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The Washington State Department of Health investigates hundreds of pesticide illness reports each 
year, many of which are related to pesticide spray drift. Drift is the movement of pesticide aerosols 
through the air from an area of application to any unintended site and accounts for up to half of 
the pesticide-related illnesses among agricultural workers in the United States. Unfavorable wind 
conditions are a leading contributing factor for illnesses resulting in the off-target movement of 
pesticides from sprayer sources to human receptors. Meteorological conditions such as wind speed 
and wind direction directly impact the environmental fate and transport of pesticide aerosols. 
Washington state requires pesticide applicators to record wind direction and wind speed, usually 
with a handheld anemometer, at the beginning of a spray. However, the state does not specify a 
standardized method for measuring these variables, disregarding rapid changes in meteorological 
conditions throughout a spray period. This project will explore the concept of "wind ramping" as 
a tool for predicting drift-prone conditions. Wind ramping is defined as large shifts in wind speed 
and direction at a given location over a period of time of at least 30 minutes. We were primarily 
interested in sudden positive changes in windspeed. Washington State University's AgWeatherNet 
system captures weather data at several hundred different meteorological weather stations 
positioned throughout agricultural regions of eastern Washington. Weather data from five 
locations that involved human drift cases in Yakima and Benton counties were the primary dataset 
for this study. Time series-based prediction methods based on autoregressive integrated moving 
average (ARIMA) models also known as the Box-Jenkins approach, were explored to forecast 
wind changes 2.5-hours ahead in a local area. The end goal was to develop a tool with that alerts 
applicators about drift-prone wind conditions to minimize pesticide exposure and improve the 
practice of pesticide application. 
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Introduction  
 
Public Health Relevance  
 
Global Food Demand 
By 2100, the human population is projected to increase by approximately 4 billion people (Tilman 
et al., 2011). As a result, our global food demand will need to increase approximately two-fold 
(Tilman et al., 2011). Although this thesis focuses on the challenges of predicting pesticide drift, 
the relationship between food production and pesticide use runs in the same direction. Pesticides 
are the chosen strategy to increase food production to feed the world 50 years from now because 
they are an efficient and powerful tool to prevent food degradation in agriculture and provide food 
security (Field et al., 2020; Xue et al., 2021).  However, the spray efficacy of pesticides is 
inadequate due to wind-caused spray drift during field applications which can alter nutrient cycles, 
contribute to environmental pollution, biodiversity loss, contaminate drinking water, devastate our 
food quality, and cause direct toxicity (Springmann et al., 2018; Xue et al., 2021). 
 
Land Use Change and Soil Pollution  
In 1700, almost half of the terrestrial biosphere was wild (Ellis et al., 2010). By 2000, humans 
converted most of the biosphere from prairies to agricultural croplands and cleared forests for 
pastures or urban areas (Ellis et al., 2010). The distribution of pesticides on farmlands and 
grasslands from spray applications and wind-enabled spray drift can be taken up by non-target 
species and ingested by humans and animals (Field et al., 2020). Pesticides and other 
agrochemicals can persist in the environment, and some are considered possible endocrine 
disrupters that can also increase the risk of cancers, thyroid disease, neurobehavioral disorders, 
and reproduction dysfunction (Frumkin et al., 2020; Gore et al., 2015).  The wind can pick up 
particulate pollutants in the soil and transport them over long distances to adjacent farms and 
homes. These soil-deposited pollutants can also leach into surface water and groundwater, 
resulting in human exposure and ecosystem damage (Myers et al., 2020). 
 
Water Scarcity and Water Pollution  
Between 1960 and 2010, the world increased agricultural production by a factor of 2.5 (FAO, 
2020). At the same time, agricultural irrigation accounted for 70% of all freshwater withdrawals 
(FAO, 2020). Expanding crop production to feed a growing global population implies increased 
freshwater use and pesticide use for agricultural crops (Maroufpoor et al., 2021). Thus, freshwater 
scarcity may threaten sustainable social and environmental development (Maroufpoor et al., 2021).  
Pesticides can contaminate surface water bodies (e.g., lakes, rivers, streams) in various ways: aerial 
spray application, wind-enabled spray drift, soil leaching, shallow subsurface runoff, heavy 
rainfall-runoff, and vaporization (Vryzas, 2018; Zaidon et al., 2020). Pesticides with high water 
solubility persist longer in water bodies and are more likely to move from agricultural soils to 
surface water via runoff or irrigation. Thus, drinking water surveillance should consider 
environmental conditions such as high temporal variability and rainfall events before, during, and 
after pesticide applications (Khan et al., 2020; Zaidon et al., 2020). 
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Food Quality, Pollinator Loss, and Biodiversity Loss  
Soil and water pollution reduce food quality in areas where incompletely treated wastewater 
containing pesticides (i.e., heavy metals, hazardous chemicals) irrigate crops (Lu et al., 2015; 
Myers, 2020). Crop pollinators (e.g., bees) are regularly exposed to pesticides and pesticide 
residues when foraging, which can suppress their immune system and increase parasite and 
pathogen infections leading to declines in wild and managed pollinators (Sanchez-Bayo et al., 
2016; Wilfert et al., 2021). Pollinators are essential for plant and crop biodiversity and are indirect 
drivers of human health (Wilfert et al., 2021). Crops dependent on pollinators (e.g., fruits, 
vegetables, nuts, and seeds) provide essential micronutrients such as Vitamin A and folate to the 
human diet (Chaplin-Kramer et al., 2014; Eilers et al., 2011; Ellis et al., 2015; Wilfert et al., 2021). 
Researchers have estimated that a 50% global loss of pollinators would cause 700,000 additional 
deaths worldwide each year due to malnutrition, ischemic heart disease, and stroke (Smith et al., 
2015). 
 
Agricultural Communities  
Public areas (e.g., playgrounds, schools, worksites) and homes next to intensively managed tree 
fruit orchards and vineyards are not commonly monitored or assessed for pesticides (Linhart et al., 
2019). Recent studies have found pesticide contamination on playgrounds near sprayed fields and 
playgrounds far from agricultural areas (Linhart et al., 2019; Schwaier et al., 2017). Concerns 
related to pesticide exposure in adults and occupationally exposed workers are associated with 
cancer, neurodegenerative diseases, endocrine disruptors, and reproductive and developmental 
toxicity (Costa, 2021). Children’s exposure to pesticides is crucial, given the health risks 
associated with low-dose exposure from spray drift during sensitive developmental stages (Bassil 
et al., 2007; Sapcanin et al., 2016). Also, for children, the risk for cancer is associated with parental 
exposure to pesticides (Bailey et al., 2014; Dai et al., 2021; Van Maele-Fabry et al., 2017). 
 
Pesticide Exposure Routes 
Exposure to pesticides can be direct or indirect and can occur via three main exposure routes: 
ingestion, inhalation, or skin penetration (Phillips et al., 2015; US EPA, 2021a). High-dose 
ingestion cases leading to severe poisoning and death are commonly associated with suicidal 
intentions or accidental ingestion due to the improper storage of pesticides (Costa, 2021; Lee et 
al., 2015). The general population consumes chronic, low oral doses of pesticide residues via food 
or contaminants in drinking water (US EPA, 2021b). There are regulations to ensure the magnitude 
of pesticide residues in drinking water and food does not exceed levels of concern (US EPA, 1966; 
US EPA, 2021b).  
 
Workers involved in the production, transport, mixing and loading, application of pesticides, and 
harvesting of pesticide-sprayed crops are at the highest risk for pesticide exposure (Fenske, 1993; 
Marrs et al., 2004; US EPA, 2011). Pesticide poisoning symptoms can be mistaken for symptoms 
of other illnesses, such as the flu or heat exhaustion (US EPA, 2015). This is especially true when 
pesticide handlers are working with organophosphate or carbamate insecticides in warm and hot 
environments (US EPA, 2015). Therefore, effective exposure controls and emergency plans are 
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imperative in rural agricultural areas where it may be difficult for medical first responders to 
navigate, establish telecommunications, locate and transport workers suffering from pesticide 
poisoning, heat exhaustion, ergonomic injuries or other issues.  
 
Chemicals can be absorbed through the skin during normal handling or application of pesticides, 
accidental spilling over body areas not covered by protective clothing, such as the face or the hands 
(Fenske, 1993; Lesmes-Fabian et al., 2012; US EPA 2011). Additional oral exposures might result 
from workers’ hand-to-mouth activities when hands are not washed after pesticide handling or 
before eating. Also, the deposition of pesticides on worker clothing and shoes may lead to chronic, 
slow penetration, dermal exposures known as the take-home pathway, an important exposure 
pathway for children (Aicher et al., 2021; Menegaux et al., 2006).  
 
The inhalation of pesticides that leads to human poisoning is associated with wind-enabled spray 
drift and volatilization (Aicher et al., 2021; Kuster et al., 2021; Lee et al., 2011). Pesticide particles 
ranging from 5 μm or larger, usually are deposited in the nasopharyngeal region; particles inhaled 
through the mouth are swallowed within minutes, and if water-soluble, they can dissolve in the 
mucus and absorb through the nasal epithelium then into the blood (Slitt, 2021). Particles 
approximately 2.5 μm in diameter are deposited mainly in the tracheobronchial regions of the 
lungs, while particles 1 μm or smaller penetrate to the alveolar sacs of the lungs where they can 
cause lung damage characterized by pneumocyte toxicity, inflammation, and interstitial pulmonary 
fibrosis (Lehman-McKeeman, 2010; Slitt, 2021). Skin contact is also an important route of 
exposure for the drift exposure pathway (Fenske, 1993; Marrs et al., 2004; US EPA, 2011). 
 

Drift   
 
Pesticide Drift  
Pesticide spray drift and its health impacts on agricultural workers, neighboring residents, and 
bystanders is the focus of this thesis. Drift is divided into two categories: “primary spray drift” and 
“secondary off-target movement” (US EPA, 2016b). Primary spray drift considers the airborne 
pesticide particles or particulate matter (PM), a mixture of solid particles and liquid droplets, that 
deflects away from the target crop by the action of the wind during or shortly after spray 
application (Matthews et al., 1993; Matthews et al., 2014; US EPA 2014a). Secondary off-target 
movement or drift deposits are the volatilizations and or the degradation of pesticides by photolysis 
from surfaces (e.g., plants, soil, water, structures) well after spray application (US EPA 2014a; US 
EPA 2014b). Both forms of drift can affect human health when traveling outside agricultural fields, 
but only primary drift is regulated (US EPA 2014a; US EPA 2014b; Goumenou et al. 2021). In 
this thesis, the term “drift” and prevention strategies discussed are related to the primary form of 
drift. 
 
Drift Regulations  
In the 1950s, pesticide drift was recognized and used as an economic spraying technique to cover 
large areas of land utilizing wind (Courshee, 1959). From 1960 to the 1980s, environmental 
movements increased calls for Congress to protect the environment (Moeller, 2019). In response, 
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Congress passed amendments to the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA), 
transforming the labeling law to a comprehensive regulatory statute, and Comprehensive 
Environmental Response, Compensation, and Liability Act (CERCLA), commonly known as 
“Superfund,” to identify sites where hazardous agents threaten the environment and public health 
and identify responsible parties (Hope, 2013; Moeller, 2019). 
 
The labels for pesticide products are legal documents that include warnings, ingredients, use 
classifications, and statements of practical treatments to maximize the beneficial use of pesticides 
and minimize harm to human health and the environment (Moeller, 2019). In 2009, the EPA issued 
a draft pesticide registration notice to improve guidance on pesticide drift prevention. An example 
label reads: "For orchard/vineyard airblast applications, do not directly spray above trees/vines and 
turn off outward pointing nozzles at row ends and outer rows. Apply only when wind speed is 3-
10 mph at the application site as measured by an anemometer outside of the orchard/vineyard on 
the upwind side (US EPA, 2001)." 
 
To further prevent drift, FIFRA requires pesticide applicators to follow all label directions, 
complete pesticide application training, and be certified (Centner et al., 2014; US Code, 2006). 
Despite these regulations, some agricultural growers consider drift unavoidable and a byproduct 
of crop production. An EPA workgroup acknowledged that some tolerance for diminutive 
exposure should exist, and crop producers insist that FIFRA’s “no unreasonable adverse effect” 
standard considers drift inherently inevitable (Centner et al., 2014, US EPA, 2007).  
 
Courts and legislatures address claims surrounding drift at the state and federal levels (Moeller, 
2019). Even after Congress passed FIFRA and CERCLA, states and localities still need to 
supplement the federal efforts by providing guidance to local pesticide users and responding to 
concerns that require enforcement actions against federal and state pesticide laws which vary 
widely by state (Klass, 2005; US Supreme Court, 1991). Pesticide land use cases involve state law 
claims for damages by non-pesticide users against pesticide users for pesticide-related damages 
that require analysis of records, maps, laws, and policies at the local level (Klass, 2005; US EPA, 
2021c). Spray drift claims are typically brought under state common law theories of liability, 
including “trespass, nuisance, negligence, and strict liability for ultrahazardous conditions” (West 
Group, 2003). If one can prove they suffered harm under one of these theories, they may recover 
damages (Moeller, 2019; West Group, 2003).  
 
At the federal level, FIFRA has been used for pesticide violation claims under theories of 
negligence, based on non-compliance with the labeling (Klass, 2005; Moeller, 2019). However, it 
is important to note that pesticide drift cases are still being raised under state laws, with few 
extending to FIFRA (Klass, 2005; Moeller, 2019). Federal courts have also struggled to apply 
CERCLA to drift cases because the act provides an exemption for pesticide use, and farmers are 
usually considered exempt under the standards for a “covered person (US Court for the District of 
Puerto Rico, 2000).” Although, the Eleventh Circuit has interpreted these exemptions differently 
and held that “the pesticide exemption does not absolve the Landowners of liability under 
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CERCLA (US Court of Appeals, Eleventh Circuit, 1996).” Other courts have struggled with the 
term “covered person” when applying CERCLA (US Supreme Court, 1984). 
 
Drift Reducing Strategies  
The disagreements in the courts about how to interpret and apply laws on drift and its offenders 
led the EPA to launch drift reduction technology (DRT) programs to reduce exposure to humans, 
wildlife, and the environment in 2016 (US EPA, 2016). Innovations to reduce drift include new 
sprayer technologies that minimize the distance between applicator nozzles to target crops, the use 
of hedgerows as windbreakers or barriers to mitigate indoor pesticide population in neighboring 
homes, and mathematical models to estimate pesticide exposure (Kasner et al., 2020; Langenbach 
et al., 2021; Metruccio et al., 2021). Studies assessing new sprayer technologies report drift was 
reduced by 35-37%, but the lack of adequate incentives does not stimulate grower adoption, who 
still use conventional airblast sprayers designed in the 1950s (Kasner et al., 2020; Palardy et al., 
2017). Windbreaker reports indicate vegetative barriers reduce drift by 60-68%, but research is 
limited, and quantification is needed to determine ideal size, shape, leaf type, and distances 
between hedges and sprayed crops to plant hedges practically (Langenbach et al., 2021). 
Mathematical models are used for regulatory risk assessment but are based on assumptions and 
defined working conditions such as applicator equipment, application type, number of pesticides 
applied, stable meteorological conditions, flat terrains, and no vegetative barriers, all of which 
impact drift exposure and absorption rates for dermal and inhalation routes (Metruccio et al., 
2021). 
 
The Food and Agriculture Organization of the United Nations (FAO) has developed Good 
Agricultural Practices (GAP) toolkits as administrative and personal protective equipment (PPE) 
guides to prevent drift exposure (FAO, 2021; Mandić-Rajčević et al., 2021). Agricultural workers 
can be exposed to drift during and after the spray application phase, which is why GAP indicates 
that reentry after spray application should not take place before a complete drying, given that 
pesticide deposits on the surface of leaves and branches can be dislodged and resuspended by 
manual activity and inhaled if windy (Baldi et al., 2014).  
 
Therefore, the rational choice and proper use of PPE for agricultural workers include coveralls, 
head/face protection, eye protection, and gloves (Mandić-Rajčević et al., 2018; Spaan et al., 2020). 
However, different types of gloves cause can cause additional exposure. Thick gloves impair hand 
manipulation, which causes workers to remove them to gain touch and then wear them again 
without hand washing, leading to hand contamination inside the gloves (Mandić-Rajčević et al., 
2021). Multiple-use gloves are lined with textiles that absorb contaminates and release them on 
the hands if reused. Also, single-use elastomeric gloves worn on contaminated skin can increase 
dermal absorption rates when the worker is sweating, which may enhance pesticide solubility 
(Mandić-Rajčević et al., 2021). Half-face respirators with replaceable filters in a canister protect 
workers against micro-sized droplets that penetrate to the alveolar sacs of the lungs, while hats, 
common scarves, and knotted handkerchiefs can protect against head dermal exposures (FAO, 
2020a). The GAP specifies that correct planning of pesticide application days decreases 
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unnecessary exposure-related risks by not spraying on windy days and when rain is forecasted to 
avoid drift and runoff (Mandić-Rajčević et al., 2021). 
 
Determinants of Drift  
Several factors can influence drift in agriculture. These factors range from agricultural machinery, 
operator’s skill, terrain characteristics, terrain architecture, meteorology, and planning of spray 
application. The characteristics of the terrain (e.g., plain versus mountainous) and the architecture 
of the terrain (i.e., plant height, tree canopy size, and density) will determine tractor type, spray 
treatment type, spray pressure, duration of the application, and local wind characteristics that are 
important parameters for drift (Mandić-Rajčević et al., 2019; Mandić-Rajčević et al., 2021). 
Tractor and spray technology type significantly influence drift exposure. Studies report that the 
widespread use of axial fan airblast (AFA) sprayers, a 1950s model, coupled with reduced tree 
height and canopy density, lead to a 45% or more loss of pesticides applied to the ground or drift 
(Herrington et al., 1981; Kasner et al., 2020; Raisigl, 1991; Steiner, 1969; Vercruysse, 1999). Our 
previous work showed that 89% of drift events involved axial fan airblast sprayers in tree fruit 
(Kasner et al., 2020, Kasner et al., 2021). New DRT sprayers, the directed air tower (DAT) and 
multi-headed fan tower (MFT) models, had 4-15% and 35-37% less drift measured by volume than 
the conventional axial fan airblast (AFA) but did not eliminate drift (Kasner et al., 2020). Variable 
wind speed and directions are leading contributors to drift and related illnesses (Kasner et al., 2021; 
Lee et al., 2011). 
 

Drift and Wind  
 
Researchers have considered the influence of wind speed and direction on pesticide drift by 
developing agricultural, biological, and environmental assessment and prediction models (Butler 
Ellis et al., 2018; Desmarteau et al., 2020; Kasner et al., 2021; Teysseire et al., 2021). The addition 
of meteorological data significantly improved these models (Butler Ellis et al., 2018; Desmarteau 
et al., 2020; Teysseire et al., 2021). However, general weather assumptions are made in these 
models; for example, high wind speeds of 4.47 m/s or 10 mph in a specific direction with constant 
temperature and relative humidity (Butler Ellis et al., 2018; Desmarteau et al., 2020). These 
conservative assumptions underestimate drift and disregard the multiple spray applications in a 
growing season spaced days apart with variable meteorological conditions and other determinants 
of drift (Butler Ellis et al., 2018; Desmarteau et al., 2020; Mandić-Rajčević et al., 2021). Wind 
velocity and direction change more frequently in comparison to temperature and humidity over the 
course of minutes to hours (Butler Ellis et al., 2018; Kasner et al., 2021). Fluctuations in wind 
speed and direction also result from turbulence across diverse terrain and microclimates (Butler 
Ellis et al., 2018; Kasner et al., 2021). Additionally, mathematical modeling, spray records, and 
pesticide illness cases can be severely limited in situations lacking reliable meteorological data 
(Calvert et al., 2015; Kasner et al., 2021; Venäläinen et al., 2002). Dense networks of weather 
stations are required to accurately capture the spatio-temporal extent of drift events, illness reports, 
and prediction models across all terrains (Desmarteau et al., 2020; Kasner et al., 2021; Luo et al., 
2008; Venäläinen et al., 2002).  
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Wind Ramping 
The wind energy industry faces enormous challenges like grid integration, reserve management, 
power quality, and accurate wind forecasting (Dhiman et al., 2020; Mammedov et al., 2021). Wind 
power must be able to handle sudden changes in wind speed and direction, a phenomenon called 
a wind ramp event or wind ramping (Dhiman et al., 2020; Mammedov et al., 2021). A wind ramp 
differs from a wind gust in three primary ways. The first is that a wind gust does not consider 
changes in wind direction (Graphical.weather.gov). The second is that a wind gust is reported 
when wind speeds reach at least 16 knots (~18 mph) and the variation in wind speed between peaks 
and lulls is at least 9 knots (~10 mph) (Graphical.weather.gov). Thirdly, a wind gust duration is 
usually less than 20 seconds (Graphical.weather.gov). Therefore, it is our goal to find wind metrics 
to best define a wind ramp event as it relates to agricultural pesticide drift. 
 

Wind Forecasting 
 
In the early 1980s, wind forecasting methods started as time series models (Brown et al., 1984). 
The wind energy industry has studied time series models to simulate wind speed and power ranging 
from very short-term (seconds to 30 minutes) to very long-term (3 days to 1 week or more) time 
scales (Brown et al., 1984). Ramp events have been applied to wind power, reservoir walls, forest 
fires, air quality, and other events that are significantly impacted by rapid changes in wind speed 
and direction (Chen et al., 2016; Finnigan et al., 1995; Greaves et al., 2009; Hannah et al., 1995; 
Jiao-jun et al., 2004; Peña et al., 2008; Simpson et al., 1990).  
 
Stationary and Non-Stationary Time Series  
A time series is a collection of observations made sequentially through time and can fall into one 
of two categories: stationary or non-stationary. Conceptually, a time series is stationary if there is 
no systematic change in mean (no trend), variance, and or if periodic variations have been removed 
(Chatfield et al., 2004; Haslett., 1997; Priestley., 1988; Yaglom., 1962). A non-stationary time 
series contains seasonal variations, cyclic trends, and other irregular fluctuations (Chatfield et al., 
2004; Haslett., 1997; Priestley., 1988; Yaglom., 1962). Wind speed is a known as a non-stationary 
time series with a cyclic seasonal and diurnal trend (Chatfield et al., 2004; Dhiman et al., 2020). 
For this thesis, we were interested in decoupling the predictive seasonal trend from the irregular 
fluctuations (ramp events) to determine if they can be forecasted using probability theory 
(Chatfield et al., 2004; Dhiman et al., 2020). For this reason, our time series analysis required a 
transformation of a non-stationary series into a stationary series using statistical time series 
analysis.  
 
Deterministic and Stochastic Time Series  
The purpose of this statistical time series analysis was to develop a short-term wind forecasting 
(30 minutes to 6 hours ahead) model that could alert growers of short-term changes in wind speed 
that might lead to pesticide drift. It is important to note that many statistical time series authors use 
the terms ‘prediction’ and ‘forecasting’ interchangeably, but some do not. For the purposes of this 
thesis, we used ‘prediction’ and ‘forecasting’ interchangeably. If a time series can be predicted 
exactly, it was considered deterministic. However, most time series are stochastic, where future 
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values are partly determined by historical values. Forecasting of stochastic time series is difficult 
and based on the idea that future values have a probability distribution and prediction trained on 
historical data.  
 
Weather-Based versus Time Series Based Models  
Wind forecasting methods are categorized into weather-based and statistically-based (time series) 
prediction methods (Dhiman et al., 2020). Weather-based prediction models require multiple input 
factors such as the topology of the land, wind measuring instruments and their respective heights 
from the ground, ambient temperature, ambient pressure, and other factors to predict future values 
(Dhiman et al., 2020; Mammedov et al., 2021). Statistical prediction models require only a single 
input factor (i.e. historical wind data) (Dhiman et al., 2020; Mammedov et al., 2021). Our work 
explored the application of a statistical prediction model known as ARIMA: autoregressive (AR 
or p) integrated (I) moving average (MA or q). ARIMA modeling is often used in wind forecasting 
and classified by their timescales (Chatfield et al., 2004). Statistical prediction models can be used 
to forecast wind speeds on short-term (30-minutes to 6 hours ahead) and medium-term (6 hours to 
1 day) timescales (Dhiman et al., 2020).  
 
Forecasting literature shows that ARIMA models are often coupled with machine learning (ML) 
methods to improve short-term forecast accuracy of non-stationary time series data (Dhiman et al., 
2020). Machine learning is the development of artificial intelligence (AI). Neural networks (NNs) 
are a different non-linear approach compared to statistical models in this thesis (Chatfield et al., 
2004). The NNs are a result of mathematical attempts to model how the brain works and are often 
referred to as artificial neural networks (ANN) to emphasize that it is a mathematical model. 
Artificial Neural Networks that use ML to train a model how to classify, predict, and recognize 
specific wind events are categorized as supervised ML (Dhiman et al., 2020). Unsupervised ML 
is when an ANN analyzes and classifies the data on its own to develop a forecast (Dhiman et al., 
2020). Accurate wind speed forecasting depends on the availability of a large historical dataset to 
train an ANN model or hybrid ANN and ARIMA model (Dhiman et al., 2020).  
 
Hybrid wind forecasting models are a result of accurate wind forecasting needs from the wind 
energy sector (Zhang et al., 2018; Zhang et al., 2020). Precise short-term wind forecasting methods 
have been developed and applied on wind farms to harness renewable energy (Hu et al., 2020; 
Natarajan et al., 2021; Snoun et al., 2019). This thesis explored the first known application of these 
methods to build a short-term wind forecasting model that could alert growers, pesticide 
applicators and surrounding communities about future (3-6 hours ahead) wind ramping events that 
could lead to drift-prone conditions.  
 

Study Area 
The Yakima Fold Belt in the Columbia Basin  
The Columbia Basin (Figure 1) results from flood basalts that erupted in the Miocene period and 
flooded a basin centered around the Tri-Cities of Pasco, Kennewick, and Richland (Carson et al., 
1987; Miller et al., 2017; Reidel et al., 2013). Most of the Columbia Basin is monotonously flat, 
but west of the Tri-Cities, a system of folds topographically expressed as ridges that rise to 2,000 
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feet (600 m) (Figure 2) (Carson et al., 1987; Miller et al., 2017; Reidel et al., 2013). Megafloods 
in the late Pleistocene period swept away loess, windblown dust derived from glacial abrasion, but 
it remained elsewhere to provide fertile soil for agriculture (Carson et al., 1987; Miller et al., 2017; 
Reidel et al., 2013; Reidel et al., 2003). The shapes and geometry of the folds are different from 
those typical of fold systems, where the alternating anticlines (a fold with the oldest rock in the 
core; most have limbs that drop away from the core) and synclines (a fold with the youngest rock 
in the core; most have limbs that fall toward the core) are regularly spaced and have smoothy 
rounded shapes (Carson et al., 1987; Miller et al., 2017; Reidel et al., 2013; Reidel et al., 2003). 
Yakima’s anticlines are asymmetrical and broad, with the ridges oriented in a northwest-southeast 
direction (Carson et al., 1987; Miller et al., 2017; Reidel et al., 2013; Reidel et al., 2003).  
 
Agricultural Land Use Change in Yakima, WA 
Land-use change involves converting one land type or ecosystem to another, such as prairies to 
cropland in North America (DeFries et al., 2004; Field et al., 2020; Meyers et al., 2020). The most 
significant driver of land-use change is large-scale agriculture with low agrodiversity and high 
agrochemical inputs (Ellis et al., 2010; Goldewijk et al., 2017; Herrero et al., 2017). In the 
nineteenth century, the expansion of agriculture began in North America after the industrial 
revolution (DeFries et al., 2004; Field et al., 2010; Goldewijk et al., 2017). Before 1840, central 
Washington’s lowlands between the Cascade Mountains and the Columbia River were comprised 
of the Yakama Nation, more than 12 million acres of land used for well-being, fishing, hunting, 
berry harvesting, and tribe gatherings (Wester, B.L., 2014; Yakima Nation, 2021). In 1855, 
fourteen separate tribes in eastern Washington were resettled to a 1.3-million-acre reservation now 
known as the Yakama Indian Reservation as a result of their treaty with the United States (Wester, 
B.L., 2014; Yakima Nation, 2021). Life in the Columbia Basin changed from rolling foothills that 
make up the Yakima Fold belt to agricultural hop fields and tree fruit orchards (Wester, B.L., 2014; 
Yakima Nation, 2021). Central Washington’s semi-arid climate receives only 7-9 inches or 
precipitation a year and the soils in area vary in their water holding capacity, making orchard 
irrigation management imperative for water pumping costs, loss of nutrients, tree fruit health, 
erosion, and adverse off-target environmental impacts (WSU Tree Fruit, 2022). Washington’s 
agriculture exports total $6.7 billion, approximately 33% of those exports are apples, and 25% are 
cherries (WSDA., 2022).  
 

Study Objectives   
 
This project explored the role of changing wind conditions in eastern Washington during the 
agricultural growing season. The overall objective of this study was to use the dense 
meteorological data network to forecast drift-prone wind conditions. This study developed a 
location-specific wind forecasting model to predict changes in wind speed and direction and 
minimize pesticide drift. We explored the utility of time series methods and wind ramp modeling 
as appropriate wind prediction to guide pesticide applications.  
 
Aim 1: Determine the necessary inputs for wind ramp modeling in agriculture.  
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Research Question: How can we apply wind ramp modeling from the wind energy industry to 
forecast drift-prone wind conditions in agriculture?   
 
Aim 1a: Compare wind speed and wind gust averages, frequency distributions, and variation with 
wind ramp events. To accomplish this, we utilized historical 15-minute average, 2014-2019 wind 
data from AWN, and restricted the initial analysis to the Prosser N.E station.  
 
Aim 1b: Determine the amount of historical data required to predict future wind ramping events 
accurately (i.e., wind speeds greater than 10 or 15 mph) on a short-term timescale (30 minutes to 
6 hours) in the following week. To accomplish this, we compared a weekly average of each month 
in the spraying season to identify cyclic seasonal weather patterns and cyclic daily patterns. We 
then compared the averages and differences in trend, seasonality, outliers, and discontinuities, if 
any. We also decomposed the average and evaluated the remaining wind data to identify other 
trends if present that could predict wind ramp events.  
 
Aim 1c: Determine the best ARIMA model from Aims 1a and 1b to predict future wind ramp 
events on a daily forecast system.  
 
Aim 1d: Perform descriptive statistics of wind direction. Evaluate the polar coordinates of 
horizontal wind direction to see if there is a common direction the wind moves during spraying 
season. If not, determine whether wind direction correlates with increases in wind speed.  

 
Aim 2: Apply the model.  
Research Question: How effective are wind ramping models at predicting drift-prone wind 
conditions in agriculture?  
 
We hypothesized that wind ramp modeling would be an effective tool for predicting wind speed 
ramp events and providing categorical alerts that inform growers of significant wind ramp events 
that could impact public health. We tested the model by first replicating the historically plotted 
2014 data. We attempted to forecast wind ramp events in real-time for 2.5-hour time intervals. 
Finally, we compared the model’s effectiveness at predicting wind ramp events with different 
moments in time. 
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Methods  
 

Study Design 
This work was a follow-on from several field studies in the same region where drift events with 
pesticide-related illnesses have occurred. Previously, the study team used historical wind data from 
a network of stations throughout Washington state and linked it with pesticide-related illness cases 
(Kasner et al., 2020, Kasner et al., 2021). We selected an 418 square km study area with dense tree 
fruit orchards, many weather stations, and frequent drift case reports since 2000 (Kasner et al., 
2021).  
 
The study area had five stations that collected 15-minute average wind speed and wind direction 
data between 2014 and 2020 with a Model 014A Met One Wind Speed Sensor and a Model 024A 
Met One Wind Direction Sensor. All meteorological data were imported to the RStudio integrated 
development environment for programming (R version 4.1.1), where they were prepared for 
descriptive statistics and time series analysis. We compared wind speed to wind gust in the study 
area to evaluate how wind ramping, a novel concept from the wind power industry, could be 
applied to short-term wind forecasting to prevent pesticide drift. Current federal and state 
regulations require that pesticide application cannot occur if wind speeds are greater than 10 mph 
(4.5 m/s), which was the primary threshold for our analysis.  
 
Emphasis was placed on identifying an appropriate forecasting model to predict wind speed, a 
nonstationary time series with significant diurnal, meteorological, and seasonal variations. Given 
that an autoregressive moving average model can only be applied to stationary processes, we 
utilized built-in decomposition and differencing functions in R to remove any trends and cyclic 
patterns in the dataset to evaluate the series of residuals to fit a model best. The built-in differencing 
function in R provided an autoregressive integrated moving average (ARIMA) coefficient that 
essentially transformed our nonstationary time series into a stationary time series. After 
differencing our wind speed data, we fit an ARIMA model to the residuals, representing our 'spikes' 
in wind speed or wind ramps, and produced a 2.5-hour forecast that could potentially alert growers 
of drift-prone wind conditions. Conveniently, this statistical time series model solely depends on 
historical wind speed measurements to appropriately predict future values versus weather-based 
prediction methods that rely on the topology of the land and additional meteorological input 
metrics. 
 

Study Area 
 
Meteorological Stations 
We extracted historical weather data from the Washington State University (WSU) AgWeatherNet 
(AWN) system. The AWN network assists growers with weather advisories and customized 
weather alerts to optimize resource use and improve crop quality, crop output, and reduce 
environmental impact (Kasner et al., 2017; Pierce et al., 2018; WSU, 2015). Each AWN 
meteorological site provides remote, real-time weather monitoring on its website using continuous 
updates via cellular telemetry networks and the internet (Kasner et al., 2017; Pierce et al., 2018; 
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WSU, 2015). To enhance surveillance of pesticide related illness, we retrospectively evaluated 
specific wind and other weather conditions that could lead to pesticide drift at five specific 
geolocations between 2014 and 2020. The five locations: Sunnyside, Grandview, Prosser N.E., 
McWhorter, and Benton W. made up an 11 km x 38 km (418 square km) study area, between 
Yakima and Benton counties, with dense tree fruit orchards, many weather stations, and frequent 
drift case reports (WSU 2006; WSU 2012; WSU 1989; WSU 2002; WSU 2020; WSU 2015).  
 
The Yakima Valley and Prosser N.E.  
Rattlesnake Hills and Horse Heaven Hills form the low ridges near Sunnyside and Grandview 
(Figures 3, 4, 5, 6, 7). Prosser N.E. was located at the foot of the Horse Heaven Hills and the focus 
AWN site of this study (Figures 3, 4). The geographical location of Prosser N.E. site was the 
closest site to where previous drift field studies were completed and was located in a region with 
frequent drift events and cases involving human illness (Kasner et al., 2020, Kasner et al., 2021). 
Compared to the other four sites, Prosser N.E was a central point of elevation in the Yakima Valley 
and our study site (Figures 3, 4, 5, 8). A dense network of AWN stations surrounds Prosser N.E., 
which helped us determine appropriate distances between the nearest AWN station and a farm or 
worker location.  McWhorter was the highest point of elevation in the study area because it was 
located on an anticlinal ridge of Horse Heaven Hills (Figures 3, 4, 5, 9). The Benton W. site was 
on the downward slope of the anticlinal ridge where McWhorter sat atop (Figures 3, 4, 5, 10).  
 
Meteorological Instruments and AWN Meteorological Data Collection 
All meteorological variables were recorded every 5 seconds (s) and summarized every 15 minutes 
(min) by a battery-powered data logger (Campbell Scientific CR-1000) that was recharged via solar 
panel (Kasner et al, 2017; WSU 2006; WSU 2012; WSU 1989; WSU 2002; WSU 2020; WSU 
2015). Datasets were sent via cellular data telemetry and the internet to WSU, preprocessed, posted 
to an online portal, and then made available for download (Kasner et al, 2017, WSU 2006; WSU 
2012; WSU 1989; WSU 2002; WSU 2020; WSU 2015). A three-cup anemometer wind speed 
sensor (Model 014A Met One) continuously monitored wind speeds from 0 to 45 m/s with an 
accuracy of 0.11 m/s (Kasner et al, 2017, WSU 2006; WSU 2012; WSU 1989; WSU 2002; WSU 
2020; WSU 2015). A wind vane (Model 024A Met One) served as the wind direction sensor that 
measured 0-360° with 5° accuracy, which was reported as one of eight wind direction categories 
[4 cardinal (N-E-S-W) and 4 ordinal (NE-SE-SW-NW)] (Kasner et al, 2017, WSU 2006; WSU 
2012; WSU 1989; WSU 2002; WSU 2020; WSU 2015). For the weather stations selected in this 
study, AWN defined a wind gust as the maximum 5-second sampled wind speed over a 15-minute 
interval measured at a height of 2 meters. Temperature and relative humidity were measured with 
a probe (Rotronic HC2S3) that measured air temperature from -40 to 60°C with a ±0.1°C tolerance 
and an additional temperature probe (Model 107) measured air between 0° and 50°C with a ±0.2°C 
tolerance (Kasner et al, 2017, WSU 2006; WSU 2012; WSU 1989; WSU 2002; WSU 2020; WSU 
2015). Data were provided courtesy of Washington State University AgWeatherNet and are 
copyright of Washington State University (Kasner et al, 2017, WSU 2006; WSU 2012; WSU 1989; 
WSU 2002; WSU 2020; WSU 2015). 
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Scope 
Prosser N.E. in the months of April, May, and June 2020 
We outlined wind patterns related to wind ramping and forecasting during the heavy tree fruit 
spraying season in the Yakima Valley between 2014 and 2020. Several field studies were 
conducted in the same region where drift events have been regularly documented since 2000. We 
narrowed the scope of forecasting to the months of April 2020, May 2020, and June 2020 at the 
Prosser N.E. station. In April, growers usually begin to apply pesticides and farmworkers thin 
budding tree fruit by hand. In June, applicators usually apply insecticides and farmworker activity 
in tree fruit orchards increases. 
 
Given the descriptive wind statistics in Tables 1, 2, 3, and 4, we trained the forecast models to 
predict future wind speed values at the Prosser N.E. focus site. This site best represented 
agricultural tree fruit orchards that also had frequent and sudden wind speed and direction changes 
(wind ramp events) during the early spraying season. The model was trained to predict wind 
ramping events for the months of April 2020, May 2020, and June 2020, which required wind data 
from the months of January, February and March 2020.  
 

Data Analysis  
 
Data Preparation  
Statistical analysis and wind forecasting were carried out in R version 4.1.1 with the stats package 
version 4.1.3. Elevation profiles and maps (Figures 3 – 10) of the study site were created in Google 
Earth Pro 7.3.4.8573. Each software was utilized on a Windows 10 Pro Desktop PC with an 
Intel(R) Core (TM) i5-6300U CPU 2.40GHz 2.50 GHz Processor.  
 
Exploratory Statistical Data Analysis: Interquartile Ranges and Histograms 
We performed basic summary statistics that considered minimums, 25th percentile, means, 
medians, 75th percentile, and maximums values for the wind speed and wind gust variables at each 
station. The summary statistics described the center and spread of the wind speed and wind gust 
variables. Also, the summary statistics helped identify suspected outliers for each site, in this case, 
wind ramps. Histograms were plotted to reveal distinct features of the wind speed and wind gust 
distributions at each site. The shape of the distributions helped us determine the best fit for wind 
forecasting models because not all models can accurately predict future values for unimodal or 
bimodal patterns (Carta et al., 2009; Ouarda et al., 2015).  
 
Time Plots    
To obtain descriptive measures of the main properties for the time series of interest, a time plot 
was required. By plotting a graph with the observations against time, it revealed important features 
of the time series such as trend, seasonality, outliers, and discontinuities. Time plots showed 
gradual or sudden changes in wind speed, wind ramps, an important property of our time series. 
Alternatively, time plots informed us when a recording device needed to be calibrated or was down 
and helped us adjust the data before further analysis.  
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Autocorrelation Function (ACF) and the Correlogram 
To predict the future values in a time series and determine if a time series is stationary or not, we 
identified the relative dependence of each observation (Chatfield et al., 2004, McCullough., 1998; 
Mizon., 1995). Several statistical R command functions were available, but we utilized the acf 
function in the R stats package version 4.1.3. The acf function measured the correlation, if any, 
between observations at different distances and was important for model building (Chatfield et al., 
2004, McCullough., 1998; Mizon., 1995). Two important properties of acf plots were magnitude, 
and direction. Correlations ranged in magnitude from -1.00 to 1.00. The larger the absolute value 
of the coefficient on the y-axis, the greater the magnitude of the relationship (UWOEA, 2019). 
The direction of the relationship (positive or negative) was indicated by the sign of the coefficient 
on the y-axis (UWOEA, 2019). A positive correlation implied that increasing the value of one was 
accompanied by an increase in the other (UWOEA, 2019). A negative correlation implied that 
increasing the value of one was accompanied by a decrease in the other (UWOEA, 2019). If two 
values were independent, then the true correlation was zero (Chatfield et al., 2004). For both wind 
speed and wind gust, we plotted the auto correlation between observations that were k steps apart 
with the acf function in R.  
 
Decomposition and Differencing 
When the variation in a time series was dominated by a trend, as is the case for many time series 
in meteorology, geophysics, marine science, and other physical sciences, it is a common method 
to decompose the variation in a time series into cyclic trends and residuals components. The 
residuals sometimes referred to as ‘randoms’ or ‘remainders’ are further analyzed or filtered until 
stationary.  The decomposition for the wind speed time series in this thesis was carried out by 
using the R stats package command stl, which decomposes a time series into trend (additive or 
multiplicative), seasonal, and remainder components using moving averages.  
 

Model Identification  
 
ARIMA 
After the decomposition of our wind time series data into cyclic trends and residual components, 
we utilized the auto.arima function in the forecast package version 8.16 of the statistical R 
programming software to determine the differencing (d) coefficient required transform our non-
stationary wind time series data to a stationary time series (Hyndman et al., 2008, Hyndman et al., 
2018). To accomplish this, the auto.arima function in R uses a variant of the Hyndman- 
Khandakar algorithm, which takes the first differences of the data until the data are stationary, then 
examines the order of the autoregressive (AR) (p) model and the order of the moving average 
(MA) (q) model through a series of stepwise combination and plots the ACF to evaluate the 
residuals for remaining non-stationary trends (Hyndman et al., 2008, Hyndman et al., 2018). The 
auto.arima function provides the fitted ARIMA model orders as ARIMA(p, d, q).  
 
We first decomposed five years of historical wind speed data (without gust) that ranged from 
January 2014 to December 2019. We used five years of historical wind speed data because the stl 
function required a minimum of three years of data (Cleveland et al., 1990). After the 
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decomposition of our wind speed time series into seasonal and residual components, we ran 
auto.arima function on each component. The ARIMA order values for the seasonal and residual 
components were ARIMA (2,1,1) and ARIMA (4,1,2), respectively. We then fit or trained both 
ARIMA (2,1,1) and ARIMA (4,1,2) models to 30-days of historical wind speed data to provide a 
2.5-hour forecast of the first day following the end of the 30-days. We repeated this process 800 
times and provided the distribution of the root mean square error (RMSE) between the actual wind 
speed observation and the calculated point forecast values of our ARIMA (2,1,1) and ARIMA 
(4,1,2) models. The RMSE represents the variability between our ARIMA forecast points and the 
historical wind speed values in April 2020, May 2020, and June 2020.  
 

Wind Direction Forecasting: Exploratory Analysis   
 
Wind Speed and Direction  
Ramp events are wind conditions with sudden change in speed and direction. In the case of 
pesticide drift, rapid changes in wind speed and direction can significantly impact human exposure. 
For this thesis, the wind speed forecasting models have assumed a uniform wind direction, 
however, in practice not all stations in this study experience the same magnitude and variation in 
wind speed and direction.  
 
The correlation between wind speed and wind direction is important for the prevention of pesticide 
drift. We first explored prevailing wind directions by taking the wind direction data collected and 
generated comparative box plots.  
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Method Figures  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:Regions of Washington State.  
Image courtesy of Roadside Geology of Washington. 
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Figure 4: AWN Stations in the Yakima Valley, 2022 (Fan-Shape View).  
Image Courtesy of Google Pro Earth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: AWN Stations in the Yakima Valley, 2022.  
Image Courtesy of Google Pro Earth.  

Figure 2: Basalt Ridges of the Yakima Fold Belt. 
Image courtesy of Roadside Geology of Washington. 
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Figure 6: Elevation Profile of Sunnyside AWN station.  
Profile travels from Rattlesnake Hills to Horse Heaven Hills. Latitude: 46.29, Longitude: -120.01, Elevation: 

690 ft. Image Courtesy of Google Pro Earth. 

Figure 7: Elevation Profile for Grandview AWN station. 
Profile travels from Rattlesnake Hills to Horse Heaven Hills. Latitude: 46.27, Longitude -119.85, Elevation: 972 

ft. Image Courtesy of Google Pro Earth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Elevation Profile of Sunnyside, WA to Benton W., WA.  
Image Courtesy of Google Pro Earth. 
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Figure 8: Elevation Profile for Prosser N.E. AWN station. 
Profile travels from Rattlesnake Hills to Horse Heaven Hills. Latitude: 46.25, Longitude -119.74, Elevation: 

827 ft. Image Courtesy of Google Pro Earth. 

Figure 9: Elevation Profile for McWhorter AWN station. 
Profile travels from Rattlesnake Hills to Horse Heaven Hills. Latitude: 46.32, Longitude -119.62, Elevation: 

1401 ft. Image Courtesy of Google Pro Earth. 

Figure 10: Elevation Profile for Benton W. AWN station. 
Profile travels from Rattlesnake Hills to Horse Heaven Hills. Latitude: 46.30, Longitude -119.57, Elevation: 

929 ft. Image Courtesy of Google Pro Earth. 
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Figure 11: Sunnyside AWN station.  
Installed August 25th, 2020. Elevation: 690 ft. Photo courtesy of WSU AWN. 

Figure 12: Grandview AWN station. 
Installed August 30th, 2012. Elevation: 972 ft. Photo courtesy of WSU AWN. 
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Figure 13: Prosser N.E. AWN station.  
Installed July 5th, 2002. Elevation: 827 ft. Photo courtesy of WSU AWN. 

Figure 14: McWhorter AWN station.  
Installed April 25th, 1989. Elevation: 1401 ft. Photo courtesy of WSU AWN. 
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Figure 15: Benton W. AWN station.  
Installed June 16th, 2006. Elevation: 929 ft. Photo courtesy of WSU AWN. 
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Results 
 
Sample Size  
On average, there were 202,116 observations per meteorological variable at each station for the 
study period (2014-2020). Each observation was a 15-min average of 5 s readings from each 
measuring instrument. We reserved 2020 data to serve as the test, removing it from our preliminary 
analysis. There were 96 15-min observations per day, 672 15-min observations per week, and 
about 35040 15-min observations per year for each meteorological variable at a station.  
 
Missing Data  
The time plots (Figures 17, 18) show missing observations and discontinuities in our time series 
data from 2014 to 2019. Most of the missing observations and discontinues in the time plots were 
outside the spraying season (Table 1). Different models were fitted to different parts of the time 
series data to address this issue. However, the treatment of missing observations and 
discontinuities was complex and are addressed in the Discussion section.  
 
The Yakima Valley and Prosser N.E.  
Rattlesnake Hills and Horse Heaven Hills formed the low ridges near Sunnyside and Grandview 
(Figures 3, 4, 5, 6, 7). Prosser N.E. was at the foot of the Horse Heaven Hills and was the focus 
AWN site for this study (Figures 3, 4). The geographical location of Prosser N.E. was close to 
where previous drift field studies were completed and an area with frequent drift events and cases 
(Kasner et al., 2020, Kasner et al., 2021). This site was a central point of elevation in the Yakima 
Valley and our study area (Figures 3, 4, 5, 8). Compared to other stations, Prosser N.E. had less 
variable wind speeds (Table 1) with moderate to high maximum wind speeds (Table 1).  
  

Aim 1: Determine the necessary inputs for wind ramp modeling in agriculture 
 
Descriptive Statistics  
The highest maximum wind speed value and wind speed variability was detected at the McWhorter 
site, 40.7 mph ± 4.0 mph (Table 1). The McWhorter station had the highest elevation (1401 ft) 
with limited surrounding wind breaking barriers or objects (Figures 4, 5, 9, 14). The lowest 
maximum wind speed value was detected at the Grandview site, 25.8 mph ± 3.0 mph (Table 1). 
The Grandview station had second highest elevation (972 ft) and is centered in the lower Yakima 
valley, surrounded by wind breaking barriers or objects (Figures 4, 7, 12). The Sunnyside station 
had the lowest elevation (690 ft), second highest maximum wind speed value and second most 
variable wind speeds; 37.2 mph  ± 3.7 mph (Table 1) (Figures 4, 5, 6, 11). Benton W. had the least 
variable wind speeds and second lowest maximum wind speed values; 26.4 mph ± 2.7 mph (Table 
1). The Benton W. location had a relatively high elevation (929 ft) and was surrounded by wind 
breaking barriers (Figures 4, 10, 15). The Prosser N.E. location had a history of relatively high 
maximum wind speed values and low wind speed variability; 34.3 mph ± 2.9 mph (Table 1). 
Prosser N.E. was the center point in our study area with moderate elevation (827 ft), was the nearest 
site to previous drift field studies, and had a history of frequent drift events and cases (Figures 4, 
8, 13).  
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When comparing the wind gust speeds at each station, we found that Prosser N.E. had the highest 
maximum wind gust value of 60 mph ± 5.0 mph (Table 1) and the greatest difference in means 
between wind gust and wind speed; 4.0 mph ± 2.1 mph (Table 1). The two stations to the left of 
Prosser N.E., (Sunnyside and Grandview), had a difference in means of 2.5 mph ± 1.7 mph 
between wind gust and wind speed (Table 1). While McWhorter and Benton W. had a difference 
in means of 3.1 mph ± 1.7 mph between wind gust and wind speed (Table 1).  
 
The histograms for wind speed and wind gusts (Figure 16) had similar shapes. Both distributions 
were right skewed with the peaks centered around lower wind speeds (approximately 5 mph) for 
wind speed alone and (approximately 10 mph) for wind gust (Figure 16). The skewness and center 
of each distribution indicated that low wind speeds dominated this study area. However, the 
distribution spreads for wind speed, 0 mph to 40 mph, and 0 mph to 60 mph, for wind gust, 
indicated that there were “spikes” in wind speed or wind ramps in Sunnyside, Prosser N.E., and 
McWhorter (Figure 16). The shape of histogram distributions were single-peaked and unimodal 
for all stations in the study area. This information narrowed our selection of short-term forecasting 
techniques to models that could accurately estimate these wind speed distributions.  
 
Wind Speed Exceedances 
To evaluate how often “spikes” or wind speed exceedances were above the 10-mph federal and 
state regulations, we stratified the data by station, then limited wind speed and wind gust to speeds 
greater than 10-mph, 15-mph, and 20-mph (Table 2). We found that McWhorter, the station with 
the highest elevation (Figures 3, 4), and limited surrounding wind breaking barriers or objects had 
the highest count and percentage of wind speed exceedances over the five-year period (January 
2014 – December 2019) above 10-mph, 15-mph, and 20-mph for the wind speed variable alone 
(Table 2). Sunnyside, the station with lowest point of elevation (Figures 3, 4), had the second 
highest count and percentage of wind speed exceedances above 10-mph, 15-mph, and 20-mph for 
wind speed alone (Table 2). Prosser N.E. had the second highest proportion of wind gust 
exceedances following only McWhorter (Table 2). Prosser N.E. had 39.1 times more wind speed 
exceedances for the wind gust variable than wind speed variable (Table 2).  
 
According to Tables 3 and 4, most wind ramp events lasted 30-60 minutes at speeds between 10-
15 mph. However, the length of wind exceedances is longer in duration for the wind gust variable 
when compared to the wind speed variable for all run times. The longest wind ramp events for 
Prosser N.E. and McWhorter lasted 26.75 hours at wind speeds 20 mph or greater (Table 4).  
 
Time Plots 
To analyze the features of the changes in wind speed of the study area we graphed a time plot, 
observations against time for each station and year, excluding our test year 2020 (Figures 17-18). 
All time plots for each station and year exhibited similar seasonality and trend. The highest wind 
speeds were in the winter months during the pruning season, when a limited number of agricultural 
farmworkers are in the fields and little to no pesticides are normally applied.  Wind speeds were 
variable during the spring months, when early rounds of pesticides are normally applied. The 
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lowest wind speeds were in the summer months when most farmworkers are in the fields thinning, 
harvesting various tree fruit, or applying pesticides. Wind speeds were highly variable in the spring 
and fall months. In the fall, workers were primarily harvesting when little to no pesticides are 
usually applied.  
 
Overall, wind speed across all stations had significant diurnal, metrological, and seasonal 
variation, consistent with nonstationary time series (Figures 17, 18). Sunnyside had the most 
missing data and discontinuities in the winter months in 2019, 2017, and 2016 with approximately 
3% of wind speed and gust observations missing (Table 1; Figures 17c, 18a, 18c). McWhorter, 
Prosser N.E., Benton W., and Grandview had a limited number of missing values scattered 
throughout each year (Table 1) (Figures 17, 18). 
 
Comparative Box Plots of Wind Direction   
Wind from the north was the most prevailing wind direction for lower valley stations (Figure 26) 
(Table 11). Over the five years between January 2014 and December 2019, 19% of the winds came 
from the north at Sunnyside, 33% at Grandview, and 28% at Prosser N.E. (Table 11) (Figure 26). 
West winds were the most prevailing wind direction for the McWhorter and Benton W. stations 
(Figure 26) (Table 11). Throughout the five-study period 24% of the wind came from the west at 
McWhorter and 28% at Benton W. (Table 11). South winds were the least prevailing in Sunnyside 
and Grandview (Figure 26) (Table 11). Whereas winds from the southeast were the least prevailing 
at Prosser N.E., McWhorter, and Benton W (Table 11) (Figure 26). The outliers represented 
‘spikes’ or wind ramps (Figures 26 and 27). For our focus site at Prosser N.E., most wind ramps 
were associated with winds from the west over the five-year study period, which were the second 
most prevailing wind direction (Figure 26) (Table 11). A similar pattern was observed when 
evaluating the occurrence of wind ramp events from the wind gust variable (Figure 27). Note, all 
wind directions for the wind gust variable were at or above 15 mph (Figure 27).  
 
Decomposition and Autocorrelation Function (ACF) Correlogram for Prosser N.E.  
The correlation between observations was an important property of a time series and guided 
forecast model building. As expected from the wind forecasting literature, we observed cyclic 
seasonal and diurnal trends of the wind speed variable for Prosser N.E. in Figures 17, 18. The 
correlograms in Figure 19 showed that the wind speed time series for Prosser N.E. from January 
2104 to March 2020 had many consecutive positive values[e1]  (Figure 19). This observation on 
one side of the overall mean tends to be followed by a large number on the same side of the mean, 
indicating a trend. The correlogram pattern observed in Figure 19 was a typical non-stationary 
time series consistent with the wind forecasting literature. The dominant trend in our correlograms 
indicated that decomposition of the wind speed time series was necessary to understand the 
correlation between the residuals (Figure 20). We utilized the R stats package command stl to 
decompose each wind speed data subsets into their seasonal and residual components (Figure 20). 
The data subsets ranged from January 2014 to March 2020, April 2020, and May 2020 (Figure 
20). We can see that the overall trend, seasonal trend, and pattern for the residuals/remainders were 
the same for all three data subsets. However, the residuals followed a cyclic pattern, indicating that 
additional filtering (differencing) was required to remove persistent trends. To determine the order 
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of differencing required to our non-stationary time series into a stationary time series, we used the 
auto.arima function. To evaluate if the ARIMA (2,1,1) and ARIMA (4,1,2) models achieved 
stationarity, we used an ACF plot on the residuals (Figure 21). The correlograms in Figure 21 
show that the seasonal and cyclic variations have been removed from the residuals through first 
differencing. We also learned from the seasonal component that the highest wind speed values 
occurred in the late fall and winter months (Figure 20). Wind speed values then varied in the spring 
and early summer months (Figure 20). The lowest wind speed values occurred in the summer and 
then gradually rose in the fall (Figure 20). Also, not all significant ‘spikes’ in the observed wind 
time series time plot are isolated in the residual component-time plot (Figure 20). In addition, the 
highest wind speeds for Prosser N.E. occurred in the fall and winter months and then started to 
decline in the late winter and early spring months (Figure 20). 
 
ARIMA Model Fitting  
To provide a 2.5-hour wind speed forecast for the months of April, May, and June 2020 at the 
Prosser N.E. station, we fit the ARIMA (2,1,1) and ARIMA (4,1,2) models to three different wind 
speed data subsets. The first ranged from March 1st – 31st,  2020 to predict the wind speed 
observations in 1st, April 2020 (Figure 22). The second wind speed data subset ranged from April 
1st - 30th, 2020 to predict the wind speed values on May 1st, 2020 (Figure 23). A third wind speed 
data subset that ranged from May 1st- May 31st, 2020, to predict the observed wind speed values 
on June 1st, 2020 (Figure 24).  
 
Comparative Box Plots of Wind Direction at Prosser N.E.   
The west was the most prominent wind direction for the months of March 2020, April 2020, May 
2020, and June 2020 at Prosser N.E. (Table 10) (Figures 26, 27). Southeast winds were the least 
prominent during the months of April 2020, May 2020, and June 2020. East was the least 
prominent direction during the month of March 2020.  
 
The outliers represented ‘spikes’ or wind ramps in Figures 26 and 27. In March and April 2020, 
wind ramp events occurred more frequently from the north but the highest wind speeds (above 15 
mph) were observed from west and southwest direction (Figure 26). In May and June 2020, the 
highest wind speeds and most wind ramp events occurred from the west (Figure 26). Wind ramp 
events and maximum wind speeds did not surpass 15 mph in June 2020 (Figure 26).  
 
When wind direction was stratified by the wind gust variable for March 2020, April 2020, May 
2020, and June 2020 at Prosser N.E., we observed different patterns (Figure 27). In March and 
April, wind ramp events occurred more frequently from the north, but the highest wind speeds 
(above 30 mph) occurred from the northeast, southwest, and west. For May, more wind ramp 
events were observed from the northwest and the highest wind speeds (above 30 mph) came from 
the west. In June, the most wind ramp events and highest wind speeds (above 20 mph) came from 
the southwest.  
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Aim 2: Apply the model  
 
Prosser N.E. Arima (2,1,1) Wind Speed Forecast for April 1st, 2020 
Figure 21 and Table 5 provide a 2.5-hour ARIMA (2,1,1) wind speed forecast for April 1st, 2020, 
and the forecast’s descriptive statistics, respectively. Our ARIMA (2,1,1) model was trained with 
and fitted to the summarized 15-min averages of 5s readings from the AWN historical wind speed 
values (Figure 21 black line) at Prosser N.E. in Mach 2020. Each 15-min average counted as one 
observation, so the wind speed time series for March consisted of 2971 observations, or 2971 15-
min averages 5s wind speed data from March 1st, 2020 to March 31st, 2020 (Figure 21 green line). 
We attempted to forecast the first 10 observations (2.5 hours) of April 1st, 2020 (Figure 21 blue 
line), which contained a 3.4 mph wind ramp (Figure 21 red line) in the center of the 2.5-hour time 
interval (Table 5). The wind ramp increased from 2.5 mph to 5.9 mph and gradually tapered back 
down to 2.7 mph after 30 minutes (Table 5). The ARIMA (2,1,1) model’s calculated point forecasts 
(Figure 21 blue line) are linear and did not respond well to actual observed wind speed values 
(Figure 21 red line). Also, the forecast appeared as a linear average (Figure 21 blue line) that 
underestimated the actual observed wind speed values (Figure 21 red line). Our ARIMA (2,1,1) 
model underestimated the actual speed values of the wind ramp with a predicted value of 2.2 mph 
with a 95% prediction interval (95-PI) (0, 6.48) and 0.0932 standard error (SE) (Table 5). The 
variability between our ARIMA (2,1,1) predicted values and the actual observed wind speeds for 
April 1st, 2020 was 1.44 (Table 5).  
 
Prosser N.E. Arima (2,1,1) Wind Speed Forecast for May 1st, 2020 
Figure 22 and Table 6 provide a 2.5-hour ARIMA (2,1,1) wind speed forecast for May 1st, 2020, 
and the forecast’s descriptive statistics, respectively. Our ARIMA (2,1,1) model was trained with 
and fitted to the summarized 15-min averages of 5s readings from the AWN historical wind speed 
values (Figure 22 black line) at Prosser N.E. in April 2020. Each 15-min average counts as one 
observation, this wind speed time series for April consisted of 2880 observations or 2880 15-min 
averages 5s wind speed data from April 1st, 2020, to April 30th, 2020 (Figure 22 green line). We 
attempted to forecast the first 10 observations (2.5 hours) of May 1st, 2020 (Figure 22 blue line), 
which contained a 2.6 mph downward wind ramp (sudden decrease in wind speed) (Figure 22 red 
line) that lasted for 1 hour and 45 minutes (Table 6). The wind ramp decreased from 3.30 mph to 
0.70 mph in the first hour and then increased (upward wind ramp) to 4.60 mph 45 minutes after 
dropping to 0.70 mph (Table 6). The ARIMA (2,1,1) model’s calculated point forecasts (Figure 
22 blue line) were linear and had a downward slope, corresponding to the downward wind ramp 
that occurred over the first hour and 45 minutes (Figure 22 red line). This forecast in May 2020 
overestimated the actual observed wind speed values (Figure 22). Our ARIMA (2,1,1) model 
overestimated the actual speed values of the downward wind ramp with a predicted value of 3.23 
mph with a 95-PI (0, 7.37) and 0.0578 SE (Table 6). The variability between our ARIMA (2,1,1) 
predicted values and the actual observed wind speeds for May 1st, 2020 was 1.64 (Table 6).  
 
Prosser N.E. Arima (2,1,1) Wind Speed Forecast for June 1st, 2020 
Figure 23 and Table 7 provide a 2.5-hour ARIMA (2,1,1) wind speed forecast for June 1st, 2020, 
and the forecast’s descriptive statistics, respectively. Our ARIMA (2,1,1) model was trained with 
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and fitted to the summarized 15-min averages of 5s readings from the AWN historical wind speed 
values (Figure 23 black line) at Prosser N.E. in May 2020. Each 15-min average counted as one 
observation, this wind speed time series for March consisted of 2975 observations or 2975 15-min 
averages 5s wind speed data from May 1st, 2020, to May 31st, 2020 (Figure 23 green line). We 
attempted to forecast the first 10 observations (2.5 hours) of June 1st, 2020 (Figure 23 blue line), 
which contained a downward wind ramp and upward wind ramp events (Figure 23 red line). The 
downward wind ramp decreased from 2.50 mph to 0.70 mph and lasted for 30 minutes in duration 
(Table 7). Immediately after the wind speed increased from 0.70 mph to 3.00 mph (upward wind 
ramp) and lasted for 45 minutes in duration (Table 7). The wind speed dropped again for the 
remainder of the 2.5-hour time interval (Figure 23) (Table 7). The ARIMA (2,1,1) model’s 
calculated point forecasts are non-linear and appear logarithmic (Figure 23 blue line). The 
logarithmic trend of the predicted values gradually rose from 1.01 mph with a 95-PI (0.00, 3.34) 
and SE (0.0407) to 1.80 mph with a 95-PI (0.00, 6.50) and SE (0.0407) (Table 7). The continual 
rise in predicted wind speed values caused the ARIMA (2,1,1) model to overestimate the lowest 
value of downward wind ramp 0.70 mph versus 1.59 mph with 95-PI (0.00, 5.32) and 0.0407 SE 
(Table 7). The model underestimated the highest value of the upward wind ramp 3.00 mph versus 
1.72 mph with a 95-PI (0.00, 5.86) and 0.0407 SE (Table 7). The variability between our ARIMA 
(2,1,1) predicted values and the actual observed wind speeds for June 1st, 2020 was 0.81 (Table 
7).  
 
800 Additional Forecasts 
We ran an additional 800 forecasts by fitting the same ARIMA (2,1,1) and ARIMA (4,2,1) models 
over sequential 30-day periods or windows. The first training window starts on March 1st, 2020, 
at12:30 am and ends on March 30th, 2020, at 11:15 pm, forecasting the following 2.5 hours. The 
second window shifts forward 2.5 hours and starts on March 1st, 2020, at 3:00 am and ends on 
March 31st at 1:45 am, forecasting the following 2.5 hours. This process repeats for a total of 800 
windows. The 800th window starts on May 23rd, 2020 at 6:30 pm and ends on June 23rd at 5:15 
pm. Each window provided a 2.5-hours forecast, a training RMSE, (which calculated the 
variability between our ARIMA (2,1,1) and ARIMA (4,2,1) model with 30-day historical values) 
a test RMSE, (which calculated the variability between our forecasted points and the observed 
2020 values) and an ACF plot of the residuals. Figure 25 shows four additional training windows, 
their 2.5-hour forecasts, training RMSE value, and test RMSE value, and an ACF plot of residuals. 
A histogram of the resulting test RMSE values can be found in Appendix 1 Figure 9. Table 9 in 
the results section provides the summary statistics of the 800 ARIMA (2,1,1) models ran between 
the months of March 2020, April 2020, May 2020, and June 2020. The lowest variability between 
our calculated point forecast and actual observed wind speed values was 0.27 (Table 9) (Appendix 
1: Figure 9). The greatest variability between our calculated point forecast and actual observed 
wind speed values was 8.57 (Table 9) (Appendix 1: Figure 9).  
 
 
 
 
 
 



Yoni Rodriguez Page 41 of 99 

 
 
 

Result Tables  
Table 1:Descriptive meteorological statistics of Wind Speed (mph) and Wind Gust (mph).  

This table includes statistics for all stations from 2014 – 2019. 
Wind Speed  Sunnyside Grandview Prosser N.E. McWhorter Benton W. 

n a 169618 210538 209434 210465 210527 
missing obs. b 4252 105 1194 176 50 
mean 3.8 2.9 3.8 5.8 5.1 
SD c 3.7 3.0 2.9 4.0 2.7 
min 0 0 0 0 0 
25th 1.2 0.2 2 3.5 3.4 
Median 3 2.5 3.4 5 4.6 
75th 5.1 4.1 4.8 7.6 6.1 
Max 37.2 25.8 34.3 40.7 26.4 
Wind Gust  Sunnyside Grandview Prosser N.E. McWhorter Benton W. 

n a 205621 210599 210500 210564 210532 
missing obs. b 4252 48 51 75 50 
mean 6.4 5.3 7.8 9.0 8.1 
SD c 5.3 4.7 5.0 5.8 4.5 
min 0 0 0 0 0 
25th 3.1 2.1 4.6 5.3 4.9 
Median 5.2 4.6 6.4 7.8 7.1 
75th 8.5 7.4 9.9 11.7 9.9 
Max 51.1 40 60 55 45.7 

 
Sunnyside Grandview Prosser N.E. McWhorter Benton W. 

𝑥ଶതതത − 𝑥ଵതതതd 2.6 2.4 4.0 3.2 3.1 
𝑠ଶ − 𝑠ଵ

e 1.7 1.7 2.1 1.8 1.7 
% WS missing f 3% 0% 1% 0% 0% 
% WG missing g 2% 0% 0% 0% 0% 

 
a. (n) total number of non-missing observations.  
b. (missing observations (obs.)) the total number of missing values.  
c. (SD) the standard deviation.  
d. (𝑥ଶതതത − 𝑥ଵതതത) difference in means between wind gust and wind speed. 
e. (𝑠ଶ − 𝑠ଵ) difference in variation between wind gust and wind speed.  
f. (% WS missing) percentage of missing wind speed values. 
g. (% WG missing) percentage of missing wind gust values. 
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Table 1 contains five-number summaries for the wind speed and wind gust variables. These 
summaries compare the wind speed distributions for each variable and the wind speed 
distributions between each site in our study area.  

 

Table 2: Wind Speed Exceedance Counts.  
This tables includes wind speed exceedances for all stations from 2014 – 2019. 

Wind Speed 
Alone (mph) 

Sunnyside 
(n = 169618) 

Grandview 
(n = 210538) 

Prosser N.E. 
(n = 209434) 

McWhorter 
(n = 210465) 

Benton W. 
(n = 210527)  

 
 n (%) a n (%) a n (%) a n (%) a n (%) a  

>10 mph 13996 (8.3) 7052 (3.3) 7999 (3.8) 27230 (12.9) 12070 (5.7)  

>15 mph 3349 (2.0) 995 (0.5) 1634 (0.8) 7176 (3.4) 1655 (0.8)  

>20 mph 449 (0.3) 96 (0.05) 170 (0.1) 1522 (0.7) 139 (0.1)  

Wind Gust 
(mph) 

Sunnyside 
(n = 205621) 

Grandview 
(n = 210599) 

Prosser N.E. 
(n = 210500) 

McWhorter 
(n = 210564) 

Benton W. 
(n = 210532) 

 

 
 

 n (%) a n (%) a n (%) a n (%) a n (%) a  

>10 mph 35680 (21.0) 25908 (12.3) 36038 (17.1) 69909 (33.2) 49742 (23.6)  

>15 mph 15570 (9.2) 9873 (4.7) 17481 (8.3) 30112 (14.3) 17591 (8.4)  

>20 mph 5961 (3.5) 2769 (1.3) 6821 (3.2) 11209 (5.3) 5272 (2.5)  

Relative 
Exceedances   

Sunnyside Grandview Prosser N.E. McWhorter Benton W. 

 

 
 

RE(10 mph) 
b 1.5 2.7 3.5 1.6 3.1  

RE(15 mph) 
b 3.6 8.9 9.7 3.2 9.6  

RE(20 mph) 
b 12.3 27.8 39.1 6.4 36.9  

 

a.  n (%) = total number of non-missing observations with its percentage  

b. 𝑅𝐸 =  
௫మି௫భ

௫భ
 𝑤ℎ𝑒𝑟𝑒 𝑥ଵ = 𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑, 𝑥ଶ = 𝑤𝑖𝑛𝑑 𝑔𝑢𝑠𝑡 

Table 2 contains the total number of times the wind speed exceeded 10 mph, 15, mph, and 20 mph 
for wind speed alone and wind gusts. Federal and state regulations require that pesticide 
application cannot occur if wind speeds are greater than 10 mph (4.5 m/s). When comparing the 
relative exceedances between the wind gust variable and wind speed variable for each site, we 
found that Prosser N.E. had 39.1 times as many exceedances using wind gusts than wind speed 
alone.  
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Table 3: Run Times (15-minute averages) of Wind Speed Exceedances.  
This table includes run times of wind speed exceedances for all stations from 2014 – 2019. 

10-mph 
Run Times 

(min) 
Sunnyside Grandview Prosser N.E. McWhorter Benton W. 

 
 

  n (%) n (%) n (%) n (%) n (%)  

30-60  742 (0.39) 444 (0.25) 503 (0.26) 1181 (0.62) 639 (0.33)  

75 - 105 250 (0.27) 127 (0.16) 152 (0.20) 399 (0.44) 248 (0.26)  

120 - 150  141 (0.23) 63 (0.08) 73 (0.09) 208 (0.41) 125 (0.23)  

165 - 195 91 (0.24) 36 (0.10) 41 (0.10) 158 (0.34) 64 (0.20)  

210 - 240 54 (0.09) 23 (0.07) 39 (0.09) 102 (0.33) 44 (0.15)  

Max (min) 1080 (0.07) 1125 (0.04) 1710 (0.07) 1965 (0.07) 1965 (0.07)  

Max (hrs) 18 (0.07) 18.75 (0.04) 28.5 (0.07) 32.75 (0.07) 32.75 (0.07)  

15-mph 
Run Times 

(min) 
Sunnyside Grandview Prosser N.E. McWhorter Benton W. 

 

 
 

  n (%) n (%) n (%) n (%) n (%)  

30-60  295 (0.15) 89 (0.04) 166 (0.09) 416 (0.20) 138 (0.07)  

75 - 105 88 (0.10) 17 (0.01) 52 (0.07) 144 (0.17) 31 (0.03)  

120 - 150  29 (0.04) 13 (0.02) 18 (0.04) 66 (0.11) 14 (0.04)  

165 - 195 18 (0.05) 6 (0.04) 6 (0.04) 35 (0.09) 17 (0.05)  

210 - 240 18 (0.05) 4 (0.03) 5 (0.04) 27 (0.07) 7 (0.04)  

Max (min) 1020 (0.04) 720 (0.03) 990 (0.03) 1485 (0.06) 975 (0.04)  

Max (hrs) 17 (0.04) 12 (0.03) 16.5 (0.03) 24.75 (0.06) 16.25 (0.04)  

20-mph 
Run Times 

(min) 
Sunnyside Grandview Prosser N.E. McWhorter Benton W. 

 

 
 

  n (%) n (%) n (%) n (%) n (%)  

30-60  61 (0.03) 8 (0.01) 19 (0.03) 126 (0.11) 10 (0.02)  

75 - 105 10 (0.03) 1 (0.00) 6 (0.02) 33 (0.04) 1 (0.00)  

120 - 150  4 (0.02) 3 (0.02) 1 (0.01) 19 (0.03 1 (0.01)  

165 - 195 2 (0.01) 2 (0.01) 0 (0.00) 14 (0.03) 2 (0.01)  

210 - 240 6 (0.02) 0 (0.00) 2 (0.002) 6 (0.01) 1 (0.01)  

Max (min) 225 (0.01) 195 (0.01) 300 (0.01) 990 (0.04) 570 (0.02)  

Max (hrs) 3.75 (0.01) 3.25 (0.01) 5 (0.01) 16.5 (0.04) 9.5 (0.02)  

a. (Max (hrs.)) = Max (min) / 60 min  
 
Table 3 counts how many of wind speed exceedances from Table 2 lasted 30 minutes to 240 
minutes (4 hours) or greater. It is important to note that the meteorological data received from 
WSU AWN was structured as 15-minute averages of 5 s readings.  
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Table 4: Run Times (15-minute averages) of Wind Gust Exceedances.  
 This tables includes run times of wind gust exceedances for all stations from 2014 – 2019. 

10-mph 
Run Times 

(min) 
Sunnyside Grandview Prosser N.E. McWhorter Benton W. 

 
 

  n (%) n (%) n (%) n (%) n (%)  

30-60  1869 (0.90) 1386 (0.63) 2114 (0.64) 2484 (0.74) 2403 (0.68)  

75 - 105 543 (0.63) 402 (0.43) 586 (0.63) 712 (0.72) 655 (0.68)  

120 - 150  280 (0.47) 194 (0.40) 276 (0.54) 384 (0.68) 348 (0.57)  

165 - 195 177 (0.39) 123 (0.27) 162 (0.36) 264 (0.60) 208 (0.47)  

210 - 240 121 (0.44) 88 (0.17) 109 (0.33) 193 (0.55) 158 (0.38)  

Max (min) 1860 (0.07) 2115 (0.08) 2745 (0.10) 4575 (0.17) 2865 (0.11)  

Max (hrs) 31 (0.07) 35.25 (0.08) 45.75 (0.10) 76.25 (0.17) 47.75 (0.11)  

15-mph 
Run Times 

(min) 
Sunnyside Grandview Prosser N.E. McWhorter Benton W. 

 

 
 

  n (%) n (%) n (%) n (%) n (%)  

30-60  912 (0.44) 706 (0.36) 1114 (0.49) 1436 (0.67) 1032 (0.46)  

75 - 105 267 (0.35) 170 (0.19) 268 (0.27) 315 (0.40) 316 (0.36)  

120 - 150  132 (0.16) 94 (0.11) 145 (0.21) 211 (0.38) 157 (0.31)  

165 - 195 88 (0.21) 60 (0.14) 80 (0.18) 35 (0.35) 74 (0.16)  

210 - 240 48 (0.12) 21 (0.05) 65 (0.19) 108 (0.27) 64 (0.12)  

Max (min) 1860 (0.07) 1935 (0.05) 1890 (0.07) 2025 (0.08) 1965 (0.07)  

Max (hrs) 31 (0.07) 32.25 (0.07) 31.5 (0.07) 33.75 (0.08) 32.75 (0.07)  

20-mph 
Run Times 

(min) 
Sunnyside Grandview Prosser N.E. McWhorter Benton W. 

 

 
 

  n (%) n (%) n (%) n (%) n (%)  

30-60  457 (0.20) 258 (0.13) 509 (0.25) 680 (0.32) 431 (0.18)  

75 - 105 153 (0.14) 61 (0.07) 141 (0.15) 190 (0.24) 111 (0.12)  

120 - 150  60 (0.10) 24 (0.06) 71 (0.09) 97 (0.18) 52 (0.08)  

165 - 195 34 (0.09) 15 (0.03) 36 (0.10) 54 (0.14) 21 (0.02)  

210 - 240 20 (0.07) 9 (0.03) 28 (0.08) 36 (0.09) 18 (0.05)  

Max (min) 1050 (0.04) 1095 (0.04) 1605 (0.06) 1605 (0.06) 1095 (0.04)  

Max (hrs) 17.5 (0.04) 18.25 (0.04) 26.75 (0.06) 26.75 (0.06) 18.25 (0.04)  

a. (Max (hrs.)) = Max (min) / 60 min  
 
Table 4 counts how many of wind gust exceedance averages from Table 2 lasted 30 minutes to 
240 minutes (4 hours) or greater. It is important to note that the meteorological data received 
from WSU AWN was structured as 15-minute averages of 5 s readings. Therefore, these are not 
the length of the individual wind gusts within a 15-minute time frame.  
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Table 5: Wind Speed Exceedances Greater than 10 mph for the months March, April, May, June 

and their percentages, 2014 – 2019.  

  2014 2015 2016 2017 2018 2019 

WIND SPEED n (%) n (%) n (%) n (%) n (%) n (%) 
March 418 (14.0) 215 (7.0) 323 (11.0) 343 (12.0) 197 (7.0) 9 (0.0) 
April 228 (8.0) 108 (4.0) 80 (3.0) 166 (6.0) 351 (12.0) 159 (6.0) 
May 105 (4.0) 63 (2.0) 53 (2.0) 51 (2.0) 62 (2.0) 55 (2.0) 
June 61 (2.0) 19 (1.0) 107 (4.0) 88 (3.0) 66 (2.0) 12 (0.0) 

WIND GUST n (%) n (%) n (%) n (%) n (%) n (%) 
March 1063 (36.0) 621 (21.0) 949 (32.0) 912 (31.0) 670 (23.0) 231 (8.0) 
April 1063 (37.0) 740 (22.0) 678 (33.0) 889 (32.0) 1005 (23.0) 835 (8.0) 
May 785 (26.0) 710 (25.0) 805 (23.0) 655 (30.0) 652 (34.0) 711 (28.0) 
June 744 (26.0) 436 (25.0) 560 (28.0) 688 (23.0) 817 (23.0) 693 (25.0) 

 
Table 5 provides both the count of wind speed exceedances greater than 10 mph for each month 
and the precent. The percent was calculated by setting the count of wind speed exceedances greater 
than 10 mph for each month as the numerator and the total wind speed counts for each month as 
the denominator. The wind gust variable was calculated the same way. In 2014, 14% of all wind 
speed observations in March were wind exceedances greater than 10 mph. Also, in March 2014, 
36% of all wind gust observations were wind exceedances greater than 10 mph.  
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Table 6: Prosser N.E. April ARIMA (2,1,1) Wind Speed Forecast Comparison Observed.  
This table compares the predicted values from the ARIMA (2,1,1) wind speed model to the 

recorded AWN wind speed values for the first 2.5 hours of first day of April 2020. 
 

April 1st, 2020, ARIMA (2,1,1)  

Forecast 
Point 

AWN 
Observed 

Wind 
Speed 
Value 
(mph) 

ARIMA 
(2,1,1) 

Predicted 
Wind 
Speed 
Value 
(mph) 

Low 95% 
Prediction 
Intervala 

High 95% 
Prediction 

Interval 

Percent 
Differenceb 

SEc RMSEd 

1 3.0 2.2 0.00 4.66 73% 0.0932 1.44 
2 2.4 2.2 0.00 5.54 93%   
3 2.5 2.2 0.00 6.08 90%   
4 5.9 2.2 0.00 6.48 38%   
5 4.3 2.3 0.00 6.82 52%   
6 2.7 2.3 0.00 7.12 84%   
7 2.8 2.3 0.00 7.41 81%   
8 1.6 2.3 0.00 7.67 141%   
9 2.8 2.3 0.00 7.93 81%   

10 3.4 2.3 0.00 8.17 66%   
 3.1 2.2   80%   

 

a.) These values have been truncated to zero because we know that these wind speed cannot 
be less than zero. Software outputted lower bounds are in Appendix 1.  

b.) Percent Difference =   
௉௥௘ௗ௜௖௘ௗ ௏௔௟௨௘

ை௕௦௘௥௩௘ௗ ௏௔௟௨௘
 × 100 

c.) Standard Error that is provided from software output in Appendix 1.  

d.) Root Mean Square Error ට
∑ (௫೔ି௫ഢෝ )మಿ

೔సభ

ே
; where 𝑥௜ is the actual wind speed observation and 

𝑥పෝ  is the predicted wind speed value.  

Table 6 contains descriptive statistics of the ARIMA (2,1,1) predicted values (calculated point 
forecast, the forecast of a single number) and the actual observed values for wind speed on April 
1st, 2020. The prediction interval consisted of upper and lower limits between which a future value 
was expected to lie with a prescribed probability and provided as output from the Arima function 
in the R forecast package (See Appendix 1 for R output). The standard error (SE) was also provided 
from the Arima function (See Appendix 1). On average, our model underestimated the wind speed 
for the first 2.5 hours on April 1st, 2020. The variability between our calculated point forecast 
values and the actual observed wind speed values was1.44 (RMSE).  
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Table 7: Prosser N.E. May ARIMA (2,1,1) Wind Speed Forecast Comparison Observed.  
This table compares the predicted values from the ARIMA (2,1,1) wind speed model to the 

recorded AWN wind speed values for the first 2.5 hours of first day of May 2020. 
May 1st, 2020, ARIMA (2,1,1)  

Forecast 
Point 

AWN 
Observed 

Wind 
Speed 
Value 
(mph) 

ARIMA 
(2,1,1) 

Predicted 
Wind 
Speed 
Value 
(mph) 

Low 95% 
Prediction 
Intervala 

High 95% 
Prediction 

Interval 

Percent 
Differenceb 

SEc RMSEd 

1 3.30 3.26 0.81 5.72 99% 0.0578 1.64 
2 1.70 3.24 0.00 6.50 191%   
3 1.20 3.23 0.00 7.00 269%   
4 0.70 3.23 0.00 7.37 461%   
5 1.40 3.22 0.00 7.68 230%   
6 2.40 3.22 0.00 7.95 134%   
7 4.60 3.22 0.00 8.19 70%   
8 4.50 3.22 0.00 8.41 71%   
9 5.20 3.22 0.00 8.62 62%   

10 4.80 3.21 0.00 8.82 67%   
 3.0 3.2   165%   
 

a.)  These values have been truncated to zero because we know that these wind speed cannot 
be less than zero. Software outputted lower bounds are in Appendix 1.  

b.) Percent Difference =   
௉௥௘ௗ௜௖௘ௗ ௏௔௟௨௘

ை௕௦௘௥௩௘ௗ ௏௔௟௨௘
 × 100 

c.) Standard Error that is provided from software output in Appendix 1.  

d.) Root Mean Square Error ට
∑ (௫೔ି௫ഢෝ )మಿ

೔సభ

ே
; where 𝑥௜ is the actual wind speed observation and 

𝑥పෝ  is the predicted wind speed value.  

Table 7 contains descriptive statistics of the ARIMA (2,1,1) predicted values (calculated point 
forecast, the forecast of a single number) and the actual observed values for wind speed on May 
1st, 2020. The prediction interval consisted of upper and lower limits between which a future value 
is expected to lie with a prescribed probability and is provided as output from the Arima function 
in the R forecast package (See Appendix 1 for R output). The standard error (SE) was also provided 
from the Arima function (See Appendix 1). On average, our model overestimated wind speed for 
the first 2.5 hours on May 1st, 2020. The variability between our calculated point forecast values 
and the actual observed wind speed values was 1.64 (RMSE).  
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Table 8: Prosser N.E. June ARIMA (2,1,1) Wind Speed Forecast Comparison Observed.  
This table compares the predicted values from the ARIMA (2,1,1) wind speed model to the 

recorded AWN wind speed values for the first 2.5 hours of first day of June 2020. 
 

June 1st, 2020, ARIMA (2,1,1)  

Forecast 
Point 

AWN 
Observed 

Wind 
Speed 
Value 
(mph) 

ARIMA 
(2,1,1) 

Predicted 
Wind 
Speed 
Value 
(mph) 

Low 95% 
Prediction 
Intervala 

High 95% 
Prediction 

Interval 

Percent 
Differenceb 

SEc RMSEd 

1 1.60 1.01 0.00 3.34 63% 0.0407 0.81 
2 2.20 1.29 0.00 4.32 59%   
3 2.50 1.47 0.00 4.91 59%   
4 0.70 1.59 0.00 5.32 227%   
5 1.30 1.67 0.00 5.62 128%   
6 3.00 1.72 0.00 5.86 57%   
7 1.60 1.76 0.00 6.05 110%   
8 1.30 1.78 0.00 6.22 137%   
9 1.40 1.79 0.00 6.37 128%   

10 0.60 1.80 0.00 6.50 300%   
  1.6 1.6   127%   
 

a.) These values have been truncated to zero because we know that these wind speed cannot 
be less than zero. Software outputted lower bounds are in Appendix 1.  

b.) Percent Difference =   
௉௥௘ௗ௜௖௘ௗ ௏௔௟௨௘

ை௕௦௘௥௩௘ௗ ௏௔௟௨௘
 × 100 

c.) Standard Error that is provided from software output in Appendix 1.  

d.) Root Mean Square Error ට
∑ (௫೔ି௫ഢෝ )మಿ

೔సభ

ே
; where 𝑥௜ is the actual wind speed observation and 

𝑥పෝ  is the predicted wind speed value.  

Table 8 contained descriptive statistics of the ARIMA (2,1,1) predicted values (calculated 
point forecast, the forecast of a single number) and the actual observed values for wind speed 
on June 1st, 2020. The prediction interval consisted of upper and lower limits between which a 
future value was expected to lie with a prescribed probability and is provided as output from 
the Arima function in the R forecast package (See Appendix 1 for R output). The standard 
error (SE) was also provided from the Arima function (See Appendix 1). On average, our 
model overestimated the wind speed for the first 2.5 hours on June 1st, 2020. The variability 
between our calculated point forecast values and the actual observed wind speed values was 
0.81 (RMSE).  
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Table 9: Summary statistics of the 800 ARIMA (2,1,1) training models RMSEs and their 2.5-hour 

Forecast RMSEs 

  Training RMSEs Forecast RMSEs 
Minimum 1.07 0.27 

Median 1.23 1.42 
Maximum 1.34 8.57 

Standard Deviation 0.07 1.11 
 
Table 9 provided the summary statistics of the 800 ARIMA (2,1,1) models ran between the months 
of March 2020, April 2020, May 2020, and June 2020. The first model of the total 800 models was 
trained on a 30-day period from March 1st, 2020, to March 30th, 2020, and forecasted ten 15-minute 
period time points or 2.5-hours. The model was automated to shift forward 2.5-hours from the 
starting date of March 1st, 2020, and it’s end period of March 30th, 2020, to predict a following 
2.5-hour time period until it completed 800 forecasts that stayed within the bounds of our time-
period of interest (April 2020, May 2020, and June 2020). Examples of the 800 simulations are 
found in Figure 25 of the Result Figures section. The histogram of the distributions are found in 
Figures 8 and 9 of Appendix 1.  
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Table 10: Wind Direction Stratified by Direction and Month for 2020 at Prosser N.E.  

Wind 
Direction  

March n (%) April n(%) May n(%) June n(%) 
 
 

N 791 (27.0) 563 (20.0) 456 (15.0) 396 (14.0)  

NE 217 (7.0) 248 (9.0) 335 (11.0) 153 (5.0)  

E 159 (5.0) 222 (8.0) 287 (10.0) 119 (4.0)  

SE 160 (5.0) 184 (6.0) 191 (6.0) 115 (4.0)  

S 267 (9.0) 282 (10.0) 259 (9.0) 192 (7.0)  

SW 481 (16.0) 338 (12.0) 375 (13.0) 422 (15.0)  

W 515 (17.0) 592 (21.0) 704 (24.0) 940 (33.0)  

NW 382 (13.0) 447 (16.0) 369 (12.0) 543 (19.0)  

missing 0 (0.0) 4 (0.0) 0 (0.0) 0 (0.0)  

Total 2972 2880 2976 2880  

 

Table 10 stratifies the wind direction observations by direction and month for 2020 at Prosser 
N.E. The west is the most prominent wind direction the months of April 2020, May 2020 and 
June 2020 for the year 2020 at Prosser N.E. The north is the most prominent wind direction for 
the month of March and second most prominent for the months of April 2020 and May 2020. 
The northwest was the second most prominent wind direction for the month of June 2020 at 
Prosser N.E.   
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Table 11: Wind Direction Stratified by Direction and Station for 2014 – 2019  

 

Wind 
Direction  

Sunnyside 
n(%) 

Grandview 
n(%) 

Prosser N.E. 
n(%) 

McWhorter 
n(%) 

Benton W. 
n(%)  

 
N 39448 (19.0) 69722 (33.0) 59322 (28.0) 39884 (19.0) 17052 (8.0)  

NE 22390 (11.0) 21016 (10.0) 17400 (8.0) 12533 (6.0) 12186 (6.0)  

E 31791 (15.0) 25082 (12.0) 18586 (9.0) 10837 (5.0) 15499 (7.0)  

SE 21855 (11.0) 14495 (7.0) 13359 (6.0) 8907 (4.0) 8432 (4.0)  

S 14766 (7.0) 11831 (6.0) 13813 (7.0) 12538 (6.0) 12358 (6.0)  

SW 19476 (9.0) 14290 (7.0) 19996 (10.0) 42318 (20.0) 48717 (23.0)  

W 33845 (16.0) 31006 (15.0) 43136 (21.0) 50980 (24.0) 57922 (28.0)  

NW 21586 (11.0) 22853 (11.0) 23791 (11.0) 32172 (15.0) 38126 (18.0)  

missing 5179 (3.0) 41 (0.0) 933 (0.0) 167 (0.0) 44 (0.0)  

Total 205157 210295 209403 210169 210292  

 
Table 11 stratifies the wind direction observations by direction and station for the years 2014 to 
2019. The north was the most prominent wind direction for lower valley stations Sunnyside, 
Grandviw and Prosser N.E. from the years 2014 to 2019. Southwest was the most prominent wind 
direction for stations McWhorter and Benton W., both on the edge of Rattlesnake Hills. 
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Figure 16: Histograms of Wind Speed and Wind Gust per Station from 2014 – 2019.  
The histograms are plotted as count over wind speed. 
 

Figure 16a (Left): The wind speed distribution for all stations in this study are unimodal, with the center at 5 mph. The 
spread of the wind speed distribution is from 0 mph to 40 mph. The stations with the highest wind speeds are 
Sunnyside, Prosser N.E., and McWhorter; these stations are the lowest, center, and highest points of elevation in this 
study, respectively. 
 

 Figure 16b (Right): Histograms of Wind Gust per Station from 2014 – 2019 – Count Over Wind Speed. The wind 
speed distribution for all stations in this study are unimodal, with the center at 10 mph. The spread of the wind speed 
distribution is from 0 mph to 60 mph. The stations with the highest wind gust speeds are Sunnyside, Prosser N.E., and 
McWhorter; these stations are the lowest, center, and highest points of elevation in this study, respectively. 

Result Figures  
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Figure 17: Observed 2014 - 2016 Wind Speed Time Plot Per Station.  
These time plots are plotted as wind speed over time.  
 
Figure 17a (Left): Observed 2014 Wind Speed Time Plot Per Station - Wind Speed Over Time. Little to no 
missing values are observed in 2014. 
 
Figure 17b (Center): Observed 2015 Wind Speed Time Plot Per Station - Wind Speed Over Time. Little to no 
missing values are observed in 2015. 
 
Figure 17c (Right): Observed 2016 Wind Speed Time Plot Per Station - Wind Speed Over Time. Missing values 
are observed in the month of January for Sunnyside, Prosser N.E., and McWhorter. Grandview is missing 
values in February. Sunnyside is missing additional values in March.  
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Figure 18: Observed 2017 - 2019 Wind Speed Time Plot Per Station. 
These time plots are plotted as wind speed over time.  
 
Figure 18a (Left): Observed 2017 Wind Speed Time Plot Per Station - Wind Speed Over Time. Missing values are 
observed the month of January for Sunnyside, Prosser N.E., and McWhorter. Grandview is missing values in the 
month of February, and Sunnyside for the month of March. 
 
Figure 18b (Center): Observed 2018 Wind Speed Time Plot Per Station - Wind Speed Over Time. Little to no 
missing values are observed in this year. 
 
Figure 18c (Right): Observed 2019 Wind Speed Time Plot Per Station - Wind Speed Over Time. Missing values 
are observed for Sunnyside in the months of February to March. Grandview, Prosser NE, and McWhorter are also 
missing values in the month of December. 
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Figure 19:  Wind Speed Correlograms at Prosser N.E. from January 2014 – May 2020.  
These correlograms show the autocorrelations of the wind speed data (excluding wind gust data).  
 
Figure 19a (Left): A correlogram showing the autocorrelation of the wind speed data (excluding wind gust data) at 
the Prosser N.E. Site from January 2014 to March 2020. 
 
Figure 19 (Center): A correlogram showing the autocorrelation of the wind speed data (excluding wind gust data) 
at the Prosser N.E. Site from January 2014 to April 2020.  
 
Figure 19 (Right): A correlogram showing the autocorrelation of the wind speed data (excluding wind gust data) at 
the Prosser N.E. Site from January 2014 to May 2020. 
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Figure 20: Decomposition of Wind Speed Data at Prosser N.E. January 2014 to May 2020. 
These decomposition plots were created using the stl function from the R stats package. Note the 
remainders are the residuals.     
 

Figure 20a (Left): The wind speed patterns observed at the Prosser N.E. Station from January 
2014 to March 2020 and its three additive components obtained from the STL decomposition 
with annual trend-cycle and seasonal trends.  
 

Figure 20b (Center): The wind speed patterns observed at the Prosser N.E. Station from January 
2014 to April 2020 and its three additive components obtained from the STL decomposition with 
annual trend-cycle and seasonal trends. NOTE: the remainders are the residuals. 

Figure 20c (Right): The wind speed patterns observed at the Prosser N.E. Station from January 
2014 to May 2020 and its three additive components obtained from the STL decomposition with 
annual trend-cycle and seasonal trends. NOTE: the remainders are the residuals. 
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Figure 21: Wind Speed Correlograms at Prosser N.E. from March 1st – May 31st 2020.  
These correlograms show the autocorrelations of the wind speed data (excluding wind gust data) after first differencing.  
 
Figure 21a (Left): A correlogram showing the autocorrelation of the wind speed data (excluding wind gust data) at the Prosser N.E. Site from 
March 1st to March 31st, 2020, after first differencing. 
 
Figure 21 (Center): A correlogram showing the autocorrelation of the wind speed data (excluding wind gust data) at the Prosser N.E. Site from 
April 1st to April 30th, 2020, after first differencing.  
 
Figure 21 (Right): A correlogram showing the autocorrelation of the wind speed data (excluding wind gust data) at the Prosser N.E. Site from 
May 1st to May 31st, 2020, after first differencing. 
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Figure 22: Prosser N.E. ARIMA (2,1,1) Wind Speed Forecast for March 1st - April 1st, 2020. 
This ARIMA model was trained with and fitted with summarized 15-min averages of 5s readings from the AWN historical wind speed 
values (black line) at Prosser N.E. in Mach 2020. Each 15-min average counts as one observation, this time series consisted of 2971 
observations or 2971 15-min averages from March 1st, 2020, to March 31st, 2020 (green line). We attempted to forecast the first 10 
observations (2.5 hours) of April 1st, 2020 (blue line) and compared the ARIMA (2,1,1) calculated point forecasts to the historical 
AWN recorded wind speed measurements (red line). Descriptive statistics comparing the point forecasts from our model and the 

historical April 2020 wind speed measurements are explored in Table 5. 
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Figure 23: Prosser N.E. ARIMA (2,1,1) Wind Speed Forecast for April 1st - May 1st, 2020. 
This ARIMA model was trained with and fitted with summarized 15-min averages of 5s readings from the AWN historical wind speed 
values (black line) at Prosser N.E. in April 2020. Each 15-min average counts as one observation, this time series consisted of 2880 

observations or 2880 15-min averages from April 1st, 2020,  to April 30th, 2020 (green line). We attempted to forecast the first 10 
observations (2.5 hours) of May 1st, 2020 (blue line) and compared the ARIMA (2,1,1) calculated point forecasts to the historical 
AWN recorded wind speed measurements (red line). Descriptive statistics comparing the point forecasts from our model and the 

historical May 2020 wind speed measurements are explored in Table 6. 
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Figure 24: Prosser N.E. ARIMA (2,1,1) Wind Speed Forecast for May 1st - June 1st, 2020. 
This ARIMA model was trained with and fitted with summarized 15-min averages of 5s readings from the AWN historical wind speed 
values (black line) at Prosser N.E. in May 2020. Each 15-min average counts as one observation, this time series consisted of 2975 

observations or 2975 15-min averages from May 1st, 2020, to May 31st, 2020 (green line). We attempted to forecast the first 10 
observations (2.5 hours) of June 1st, 2020 (blue line) and compared the ARIMA (2,1,1) calculated point forecasts to the historical 
AWN recorded wind speed measurements (red line). Descriptive statistics comparing the point forecasts from our model and the 

historical June 2020 wind speed measurements are explored in Table 7. 
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Figure 25: Four ARIMA (2,1,1) Forecast Windows.  
Each simulation was trained on 30-days’ worth of wind speed data and forecasted 2.5 hours. The dark blue is the 80% prediction interval, and 

the light purple is the 95% prediction interval. The blue line are the predicted values, and the red line is the observed data. The differenced ACF 
plot for each model is on the right.    

Forecast Window     Forecast Plot        Forecast ACF 

Training Window: 500 
April 22nd, 2020, 12:30 am –  
May 22nd, 2020, 11:15 pm   
Forecast Window: 2.5 hours   
Train RMSE: 1.25 
Test RMSE: 0.88 
 

Training Window: 600 
May 2nd, 2020, 10:30 am –  
June 2nd, 2020, 9:15 am 
Forecast Window: 2.5 hours  
Train RMSE: 1.18 
Test RMSE: 1.02 
 

Training Window: 700 
May 12th, 2020, 8:30 pm –  
June 12th, 2020, 7:15 pm 
Forecast Window: 2.5 hours  
Train RMSE: 1.12 
Test RMSE: 0.80 
 

Training Window: 800 
May 23rd, 2020, 6:30 am –  
June 23rd, 2020, 5:15 am 
Forecast Window: 2.5 hours  
Train RMSE: 1.08 
Test RMSE: 0.76 
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Figure 26: Boxplots comparing the distribution of wind speed directions from 2014 to 2019. 
The concept of time is detached from this directional analysis. The wind directions were discretized by degrees. North is from 

337.5° to 22.5°. Northeast is from 22.5° to 67.5°. East is from 67.5° to 112.5°. Southeast is from 112.5° to 157.5°. South is 
from 157.5° to 202.5°. Southwest is from 202.5° to 247.5°. West is from 247.5° to 292.5°. Northwest is from 292.5° to 337.5°. 

The widths of the boxplots are related the number of observations.   
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Figure 27: Boxplots comparing the distribution of wind gust directions from 2014 to 2019.  
The concept of time is detached from this directional analysis. The wind directions were discretized by degrees. North is from 

337.5° to 22.5°. Northeast is from 22.5° to 67.5°. East is from 67.5° to 112.5°. Southeast is from 112.5° to 157.5°. South is from 
157.5° to 202.5°. Southwest is from 202.5° to 247.5°. West is from 247.5° to 292.5°. Northwest is from 292.5° to 337.5°. The 

widths of the boxplots are related the number of observations.   
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Figure 28: Boxplots comparing the distribution of wind speed directions at Prosser N.E. 
We narrowed our scope to the months of spring that we used our ARIMA (2,1,1) model to forecast 2.5-hour wind speed predictions. 

The wind directions were discretized by degrees. North is from 337.5° to 22.5°. Northeast is from 22.5° to 67.5°. East is from 67.5° to 
112.5°. Southeast is from 112.5° to 157.5°. South is from 157.5° to 202.5°. Southwest is from 202.5° to 247.5°. West is from 247.5° to 

292.5°. Northwest is from 292.5° to 337.5°.  
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Figure 29: Boxplots comparing the distribution of wind speed directions at Prosser N.E. 
 We narrowed our scope to the months of spring that we used our ARIMA (2,1,1) model to forecast 2.5-hour wind speed predictions. 
The wind directions were discretized by degrees. North is from 337.5° to 22.5°. Northeast is from 22.5° to 67.5°. East is from 67.5° to 
112.5°. Southeast is from 112.5° to 157.5°. South is from 157.5° to 202.5°. Southwest is from 202.5° to 247.5°. West is from 247.5° to 

292.5°. Northwest is from 292.5° to 337.5°.  
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Discussion  
 

Aim 1: Determine the necessary inputs for wind ramp modeling in agriculture 
 
Aim 1a 
This thesis applied wind ramp modeling, a concept from the wind energy industry, to forecast drift-
prone wind conditions in agriculture. We first completed an exploratory analysis of the wind speed 
and wind gust in the study area (Tables 1, 2, 3, 4) between the years 2014 and 2019. As expected, 
the station (McWhorter) with highest elevation (1401 ft) and limited surrounding wind breaking 
barriers had the highest maximum wind speed and standard deviation values of 40.7 mph ± 4.0 
mph (Table 1). Surprisingly, the station (Sunnyside) with the lowest elevation (690 ft) had the 
second highest wind speed value of 37.2 mph  ± 3.7 mph (Table 1). The station (Grandview) with 
second highest elevation (972 ft) had the lowest maximum wind speed value of 25.8 mph ± 3.0 
mph (Table 1). The distance between Sunnyside and Grandview stations was 7.9 miles (mi) with 
an elevation difference of 282 ft. The distance between Sunnyside and McWhorter was 19.2 mi 
with an elevation difference of 711 ft. The maximum wind speed difference between Sunnyside 
and Grandview was 11.4 mph, and the corresponding difference between Sunnyside and 
McWhorter was 3.5 mph. The larger difference in maximum wind speed alone between Sunnyside 
and Grandview versus Sunnyside and McWhorter indicated that wind speed profiles could change 
substantially within small distances.   
 
When comparing wind speed and wind gust at each site, Prosser N.E., a station with moderation 
maximum wind speed values and moderate elevation had the highest maximum values for wind 
gust (Table 1). The Prosser N.E. station had an elevation of 827 ft, the center of the 670 square-
mile study area with surrounding wind breaking barriers and objects, with an average and 
maximum wind speed values of 34.3 mph ± 2.9 mph and 3.8 mph ± 2.9 mph, respectively (Table 
1). However, when stations were compared by their maximum wind gust values, we found that 
Prosser N.E. had the highest wind gust value of 60 mph ± 5.0 mph (Table 1). McWhorter and 
Sunnyside, the two stations with the highest wind speed values, had maximum wind gust values 
of 55 mph ± 5.8 mph, and 51.1 mph ± 5.3 mph (Table 1).  
 
As expected, Table 2 showed more exceedances for wind gust than wind speed at each station. 
After setting wind speed thresholds of 10 mph, 15 mph, and 20 mph (Table 2), the relative 
exceedances (RE) (ratio of wind gust to wind speed count) for each station showed a non-linear 
increase (Table 2). Prosser N.E. had the highest RE values for each speed threshold (Table 2). At 
the federal and state regulation threshold of 10 mph, Prosser N.E. had 3.5 times as many 
exceedances using wind gusts than wind speed alone (Table 2). For a threshold of 15 mph, Prosser 
N.E. had 9.7 as many exceedances using wind gusts than wind speed alone and for a threshold of 
20 mph, Prosser N.E. had 39.1 times as many exceedances with wind gust than wind speed alone 
(Table 2). A similar trend in the RE values is observed for Benton W. and Grandview (Table 2). 
While McWhorter and Sunnyside had the two lowest RE values for each speed threshold, which 
may indicate that sites with high maximum wind speed variable values will also have high 
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maximum wind gust values (Table 2). We believe the frequency of gusts can be linked to wind 
ramping. These trends can be further explored in a future study with a larger region.  
 
Tables 3 and 4 investigate the duration of the exceedances for each threshold in Table 2. It is 
important to note that the meteorological data received from WSU AWN was structured as 15-
minute averages of 5 s readings and therefore generated equal-length time intervals that ranged 
from 30 minutes to 240 minutes (4 hours) and or greater. Also, the wind energy industry defines 
wind gust as a brief (less than 20 seconds) increase in speeds that reach at least 18.4 mph and vary 
in 10 mph between the peak and lulls. However, WSU AWN researchers define wind gust as the 
maximum 5-second sampled wind speed over a 15-minute interval measured at a height of 2 
meters. Given the 15-minute time intervals that structured our data we could not compare wind 
gusts to wind ramps that lasted longer than 20 seconds and less than 15 minutes in duration. 
However, we were able to evaluate wind exceedances or wind ramp events that occurred 
sequentially within 15-minute time intervals. This is important because this data structure can 
allow us to explore the prediction of wind ramp events using the frequency of wind gust 
exceedances.  
 
Wind speed exceedances above 10 mph are frequent and can last from 18 hours to 32 hours in 
duration for the wind speed variable and from 31 hours to approximately 3 days for the wind gust 
variable across all stations (Tables 2, 3, 4). Wind speed exceedances above 20 mph do occur but 
not as often and did not last as long in duration when compared to 10 mph exceedances (Tables 2, 
3, 4). The 20 mph exceedances ranged from 3.25 hours to 16.5 hours for the wind speed variable 
and 17.5 hours to approximately 27 hours for the wind gust variable across all stations (Tables 2, 
3, 4). We found that wind speed exceedances centered around 15 mph were not as frequent as the 
exceedances above 10 mph but occurred more often than 20 mph exceedances (Table 2). Fifteen 
mile per hour exceedances had a duration of 12 hours to 1 day in duration across all stations for 
the wind speed variable (Tables 3, 4). While 15 mph exceedances for the wind gust variable lasted 
from 31 hours to 33.75 hours for all stations (Tables 3, 4). This information can guide WSU AWN 
and DEOHS researchers on which speed threshold is best to alert tree fruit growers and develop a 
binary notification system for spray applicators to follow.   
 
Scope: Prosser N.E. and Wind Speed Variable  
We were able to forecast future wind speed values on a short-term timescale to alert growers 2.5-
hours ahead of drift-prone wind conditions. The Prosser N.E. site has less variable wind speeds, 
moderate to high maximal wind speeds that represents farms with high pesticide cases and a high 
RE value for each wind exceedance threshold and moderate run times (Tables 1, 2, 3, 4). We 
narrowed the scope of forecasting to the months of April 2020, May 2020, and June 2020 at the 
Prosser N.E. station to best represent spray application timelines, farmworker activity, and 
historical pesticide illness cases in the Yakima Valley.   
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Aim 1b and 1 c 
When we began this analysis, we were unaware of how much historical data was required to predict 
future wind speed values. The wind ramping literature informed us that wind speed is a known 
non-stationary time series and recommended the decomposition of our wind speed time series. The 
decomposition components allowed us to visualize the cyclic and seasonal trends at our five 
stations but required a minimum of three years of historical wind speed data. Moving forward 
researchers could run the auto.arima function on a month of less time of historical values and will 
likely get a differencing order of zero, indicating stationarity. An ACF plot should be used to verify 
this assumption.  
 
Aim 1d 
From the wind direction analysis, we learned that the most prevailing wind direction is not 
associated with most wind ramps. The most prevailing wind direction came from the north at 
Prosser N.E. (Tables 11) (Figures 26). Winds from west had the most wind exceedances and 
maximum wind speeds at Prosser N.E. (Table 11) (Figure 26). Less than 10 miles away at the 
Grandview station the most prevailing wind direction and most observed wind ramps came from 
the north (Table 11) (Figure 26). However, the maximal wind speeds were from the southwest at 
the Grandview station (Table 11) (Figure 26). This information is important because we now know 
that the most prevailing wind direction is not associated with the most wind ramps, which varies 
per station that are less than 10 miles apart in distance. Indicating that wind ramp models should 
be specific to each site. Also, when pesticide applicators are deciding whether to spray pesticides 
on a given day, they should use wind data that is most specific to their tree-fruit orchard and should 
not rely on distance alone.  
 

Aim 2: Apply the model 
We hypothesized that wind ramp modeling would be an effective tool for predicting wind ramps 
events and provide critical binary alerts, (yes, it is okay to spray pesticides, or no, it is not okay to 
spray pesticides), that inform growers of significant wind ramp events that will impact public 
health. To evaluate our ARIMA (2,1,1) and ARIMA (4,1,2) model we ran 800 forecasts and plotted 
a distribution of their RMSEs (Results Figure 25, Appendix 1: Figure 9). The lowest variability 
between our calculated point forecast and actual observed wind speed values was 0.27 (Table 9) 
(Appendix 1: Figure 9). The greatest variability between our calculated point forecast and actual 
observed wind speed values was 8.57 (Table 9) (Appendix 1: Figure 9). The fit of our ARIMA 
(2,1,1) and ARIMA (4,1,2) varies per moment in time, possibly indicating that an effective 
prediction tool of wind ramps is not only specific to geographical location but also to time of year.  
 
Limitations 
 
Missing Values 
Our data selection had limitations. When performing time series analysis, one needs to consider 
the following to reduce uncertainty in forecasting: the choice of model for the historical data and 
the continuation of the historical data. Statistical time series concerned with random or sudden 
changes in observations rely on statistical theories that observations are usually not independent, 
and the analysis must consider the time order of the observations. Wind speed is a known stochastic 
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time series, the future is only partly determined by past values. Stochastic time series predictions 
rely on the idea that future values have a probability distribution, which is conditioned on the 
knowledge of past values. There are no algebraic solutions for long periods of missing historical 
data from sensors that were frozen in cold and wet weather. However, our model was able to 
provide 2.5-hour forecasts with single-months’ worth of data.  
 
Data Structure 
The meteorological data received from WSU AWN was structured as 15-minute averages of 5 s 
readings. This limited our evaluation of wind ramp events that lasted greater than 20 seconds and 
less than 15 minutes. Also, it would be of interest to evaluate the difference in ARIMA forecasting 
that occurs when training a model with un-summarized data versus the 15-minute averaged data 
we received from AWN.  
 

Future Research 
 
Data Collection 
Future Research should aim to replicate and improve on our study. For one, selecting data that is 
not convoluted into 15-min averaged time periods will allow for the comparison of wind gusts to 
wind ramp events greater than 20 seconds and less than 15-minutes. Also, deconvoluted data may 
provide may improve accuracy of the single point calculated forecast values because the ARIMA 
model will be trained on un-averaged time intervals. The ARIMA (2,1,1) model used in this study 
predicts an average that either overestimated or underestimated decreases and increases in wind 
speed, respectively. Forecasting a mean is acceptable for our application however, we would rather 
overestimate the mean of drift-prone wind conditions to prevent pesticide drift exposure in 
farmworkers. A follow-up study should also consider the use of multiple or more robust 
meteorological measurement recording devices that withstand cold and wet environmental 
conditions to reduce the missingness of week to months long periods of data to improve forecast 
model training and prediction accuracy.  
 
Future Directions  
Future studies should bypass the decomposition step outlined in our methods and focus on 
determining the order of ARIMA coefficients (p, d, q) with days to one month worth of data. 
Variant ARIMA models coupled machine learning or GARCH models should be considered to 
improve daily and sub-daily forecasting. These ARIMA variants are known as seasonal ARIMA 
(SARIMA) and fractional-ARIMA (f-ARIMA), respectively (Chatfield et al., 2004; Dhiman et al., 
2020). Another model to consider is a Generalized Auto-Regressive Conditional 
Heteroskedascticinty (GARCH) model. A GARCH model is also a statistical model used to 
analyze and forecast volatility. University of Washington biostatical researchers have used 
GARCH models to capture and forecast large spikes in atmospheric data from rain to wind 
(Cardoso et al., 2007, Hamer et al., 2021).  
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Public Health Implications 
The statistics of this thesis can inform growers, pesticide applicators and farmworkers of important 
wind patterns throughout the agricultural growing season. Pesticide spraying schedules and 
farmworker activity can be guided by AWN-powered forecast that are specific to each orchard to 
prevent pesticide related illness. The Washington State Pesticide Application Safety Committee 
can explore methods to improve current practices by utilizing AWN platform to get geo-specific 
wind data and accurate short-term forecasts. The EPA should also consider updating pesticide 
labels on how and where to get wind information.  
 

Conclusion 
 
Accurate short-term wind forecasting techniques are necessary to minimize the adverse health and 
environmental outcomes associated with pesticide drift. To our knowledge, this was the first study 
that utilized historic wind data to build a wind forecast model tailored to specific times and 
locations of pesticide applications. We demonstrated that wind speed profiles could change 
substantially within short distances. Also, prior to this work we did not know that most prevailing 
wind direction was not associated with the most wind ramps. We anticipate that these findings will 
inform best practices for pesticide applicator training, provide evidence for state policy 
discussions, and contribute to administrative and engineering controls using the precision 
agriculture framework.  
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Appendices 
 

Appendix 1: R output   
 
 

Appendix 1 Figure 1: Arima function from forecast package help documentation in R version 4.1.1   
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Appendix 1 Figure 2: Raw R Output for Prosser N.E. April 1st, 2020, ARIMA (2,1,1) Wind 
Speed Forecast   
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Appendix 1 Figure 3: : Raw R Output for Prosser N.E. April 1st, 2020, ARIMA (4,1,2) Wind 
Speed Forecast   
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Appendix 1 Figure 4: Raw R Output for Prosser N.E. May 1st, 2020, ARIMA (2,1,1) Wind 
Speed Forecast 
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Appendix 1 Figure 5: Raw R Output for Prosser N.E. May 1st, 2020, ARIMA (4,1,2) Wind 
Speed Forecast 
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Appendix 1 Figure 6: Raw R Output for Prosser N.E. June 1st, 2020, ARIMA (2,1,1) Wind 
Speed Forecast 
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Appendix 1 Figure 7: Raw R Output for Prosser N.E. June 1st, 2020, ARIMA (4,1,2) Wind 
Speed Forecast 
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Appendix 1 Figure 8: Distribution of 800 ARIMA (2,1,1) Training RMSEs 

 
 
Appendix 1 Figure 8: shows the distribution of the training RMSE values for all of the 800 ARIMA 
(2,1,1) models fitted on the 4 months (March, April, May, June) of historical wind data in 2020. 
The mean of this distribution is 1.23. The lowest value of this distribution is 1.07 and the maximum 
value of this distribution is 1.34.  
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Appendix 1 Figure 9: Distribution of 800 ARIMA (2,1,1) Forecast RMSEs 

 
 
Appendix 1 Figure 9 shows the distribution of the 800 ARIMA (2,1,1) forecasted RMSEs. The 
RMSEs show the variability between our calculated point forecast values and the actual observed 
wind speed values in April 2020, May 2020, and June 2020. The mean of this distribution is 1.76. 
The lowest value of this distribution is 0.27 and the maximum value of this distribution is 8.57.  
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Appendix 2: Supplementary Meteorological Statistic Tables  
 
Appendix 2 Table 1: Descriptive meteorological statistics for Sunnyside, WA; Grandview, WA; 

Prosser N.E., WA; McWhorter, WA; and Benton W., WA; from 2014 – 2019. 

Wind 
Direction  Stations  n 

Mea
n  SD Min  25th  

Media
n 

75t
h  Max 

 Sunnyside  
21033

6 155 111 0 60 139 262 360 

 Grandview  
21033

6 134 121 0 1 102 263 360 

 
Prosser 
N.E. 

21033
6 197 121 0 84 235 297 360 

 McWhorter  
21033

6 213 107 0 147 244 290 360 

 Benton W. 
21033

6 221 91 0 188 246 287 360 

Temperature   Stations  n 
Mea

n  SD Min  25th  
Media

n 
75t
h  Max 

 Sunnyside  
21033

6 53.0 
18.

3 -6.3 38.3 52.7 65.9 
108.

6 

 Grandview  
21033

6 52.5 
17.

9 -1 38.8 51.7 64.7 
105.

6 

 
Prosser 
N.E. 

21033
6 53.4 

18.
3 -1.9 39.1 52.8 66 107 

 McWhorter  
21033

6 52.8 
18.

5 -2 
38.62

5 52.1 66.2 
106.

4 

 Benton W. 
21033

6 53.9 
18.

3 -1.9 39.8 53.3 67.1 
108.

3 

Dewpoint  Stations  n 
Mea

n  SD Min  25th  
Media

n 
75t
h  Max 

 Sunnyside  
21033

6 40.1 
12.

0 
-

13.4 32.3 40.5 48.9 76.3 

 Grandview  
21033

6 39.3 
11.

8 
-

18.6 31.6 39.8 47.9 77.8 

 
Prosser 
N.E. 

21033
6 38.6 

11.
0 

-
11.2 31.8 39.3 46.7 76.1 

 McWhorter  
21033

6 36.7 
10.

3 
-

14.3 30.7 37.6 43.9 70.4 

 Benton W. 
21033

6 38.0 
10.

7 
-

12.9 31.6 38.8 45.5 72.3 
 
 
 
          

Humidity  Stations  n 
Mea

n  SD Min  25th  
Media

n 
75t
h  Max 
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 Sunnyside  
21033

6 68.2 
25.

3 9 46 70 93 100 

 Grandview  
21033

6 67.6 
25.

7 8 45 70 93 100 

 
Prosser 
N.E. 

21033
6 63.7 

24.
0 8 44 65 84 100 

 McWhorter  
21033

6 62.1 
26.

7 6 39 60 88 100 

 Benton W. 
21033

6 61.4 
24.

6 7 41 60 83 100 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Yoni Rodriguez Page 96 of 99 

Appendix 2 Table 2: Descriptive meteorological statistics for Prosser N.E., WA in 2019. 

Wind 
Direction  

 
 

Quarter 1 

 
 

n 

 
Mea

n  

 
 

SD 

 
Mi
n  

 
 

25th  

 
 

Media
n 

 
 

75th  

 
 

Ma
x 

 January  
297

6 168 
11

3 0 70 176 270 360 

 February 
268

8 132 
12

0 0 0 99 
255.2

5 360 

 March 
297

2 196 
12

2 0 91 236 306 360 

 
Quarter 1 
Summary 

863
6 167 

12
1 0 48 164 271 360 

 Quarter 2 n 
Mea

n  SD 
Mi
n  25th  

Media
n 75th  

Ma
x 

 April 
288

0 198 
11

0 0 96 239 277 360 

 May 
297

6 190 
12

0 0 65 211 282 360 

 June 
288

0 229 
10

9 0 179 262 
308.2

5 360 

 
Quarter 2 
Summary 

873
6 205 

11
4 0 102 246 289 360 

 Quarter 3 n 
Mea

n  SD 
Mi
n  25th  

Media
n 75th  

Ma
x 

 July 
297

6 228 
11

8 0 
153.7

5 267 332 360 

 August 
297

6 211 
12

4 0 86 255 331 360 

 September  
288

0 195 
12

7 0 54.75 228 
308.2

5 360 

 
Quarter 3 
Summary 

883
2 211 

12
4 0 90 257 325 360 

 Quarter 4 n 
Mea

n  SD 
Mi
n  25th  

Media
n 75th  

Ma
x 

 October 
297

6 198 
12

4 0 75 231 316 360 

 November 
288

4 168 
12

8 0 47 133 312 360 

 December 
297

6 88 
11

6 0 0 0 206 359 

 
Quarter 4 
Summary 

883
6 159 

13
1 0 18 137 273 360 
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Temperatu
re Quarter 1 n 

Mea
n  SD 

Mi
n  25th  

Media
n 75th  Max 

 January  
297

6 35.1 5.4 22 31.3 33.5 38.4 52.8 

 February 
268

8 25.2 6.7 0.9 21 25.1 30.6 41.9 

 March 
297

2 36.8 
13.

1 7.8 26.7 36.6 46.6 67.3 

 
Quarter 1 
Summary 

863
6 32.6 

10.
4 0.9 25.7 31.8 38.2 67.3 

 Quarter 2 n 
Mea

n  SD 
Mi
n  25th  

Media
n 75th  Max 

 April 
288

0 54.0 8.6 
33.

6 47.6 53.3 59.8 79.1 

 May 
297

6 63.2 
10.

7 
35.

7 55.4 63 70.5 87.8 

 June 
288

0 68.2 
11.

9 
39.

5 
59.07

5 67.6 
77.12

5 96 

 
Quarter 2 
Summary 

873
6 61.8 

12.
0 

33.
6 52.9 60.4 69.8 96 

 Quarter 3 n 
Mea

n  SD 
Mi
n  25th  

Media
n 75th  Max 

 July 
297

6 71.7 
11.

2 
47.

7 62.5 71.5 
80.92

5 97.4 

 August 
297

6 73.3 
11.

1 
50.

6 64.6 72.5 82 
102.

2 

 September  
288

0 62.7 
11.

6 
35.

8 54.3 62.2 70.9 90.4 

 
Quarter 3 
Summary 

883
2 69.3 

12.
2 

35.
8 60.2 68.5 79 

102.
2 

 Quarter 4 n 
Mea

n  SD 
Mi
n  25th  

Media
n 75th  Max 

 October 
297

6 47.2 
11.

1 
16.

2 39.8 47.25 55.1 74.7 

 November 
288

4 39.6 7.7 
20.

5 33.5 40.3 44.9 65.8 

 December 
297

6 34.8 6.9 
24.

4 29.6 33.6 37.5 60.7 

 
Quarter 4 
Summary 

883
6 40.7 

10.
4 

16.
2 32.7 39.1 47.5 74.7 

 

 

Dewpoint Quarter 1 n Mean  SD Min  25th  Median 75th  Max 

 January  2976 32.1 4.5 18.5 29.2 32.1 35.2 43.4 

 February 2688 21.2 8.3 -4.9 16.2 21 27 41.7 
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 March 2972 28.4 10.8 -1.3 22.3 30.8 36.8 46.8 

 Quarter 1 Summary 8636 27.5 9.4 -4.9 21.5 29.5 34.2 46.8 

 Quarter 2 n Mean  SD Min  25th  Median 75th  Max 

 April 2880 36.9 8.3 8.9 32.3 38 42.4 52.5 

 May 2976 42.0 7.8 12.5 37.1 41.2 48.4 58.7 

 June 2880 42.9 5.9 19.1 39.2 43.4 47.2 57.4 

 Quarter 2 Summary 8736 40.6 7.9 8.9 36.2 40.9 46.4 58.7 

 Quarter 3 n Mean  SD Min  25th  Median 75th  Max 

 July 2976 47.6 4.9 28.2 44.7 48 51.2 59 

 August 2976 51.7 5.1 35.2 48.3 51.5 55.1 62.8 

 September  2880 47.1 6.2 28.8 44.4 48.4 51.1 59.5 

 Quarter 3 Summary 8832 48.8 5.8 28.2 45.7 49.25 52.3 62.8 

 Quarter 4 n Mean  SD Min  25th  Median 75th  Max 

 October 2976 31.0 10.8 -3.7 24.7 33.5 38 52 

 November 2884 32.0 7.6 12.7 26.3 32.3 38.2 47.4 

 December 2976 33.1 4.9 23.2 29 33.2 36.8 48.6 

 Quarter 4 Summary 8836 32.0 8.3 -3.7 27.4 33.1 37.6 52 
Humidity  Quarter 1 n Mean  SD Min  25th  Median 75th  Max 

 January  2976 90.0 12.1 37 84 96 99 100 

 February 2688 88.9 12.4 44 83 94 99 100 

 March 2972 75.8 18.8 24 62 79 93 99 

 Quarter 1 Summary 8636 84.8 16.2 24 75 90 99 100 

 Quarter 2 n Mean  SD Min  25th  Median 75th  Max 

 April 2880 56.5 20.8 11 40 56 72 99 

 May 2976 50.9 21.5 11 33 49 66 99 

 June 2880 44.2 18.7 8 28 42 59 90 

 Quarter 2 Summary 8736 50.6 21.0 8 34 49 66 99 

 Quarter 3 n Mean  SD Min  25th  Median 75th  Max 

 July 2976 46.6 19.0 11 30 45 63 88 

 August 2976 51.4 20.3 14 34 50 67 96 

 September  2880 60.2 18.4 16 45 62 76 94 

 Quarter 3 Summary 8832 52.6 20.1 11 36 52 70 96 

 Quarter 4 n Mean  SD Min  25th  Median 75th  Max 

 October 2976 56.5 18.0 16 41 58 72 94 

 November 2884 74.5 19.8 27 61 76.5 92 99 

 December 2976 95.5 10.5 46 99 100 100 100 

 Quarter 4 Summary 8836 75.5 23.0 16 58 79 99 100 
 
 
 


