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Abstract—A finite-element formulation with penalty approach to enforce continuity is employed here
to simulate the three-dimensional velocity field resulting from a simple push-pull ventilation
configuration. An analytic expression for the length scale and a transport equation for turbulent
kinetic energy are coupled with the momentum equations. A coaxial square hood and jet are arranged
with cross-draught perpendicular to the common centreline. Numerical predictions of the velocity
and turbulence kinetic energy fields are evaluated in the plane of symmetry with hot film anemometry,
and smoke-wire flow visualizations. The agreement of the simulated jet trajectories with flow
visualizations is reasonable, as are velocities. Predictions of turbulence kinetic energy are not as good,
particularly near the hood face. Despite the limitations the numerical approach is useful in assessing
the impact of cross-draughts on the push-pull arrangement.

INTRODUCTION

Push—pull ventilation systems rely upon a jet of air to transport hazardous airborne
pollutants to an exhaust hood for removal from the indoor environment. These systems
are employed to capture mists and gases released from open surface tanks used in
electroplating operations (ACGIH, 1992), or contaminants emitted from other
industrial processes (Hughes, 1990). The purpose for installing such systems is to
minimize human exposure to airborne pollutants, hence the time-integrated breathing-
zone concentration is the appropriate index of system performance. A major factor in
estimating such concentrations is the air velocity field that results from the interaction
of a turbulent jet, a local exhaust hood (i.e. a source of suction), and any perturbing
cross-draughts. This configuration represents the essential fluid mechanics for many
contaminant-control ventilation problems.

A finite-difference study of push—pull systems by Heinsohn et al. (1986) produced
encouraging yet limited results due to the two-dimensional treatment, however the
complex geometry of real systems makes simulation of their performance quite
challenging. The large linear algebra problem that results makes it desirable to use
efficient, relatively simple approximations.

This work is motivated by the desire to develop a computer code to serve as a design
and analysis tool specifically for push—pull ventilation systems. However, the
algorithm should have the potential for extension to general indoor air pollution
problems, which are also incompressible, three-dimensional and turbulent. The
objectives here are to predict the three-dimensional velocity field of a simple push—pull
configuration, and to examine these predictions with experimental data. Although
most flows of industrial importance are time dependent, this investigation is restricted
to a steady situation.
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Three separate problems are examined. First, simulation of a free square jet is
selected as a test problem. The aims are to predict the velocity and turbulence kinetic
energy fields, and to examine these predictions with published data. Second, the
trajectory of a square jet in a uniform cross-draught is modelled and compared with
published data. Finally, the code is extended to include a hood and jet with a cross-
draught perpendicular to the common axis. Hot film anemometry, flow visualization
and tracer gas studies are conducted to examine these simulations.

THEORY

The governing equations are:
(1) incompressible continuity (conservation of mass)

V-u=0; 1)
(ii) Navier—Stokes (conservation of linear momentum)
u-Vu+VP—V-[v,(Vu+Vu")]=0, )

where u s the velocity vector, P is the dynamic pressure and v, is the effective kinematic
viscosity, i.e. the sum of the laminar kinematic viscosity (v) and the turbulent kinematic
viscosity (eddy viscosity, v,). All variables are rendered dimensionless by reference to
the jet inlet velocity U,, the inlet half-width S, and the density of air at standard
conditions. The eddy viscosity is defined by the Kolmogorov—-Prandtl approximation:

v=C,Ak 2, (3)

where k is the kinetic energy of turbulence, C, is a constant and A is a length scale,
reported by Sykes et al. (1986) for a circular jet as:

A=0.25D;+0.025(x2+ y*+2z2) V2. )

Here D;is the jet diameter and the origin of the co-ordinate system is at the centre of the
jet face. Empirical work by duPlessis et al. (1974) suggests that the flow of a circular jet
and square jet are close enough so that substitution of 2.5 for D; in Equation (4) should
be a reasonable approximation when S is the half-width of an equivalent area square
jet.
The governing equation for k is:
3/2

u-Vk=v[Vu: (Vu+Vu")]+ V- (v, Vk)— 4, kT+ v V2k (5)

and this model assumes the turbulence kinetic energy Prandtl number is unity. Values
proposed in Sykes et al. (1986) for C, and A4, of 0.35 and 0.7, respectively, are used
throughout. For the push—pull simulations values of 0.18 and 0.5, respectively, are also
used without any significant differences being observed.

METHODS

Numerical
The following weighted residual formulation for the momentum equations, uses a
form suitable for spatially varying viscosity. A similar procedure is applied to the
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conservation equation for the kinetic energy of turbulence. A penalty formulation is
employed to eliminate pressure from the governing equations. The resulting
approximation is:

P=—A(V-u), (6)

where u and P now represent perturbed values for velocity and pressure. The penalty
parameter (4) is set to 107, see for example Hughes et al. (1979).

The appriopriate weak form, Gunzburger (1989), for the situation where surface
tractions vanish on those boundaries of the domain where velocity Dirichlet conditions
are not specified is:

24, . ON, di ON, o,
f [N,a,“’“—z‘ '?"’we(”—%‘”#‘w au’)]dQ=O. (7)
Q 0x,

0x; 0x, 0x; 0x; Oxy 0x

The i index refers to a given momentum equation and J indicates an implied
summation from Equations (1)}-(3). Thus the x-momentum equation is obtained by
letting i=1 and each term in Equation (7) with a J subscript will have three terms in its
expansion. The [ index identifies the node, and (n,) is the total number of nodes in the
system.

The weighting functions employed are the trilinear Lagrange polynomial basis
functions, N. A trial solution is:

Q=3 No®ip. @)

A similar derivation for the turbulence kinetic energy yields:

C ok aa [ oh, o,
L{N‘[”’a ‘ax,<ax,+ax,.)]}

. [on, ok A4, - ON, ok
N 0% N A g d0=0. (©
+{v‘[ax,axJ X }r ax,ax,} ®)

In both momentum and turbulence equations upwinding is employed by reduced
quadrature of the advective terms as outlined in Hughes et al. (1979). Non-linearity is
handled by successive substitution with an under-relaxation factor of 0.5 on all velocity
components and 0.8 for the turbulence kinetic energy. Three-dimensional brick
elements are employed with trilinear basis functions. In this study local and global co-
ordinate axes are coincident. Therefore reduced quadrature for the penalty terms was
simpler than a consistent formulation, and of comparable accuracy [Engelman et al.
(1982)]. Wall functions are used to enforce the no-slip boundary condition.

A special technique is used to handle the potential core region of the jet. In a free jet
this region extends approximately five jet diameters downstream and is a zone of
relatively constant velocity. Our interest is primarily in situations where the ratio of jet
exit velocity to cross-draught velocity is large. In this case the potential core of the jet
exists much as it does in a free jet. Since this is a very small portion of the domain, the
centreline velocity is fixed in the core at a value of unity, and a technique described by
Pelletier (1984) for specifying the turbulence kinetic energy in the core is employed.

These equations and boundary conditions are incorporated into a FORTRAN
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Table 1. Grid refinement studies

Level NELX NELY NELZ B.W. NEQS u v w k
Free jet

L1 8 8 12 1023 4212

L2 11 11 15 1815 9216

L3 14 14 17 2295 16200

L1-L2 0.32 033 0.03 0.04
L2-L3 0.32 033 0.008 0.003
Push—pull with cross-draught

R1 19 8 12 1023 9360

R2 22 9 14 1295 13800

R3 25 10 17 1687 20592

R1-R2 044 050 0.16 0.37
R2-R3 026 0.18 0.16 0.54

NELX, -Y, -Z=number of elements in each direction.
B.W.=bandwidth.
NEQS =number of equations.

code and run on a Cray Y-MP. A convergence criterion of 0.001 is used for both
velocity and turbulent kinetic energy. The error criterion, o, is defined as the relative
change in the solution vector from one iteration to the next for a given dependent
variable, for example in the case of turbulence kinetic energy,

[ i (k}+ ) _k;)2:|1/2
=1

o=r , (10)

o 1/2
By

here i is the iteration number and j the global node number. The same type of error is
calculated in the grid refinement studies reported in Table 1. In this case i denotes the
level of grid refinement and j represents nodes common to all refinement levels.

Experimental

For the free square jet and the jet deflected by a cross-draught, code predictions are
examined using data published by other investigators. For push—pull systems, data
gathered in this study are used to examine the simulations. Three specific techniques
are employed: (1) hot film anemometry to measure velocity vectors and turbulence
kinetic energy; (2) flow visualization by smoke wire technique to estimate flow
streamlines and the jet trajectory; and (3) tracer gas studies to measure the efficiency
with which the hood captures the jet.

The air velocity is measured using an X-probe, hot film anemometer mounted in a
rotating support so that the probe axis can be aligned with the velocity vector. A
simultaneous sampling module is employed to permit the calculation of turbulence
kinetic energy from the sampled data. All measurements are made in a plane of
symmetry where mean velocities are essentially two-dimensional.

The experimental configuration is shown in Fig. 1. A 9 cm (3.54 in.) square inlet is
cutinto a 61 cm (24 in.) square flange to serve as the exhaust hood. In a similar fashion
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Fig. 1. Experimental set-up.

a0.488 cm (0.192 in.) square jet is placed flush in the centre of another identical flange.
The jet and hood are aligned along a common centreline and spaced 40.6 cm (16 in.)
apart. The entire unit is placed within a 1.5 m (5 ft) square wind tunnel. Measurements
of velocity are made at fixed points in the vicinity of the hood as shown in Fig. 2. The
hood flow is 0.24 m*s~! (510 cfm) and in all cases the jet flow is 0.00082 m3s~!
(1.75 cfm). Nominal cross-draughts of 0.51 m s~* (100 fpm) and 1.27 m s~ * (50 fpm)
are used. Hood flow is measured using a calibrated orifice plate, and the jet flow is
monitored with a calibrated rotameter. Flow visualization is accomplished by coating
a thin nichrome wire with paraffin oil and heating it electrically, a thin plane of smoke is
then generated upstream of the push—pull system.

For the tracer gas studies dilute sulphur hexafluoride gas is metered into the jet and
the concentration is measured in the duct downstream of the hood at a well mixed
location. By forming the ratio of this concentration to the concentration when all of the
jetis captured by the hood, that is the jet is placed inside the hood, a percentage capture
efficiency is reported. This technique permits a quantitative validation of the jet
trajectory. Measurement of concentration was made with a calibrated i.r. spectro-
photometer. All tracer measurements were made with a round hood and jet with areas
equal to those of the square hood and jet, in addition the round jet was unflanged.
Although these conditions differ slightly from the simulations it was felt they were
represented reasonably by the model.

RESULTS AND DISCUSSION

Figure 3(a) shows the computational domain for both the free square jet and
Fig. 3(b) shows the domains for both the jet in a cross-draught and also the push—pull
in a cross-draught. Points M, N, L and P are specified as the hood, only for the
push—pull in the cross-draught case.
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Fig. 2. Measurement locations for push—pull with cross-draught study.

The free square jet

Figure 3(a) shows the computational domain for the free jet. The origin of the
Cartesian system is at the centre of the jet face (point A) and the z axis is the jet
centreline (A-D). Only one quadrant of the flow field is modelled and the x =0 (ACED)
and y=0 (AHJD) planes are planes of symmetry.

The remaining boundary conditions are: (1) the free surface planes at x=2X,
(HIKJ),and y=Y, (CIKE) are planes of zero tangential stress with the normal velocity
a degree of freedom; (2) at the jet face (ABGF)u=v=0, w=1, and based on previous
numerical work on jets by Demuren (1983), k =0.001; (3) for the remainder of the face
(ACIH): z=0 and u=v=w=k=0; and (4) at the outflow boundary, z=2, (DEKJ),
surface tractions are assumed to vanish. The jet inlet velocity is 15.2362 m s~ with a
half-width (S) of 6.35 mm (0.025 in.); X; =¥, =508, Z, =166.7S.

Table 1 summarizes the grid refinement studies. The number of elements in each
direction (NELX, -Y, -Z), the bandwidth (B.W.) and the number of equations (NEQS)
is given for each level of refinement in the first section of the table. The error, a, for each
degree of freedom is reported in the second section. The grids employ variable spacing
to accommodate regions of anticipated steep gradients. The turbulence kinetic energy,
and the z velocity behave well with respect to refinement, however x and y velocity
components show some residual fluctuations.

Figure 4 shows predictions of jet centreline velocity plotted against data for a
square jet presented by duPlessis et al. (1974) and Yevdjevitch (1966). The agreement is
reasonable particularly in the far-field regions. Figure 5 shows predictions for the
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Fig. 3 (a).

growth of the jet half-width, and the experimental data reported by duPlessis et al.
(1974) and Wygnanski and Fiedler (1969). The jet half-width at a given axial location is
the distance perpendicular to the jet centreline at which the axial velocity has dropped
to one half the value of the centreline velocity. Agreement in the far field region is good
but in the near field the code tends to overpredict the half-width. A far-field value for the
eddy viscosity is given by Schlichting (1979) as 0.032. At Z/S=113 and 130, mean
values for the eddy viscosity taken over the jet half-width are 0.034 and 0.033,
respectively, with coefficients of variation of 14 and 10%.

Jet and cross-draught

The square jet in a cross-draught requires a computational domain of one-half the
actual region due to symmetry. Figure 3(b) illustrates this domain. Boundary
conditions for the jet face (FGBO); the flange (i.e. the remainder of the face ACIH), and
the core region are the same as for the free jet. The cross-draught velocity, U,, was
specified as the normal velocity on both the inflow face ACED and the outflow
boundary HIKJ, tangential components were set to 0. The turbulence kinetic energy
was set to 0.004(U,)*> on ACED. For faces CIKE and DEK]J the cross-draught was
specified as the tangential velocity and normal stresses were set to zero.
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Fig. 3. (a) Computational domain for free square jet problem. (b) Computational domain for jet in
cross-draught and also push—pull with cross-draught.

Figure 6 shows the predicted velocity field in the plane of the cross-draught and
Fig. 7 gives an estimate of the jet trajectory from this data compared to the
experimental trajectory reported by Kamotani and Greber (1972). The jet trajectory is
defined as the locus of maximum velocities in the plane of the cross-draughts. The
agreement is reasonable but the predictions tend to have more momentum than the
data suggest.

Push—pull with cross-draught
Finally a cross-draught perpendicular to the common hood-jet axis ts added and
Fig. 3(b) shows the computational domain. A uniform cross-draught velocity equal to
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Fig. 5. Growth of half-width comparisons for free square jet.

the sum of the hood and wind tunnel flows divided by the tunnel cross-sectional area is
specified as the upstream boundary condition (ACED). An outlet velocity is specified
on (HIJK) by mass balance.

For these simulations $=2.39mm and X,=Y,=EXHLF=18.78S, X =
—6(EXHLF), X;=8(EXHLF); Y,=—X,. The average jet inlet velocity (U,) is
34.7ms™!; the average hood face velocity is 28.1 ms~!, and outlet velocities on
(HIJK) are either 0.51 ms~! (100 fpm) or 1.27 m s~ ! (250 fpm). The hood-to-jet
separation is Z, =40.67 cm.

Figures 8(a) and (b) present vector plots in the plane of symmetry (i.e. the plane of
cross-draught, AHJID) for both cross-draughts. An estimate of the jet trajectory is
included in the figures (dotted lines) based on the flow visualization photographs

¥T0Z ‘2T Afeniged Uo ejuaD uolfewlou| % AkliqiT yieaH 21jand DA ke /6o sjeulnopiojxo bAyuue//:dny wouy pepeojumoq


http://annhyg.oxfordjournals.org/
http://annhyg.oxfordjournals.org/

582

Fig. 6. Predicted velocity field for square jet in cross-draught, ratio
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Fig. 8. (a) Predicted velocity field in the plane of cross-draught for push-pull system with 100 fpm
cross-draught. (b) Predicted velocity field in the plane of cross-draught for push—-pull system with 250 fpm
cross-draught.
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shown in Figs 9(a) and (b). Computer estimated jet trajectories (solid lines) are in
reasonable agreement with the visualized trajectories. The lower cross-draught does
not seem to deflect the jet substantially and one would expect most of the jet to be
captured by the hood. Capture efficiency was measured at 82% for these conditions.
The higher cross-draught deflects the jet to the point where less than half would be
captured; efficiency here is measured at 60%.

In Figs 6 and 8(a) and (b) there are regions of the flow where the velocity vectors are
clearly inaccurate, they are misaligned or pointing in directions opposite to what would
be anticipated. These regions are generally near walls or boundaries, or in areas of steep
velocity gradients. The memory limitations imposed on this algorithm by a fully
coupled formulation prevents detailed grid refinement in these areas. In addition the
turbulence model selected may be inadequate to correctly model these areas. Despite
these inaccuracies, the local errors do not seem to unduly effect the global predictions of
the jet trajectory.

Figures 10 and 11 present plots of all the measured vs experimental velocities and
angles at the points shown in Fig. 2. Here the angle is measured in the x—z plane
counterclockwise from the —x axis. The maximum deviations between measured
velocity vectors and model predictions occur at points D5, D6, E5 and E6.
Examination of vector plots in Figs 8(a) and (b) show that these regions are poorly
resolved by the grid, and measurement shows them to be locations of high turbulence
intensity. Thus there is uncertainty in both model and data. These outliers were
extracted from the data set and a linear regression analysis performed on the natural
logarithms of the measured value vs the prediction. Table 2 presents the results of these
regressions giving the slope and intercept along with the 95% confidence intervals, and
coefficients of determination (R?).

The null hypothesis that the slope is 1 and the intercept is 0, that is equivalence
between model and experiment, cannot be rejected for the angle comparisons at the
higher cross-draught nor the velocity comparisons at the lower cross-draught. In
addition the velocity comparisons at the higher cross-draught meet the slope criterion
and just miss the intercept. Angle measurements at the lower cross-draught clearly do
not meet the criterion.

Figure 12 presents a plot of the turbulence kinetic energy data. Here the scatter is
quite dramatic and in general the model fails to predict the quantity well. The greatest
errors appear to occur near the hood face as well as at the locations identified above.
This may reflect inadequacies in the turbulence model as well as insufficient grid
resolution. Table 1 shows the results of the grid refinement studies. The « values for
each of the velocity components and the turbulence kinetic energy are presented for
two subsequent mesh refinements (L1-L2 and L2-L3). All variables except the
turbulence kinetic energy appear to be converging with grid refinement as indicated by
the decreasing values of «, although the errors are still rather high, and in some cases do
not change appreciably from one refinement to the next.

CONCLUSIONS

This work suggests reasonable three-dimensional velocity simulations can be
obtained with an upwind finite-element code employing a penalty function. The
momentum and turbulence kinetic energy equations are solved here in coupled form,
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Fig. 9. (a) Smoke wire visualization in the plane of cross-draught for push—pull system with 100 fpm
cross-draught. (b) Smoke wire visualization in the plane of cross-draught for push—pull system with 250 fpm
cross-draught.
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Fig. 10. Comparison of measured vs predicted velocities for push—pull in the plane of cross-draught.
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Fig. 11. Comparison of measured vs predicted angles for push-pull in the plane of cross-draught.

and produce a large coefficient matrix for solution. The direct solver employed here for
three-dimensional calculations is limiting. Recent work by Reddy et al. (1992) suggests
that iterative solvers are now possible with penalty formulations, and this should
improve the competitiveness of the method with alternate approaches to modelling
turbulent flows.

Despite limitations in the size of the problem that this algorithm can address, the
agreement of the jet trajectory with the simulations is good. Agreement of predicted
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Table 2. Regression analysis

Model: Y=AX+B,
where Y =natural log of measurement
X =natural log of prediction
A=slope
B =intercept

Variable A 95% CI B 95% CI R?
100 fpm cross-draughts
Angle 0.55 [0.5, 0.6] 2.03 [1.8,2.2] 0.95
Velocity 0.99 [0.8, 1.2] —-0.23 [—0.6,0.2] 0.86
250 fpm cross-draught
Angle 1.04 [0.8, 1.3] —035  [—13,06] 0.77
Velocity 0.89 [0.7, 1.0] —-05 [—0.8, —0.2] 0.89
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Fig. 12. Comparison of measured vs predicted turbulence kinetic energies for push—pull in the plane of
cross-draught.

velocity magnitude and direction are reasonable, and the variation in turbulence
kinetic energy is large. Further work is underway to improve the capacity of the code in
order to evaluate the limitations of the turbulence model.
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