock mass is affected by the mechanical
behavior of intact rock and discontinuities in addition to the
discontinuity geometry. The number of discontinuity sets,
their intensity, spatial distribution of orientation, size and
spacing, roughness, strength and deformation of asperities,
filling, aperture, are the important properties of rock discon-
tinuities which can affect the mechanical behavior of rock
masses. Thus, assessment of the mechanical behavior of a
jointed rock mass is relatively more complicated compared
to that of an intact rock due to the high number of parameters
that affect the mechanical behavior of rock masses (Kula-
tilake 1985; Yu 2001). On the other hand, unfortunately,
understanding of the mechanical behavior of rock masses
is crucial to design safe and economical structures in or on
jointed rock masses.

Moreover, due to the presence of complicated disconti-
nuity geometry patterns, the inherent statistical nature of
discontinuity geometrical parameters, and the variabilities
and uncertainties involved in the estimation of discontinu-
ity mechanical and geometrical properties, estimation of
the mechanical behavior of discontinuous rock masses is
difficult and challenging (Kulatilake 1985; Kulatilake et al.
1993).

Analytical, Empirical, and numerical are three avail-
able approaches to estimate mechanical behavior of rock
masses (Kulatilake et al. 1993; Singh and Goel 2011;
Kulatilake 2016). Analytical approaches provide ana-
lytical solutions for rock mass strength criteria based on
selecting suitable intact rock and rock joint strength cri-
teria and applying simplified methods to combine them.
This method is rarely applicable in dealing with field rock
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masses, which are usually more complicated than the
assumed simplified models (Bekaert and Maghous 1996;
Pouya and Ghoreychi 2001).

On the other hand, the empirical approach based on one
of the rock mass classification systems is simple and it may
be used in complicated conditions to obtain some prelimi-
nary estimates of rock mass mechanical properties. However,
in all rock mass classification systems, personal judgment,
and experience play crucial roles (Bieniawski 1973; Barton
et al. 1974; Hoek 1994). Moreover, in the rock mass clas-
sification systems, the isotropic behavior is assumed for the
rock masses. However, most rock masses show anisotropic
behavior due to the existence of distinct orientations of dis-
continuity sets (Kulatilake et al. 1993; Amadei 1996; Mari-
nos et al. 2005; Wu and Kulatilake 2012; Chiu et al. 2013).
Therefore, the available rock mass strength criteria based on
the rock mass classification systems are unable to capture the
anisotropic behavior of rock masses as well as the effect of
the intermediate principal stress on the rock mass strength.
It should be mentioned that even though some research-
ers (Pan and Hudson 1988; Priest 2005; Melkoumian et al.
2009; Zhang and Zhu 2007; Zhang 2008; Zhang et al. 2013;
Saroglou and Tsiambaos 2008; Colak and Unlu 2004; Ismael
et al. 2014; Yudhbir et al. 1983; Sheorey et al. 1989) tried to
incorporate the effect of the intermediate principal stress in
their formulations to overcome one of the above-mentioned
shortcomings, their proposed criteria have not captured the
effect of joint orientation and scale (resulting from joint size)
on rock mass strength explicitly.

Ramamurthy (2001) instead of using the rock mass clas-
sification systems to quantify the effect of rock joint systems,
proposed a joint factor parameter which is related to the
joint frequency and the joint orientation. However, it does
not consider the complete effect of joint orientation on rock
mass strength resulting from multiple joint sets. In addi-
tion, this criterion does not consider the scale effect and the
effect of the intermediate principal stress on the rock mass
strength.

Nowadays through accessibility to extremely fast com-
puters, numerical modeling can be used as an approach to
overcome the shortcomings of the analytical and empiri-
cal approaches by incorporating the mechanical behavior of
intact rocks and rock joints to find the mechanical behavior
of rock masses (Kulatilake et al. 1993; Wu and Kulatilake
2012; Shreedharan and Kulatilake 2016). Moreover, the new
methods such as digital photogrammetry and LiDAR can
help to extract the geometrical properties of rock discon-
tinuities with high resolution leading to better accuracy of
numerical modeling results (Gigli and Casagli 2011; Zheng
et al. 2014; Kulatilake and Shu 2015). Numerical modeling
can be used to estimate rock mass strength by incorporat-
ing fracture geometry and using constitutive models for the
intact rock and rock joint behavior.

For jointed rock mass strength evaluation, in addition to
the above-mentioned parameters, the boundary and environ-
mental conditions such as the in-situ stress, loading/unload-
ing stress path, loading rate, pore pressure, temperature and
humidity. are important factors to consider (Singh and Goel
2011). Thus, numerical modeling is very useful because of
its power to apply different boundary conditions on the mod-
els. Polyaxial (or true-triaxial) boundary stress condition is
one the most important conditions which can be considered
in numerical modeling. In the polyaxial stress condition,
three principal stresses (maximum principal stress, o, inter-
mediate principal stress, ¢,, minimum principal stress, ¢5.,)
are not equal (¢, < 0, < 03) (Mehranpour and Kulatilake
2016). Although the polyaxial stress is a common condi-
tion in the real field situation which has a significant effect
on the jointed rock mass strength, it has been considered
rarely in the rock mechanics literature and the effect of the
intermediate principal stress is generally ignored. Mehran-
pour and Kulatilake (2017) clearly showed the effect of the
intermediate principal stress on the strength of jointed rock
by extending Jaeger’s theory and numerical modeling with
the Particle flow code (PFC) approach, which belongs to the
Discrete element method (DEM) category.

Because several parameters affect the strength of rock
masses, numerous experimental tests are required to find the
effect of these parameters on the strength of rock masses.
That task is time consuming, very costly and impractical
to perform in the field and laboratory. To solve this prob-
lem some researchers modeled rock masses with numeri-
cal modeling to propose new rock mass failure criteria. In
this method, at first, a numerical model is calibrated with
a limited number of experimental tests and physical mod-
eling of the rock masses and then the calibrated model is
expanded to more complicated situations with more diverse
conditions (Kulatilake et al. 1993, 2001, 2006; Pouya and
Ghoreychi 2001; Wu and Kulatilake 2012a; He et al. 2016).
Kulatilake et al. (1993) and Wu and Kulatilake (2012) used
this procedure incorporating the 3DEC software, which is
one of the well-known DEM software packages used in the
rock mechanics field, to find the effect of the joint geometry
parameters on the deformability properties of rock masses.
To quantify the joint geometry parameters, they used an
extended form of the fracture tensor concept. Kulatilake
et al. (2001, 2006) and He et al. (2016) also extended the
fracture tensor concept to fracture tensor components and
developed new rock mass strength criteria.

In this paper, the same procedure is used based on experi-
mental tests and PEC>P modeling on intact rock, jointed rock
with one joint set and jointed rock with two non-orthogonal
joint sets to develop new rock mass strength criteria in three
dimensions. The new criteria consider the effect of all prin-
cipal stresses in three dimensions and they are applicable
for any type of rock mass, especially for non-sedimentary
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rock masses which generally have non-orthogonal fracture
systems. This criterion also shows the anisotropic strength
behavior of rock masses due to the dip angle and dip direc-
tion of joint sets. It should be mentioned that compared to
other numerical methods, in the PFC, macro parameter val-
ues are not directly used in the numerical model, and micro
parameter values applicable between the particles should be
calibrated using the macro property values, and then these
calibrated micro parameter values are used in PFC modeling.

To develop new rock mass strength criteria, first conven-
tional experimental tests on the intact rock and the joint as
well as the polyaxial compression tests on the intact rock
and jointed samples are performed on the synthetic rock
samples. Then the micro properties of PFC*P model are cali-
brated based on the experimental test results. Afterwards,
polyaxial, triaxial and biaxial compression tests for the intact
rock and jointed rock blocks are simulated in the PEC’P with
different combinations of minimum and intermediate princi-
pal stresses. After gathering results, the development of new
rock mass failure criteria was initiated using the fracture ten-
sor concept which was introduced by Oda (1982) and devel-
oped into the fracture tensor components by Kulatilake et al.
(1993, 2006). Fracture tensor combines the joint orientation,
joint size, joint density for each joint set and the number of
joint sets by a second order tensor. Thus, the fracture tensor
can show the anisotropy and scale effects of rock masses
which are exhibited by the presence of joints.

It should be mentioned that polyaxial and triaxial com-
pression tests were performed in the laboratory with a

limited number of boundary stress conditions and joint set
systems, because the experimental tests are expensive, and
the apparatus had limited load capacity. Then, these experi-
mental tests were simulated using PFC®P and the numeri-
cal results were compared with the experimental results of
synthetic intact rock and synthetic jointed rock blocks. If
these two groups of results did not match, micro parameter
values were modified until very close results were obtained
with an acceptable error. According to these steps, estima-
tion of appropriate values for micro mechanical properties
was done; it turned out to be one of the challenging parts
of this project. All the above-mentioned procedures used to
develop new rock mass strength criteria are shown in the
flowchart given in Fig. 1.

2 Laboratory Tests

As mentioned in the introduction, new rock mass strength
criteria were developed based on the computational results
obtained from the calibrated and validated PFC?P model.
Note that the macro mechanical experimental results
obtained for the synthetic intact rock and synthetic rock
joints were used for the calibration of the PFC*P model.
Besides, a limited number of polyaxial and triaxial com-
pression tests were also performed on the synthetic intact
rock and synthetic jointed rock samples to compare with the
numerical modeling results to validate the calibrated PFCP
model. In this validation procedure, it was necessary to

Rock testing on
synthetic intact rock

Numerical modeling
by PFC3D

Polyaxial
compression tests on
synthetic intact rock

Polyaxial
compression tests on
jointed synthetic rock

|

|

Estimation of macro
mechanical parameters
of intact rock

ey

Estimation of micro
parameters of synthetic
intact rock for PFC3D

!

Rock testing on
synthetic saw cut
joints

Modeling polyaxial

compression tests using PFC3P

for synthetic intact rock

!

Same results?

¥

Estimation of macro
mechanical parameters
of rock joints

—

Estimation of micro
parameters of synthetic
rock joints for PFC3D

|

Modeling polyaxial

YV

Finding the best
intact rock
failure criterion

y

Same results?

Develop a failure
criterion for rock
masses

compression tests using PFC3P
for synthetic jointed rock

Fig. 1 Used flowchart to develop a new rock mass failure criterion
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modify the micro mechanical property values if the numeri-
cal and experimental results were not similar.

2.1 Sample Preparation

For the experimental part, to have several samples with the
same properties, a synthetic material that was made of a
mixture of gypsum, sand and water was used. This model
material exhibits different mechanical properties depend-
ing on the mixture ratio. This ratio was designed to have
the samples based on the loading limitation of the loading
machine which was used in the laboratory. The experimental
tests were performed at the China University of Mining and
Technology, Beijing (CUMTB) based on the test preparation
and loading conditions designed by the Rock Mass Mod-
eling and Computational Rock Mechanics Laboratories at
the University of Arizona. The water to gypsum ratio of each
sample was 0.6:1 by weight. After casting the gypsum sam-
ples in the mold, samples were kept in the room temperature
(20+2 °C) for 1 day. Then, samples were placed in a humid-
ity chamber which can control temperature and humidity at
different levels. Samples were kept in a humidity chamber

for a week with the temperature set to 20 +2 °C and the
relative humidity set to 100%. Finally, samples were taken
out from the humidity chamber and were kept in the room
temperature (20 +2 °C) until they were used for experimen-
tal tests.

2.2 Intact Rock Experimental Tests

In the first step of the experimental program, three uniaxial
tests, three triaxial tests and five Brazilian tests were per-
formed on the synthetic intact rock material. Thus, from
these tests, macro mechanical parameter values of the
Young’s modulus, uniaxial compressive strength (UCS),
internal friction angle, cohesion and Poisson’s ratio for
the synthetic intact rock were obtained and the summary
results are given in Table 1. These macro mechanical prop-
erty values were used to calibrate the micro properties of
the synthetic intact rock. Uniaxial and triaxial compression
tests were performed on cubic samples of side dimension
160 mm. The polyaxial compression test facility available
at the CUMTB (Fig. 2) was used to apply forces on all sides
of the cubical samples. This machine has the capability to

Table 1 Estimated macro mechanical property values for the synthetic rock from laboratory tests and PEC?P modeling results

Uniaxial strength (MPa) Tensile strength (MPa) Cohe-  Angle of Young’s modulus (GPa) Poisson’s ratio
sion internal fric-
(MPa) tion (°)
Experimental ~ Range Avg. 5.78 Range Avg. 123 1.9 24 Range Avg. 1.07 0.20
tests 5.28-6.09 1.03-1.57 0.99-1.21
PFC® mod-  5.64 1.35 2.0 22 1.03 0.22
eling

Fig.2 The polyaxial testing
machine available at CUMTB
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apply a maximum force of 500 KN on each of the three
perpendicular directions (two horizontal directions and the
vertical direction) with 0.5% accuracy. Applied load was
measured in each of the perpendicular directions. Two
LVDT deformation sensors were used to measure the defor-
mation in each of the perpendicular directions. The deforma-
tion range for each direction is 150 mm with 0.4% accuracy.
Loading, data collection and saving were done automatically
through a data acquisition and a computer system. Figure 3
shows the uniaxial and triaxial test results obtained from the
polyaxial compression test facility. These test results were
used to calibrate and validate the built PFC>P model for the
synthetic intact rock.

2.3 Rock Joint Experimental Tests

In addition to estimating the macro mechanical properties
of the synthetic intact rock, it was necessary to estimate the
macro mechanical properties of the synthetic rock joint to
calibrate the micro mechanical properties for joints. The
joint friction angle, ¢;, joint cohesion, C;, joint normal
stiffness, K}f , and the joint shear stiffness, KSJ are important
mechanical properties of the synthetic rock joint. Several
researchers realized that the joint normal stiffness varies
with the normal stress acting on the joint surfaces and they
have proposed different relations to describe this behavior
(Shehata 1972; Goodman 1976; Bandis et al. 1983; Swan
1983; Malama and Kulatilake 2003; Kulatilake et al. 2016).
Kulatilake et al. (2016) developed the linear relation given
by Eq. 1 between the joint normal stiffness and the normal
stress acting on the joint plane, o,,, and showed that it has a
good correlation with experimental test results obtained by
the same research group.

Fig.3 Uniaxial and triaxial
test results; GAA1, GAA2 and
GAA3 (0,=03=0); GAA4
(6,=03=0.53 MPa); GAAS
(6,=03=1.11 MPa); GAA6
(0,=03=1.64 MPa)

Axial stress (MPa)

K’ = Bo, )

In Eq. 1, B is an empirical constant. Thus, instead of find-
ing the joint normal stiffness the B value should be found. In
this research, three direct shear tests and four joint normal
stiffness tests were performed on the synthetic rock joint to
estimate the macro mechanical properties of the joint and
the estimated values are given in Table 2. Figure 4 shows the
detailed experimental test results obtained from the direct
shear tests and joint normal stiffness tests. For the direct
shear tests and joint normal stiffness tests cylindrical sam-
ples with 50 mm diameter and the heights of 50 mm and
100 mm were used, respectively.

2.4 Polyaxial and Triaxial Compression Tests

Polyaxial and triaxial compression tests were performed on a
limited number of intact rock and jointed rock samples with
one joint set to verify the numerical modeling performed on
the polyaxial and triaxial compression tests with the cali-
brated PFC>P model. The same polyaxial testing machine
explained in Sect. 2.2 was used to perform the polyaxial and
triaxial compression tests on the cubic synthetic intact rock

Table 2 Estimated macro mechanical property values for the syn-
thetic rock joint from laboratory tests and PFCP modeling results

Shear stiffness B (1/mm) Joint fric-
(GPa/m) tion angle
(@)
Experimental tests Range  Avg Range Avg 275
04-0.9 059 19.8-36.8 289
PFC?° modeling 0.6 29 27

@ Springer

2 3 4
Axial strain (%)



Development of New Three-Dimensional Rock Mass Strength Criteria

3543

Fig.4 a Shear stress-shear @) 06 -
displacement diagrams for three ’
direct shear tests, and PFC _——= _
modeling results; b normal 0.5 — —\-
stress-joint normal deforma- — /
tion diagrams based on four s 04 | /
experimental jointed uniaxial % ' / = = -PFC, on=0.56 MPa
compression test results, the A / Seecoces
average of the exponential fit g 03 / ..__'.;:,:°,._,-_ .,';,_"_“ —PFC,on=1.11 MPa
for normal stress-joint normal @ ALEN o* - - _
deformation relation, and PFC 5 02} | f7 Kl 7/ ‘'~ P GS1, on =0.56 MPa
modeling result based on the =3 / /' ..' - = seese (GS2, on=0.56 MPa
Modified Smooth Joint Contact /-
Model 0.1FF o — — GS3,0on=1.11 MPa
0 o ° 1 1 1 1 ]
0 0.5 1 1.5 2 2.5
Shear displacement (mm)
(b) 35
3
;;j\ 2.5
S Avg. exponential fit
2 2 === PFC
=
70]
=15 —=(Al
g ——GA2
S
Z 1 - « «GA3
—— GA4
0.5
0 J

0 0.05

0.1 0.15 0.2

Joint normal displacement (mm)

and synthetic jointed rock samples with the dimension of
160 mm. In the polyaxial test, first the minimum principal
stress was applied on the sample in all three perpendicu-
lar directions. Then the stress on one lateral direction was
kept constant (= o5) and the stress equal to the intermedi-
ate principal stress was applied in the other two directions.
Finally, the stress in the second lateral direction was kept
constant (= o,) and the axial stress in the vertical direction
was increased until the sample failed.

The jointed rock samples had three joints with the joint
spacing of 42 mm, the dip direction of 30° and the dip angles
of 15° or 30° for the different samples. Figures 5 and 6 show
the schematic diagrams of these jointed samples as well as the
prepared samples for experimental tests. Due to the impor-
tance of the directions of the applied principal stresses on the
jointed samples for their polyaxial compression test, the same
direction was used for each principal stress. For the jointed
rock block samples, the maximum principal stress was applied

vertically, and the other two principal stresses were applied
horizontally where the angles between the intermediate and
minimum principal stress directions and the joint dip direction
were 30° and 60°, respectively (Figs. 5, 6). Table 3 and Figs. 7,
8, 9 show the applied o, and o5 stresses and the results of the
above-mentioned experimental polyaxial and triaxial compres-
sion tests. Table 3 shows that for the same minimum principal
stress, the strength of the intact rock and jointed rock increases
with increasing intermediate principal stress. Besides, this
table shows a strength reduction as the dip angle of the joint
set increases from 15° to 30°under the same confining stresses.

3 Numerical Modeling
For numerical modeling, the PFC approach was chosen.

The PFC is a DEM based software, which uses disks (in
2-D) or spherical elements (in 3-D) to represent particles.

@ Springer
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Fig.5 Jointed rock block sam-
ple which has three joints with
the dip direction of 30° and the
dip angle of 15°: a schematic
picture and the b top, ¢ left
front and d right front views

of a prepared sample for the
experimental test (the maxi-
mum principal stress applied on
the top face, the intermediate

(b)

principal stress applied on the

left front face and the minimum
principal stress applied on the
right front face)

In this method, particles are assumed as rigid and Newton’s
second law controls the interactions between the parti-
cles. Particles can have contact with adjacent particles and
force—displacement law acts at contacts (Cundall and Strack
1979; Cundall and Hart 1992). The PFC can conveniently
model the fracture initiation and propagation between the
particles, as well as the rupture, using the Bonded-Particle
Models that cement particles together in representing the
intact rock (Potyondy and Cundall 2004; Potyondy 2015).
Moreover, in the PFC software to model the mechanical
behavior of jointed rock masses the intact rock can be mod-
eled by the Bonded-Particle Models, and the discontinuities
can be modeled by the Smooth-Joint Contact Model (SJCM)
(Pierce et al. 2007). Therefore, the block breakage as well as
joint sliding can be accommodated (Mas Ivars et al. 2011).

As stated before, in the PFC, micro parameter values
applicable between the particles should be calibrated using
the macro properties. Due to the presence of a higher num-
ber of micro mechanical parameters compared to the avail-
able macro properties and complex behavior of the micro

@ Springer

mechanical parameters, the calibration of micro parameters
is based on a trial and error procedure in which the micro
mechanical parameter values are varied iteratively to match
the macro mechanical behaviors. Therefore, the calibration
is one of the most critical and challenging parts in modeling
with the PFC. Several researchers such as Kulatilake et al.
(2001), Potyondy and Cundall (2004), Cho et al. (2007),
Yang et al. (2015) and Mehranpour and Kulatilake (2016)
have dealt with this calibration and have indicated their find-
ings on relations between the micro and macro parameters.
Several others have used the PFC in modeling intact rocks
or jointed rock masses (Fakhimi 2004; Koyama and Jing
2007; Park and Song 2009; Lee and Jeon 2011; Schopfer
et al. 2013; Zhang et al. 2015; Fan et al. 2015; Duan and
Kwok 2016). However, limited efforts (Yang et al. 2015;
Bahaaddini et al. 2015; Mehranpour and Kulatilake 2017)
have been made on the calibration and modeling of the joints
with the SICM.

In this research to model the intact rock in PFC>P, among
the different bonded particle models, the linear parallel bond
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Fig.6 Jointed rock block sam-
ple which has three joints with
the dip direction of 30° and the
dip angle of 30°: a schematic
picture and the b top, ¢ left
front and d right front views

of a prepared sample for the
experimental test (the maxi-
mum principal stress applied on
the top face, the intermediate
principal stress applied on the
left front face and the minimum
principal stress applied on the
right front face)

3545
(b)
(a)
1
(0
|
(d)

model (LPBM) was chosen for contacts. The LPBM works
like a cement material and assumes the two adjacent parti-
cles are cemented to each other with a notional rectangular
(2D) or cylindrical (3D) shape of contact. The major prob-
lem of LPBM is its inability to model the failure envelop for
the whole spectrum of rock types. It can only model rocks
with the low internal friction angles, and the low ratios of
compressive to tensile strength. To solve this problem some
researchers have proposed different methods and different
models (Potyondy and Cundall 2004; Fakhimi 2004; Cho
et al. 2007). The synthetic material which is used in this
study has a low internal friction angle and a low ratio of
compressive to tensile strength. Thus, the LPBM can model
the used synthetic intact rock properly.

For the synthetic intact rock calibration process a cubic
sample of side dimension of 160 mm with a uniform par-
ticle size distribution (the minimum particle diameter of
2.7 mm and the maximum particle diameter of 4.48 mm)
was created in PFC>P to model the uniaxial and triaxial
tests mentioned in Sect. 2.2. Based on the selected particle

size distribution, 103,663 particles and 275,824 contacts
were produced in the cubic samples of side dimension of
160 mm. For the Linear Parallel Bond Model used for the
synthetic intact rock, it is necessary to calibrate the micro
mechanical parameters of contact Young’s modulus, E_,
bond Young’s modulus, EL., contact friction coefficient,
u, bond tensile strength, 6., bond shear strength, 7, the
ratio of normal to shear stiffness for contact, k,, ratio of
normal to shear stiffness for bond, I_c, and bond radius frac-
tion, 4, using macro properties of the uniaxial compressive
strength, internal friction angle, Young’s modulus, ten-
sile strength and Poisson’s ratio. Because the number of
micro mechanical parameters is higher than the number of
macro mechanical parameters, the assumptions of E, = EC,
k, =k, &, =17, and 1 = 1 were used as recommended by
Potyondy and Cundall (2004) and Itasca (2016) to reduce
the calibration process difficulty. As stated before, the
calibration is a trial and error procedure. Therefore, to
minimize the number of iterations in the calibration pro-
cess the following sequence was followed based on the

@ Springer



3546

M. H. Mehranpour et al.

Table 3 Experimental and PFC3P modeling results of the polyaxial
and triaxial compression tests for the synthetic intact rock and the
jointed rock blocks having three joints with the dip direction of 30°
and joint dip angles of 15° or 30°

Sample o5 (MPa) o, (MPa) o, (MPa) o, (MPa)
Experi-  PFC?P
mental
Intact rock GBI 0 1.128 6.030 6.431
GB2 0 2.256 6.642 6.763
Jointed rock (dip direction =30°)
Dip=15° GC15-1 1.128 3.384 8.301 8.325
GC15-2 1.128 4.512 9.075 8.475
GC15-3 2.256 2.256 9.165 9.200
GC15-4 2.256 4.512 10.792 10.761
GCI15-5 2.256 7.896 10.856 11.151
GCl15-6 3.384 3.384 11.266 11.447
Dip=30° GC30-1 1.128 5.640 8.124 7.595
GC30-2 2.256 2.256 8.304 7.742
GC30-3 2.256 5.640 9.311 9.723
GC30-4 2.256 7.896 9.578 9.779
GC30-5 3.384 3.384 9.460 9.751

relations between micro and macro mechanical proper-
ties and the guidelines given by Yang et al. (2015) and
Mehranpour and Kulatilake (2016). First, in the uniaxial
compression test modeling the Young’s modulus was cali-
brated by setting the material strengths to a large value and
varying E, and E, to match the Young’s modulus. Next,
by changing k, and k,, the Poisson’s ratio was matched.
After calibrating the above-mentioned micro mechanical
parameters, the peak strength was matched by gradually
reducing the normal and shear bond strengths of the paral-
lel bonds. Finally, by gradual reduction of y in modeling
of the triaxial compression tests, the internal friction angle
was matched. The calibrated micro parameter values are
given in Table 4 for Linear Parallel Bond Model. Table 1
shows the obtained macro mechanical parameter values
based on PFC’P simulations as well as from laboratory

tests. Comparison of the two sets of values indicates the
accuracy and capability of the particle flow approach in
simulating the synthetic intact rock.

To model the synthetic rock joint in PFC3P, the Modi-
fied Smooth-Joint Contact model (MSJCM) was used. The
MSJCM was proposed by Mehranpour and Kulatilake (2017)
to overcome the shortcoming of the Smooth Joint Contact
Model (SJCM) to capture the non-linear behavior of the joint
closure varying with the joint normal stress. The MSICM
uses the linear relation between the joint normal stiffness
and the normal contact stress given in Eq. 1 to model the
non-linear relation between the joint normal deformation
and the joint normal stress observed in the compression
joint normal stiffness test. Thus, in the MSJCM instead of
assigning a constant value to the joint normal stiffness, kﬁ ,a
variable value is assigned which is proportional to the nor-
mal stress on the smooth-joint contact, 0',{ , according to the
following equation.

min

K = max(ki ,B’a,{). )

In Eq. 2, kﬁ ~ is the minimum value for kﬁ, and B’ is a

constant coefficient. It should be mentioned that kﬁ 1S

included since it is impossible to have a zero value for stift-
ness in PFC. Note that the other micro mechanical parame-
ters for the MSJCM like joint shear stiffness, kf , and joint
friction coefficient, J, are the same as for the SJCM.
Mehranpour and Kulatilake (2017) also proposed a
new joint contact implementation algorithm in PFC which
is called the joint sides checking (JSC) approach to solve
the interlocking problem. The interlocking problem was
observed by Bahaaddini et al. (2013) and it occurs due to the
shortcoming of the updating procedure in the PFC software
for the contact conditions of the particles that lie around
the intended joint plane during high shear displacements.
The interlocking problem leads to higher values for shear
strength and dilation angle for the joint than the correct val-
ues. It also creates unwanted fractures around the intended

Fig.7 Experimental and (@ 7, () 7
PFC?P modeling results of the
polyaxial compression test for 6 6 r
the intact rock subjected to a —_ —
6;=0and 6,=1.128 MPa, b 57 £57T
0,=0 MPa and 6,=2.256 MPa =l =
s 3+ ——PFC model @ 3 ——PFC model
= =
> 2+ o 2t
< Experimental < Experimental
1t (GB1) 1t (GB2)
0 1 J 0 1 1 J
0 0.5 1 0 0.5 1 1.5

Axial strain (%)
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set with the joint dip direction T of Experimental P 6r Experimental
of 30° and dip angle of 15° s (GC15-1) 8 (GC15-2)
subjected to a 6;=1.128 MPa < 4r = 4r
and 6,=3.384 MPa, 5 ——PFC model 5 ——PFC model
b 0;=1.128 MPa and 2+ 2+
0,=4.512 MPa, ¢
03;=0,=2.256 MPa, 0 . . \ ) 0 L . : !
d 03=2.256 MPa and 0 0.5 1 1.5 2 0 0.5 1 1.5 2
06,=4.512 MPa, e Axial strain (%) Axial strain (%)
03=2.256 MPa and
0,=7.896 MPa and f ©) 10, 12 -
03;=0,=3.384 MPa
8l _ 10 ¢
< <
& [
> 6L . S 8 Experimental
> Experimental e GC15-4
4 (GC15-3) 3 (GC15-4)
Z 4t 2
s = —_—
<>):< PFC model S 4 PFC model
oL <
2
O 1 1 1 1 ] 0 . . ,
0 0.5 1 1.5 2 2.5 0 1 5
Axial strain (%) Axial strain (%)
12 ®
10 10
£ £
S 8r s 8&r
e Experimental e Experimental
s 6 (GC15-5) 8 6 (GC15-6)
g 4t = 4t
:é ——PFC model é ——PFC model
2 r 2+
0 1 1 1 ] 0 1 1 1 ]
0 1 2 3 4 0 2 3 4 5

joint plane. In this paper, the JSC approach is used not only

Axial strain (%)

‘min

Axial strain (%)

kﬁ ~and B’ were calibrated using the joint normal stiffness

for the calibration procedure of the rock joint model but also
for the modeling of the polyaxial, triaxial and biaxial com-
pression tests on the synthetic jointed rock block samples.
In calibrating the joint micro mechanical parameters,
first the cylindrical synthetic rock samples with 50 mm
diameter, and the heights of 50 and 100 mm were numeri-
cally modeled based on the linear parallel bond model
properties given in Table 4, for the direct shear tests and
the joint normal stiffness test, respectively. Then the
MSJCM joint was added horizontally to each sample at the
mid-height level with the JSC approach. Then, to calibrate
the MSJCM the following sequence was used to minimize
the number of iterations. First, all the micro mechanical
parameters for MSJCM were set with low values. Then,

test modeling because k{ and J values do not affect this test
results. In the calibration of joint normal stiffness test, first
the B’/ value was gradually increased to match the curva-
ture of the normal stress-joint normal displacement dia-
gram and then by increasing the k/ s the total joint normal

displacement was matched (see Fig. 4a). After kﬁ ~and B/

calibration, in the direct shear test modeling, first k! was
gradually increased to match KS’ and finally, the J value
was changed to match the ¢; value (see Fig. 4b). Table 5
shows the calibrated micro mechanical property values of
the MSJCM using the JSC approach based on the experi-
mental test results reported for the synthetic rock joint in
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Fig.9 Experimental and (@) 10 ¢ (b) 10 ¢
PFC?P modeling results of the
polyaxial and triaxial compres- sl gl
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samples having one joint set S 6l > ol )
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Table 4 Calibrated micro mechanical parameter values of the linear
parallel bond model for the synthetic intact rock in PFC?P (minimum
particle diameter, D, ;,, maximum particle diameter, D, , contact
Young’s modulus, E,., bond Young’s modulus, EC contact friction
coefficient, u, bond tensile strength, 6., bond shear strength, 7, the
ratio of normal to shear stiffness for contact, k,, ratio of normal to
shear stiffness for bond, &, and bond radius fraction, 1)

LPBM

D, =27 mm

m, =D ../Dpi, = 1.66
E ,=E=125GPa
k.=k. =25

u=0.6

@ Springer

Axial strain (%)

Experimental
(GC30-5)
——PFC model

Axial strain (%)

Table 5 Calibrated micro
mechanical parameter values
of the Modified Smooth Joint
Contact Model for the synthetic
rock joint in PFC3P using the
JSC approach

MSJCM

w =05

K/ (GPa/m) = 1.0
k,{mm(GPa/m) =4.0
B/(1/mm) = 31.0

Sect. 2.3. Table 2 shows the obtained macro mechanical
parameter values based on the PFCP simulations. Note
that Table 2 also provides the macro mechanical parameter
values obtained through experimental joint testing. Table 2
along with Fig. 4 indicate the accuracy and capability of
the PFC in simulating the synthetic rock joint through
comparison of PFCP results against the laboratory test
results on synthetic rock joints. For further details about
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the JSC approach, MSJCM and the interlocking problem
the reader is referred to Mehranpour and Kulatilake
(2017).

3.1 Polyaxial Compression Tests

In the performed numerical modeling, three different test
types were simulated on the synthetic intact rock and syn-
thetic jointed rock blocks using PFC?P to obtain data to
develop suitable rock mass strength criteria. In these simu-
lations like the experimental tests, cubic samples of side
dimension 160 mm were used with micro mechanical prop-
erty values given in Tables 4 and 5. The first test type con-
ducted was the triaxial test (¢, > 0, = 03). In simulating
this test, the hydraulic stress equal to the minimum principal

stress was applied on the sample until the sample reached
the equilibrium (1st step in Fig. 10a). Then the stresses on
the lateral faces were kept constant (= 6, = 03) and the
axial stress was increased until the sample failed (2nd step
in Fig. 10a). The second type of test simulated was the pol-
yaxial (true-triaxial) test (¢, > o, > o3). In this test like in
the conventional triaxial test, the hydraulic stress equal to the
minimum principal stress was applied on the sample until
the sample reached the equilibrium (1st step in Fig. 10b).
Then the stress on one lateral direction was kept constant
(= 0'3) and the stress equal to the intermediate principal
stress was applied in the other two directions until the sam-
ple reached the equilibrium (2nd step in Fig. 10b). Finally,
the stress in the second lateral direction was kept constant
(= 0'2) and the axial stress in the vertical direction was

Fig. 10 Different steps of apply-
ing the minor, intermediate and
major principal stresses for the
a triaxial compression tests, b
polyaxial compression tests and
¢ biaxial compression tests

1 Step

1 Step

3" Step

(b)

2" Step

01 = 0y
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increased until the sample failed (3rd step in Fig. 10b). The
third test type simulated was the biaxial test (¢, = 6, > 03).
In this test like in the two previous tests, the hydraulic stress
equal to the minimum principal stress was applied on the
sample until the sample reached the equilibrium (1st step in
Fig. 10c). Then the stress on one lateral direction was kept
constant (= o) and the stresses in the other two directions
were increased until the sample failed (2nd step in Fig. 10c).

The minimum and intermediate principal stress combina-
tion values of different compression tests were chosen based
on the UCS value of the modeled synthetic intact rock. The
minimum principal stress values were chosen as 0, 20, 40
and 60% of the UCS. For each minimum principal stress
value, the intermediate principal stress value varied start-
ing at the minimum principal stress value and increasing
at an interval of 20% of the UCS until it was slightly lower
than the strength of the sample under the biaxial loading
condition with the same minimum principal stress value.
With this procedure, the applied minimum and intermediate
principal stress combinations for samples were the same.
Thus, the effect of joint geometry configurations on the rock
mass strength can be evaluated properly. Moreover, because
the strength of the synthetic intact rock is available for each
minimum and intermediate principal stress combination, the
normalized strength of jointed rock blocks can be obtained
to propose a general rock mass strength criterion.

For jointed rock blocks, twelve different joint systems
with one and two joint sets were chosen to cover different
types of non-orthogonal fracture systems. Joint sets have
different dip angles varying from 15° to 45° at an interval
of 15° with dip directions of 30° and 75°. Each joint set has
3 joints with the joint spacing of 42 mm in a cubic sample
of size 160 mm. Figure 11 shows the PFC*P models and
the schematic pictures of joint geometry diagrams for all
12 jointed rock blocks. It should be mentioned that for each
cubic sample, the minimum principal stress was applied on
the faces with the dip directions of 90° and 270° and the
intermediate principal stress was applied on the faces with
the dip directions of 0° and 180°. It should be mentioned that
because the numerical models based on the micro param-
eter values given in Tables 4 and 5 could reasonably accu-
rately model the experimental test results up to the sample
failure (Figs. 7, 8, 9), it was not necessary to modify the
micro parameter values given in Tables 4 and 5. For each
rock joint system under each confining stress combination
it took about 2 days on the average to complete an above-
mentioned numerical simulation. However, this time dura-
tion was smaller for models with lower confining stresses
and joint systems with lower dip angles compared to that
having higher confining stresses and higher dip angles.

Figures 12, 13, 14 and 15 show the rock block strength
values obtained for the synthetic jointed and intact rock
models under different minimum and intermediate principal
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stress combinations. Figure 12 shows the rock strength val-
ues obtained for the synthetic jointed rock models with one
joint set compared to the strength of the synthetic intact
rock model and Figs. 13, 14 and 15 show the rock strength
values obtained for the synthetic jointed rock models with
two joint sets under different minimum and intermediate
principal stress combinations compared to the strength of
the synthetic jointed rock models having one joint set with
the same properties as the first joint set of the rock sam-
ple with two joint sets. These figures indicate that for each
combination of the minimum and intermediate principal
stresses, the jointed rock blocks with two joint sets and
first joint set have resulted in a lower strength compared to
that of the synthetic intact rock and the jointed rock blocks
with two joint sets have resulted in a lower strength value
compared to that of the jointed rock blocks having one joint
set with the same properties as the first joint set of the rock
sample with two joint sets. This means that adding of joint
sets to a sample under the same minimum and intermedi-
ate principal stress combination reduces the strength of the
sample.

Figure 12 also shows that the intermediate principal stress
has a significant effect on the synthetic intact rock strength
and it can increase the intact rock strength up to about 25%.
Increase of the intermediate principal stress while keeping the
minimum principal stress constant, increases the strength of
intact rock to a peak value and then the strength decreases.
However, in Fig. 12, 13, 14, 15 for each o5 level in the jointed
rock models, the reduction of the strength after reaching the
peak strength due to increase of ¢, seems to be lower com-
pared to that of the intact rock model. In some plots, even the
strength reduction does not seem to exist especially for low o,
values and high joint set dip angles.

4 Development of New Rock Mass Strength
Criteria

This paper develops new rock mass strength criteria based on
the PFCP modeling results incorporating the fracture tensor
concept. The fracture tensor is explained comprehensively in
references (Oda 1982, 1984; Kulatilake et al. 1993; Wu and
Kulatilake 2012). In the fracture tensor, it is assumed that each
fracture to be a very thin disk having an area A with an equiva-
lent radius of 7 (A = zr?) and two normal vectors of r and -n
(bold italic letter represent a vector) for each side of the disk.
To find the fracture tensor components of the modeled jointed
rock blocks the following equations are used.

F=Yr ®
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Fig. 11 The jointed rock blocks
modeled by the PFC?P and

the schematic pictures of joint
systems: a, b and ¢ have three
joints with the dip direction of
30° and the dip angles of 15°,
30° and 45°, respectively; d,

e and f have six joints formed
from two joint sets, 30° joint
dip direction and 15° joint dip
angle for the first joint set and
75° joint dip direction and

the dip angles of 15°, 30° and
45¢° for the second joint set,
respectively; g, h and i have six
joints formed from 2 joint sets,
30° joint dip direction and 30°
joint dip angle for the first joint
set and 75° joint dip direction
and the dip angles of 15°, 30°
and 45° for the second joint set,
respectively; j, k and I have six
joints formed from two joint
sets, 30° joint dip direction

and 45° joint dip angle for the
first joint set and 75° joint dip
direction and the dip angles of
15°, 30° and 45° for the second
joint set, respectively; (in the
schematic pictures, the blue
planes are 1st joint set and red
planes are 2nd joint set; the
maximum principal stress, the
intermediate principal stress and
the minimum principal stresses
are applied on the top face, on
the front left face and on the
right front face, respectively)

(a) (b)

»

(c) (d
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Fig. 12 Polyaxial test results
obtained from PFC>P modeling
for the intact rock model and
jointed rock models with one
joint set having three joints with
the dip direction of 30° and the
various joint dip angles from
15° to 45° at an interval of 15°

Fig. 13 Polyaxial test results
obtained from PFC>P modeling
for the jointed rock model hav-
ing 3 joints with 30° joint dip
direction and 15° joint dip angle
and the jointed rock models
having six joints formed from
two joint sets with 30° joint dip
direction and 15° joint dip angle
for the first joint set and 75°
joint dip direction and the vari-
ous joint dip angles from 15° to
45° at an interval of 15° for the
second joint set

@ Springer
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Fig. 14 Polyaxial test results cross: jointed rock 030/30 ; circle: jointed rock 030/30 & 075/15; dash: jointed
obtained from PFC*” modeling rock 030/30 & 075/30; square: jointed rock 030/30 & 075/45
for the jointed rock model ”
having three joints with 30° e
joint dip direction and 30° joint /x”
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1 3
szj = ‘—/ Z 2wy nn, 4)

where F' 2 is the fracture tensor of the rock mass, F’ l’; is the

fracture tensor (F lj) of the kth joint set, N is the total number
of joint sets, m"” is the number of fracture centers inside the
assumed volume of V, and n; and n; are the projection of n
on the directions of i and j, respectively. Table 6 shows the
computed fracture tensor components for all 12 different
joint systems with one or two joint sets which are modeled
using the PFC?P, In this table because the maximum, inter-
mediate and minimum principal stresses are applied in Z, Y
and X directions, respectively, the alternate subscripts are
also used to show the directions of the fracture tensor com-
ponents with respect to the principal stresses.

Kulatilake et al. (2006) showed that for the biaxial load-
ing in the laboratory on about 150 synthetic rock blocks hav-
ing two joint sets with 30 different joint systems in which
the joint set dip directions were towards the intermediate
principal stress direction, the rock mass strength, ¢;, under
a constant intermediate principal stress, reduces non-linearly
with increasing fracture tensor component in the intermediate
principal stress direction (F,,). After trying various functions
such as hyperbolic, negative power and negative exponential
functions they proposed the following negative exponential
equation which had the best regression fit to the experimental
test results:

oy —IF.
L —¢ 2
o, (5)

In Eq. 5, o, is the intact rock strength under the same inter-
mediate principal stress and A is an empirical coefficient which
is a function of ¢, according to Eq. 6.

I
p(ﬁ)”ﬂ’ ©)

0'(

where o, is the uniaxial compressive strength of the intact
rock, p and g are empirical coefficients and 4, is the 4 value
when the intermediate principal stress equals to zero.

Later He et al. (2016) extended the Kulatilake et al. (2006)
criterion to the polyaxial compressive stress condition by Eq. 7
based on extensive laboratory and numerical polyaxial test
results on jointed coal blocks. In Eq. 7, F35is the fracture ten-
sor component in the minimum principal stress direction.

% _ o~ A(FntFy)

g

@)

They also proposed Eq. 8 for A to incorporate the effect of
the minimum principal stress, o5, as well as the intermediate
principal stress. Like Eq. 6, 4, is the A value for the uniaxial
compression condition.

/10
n(2) en(2)" 0 v

o,

A=

where p,, ¢,, p; and g5 are empirical coefficients.

This three-dimensional criterion can predict the strength
of jointed rock masses under different confining stresses by
estimating the five independent coefficients through regres-
sion analyses of the data. Procedures are given in He et al.
(2016) in detail to do that. This criterion was developed for
non-persistent fracture systems and it captures the effect of
scale and anisotropy due to the fracture system on rock mass
strength. The proposed criterion by He et al. (2016) can pre-
dict the rock mass strength reasonably accurately for non-
persistent fracture systems. However, it can be extended to
make it suitable for both non-persistent as well as persistent

Table 6 The computed fracture

tensor components in X, y, and J(?int %ysten.l (Dip Fy (F33) Fyy (Fp) F,, (F\) ny (F3) Fy, (F3) Fyz (Fy)

z directions (the minimum, direction/Dip)

intermediate and maximum 030/15 0.060 0.179 3.326 0.103 0.446 0.772

fer;‘];zng‘vlesfyrfsfif‘fzejgﬁﬁs 030/30 0.230 0.690 2.759 0.398 0.796 1.380

systems of the jointed rock 030/45 0.446 1.337 1.783 0.772 0.891 1.544

blocks 030/15 and 075/15 0.282 0.195 6.653 0.163 1.307 1.003
030/15 and 075/30  0.840 0.235 5.835 0312 1.845 1.147
030/15 and 075/45 1.199 0.261 4.547 0.409 1.625 1.088
030/30 and 075/15 0.453 0.706 6.086 0.458 1.657 1.610
030/30 and 075/30 1.010 0.746 5.268 0.607 2.196 1.755
030/30 and 075/45 1.369 0.722 3.980 0.703 1.976 1.696
030/45 and 075/15 0.669 1.353 5.109 0.832 1.752 1.775
030/45 and 075/30 1.226 1.393 4292 0.981 2.291 1.919
030/45 and 075/45 1.585 1.419 3.004 1.077 2.070 1.860
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fracture systems. In He et al. (2016) criterion, for a set of
constant values of the minimum and intermediate principal
stresses ¢, and o5, 4 is a constant for a specified rock mass
irrespective of the directions of o, and o;.. When ¢, and o
directions rotate around the vector normal to the plane of o,
and o5 (i.e. in o, direction) F; stays as a constant because
the first invariant of the fracture tensor (F; + F,, + F33) is
always a constant and thus F,, + 35 also stays as a constant.
Therefore, under the above-mentioned conditions, Eq. 7 pro-
vides a constant value and cannot capture the effect of o, on
F,, and o5 on Fj; separately in predicting rock mass strength.
However, this is an important issue to incorporate in pre-
dicting rock mass strength especially for persistent fracture
systems.

In this research, Eqs. 7 and 8 are extended to capture the
effect of o, on F,, and o5 on F3; separately and to develop
new rock mass strength criteria based on the results obtained
through the jointed rock block modeling and testing under
different minimum and intermediate stress combinations and
joint geometry systems. The obtained results lead to the fol-
lowing observations:

(a) Increase of joint set dip angles, in general, reduce the
jointed rock block strength and increase F,, and Fj;.
Thus, increase of F,, and F3; reduce the jointed rock
block strength.

(b) Increase of the minimum and intermediate princi-
pal stresses reduce the effect of joint shearing on the
jointed rock block strength. Therefore, increase of the
minimum and intermediate principal stresses reduce
the effects of F,, and F3;. However, this reduction for
low minimum and intermediate principal stresses is
relatively higher compared to high minimum and inter-
mediate principal stresses.

(c) The effect of the minimum principal stress on the joints
increases with decreasing angle between the dip direc-
tion angle of the joint set and the minimum principal
stress direction. Thus, increase of F3; increases the
effect of o5 on the joints.

(d) The effect of the intermediate principal stress on the
joints increases with decreasing angle between the
dip direction angle of the joint set and the interme-
diate principal stress direction. Thus, increase of F),
increases the effect of o, on the joints.

Based on the above-mentioned observations the following
equation is proposed as a new rock mass strength criterion
in a general form.

oy
S, = P exp — [}%(53/%)}733 +f2(62/dc)F22]’ 9)
1
where f, and f; are monotonically decreasing functions, S, is
the strength ratio between the jointed rock mass strength, o,

under the minimum and intermediate principal stresses of o5
and o, and the intact rock strength, o;, under the same mini-
mum and intermediate principal stresses, o, is the uniaxial
compressive strength of the intact rock, F,, is the fracture
tensor component in ¢, direction and, F’;5 is the fracture ten-
sor component in o5 direction. It should be mentioned that
if o, for the intended o5 and 6, combination is not available,
based on the Mehranpour and Kulatilake (2016) paper one
of the three intact rock failure criteria out of Modified Lade,
Modified Wiebols and Cook and Mogi is recommended to
represent the intact rock strength value. However, because
in this research the intact rock strength for all minimum and
intermediate principal stress combinations is available, it is
not necessary to use intact rock failure criteria to estimate
the intact rock strength.

Kulatilake et al. (2006) showed that for the biaxial load-
ing a function such as given by Eq. 6 works very well for f,
and f;. Thus, Eq. 9 can be rewritten as follows to propose the
first new rock mass strength criterion:

(10
where 1,, A5, p», P3, g, and g5 are empirical coefficients. As
an alternative, to reduce the number of coefficients, nega-
tive exponential functions are suggested for both f, and f;.
Thus, Eq. 9 can be rewritten as Eq. 11 with less empirical
coefficients to propose the second new rock mass strength
criterion.

S, = - exp — [a3 <e‘b3("3/“<‘)F33> + az(e_bZ("Z/"t')Fzz)],

oy
an
where a,, a;, b, and b, are empirical coefficients.

It should be mentioned that if the joints have the same
mechanical properties with isotropic behavior on the joint
plane, the effect of o, variation on F,, should be the same
as the effect of o3 variation on Fj3;. Therefore, under this
condition f = f, = f; and Eqs. 9-11 can be simplified to
Egs. 12-14, respectively, as follows:

(o}
S, = ;j = exp = [f(03/0.) Fs3 +£(02/0.) F] (12)
s =2 = exp — 4 F3; + in ’ (13)

S = & exp—a -<e_b("3/"f)F33> + <e_b("2/"f)F22>].
o, I

(14)
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In Eq. 12, fis a monotonically decreasing function and
in Egs. 13 and 14, 4, p, ¢, a and b are empirical coefficients.
Moreover, under this condition if o, = o3, by rotating the o,
and o5 directions around the vector normal to the plane of
0, and o3, the jointed rock mass strength should remain the
same. This behavior is also captured by Eq. 12. If 6, = o3,
Eq. 12 can be rewritten as follows:

(o}
S, = 0'_: = exXp — [f(0'3/ac)(F33 +F22)]7 (15)
where F3; + F,, is always a constant if ¢, and o5 directions
rotate around the vector normal to the plane of ¢, and o35.
Therefore, the jointed rock mass strength stays the same
under the above-mentioned conditions.

In this research because all the joints are saw cut, they have
the same isotropic mechanical behavior on the joint plane.
Thus, to fit the new rock mass strength criteria for the numeri-
cal modeling results and to find the accuracy of the new rock
mass strength criteria Eqgs. 13 and 14 can be used. To estimate
the values of the coefficients in these equations an indirect
method is used. In this method, different values are chosen
for empirical coefficients from a grid in a reasonable range.
Then the jointed rock mass strength corresponding to different
05, 03,I"y, and F; values are calculated through Egs. 13 and
14. Afterwards, for each equation the best combination of the
empirical coefficients is found by maximizing the coefficient
of determination, R?, using the following equations:

R=1-2 (16)
St

0.655 0-66

where
_ 1 < P prC |
Se_n_m_1;<aj,i_aj,i ) a7
_ 1 - oPFC _ 5PFC 2
S’_n—lz Oyi —O0y , (18)
i=1

where n is the total number of data sets, m is the number of
parameters to be estimated, a ;1s the predicted jointed rock
block strength from the new rock mass strength criterion
for data set i, o-PFC is the strength of jointed rock block from
the PFC?P modehng for data set i, and o-‘PFC is the average
strength value of all the PEC?P data.

4.1 Fitting of the First New Rock Mass Strength
Criterion Using Eq. 13

In Fig. 16, the obtained R? values are shown for different
values of p and g for selected 3 different A values. The maxi-
mum R? is found to be 0.94, indicating a very strong fit. It
results in the best values of 0.675, 3.16 and 0.6, for 4, p and
g, respectively. Figure 17 shows the predicted strength val-
ues versus the strength values from the PFCP modeling for
all 284 data points. It indicates that the suggested strength
criterion (Eq. 13) is highly suitable to represent the PEC*P
data.

0.7
ogss 060 9%

0.68
0.675
0.665 0-67

Fig. 16 Obtained R? values of the new rock mass strength criterion using Eq. 13 for different combinations of p, g on the cross-sectional planes

of A=0.65, 1=0.675 and 2=0.70 (color bar shows the R? values)
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Fig. 18 Obtained R? values of the new rock mass strength criterion
using Eq. 14 for different combinations of a and b

4.2 Fitting of the Second New Rock Mass Strength
Criterion Using Eq. 14

In Fig. 18, the obtained R? values are shown for different
values of a and b for the 284 data points from 12 different
joint systems under the different minimum and intermediate
principal stress combinations. The maximum R? is found to
be 0.92. It results in the best values of 0.404 and 0.972, for
a and b, respectively. The small difference obtained between
the R? values using the two different functions shows that
Eq. 14 with less empirical coefficients is also a reasonably
good rock mass strength criterion. Figure 19 shows the pre-
dicted strength values based on Eq. 14 versus the strength
values from the PFC>P modeling for all 284 data points. It
indicates that the suggested strength criterion (Eq. 14) is
highly suitable to represent the PFCP data. Figure 20 shows
the comparison between the predicted rock mass strengths
from the new rock mass strength criteria using Eqs. 13 and
14 with the numerical results for two different joint systems
with one and two joint sets, respectively. Figure 20 shows
that the predictions from the two strength criteria are close.

Fig. 19 Predicted strength value based on the new rock mass strength
criterion using Eq. 14 versus the strength value from PFC3P for all
284 data points from 12 different joint systems and under different
boundary conditions (R°=0.92)

5 Discussion

The equations given in Sect. 4 to estimate the jointed block
strength for synthetic rock are normalized with respect to
the synthetic intact rock strength. Therefore, the equations
are applicable for any rock mass. The equations allow to
estimate the normalized jointed block strength in any direc-
tion in three dimensions. By estimating the strength in dif-
ferent directions, the strength anisotropy and the minimum
normalized jointed block strength can be estimated in three
dimensions. The intact block strength can be estimated using
one of the available intact rock strength criteria. To esti-
mate the parameters of the intact rock strength criterion, it
will be necessary to perform a few laboratory tests as usual.
To apply the equations given for normalized jointed block
strength for any rock mass, first, the fracture geometry data
(number of fracture sets and orientation, size and intensity
of each set) should be collected for the intended rock mass.
These data can be used to calculate the fracture tensor using
Egs. 3 and 4 as shown in Table 6. That will allow calculation
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Fig. 20 Comparison of the pol- (a) Jointed rock, Dip = 45°, Dip direction = 30°
yaxial strength results obtained (circle: PFC, dash: predicted with Eqn. 13, cross: predicted with Eqn. 14)
from the PFC3P modeling with
that obtained from the new rock X X,/'
mass strength criteria based on 12 ¢ Q é é = e
Egs. 13 and 14, respectively, for O O /,—'e‘
the jointed rock block models a 10 b > -
having 3 joints with dip angle 3 Q & é ; ,@X
and dip direction of 45° and = L
30°, respectively, and b having = 8 r e) T e
six joints formed from two joint [ ﬁ O g L] /)@
sets with 30° joint dip direction =) 6L R L dash line: 6,= o,
and 30° joint dip angle for the ) (o] X e green: 63 =0
first joint set and 75° joint dip X o @ X/a' purple: 6; = 1.128 MPa
direction and 45° joint dip angle 4r Q X = blue: 6; =2.256 MPa
for the second joint set = P red: 3 =3.384 MPa
2 r /,—""
0 ()/" 1 1 1 1 1 1
0 2 4 6 8 10 12
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(b) Jointed rock with 2 joint sets of 030/30 & 075/45
(circle: PFC, dash: predicted with Eqn. 13, cross: predicted with Eqn. 14)
12 ¢
10 9 Q 6 6 6 /,‘Gﬁ
ol L
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of the two fracture tensor components perpendicular to the
direction jointed block strength is desired. These two frac-
ture tensor components go into the normalized jointed block
strength equation. The confining stresses should be applied
based on the in-situ stress system. For the time being the
estimated coefficient values of the equations can be used to
estimate the jointed block strength. It is important to note
that these coefficient values depend on the ratios of joint
mechanical property values to intact rock property values.
This dependence should be investigated in future research.

@ Springer

6 Summary and Conclusions

In this research an attempt was made to develop a new three-
dimensional rock mass strength criterion to overcome the
shortcomings that exist in most of the existing rock mass
strength criteria. Most of the existing strength criteria can-
not simultaneously consider the effect of the intermediate
principal stress on the rock mass strength as well as the
scale dependency and anisotropy behavior of the rock mass
strength. Although He et al. (2016) proposed a three-dimen-
sional criterion which captures the effect of the intermediate
principal stress, scale dependency and anisotropy due to the
fracture system on rock mass strength their criterion did not
incorporate the effect of the stress anisotropy because it was
developed for non-persistent fracture systems. Besides, He
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et al. (2016) criterion requires calibration of five empiri-
cal coefficients. However, the stress anisotropy is important
especially in the case of fully persistent fracture systems
(Mehranpour and Kulatilake 2017). Therefore, in this paper
the He et al. (2016) criterion was extended to incorporate the
effect of stress anisotropy too and to develop two new rock
mass strength criteria.

To develop a comprehensive rock mass strength criterion,
it is crucial to have a proper database which includes the
effect of different factors such as the joint geometry con-
figuration including the orientation and the minimum and
intermediate principal stresses. Due to the high cost and time
of the experimental tests, it is very difficult if not impractical
to have a comprehensive database only through experimen-
tal tests. Therefore, numerical modeling was incorporated
to create this database. The other benefit of the numerical
modeling is the possibility to investigate the effect of each
factor separately while keeping the values of the other fac-
tors the same. In this research, PFC3P was selected for the
numerical modeling because it can conveniently model the
block breakage through the fracture initiation and propa-
gation using the Bonded Particle Models and joint failure
through the joint sliding using the SJCM. In this paper,
because of the shortcoming of the SICM to capture the
non-linear behavior of the joint closure due to varying joint
normal stress, the MSICM was used. Moreover, to solve the
interlocking problem which occurs due to the shortcoming
of the PFC software in the updating procedure of the contact
conditions of the particles that lie around the intended joint
plane during high shear displacements, the JSC approach
was used.

Before simulating the jointed rock blocks under the pol-
yaxial, triaxial and biaxial compression tests, these tests
were simulated on the synthetic intact rock samples to find
the intact rock strength for selected minimum and interme-
diate principal stress combinations. Altogether 33 intact
rock strength values for different combinations of minimum
and intermediate principal stresses were obtained from the
numerical modeling for the synthetic intact rock. Then, 12
different joint systems with one and two joint sets were cho-
sen to model the jointed rock blocks under the polyaxial,
triaxial and biaxial compression tests with the minimum and
intermediate principal stress combinations similar to those
conducted for the intact rock modeling. Used joint sets have
different dip angles varying from 15° to 45° at an interval
of 15° with dip directions of 30° and 75°. Each joint set also
has three persistent joints with the joint spacing of 42 mm
in a cubic sample of size 160 mm. In total 284 jointed block
strengths were obtained from the numerical modeling of the
jointed rock blocks. It should be mentioned that because
the numerical and experimental test results of polyaxial and
triaxial compression tests on the synthetic intact rock and
jointed rock blocks showed a reasonable agreement, it was

not necessary to update the micro mechanical properties of
the calibrated PFC model.

Based on the observations from the jointed rock modeling
results using PECP and the fracture tensor concept, an exist-
ing rock mass strength criterion was extended to include the
stress anisotropy and to develop a new three-dimensional
rock mass strength criterion in general form (Eq. 9). For
the new general rock mass strength criterion, two functions
were proposed: (a) given by Eq. 10 and (b) given by Eq. 11
to obtain two specific new rock mass strength criteria. The
new rock mass strength criterion given by Eq. 10 has six
empirical coefficients; if the joint sets have the same iso-
tropic mechanical behavior on the joint plane, the number of
coefficients reduces to three empirical coefficients in this cri-
terion (Eq. 13). The new rock mass strength criterion given
by Eq. 11 has only four empirical coefficients; if the joint
sets have the same isotropic mechanical behavior on the joint
plane the number of coefficients reduces to two empirical
coefficients in this criterion (Eq. 14).

Using the database created in this paper, which has 284
data points, the empirical coefficients of A, p and g were
estimated as 0.675, 3.16 and 0.6, respectively, through a grid
analysis with a high R? value of 0.94 for the new criterion
given by Eq. 13. The empirical coefficients of a and b were
estimated as 0.404 and 0.972, respectively, through a grid
analysis with a high R? value of 0.92 for the new criterion
given by Eq. 14. Even though the first criterion was fitted
with a slightly higher R? value than the second criterion, it
was less time consuming and significantly easier to estimate
the empirical coefficients for the second criterion. Both new
criteria clearly showed the effect of the intermediate princi-
pal stress as well as the minimum principal stress and joint
orientation on the rock mass strength. Because the developed
jointed block strength criteria are expressed in normalized
form by dividing by the intact block strength, the normal-
ized jointed block strength criteria are applicable for any
rock mass. Guidelines are given to show how the developed
strength criteria can be applied to field rock masses.
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