
9-9278352

R. Davis

Timing in the Laboratory:
Hardware and Software Solutions

Abstract: Measurement of time is critical in most scientific experiments. Computers can be used to accurately monitor time. This
paper explores a series of software and hardware techniques for measuring time. Software techniques utilizing the IBM-PC, AT
and compatible computers are discussed and ways of making timing independent of software changes are emphasized. A general,
hardware solution utilizing a multifunction counter/timer integrated circuit is discussed.

Keywords: Timing, computer control, clock, IBM-PC, Metrabyte CTM-051•

Introduction

The precise control of timing is critical for just about every
laboratory experiment. Computers can monitor time with
great accuracy, so when a process is under the control of a
computer, it is advantageous also to delegate timing require­
ments to the computer. Researchers who use data acquisition
products (forexamplel..abtech Notebook, ASYST or Lab Win­
dows) can handle timing as a black box. This may or may not
be an important detail. However, for those who write data
acquisition programs, timing issues can be a detail requiring
a lot of careful thought and investigation. The purpose of this
paper is to explore some options for incorporating timing
control into experiments and to demonstrate how the use of a
hardware clock can often simplify the software requirements.
In addition, a series of flow charts will be provided which can
be used as a starting point by the scientific/engineering user as
a basis for high precision timing using the Metrabyte CTM-05
Counter/Timer Interface Card. The frame of reference for this
discussion is the IBM Personal Computer and equivalent
computers.

Rickie R. Davis, U.S. Department of Health and Human
Services, Public Health Service, Centers/or Disease Control,
National Institute for Occupational Safety and Health Divi­
sion of Biomedical and Behavioral Science, Physical Agents
Effects Branch, 4676 Columbia Parkway, Cincinnati, Ohio
45226.

Background

For this paper, there are two forms of timing: event timing
and control timing. Event timing is analogous to a stopwatch.
Event timing answers the question "What time (relative or
absolute) did a certain event happen?". An example might be
a "time code generator" where neuron spikes are tagged with
a relative time by a high resolution clock for later analysis
(Pfeiffer & Molnar, 1976). Control timing turns events on and
off for various lengths of time. Control timing answers the
question "What time should an event be started?" Triggering
an analog-to-digital converter at 1 second intervals is an
example of control timing. The hardware and software asso­
ciated with these two types of timing are usually very differ­
ent.

1CTM-05 is a tradernarlc of Metrabyte, Inc., 440 Myles Standish Blvd.,
Tauton, MA 0'2780. Am9513 and Am9513A are tradernarlcs of Advanced
Micro Devices, Inc. Figures 2, 3, and 4 are copyright Advanced Micro
Devices, Inc. and are used by permission. IBM. PC and AT are trademarks
of International Business Machines. BASICA, OS!l and Microsoft C 5.0 are
trademarlcs of Microsoft Corp. MSCHRT is a product of Ryle Design. P.O.
Box 22, ML Pleasant, MI 48804. Labtech Notebook is a product of
Laboratory Technologies Corp. Lab Windows is a product of National In­
struments. ASYST is a product of Asyst Software Technologies, Inc. The
use of trade names is for reference only and does not imply endonement by
the author, National Institute for Occupational Safety and Health or the U.S.
Public Health Service.

283

Control Timing

Program Loop

The simplest form of control timing is the program loop.
Example 1 shows a double loop in the C programming
language (Kernigham and Ritchie, 1978). Converting the
program fragment to another language is trivial. For every
cycle of the outside loop there are 60000 cycles of the inside
loop. By using a stopwatch the programmer can produce loops
of a large number of iterations so delays of the correct length
occur.

for(i=O;i<60000;i++)
for(j =O;j< 60000:j+ +)

Example 1.

/• outside loop •/

/• inside loop *I

There are three serious problems with this approach. First,
this solution is very computer and compiler specific. ff the
computer, operating system or compiler is changed, the pro­
grammer must re-time all of the loops. This reduces portabil­
ity between systems (in fact, some "optimizing" compilers
will eliminate empty loops of this sort). Second, even if the
computer, operating system or compiler is not changed, the
exact timing will change from one day to the next depending
upon on-going computer activity. Thus, background tasks and
system activity may affect the timing of the loop from one day
to the next The effects of background activity may become a
more serious problem as multi-tasking operating systems such
as OS/2 and Unix become more common in the laboratory. A
third criticism of this technique is that, basically, the entire
resources of the processor are being used to do a relatively
simple task. By moving part of the timing to hardware the
processor can accomplish other work.

PC System Clock

A second control technique uses the PC system clock. This
clock keeps a running time-of-day, once it is set at startup.
About 18.2 times per second, a hardware interrupt is gener­
ated which causes the processor to increment this memory
location. Reading this memory location is relatively simple
and most professional compilers have library routines to
change the clock tick value into an hours:minutes:seconds
format. However, for timing purposes the raw clock tick count
is the only part needed. By storing the initial value, adding in
the number of ticks to wait (in 55 ms steps) and reading the
clock until the proper number of ticks have occurred, you have
a cheap, universal solution which has the resolution of ap-

proximately 55 milliseconds. By carefully constructing your
program you may be able to have the processor do other useful
work while waiting. A disadvantage is that you may need an
accuracy of better than 55 ms resolution. Also, some pro­
grams, including BASICA, may change the clock timing or
turn off interrupts to the system clock to increase performance.
This may affect your timing. By issuing a specific instruction,
the microprocessor can tum off all maskable interrupts. This
is useful when the microprocessor is doing very time-critical
code since it no longer has to be "distracted" by side trips to the
system clock interrupt code every 55 ms. However, if you
depend upon the system clock for keeping track of time,
turning off interrupts for long periods of time can be disas­
trous, since "ticks" are no longer being registered. Example 2
is a code fragment using Microsoft C 5.0 to show how you
would use the system clock to wait approximately 1 second.

For higherresolution requirements, subroutine libraries are
available which can be called from C and other higher level
languages which utilize clever techniques to emulate virtual
timers in software. The IBM-PC contains 3 internal counter/
timers : one is utilized for generating the hardware-interrupt
for the previously mentioned time of day counter, one controls
the speaker and one generates the "refresh" cycle absolutely
required by the dynamic memory used in most computers.
Abrash (1989) discussed and demonstrated techniques for
timing segments of software from 10 microseconds to 54
milliseconds by reprogramming the internal counter/timer
used to generate the time of day interrupts. Other authors have
discussed utilizing the dynamic memory "refresh" counter.
The refresh counter should never be modified, only read. A
number of commercial subroutine packages are available
which allow this sort of timing to the one microsecond range.
It is good economy to utilize them rather than writing your
own (e.g. "Inside!" by Paradigm Systems; "MSCHRT" by
Ryle Designs for Microsoft C).

External Clock

A third technique actually involves two solutions, one for
control timing and the other for event timing. By using a digital
input/output board, a handful of gates and a crystal -controlled
clock, an external clock can be built (see Figure 1). This
particular external clock allows a resolution of 1 millisecond.
The computer software required to service this clock must be
carefully written to maintain maximum accuracy, especially
on computers using the old 4.77 mHz standard (early PC's).
This clock can be used both to time events and to control the
timing of experimental processes. For advanced program­
mers, the "clock out" connection could be attached to a
hardware interrupt control line and an interrupt service routine
written to service a clock generated interrupt. An interrupt­
based technique can also be used with the solution discussed
later. This is an advanced solution requiring an understanding
of how interrupts are generated and serviced in the PC.
Examples of interrupts in other contexts have been published
by Hunt (1985), Swafford (1988), Holub (1987) and others for
the Personal Computer. The second part of this solution is

284 INTELLIGENT INSTRUMENTS & COMPUTERS November/Decemberl989

/ • holdit - hold up program for one second * /

#define TIMER Ox00046c

I/define ONE._SECOND 1198180 / 65535

void holdit()

I
int for •rawcount;

unsigned int pause = ONE._SECOND;

unsigned int tick;

I* low address for system clock •/

/• t~ks per second•/

/• pointer to row count integer •/

/• initialize pause to 18 ticks •/

rawcount = TIMER /• set pointer to address of raw -count *,
for(;pause > 0; pause- -) i

tick = •rawcount;

while(tick == •rowcount)

MHz Crystal
Clock

Example 2.

count 74192
carry

count

74192
carry

count

carry 74192

/• read the current value of timer •/

/• hold until next */
I* tick of timer •/

I 10 100 kHz

/ 10 10 kHz

/ 10 1 kHz

_s-
>----r---- Cloe~ 0.Jt

l.......J
Reset

Figure 1: A simple I kiloHertz clock for timing. The I mHz TIL crystal clock is divided by 74192 decade counters connected
in series. The final 7400 is configured as a flip flop so a carry pulse from the final counter "sets" the output to the computer. This
prevents the computer from missing the final count. The computer then resets or arms the flip flop for the next counting cycle.
The Metrabyte C1M-05 uses the Am9513A chip to produce similar results using programmable counters.

285

more of a control solution in which a digital output line is used
to trigger a 555 "one shot" integrated circuit timer. Using
resistors and capacitors, these highly versatile timers can be
triggered by a digital output line on the digital i/o card. Using
this technique, pulses lasting hours can be generated. How­
ever, using a solution based on a 555 integrated circuit leads
to lack of flexibility and requires careful calibration. How­
ever, in some situations a totally hardware-based solution is
the most economical and easily implemented. Lancaster (1974,
1977) has published a series of popular books documenting
the abilities of the 555.

Programmable Hardware Clock

The remainder of this article is devoted to a programmable
hardware clock-based solution to laboratory timing. The
clock of interest is a Metrabyte CTM-05. The CTM-05 is a
general solution for timing problems which can be used for
event-timing and control-timing. It is based on an Advanced
Micro Devices (AMO) Am9513A System Timing Controller
integrated circuit The documentation furnished by Metrabyte
is a subset of the more thorough documentation provided in
AMD'sTechnicalManual(AMD, 1984). The Technical Man­
ual is required for anyone interested in doing advanced pro­
gramming of the CTM-05 card.

The major advantage of using the CTM-05 card is that it has
1 microsecond accuracy with maximum flexibility. It can both
time and count responses in the environment up to 7 million/
second. It can be programmed to remove most or all timing
chores from the computer. In effect, the CTM-05 can be
programmed, armed and the clock program exited. Since the
CTM-05 can continue to time and count until stopped or reset
you may do other, non-related tasks with your PC while the
CTM-05 generates control pulses for equipment, counts or
times events. The native speed of the computer, the type of
compiler and whether interrupts are enabled or disabled is of
little consequence since the CTM-05 operates independently
from the host computer.

The major disadvantage is the programming complexity of
the CTM-05. The assembly language driver provided by
Metrabyte with the CTM-05 works in conjunction with inter­
preted BASIC. The manual indicates that it was written to be
simple but flexible. It is fine for doing very general functions
with the CTM-05, however, for more specific powerful con­
trol of the CTM-05, the experimenter needs to control the
hardware more directly. One goal of this article is to provide
a series of templates which can be a starting point for exploring
thecapabilitiesoftheCTM-05 (and theAm9513A). For those
interested, the author can provide C programs which demon­
strate aspects of CTM-05 programming.

Physical Description of the CTM-05

The Metrabyte CTM-05 card requires one expansion slot in
a PC or AT compatible. The card has an onboard 1 mHz crystal

for 1 microsecond accuracy. TheAm9513Aintegratedcircuit
is designed with 5 independent counter/timers in it Metrabyte
has constructed the card with a standard 37 pin "D" plug on the
rear bracket which allows interfacing to the 5 counter/timer
inputs, gates and outputs.

A pulse on an input causes that counter to show an increment
or decrement with each transition. With a level voltage ap­
plied, a gate can either enable counting or disable counting in
one or more counter/timers. The output produces a pulse
(either +5 or ground) or a change in voltage level when the
associated counter/timer reaches terminal count (TC). In
addition, ground and +5 volts are available on two plug pins.
Eight bits of digital input, 8 bits of digital output plus an input
for the hardware interrupt line are also linked to external
circuits through pins on this plug. Great flexibility can be
introduced by wiring between various outputs and inputs
using a standard 37 pin "D" socket However, the inputs and
outputs of the counters can be routed intemall y via program­
ming, and this allows for even greater flexibility. The various
options available are programmed by setting and clearing bits
in the Master Mode Register and each of the counter/timer
mode registers. The final output available on the CTM-05 D
plug is the scaled time base oscillator output (in the documen­
tation referred to asf

0111
).

The CTM-05 registers require 4 addresses of i/o space. The
base address can be modified by changing the on card switches.
The highest CTM-05 address is the digital output address.
The next lower address is the digital input address. This article
will not be concerned with use of the digital i/o ports since their
use is fairly straightforward. The base address on the CTM-
05 is the Am9513A data register and the next higher address
is the Am9513A command/status register. The command/
status register is the command register when written !Q and is
the status register when read from. On the PC the command
register utilizes 1 byte long operation codes (op codes). The
status register returns 1 byte consisting of the current output
states of each of the 5 counters (1 's or O's) and a bit called the
byte counter. The byte counter (bit 0) is set if the Am9513A
is expecting another byte of two bytes of information. Status
register bits 1,2,3,4 and 5 map directly to the current outputs
of the corresponding counters. This is a handy way to detect
the output state of each counter. Bits 6and 7 should be ignored.

If you are using the CTM-05 in an AT or 80386 based
machine you should realize that the computer i/o bus can
exceed the speed of the clock on the CTM-05 card. In the
driver program provided by Metrabyte they degrade the per­
formance of the AT by using a software looping technique
(similar to the one described in example 1) between writes to
the CTM-05. If problems are experienced with the CTM-05,
you might want to use the second technique described in
example 2 to wait one or more ticks of the computer system
clock between writes to the card. Of course, there is no reason
why you cannot use that time between writes to the CTM-05
to do other useful work, since the CTM-05 will wait for you.

286 INTELLIGENT INS1RUMENTS & COMPUTERS November/December1989

Eitment Cyele Holdeycle

.... Load
eoun... , FF01 FF09
COUntlr 2 FF02 FFOA
Counllr 3 FFO:s FFOB
Counw, FF04 FFOC
Cculttr $ FFOS FFOO ·

FF11
FF12
FF13
FF14
FF15

FF19
FFt.A
FFtB
FF1C
FF1D

Mawr Mode • FF17
Alarwl 1 Aagi.r • FF<J7
AlarM 2 Algl8llr • FFOF
S.. Ae;lsll,' • FF1F

NofN:
1. Al oodel a.. In hu.
2. Wlllfl UNO wtl\ 111 I-bit bua, only the two low order hu

clgill lhould be wntl9n to lhe convnand port; 1he 'FF' r,r.
ftx lhauld be UNd only far• 1&-blt data bua inlierface.

Figure 2: List of operation codes (op codes) written to the CTM-05 command register to read back values stored in the various
counter/timer registers as well as write values to these registers. Note that in PC applications only a single byte is sent to the
command register. If pointer sequencing is disabled "Element Cycle" and "Hold Cycle" are unimportant. Copyright* Advanced
Micro Devices, Inc., 1984. Reprinted with permission of copyright owner. All rights reserved.

Functional Description

Upon examining the AMD Technical Manual for the
Am9513A one notices there are three kinds of opcodes: those
operating on a single register, those operating on a single
counter, and those operating on multiple counters. Figure 2 is
a reproduction of the figure in the Am9513A manual which
shows some of the opcodes for operations on single registers
of a single counter/timer. These codes are in hexadecimal.
(Single counter and multiple counter op codes will be demon­
strated in the programming section). By writing one of these
values to the command register you can select (for reading or
writing) the mode, load and hold registers for each of the five
counter/timers. In addition you may point to the master mode
register, status register and the two alarm registers (which we
will not use). The master mode register is shown in Figure 3.
Note that the 16 bits actually "group" into 9 functional
divisions.

The functions controlled within the master mode register
are:

I.how the counters count (binary or binary coded decimal),
2.whether the automatic data pointer increment is enabled

or disabled,
3.whether the driving frequency (f.,,) is available on the

output pin of the chip or not,
4. the data bus width (8 bits or 16 bits),
5. what the driving oscillator frequency should be divided by

in order to drive the counters (1 through 16 are available),
6.the source of f- (possibilities include the 1 mHz chip

oscillator frequency iocluding 4 subharmonics or one of
10 pins on the 37 pin D connector),

7. enabling bits for alarm 1
8. enabling bits for alarm 2 ,
9. the time of day mode enable.
The most important bits by far are the f""' source bits and the

fout divider. The f- source bits allow you to choose 1 of 5
internal frequencies derived from the CTM-05 1 mHz crystal.
With the Scaler control bit set to Binary-Coded-Decimal
(BCD)thefrequenciesavailableare 1 mHz, lOOkHz, IO kHz,
1 kHz and 100 Hz. (These sources are referred to in the figure
as fl, f2, f3, f4 and f5 respectively). With the Scaler control bit
set to Binary, the frequencies available, fl through f5, are 1
mHz, 62.5 kHz, 3.90625 kHz, 244.14 Hz and 15.258 Hz.
These options give a wide range of frequencies, however, you
may further divide these values to get even lower frequencies
using one of these harmonics as input to one or more of the five
counter/timers and using that output as another counter/timer
input. Another possibility is using an external oscillator as a
time source.

As with the master mode register, each counter/timer has its
own 16 bit mode register. Again these 16 bits group into 9
functional divisions. These bit "groupings" control how (and
if) external gating is applied to the counter/timer, whether
counting occurs on a rising or falling clock edge, the source of
the clock pulses (including fl, t2, f3, f4 or f5), the source for
reloading the counter upon terminal count, whether counting
is done only once or continuously, whether counting is binary
or BCD, whether counting is done by incrementing or decre­
menting, and the dynami.c state of the output of this counter.

In addition to a mode register, each counter/timer has a 16
bit load and a 16 bit hold register. In fact, there is no true
access to the working counter/timer 16 bit register. Access is

287

0000 • Dhoidobr ..
0001 • -11¥1
0010• DMdobrZ
0011 • DMdobr3
0100• Dhoidobr'
01GI • Dhoidobr5
0110--11r•
0111•Dhoidobr7
1000• -brl
1001 -a....e,,,
1010 • OhilldabJ 10
1011 • DlrrllllldebJ 11
1100 • -11¥11
1101 • c:»ill6cllbJ13
1110 • -bw 1'
1111 • -bw1S

,------ FOUT

0000 - ,,
0001 • SAC 1
0010 • SRC 2
0011 - SAC J
0100 •SAC•
0101 .. SRC 5
OtlO ... GATE 1
Ottt•GATE2
1000 • GATE 3
1001 • GATE 4
1010 •GATES
1011 • Ft
1100 • FZ
1101 • fl
1110 .. F4
1111 • F$

1-+ .. + .. + .. 121-+ .. ·01-1-1-, 1-1-1-1-1-1-· I ~MO I
~~°'

1 • FOUT Of (- Z ID GNlll ---0·--......... _,.. __ o---1·--.._ ______ _
O•tlowyClivaml
1-ecc-.

~·-~ o-~
·' - Enabl9d ~··-0 • Diublad
1 • E.nab6ed

-.a.,,-
00 •TOO~
01 • TOD Enabt9d: + 5 lflQU(
10 • TOO E-; • I ,_
11 • TOO~; t to Input

Figure 3. Diagram of the single Master Mode Register. Note that there are 9 groupings within the 16 bits. The alarm registers
(compare 1 and compare 2) and the time-of-day modes are not described in this paper. © Advanced Micro Devices, Inc., 1984.
Reprinted with permission of copyright owner. All rights reserved.

c...e _
0000 • Te,.t
0001 .. 8flC,
001,1 • l"CZ
0011 • a,w;,

.._
,---------o . o.,mllSo«:iflO.,

I • !nacll SoKial 0..
,-------o • ~dbomloiad

OIOI • SIIC•
OIGI • 91C5
rno • GAfft
Ont • GA1'2
IIIXl•0,11'1:J
1001 • CIATE:4
1910 ... CIA.DI
, .. 1 - ~,
1100 • 'I:
1101 •"
IIICI• ,-41
1111 • ,,

I QM I ca,,, I C"13 I CYl2 I C"11 I CM10

I --o. C...9"1Alaf'IEdlt
' . ca... .. ,.,., ... --IDOi • NDOlillr'f
DDI • _... "WI TCN-1
OlO •,l ... GAT!"N•t
011 • ""1lwe"W'LIMIOA~N·1
W • "'*'-Nlrf\LaialOATEN
101 • ,_..l.Nl.alll'IIGATliN
UO.• --.. OATEN
ttt • ,-,.1.ar'-PCl#tiftN

I ., Rl!Ncllnimloallotl1Cllld
EIIOIP(l"I J(Whdl

PMl•-~'Nlft\Ut,MI

,-----· 0...0-
1. Coi.r,t~

-o ar.,_eoww
I " llCOC-

___ J
OOD• lf'lecNl.~l.olr
(IOI • ~"911•..,._Coum"-iu
OtO ~ TCTOIQIIIII
Otl•llepl
IIXI • INche.~H!fhl"'OICIW'U
101 • Ac:11weLO*r.-..e..111,.....
t10s ...
111 • -.,.i

- loo,... M711r- an C:aml ca,.- n1 <llln; Cotnl Iii-.

MOl -l?t

Figure 4: Diagram of an individual counter/timer mode register. There are 5 counter mode registers, one for each counter/timer.
Again note that there are 9 groupings within the 16 bits. TCN-1 indicates respond to the terminal count of the next lower numbered
timer/counter. GA TEN (and N±l) relate to hardwired pins on the chip and the CTM-05, N referring to the gate pin with the same
number, minus the next lower and plus the next higher. SRC also refers to hardwired pins. Fl through F5 refer to the 1 mHz on
board clock and its subharmonics. By specifying bits 0, 1 and 2 with the counter terminal count the output can pulse high to low,
pulse low to high or toggle between high and low. ~ eAdvma,d Miao Daviccs, 1nc..1984. Rq,rink>d with pcrmiuian of copyri&ht o All ri&lllll "'......t.

288 INTELLIGENT INSTRUMENTS & COMPUTERS November/December1989

CTM-:::J I CTM-::..J Op Code to

I Reset Point to
Moster Mode OxFF

Register (Reset Op Code) Ox17
J

Register J I Command l J Reg is~er I I Command
I

Diagram 1

I
I Least Significant

r I I CTM-::.::J Date Register OxE8 Byte

Disable Pointer

I I· I I
Sequencing

Most Significant Doto Reg·sl<:: ' Byte J Register I I Command
I

Op Codes to
Turn Bit 15 Point to

ON or OFF Register of
Interest

(Figure 2)

Regisler I I J Comrrond

I
Least Significont

I ·I
Do:a Re :; ister I

I
Eyte

I f I I
Significant

I 1 Doto Register

I I
Most least Sign ificant Data Register Byte Byte

I·
Register.]

I
Most Significant

I Data Diagram S Byte

Diagram 2

I CTM-.:..J
Op Code to

Op Code to

I CTM-:::J
Point to

Lood Register N Point to
Moster Mode (N +8) - Op Code I Register

I 1 I
Ox17

Command Register

I J Command Reg ister
I

·---- ~ I
least Significant I Data Register Byte

I
Least Significant

t I
Data Register

I
Byte

I ·I
Most Significant Data Register

Byte

I
Most Significant

t I Doto Regi ster
Diagram3 Byte

Op Code to

I CTM-.:..J
I

Zero Bits B-11 I
Point to

J
Moster Mode

(Divisor Bits) Register

Ox17

J Regisler I
I I

Command Enter Your Divisor or
I Value into Bits B- 1 1

Op Code to
Point to

I I 1 I
Counter N

Least Significant
Doto Register Mode Register

Byte Op Code - N

I I I 1 Dato Register I i Most Sign:ficont --j Bits 0-7 _I Doto Register Byte

I Bits 8-15 I 1 Data Register
I

Diagram 4 Diagram 6

289

Bose Op Code I
for Looding Counters

Ox40 = Ob00100000

ff t tt
a 1 in any

of These Positions
lndicoles a Counter

is to Lood "rom
the Load Register

Bose Op Code

to Arm (Stort)
Counters

Ox60 - Ob01100000

ff tr r
Arm tt-.ese
Counters

I CTM-:J

I~--------1 Command Register I
Diagram 7

Bose Op Code
for Hotting Timers

Ox80 = OblOOOOOOO

ff tit
Choose Counter

to Holt by
Bil Position

CTM-05 J
.-.

l~---------i-: Commonc Register

Bose Op Code
for Set Counter
Output flip- Flop

OxE8 = Ob11101000

t It

Diagrams

Counter 1-5
Identified by

3 Bits
~-----------·

I '-------·-·---~

Diagram9

CH.4-05 l --
Commend Reg ster I

Base Op Code
for Clearing ::Oun\er

Ou:put Flip-Flop

Ox BO = Ob 1 0000000

t t t
Choose Counter

1-5 with
Tt-.ese 3 Bits

I CTM-:J

'~---------<t: Command Register]

Diagram 10

arranged through the load and the hold registers. The load
register is always used as a memory cell to contain a starting
value for the counter/timer beginning count Upon reaching
tenninal count (i.e. by overflow or underflow) the counter
nonnally will reload from the load register and begin again.

The hold register has two uses. The default use for the hold
register is, upon command, to copy the value currently in the
working counter/timerregister. By issuing an op code the hold
register will access and store the current working count, then
the hold register can be read to obtain the count In this manner
the counter/timer is not adversely affected by reading the
current count. Another use for the hold register is similar to the
load register. For certain modes of operation the counter/
timer will count down (or up) for one period from the value in
the load register, then the next period count down (orup) from
the value in the hold register, and repeat, alternating count
down (or up) from values in the load and hold registers. This
allows the CTM-05, through programming, to produce pulse
trains which have an asymmetrical wavefonn. The output of
each counter/timer can be programmed with each tenninal
count to produce a single pulse, or toggle states. Figure 4
demonstrates using the load and hold registers to produce
symmetrical and asymmetrical pulses and how output tog­
gling can be used to produce asymmetrical wavefonns.

In addition to the three registers described above counter/
timers 1 and2 each have alarm registers associated with them.
Refer to the Am9513A manual for infonnation on the utiliza­
tion of the alarm capabilities.

The terminal count pulse of a counter is passed easily to the
next higher numbered counter. This is accomplished by
setting the higher numbered counter's mode register bits 8
through 11 toO(figure4). Asonemightpredict,counter/timer
1 can be triggered off the counter/timer 5 terminal count A
day contains 86,400 seconds. At the one megaHertz rate one
days worth of clock ticks can be represented in 37 bits which
is 3 counter/timers. Actually, with the 48 bits represented in
the 3 counter/timers you can time almost 9 years to 1 micro­
second accuracy. The point is that the CTM-05 provides an
almost unlimited capability.

290 INTELLIGENT INSTRUMENTS & COMPUTERS November/December1989

Programming the CTM-05

Rather than present code in one language or another, I have
opted to show the logic of programming the CTM-05 using
pseudo-block diagrams. The following are skeletons of a se­
ries of programs that have been developed for our needs over
the past year of working with the Metrabyte CTM-05 card. For
the most part, they are relatively simple, but can serve as a
starting point for experimentation by those scientists and
engineers who have more complex requirements. These dia­
grams along with the programs in the Am9513A reference
manual provide a reasonable orientation to this hardware in a
PC environment. It is a very useful exercise to attach an
oscilloscope to the outputs of the counters of interest to
actually observe changes occurring in the counter/timers. The
oscilloscope should be trig gerable and have at least a de to 15
or 20 mHz bandwidth.

Reset
When thecomputeris firstturnedon orreset, the Am9513A

is reset. In addition, the chip can be reset in software by issuing
a single op code to the command register. Resetting the chip
loads zeros in all of the hold, load and master mode registers
and OBOO hexadecimal in the counter mode registers. Diagram
1 is very simple in that allitreally does is send the reset op code
to the command register. Since this program is useful for
bringing the CTM-05 back under control, it should be the first

A

B

program written. A "reset" can also be the first command
issued in a multicommand series to ensllfe that the CTM-05 is
in a known state.

Reading a register
Diagram 2 looks more complex but is actually similar to

resetting. Note in Figure 1 that the op codes for pointing to a
register are in ascending order. Certain values are not used
(e.g. Ox06) and should not be sent to the command register.
Otherwise, reading the series of registers is a matter oflooping
through OxOl to OxlF. In diagram 2, automatic pointer se­
quencing is first turned off. Automatic pointer sequencing is
a feature built into theAm9513A in which every reading of the
data register automatically causes the internal register pointer
to read the next register in the sequence. I have not found the
automatic pointer sequencing feature of the Am9513A to be
helpful. My personal preference is to issue the proper op code
to point to the register of interest. Turning off pointer-se­
quencing is done with a single op code. Then an op code
request is written to the command register and 2 bytes are read
back from the data register. A program which displays all of
the registers of the CTM-05 is extremely useful for debugging
purposes as well as understanding how registers are read.

Writing to the counter mode, hold and load registers
The next logical sequence of programs allows writing

values to the individual counter mode, hold or load registers.

c1 .___.__ I __i_l ..__I ---l..-1.....1 1------..1.1--'--I __j_JI I

D n'------ln-~n.______.n __ n
Time

Figure 5: A. Symmetrical pulse stream. Bits in counter mode register are programmed to cause counter to reload from the load
register and output flip flop is disabled.
B. Symmetrical waveform. Bits in counter mode register are programmed to cause counter to reload from load register
and output flip flop is enabled.
C. Asymmetrical pulse stream. Bits in counter mode register programmed to cause counter to reload from load and
hold registers. Output flip flop is disabled.
D. Asymmetrical waveform. Bits in counter mode register are programmed to cause counter to reload from load and
hold. Output flip flop is enabled.

291

View publication statsView publication stats

Diagram 3 shows how values can be entered into a counter's
load register. This is a simple matter of writing the correct op
code to the command register and then writing the two byte
values to the data register. Note that the individual counter
moderegisteropcodes are the same as the counternumber, the
load register op codes are the counter number+ 8 and the hold
register op codes are the counter number + 16 or counter
number+ 24. These sorts of short cuts are not highlighted in
the Technical Reference Manual but can significantly reduce
the code size. By loading a register with this routine then using
a register reading program, you can get a good idea of what is
happening inside the CTM-05.

Diagram 4 is more complex in that when writing to the
master or individual mode registers, the bit patterns have
importance. This importance varies depending on the regis­
ters, master mode or individual counter/timer mode. Diagram
3 shows how to write directly to the master or counter mode
register, but in a real program you should first read the mode
register value. By first reading the mode register, then chang­
ing the bit patterns of the functional group, then rewriting the
values, you will not change functions outside of your interest.
There are no shortcuts for manipulating the mode registers and
most of the code specific to the mode registers is relalively
ugly.

Manipulating master mode/unctions
Diagram 5 demonstrates the above point by manipulating

the bit in the master mode register which shifts the f
0

u
1
scaler

from BCD to binary and vice versa. Diagram 6 changes the
bits which manipulate the divisor for the f

0
u

1
clock. Theim­

plementation of these changes can be observed using an
oscilloscope attached to the f_ pin on the 37 pin D connector
of the CTM-05. In both cases the original mode registeris read
into memory and the necessary bits are set or cleared to change
the values which are written back to the master mode register.

Any use of the CTM-05 consists of three steps: setting the
mode registers, setting the load (and possibly hold) registers
and finally arming the counter to begin counting. Diagram 7
shows how the op code to load then arm one or more counters
is issued so counting can begin. Note that these op codes are
single op codes which may affect 1 or more counters at one
time.

Jnitialwng counter output states
Each of the five counter timers has an output flip/flop which

can be used to produce level outputs. These flip/flops can be
initialized to O or 1 (In addition, the output can be programmed
so that terminal count results in a pulse rather than a change in
level). Diagram 9 demonstrates how manipulating a counter
mode register bit "sets" the output flip flop of the requested
counter to +5 volts (logic 1) and diagram 10 manipulates the
counter mode register bit which "clears" the output flip flop of
the requested counter to ground (logic 0). Note that these two
op codes operate on a single counter.

S1Q12.. Diagram 11 demonstrates how to disarm and save the
requested counters into their hold registers. Once the counters
are stopped the program can examine the hold registers for

current counts. The stop op code can operate on one or more
counters at one time.

Conclusion

The Metrabyte CTM-05 counter/timer card is a very useful
solution to many timing problems. With experience, many
sophisticated timing regimens can be developed in which the
processor need take only a secondary role. With the proper
software, the CTM-05 is invaluable for generating control
timing pulses to trigger experimental equipment and for
timing experimental processes. In addition, event timing can
easily be accomplished by using an event to cause the count to
be stored in the counter's hold register. With the CTM-05's
flexibility some thought has to go into planning the software,
but that planning can pay off with simpler software and more
flexible hardware in the long run.

Acknowledgement

I would like to thank Dwight Werren for his help in gener­
ating the example diagrams. I'd like to also thank Glenda
White and her staff for their help.

References

Abrash, M. (1989) Measuring Performance. Programmer's
Journal, 7(4):20-30.

Advanced Micro Devices (1984), Am9513AfAm9513
System Timing Controller Technical Manual. 901 Thompson
Place, P.O. Box 453, Sunnyvale, CA 98086, (800)538-8450.

Holub, A. (1987) The illtimate Metronome: Writing Inter­
rupt Service Routines in C. Dr, Dobb's Journal of Software
IQQ!s . .ru21: 106-121 & 82-96.

Hunt, W J.(1985) The C Toolbox. Addison-Wesley Pub­
lishing Co.:Reading, MA.

Kemighan,B.W.andRitchie,D.M.(1978),TheCProgram­
ming Language. Prentice-Hall, Inc.: Englewood Cliffs, NJ.

Lancaster, D. (1974),The TTL Cookbook. Howard S.
Sams:Indianapolis, IN.

Lancaster, D. (1977),The CMOS Cookbook. Howard S.
Sams:Indianapolis, IN.

Pfeiffer, R.R. and Molnar, C.E. (1976) "Computer Process­
ing of Auditory Electrophysiology data", pp 280-305, in
Smith, C.A. and Vernon, J.A. (eds), Handbook of Auditoty
and Vestibular Research Methods, Thomas:Springfield, IL.

Swafford, B.E. (1988) "PC-based Communications Using
Interrupts", Micro-Systems Journal, 1,:50-54.

292 INTELLIGENT INSTRUMENTS & COMPUTERS November/December1989

https://www.researchgate.net/publication/250305428

