

Reflecting Industry — Supervised Experience In Agricultural Mechanics

Like other areas of the Agricultural Education curriculum, Agricultural Mechanics is a science based series of competencies with application to supervised experience for programs both in and about agriculture. Experiential needs of students can be efficiently met through industry current agricultural mechanics.

Industry Standards

Teaching competencies needed by students for industry requires facilities and equipment which reflect industry standards. This is a time honored problem in all aspects of agricultural science and especially in agricultural mechanics. Industry cooperation has been the critical factor in allowing students the opportunity to apply the scientific principles of agricultural mechanics to industry current applications.

Industry is also setting standards for our programs which are not being followed. The agricultural industry has been subjected to regulation to insure a safe working environment for employees. While regulation was not always welcome, the need for safety in the workplace is clear. Safety has always been an integral part of the curriculum in agricultural mechanics and a critical factor in protecting the teacher from exposure to unnecessary liability.

The Agricultural Education profession has experienced a reawakening regarding safety and its effects on teachers and students. Westrom and Lee, (1990), Miller (1990), Hard and Miller (1990), Fletcher and Johnson (1990) and others have addressed safety and its related health risks in recent research efforts.

How Are We Doing?

In an effort to determine the state of safety in vocational education laboratories as compared to industry standards, a study of safety compliance rate of selected secondary vocational education laboratories within two urban counties in Arizona was recently completed.

An instrument derived from a school laboratory safety evaluation developed by Lawrence B. Everett (1981) was completed on site. Less than one-third of the laboratories studied were agricultural mechanics laboratories. The instrument identified safety compliance in ten major areas including Walking-Working Surface; Means of Egress; Fire Protection; Medical and First Aid; Personal Protective Equipment; Tools; Welding, Cutting, and Brazing; Electrical; Compressed Air Equipment; and Environmental Control. Each major classification had a

BY GLEN M. MILLER

(Dr. Miller is Assistant Professor, Department of Agricultural Education, The University of Arizona.)

sub-scale of items which were marked as in compliance or not in compliance of standards by "The General Industrial Safety and Health Regulations, Part 1910." An example of a sub-scale under Tools would be:

1. Stationary power tools anchored to the floor. (1910.212(b))

Each item on the scale was given a numerical value which reflected the average rating of importance assigned by a panel of ten safety specialists. Items were rated on a 0-10 scale with 0 indicating no importance to laboratory safety and 10 indicating utmost importance. Subscales were averaged into ten major categories.

Compliance Concerns

The results are reported according to the 10 categories and 21 schools. Walking-working surface items such as safety lanes, non-skid surfaces, laboratory appearance neat and orderly, etc., are generally in compliance with an overall score of 76%. One school is a notable exception with a score of 9%.

Means of egress which include standards such as laboratory has at least two exits, exit doors and access to exits are not locked from exit side, etc., demonstrated a lower overall score of 54%, indicating that the large majority of laboratories fail to meet standards. The lowest scoring school was only 23% in compliance, while the best school was 100% in compliance. Fire protection items, including fire alarms, fire extinguisher locations properly marked, maximum distance to fire extinguisher 75 feet, etc., had an overall score of 66%. The lowest compliance was 11% with the greatest compliance being 100%. Emergency telephone numbers posted in the laboratory, evacuation procedures posted in the laboratory, and first-aid supplies readily available comprised the medical and first-aid category. The overall compliance in this area was 30% with eight schools having no com-

pliance and three schools in 100% compliance. Personal protective equipment included items such as face shields, industrial quality eye protection provided and required, etc. The overall score was 67% with two schools not in compliance and four schools in 100% compliance.

The overall score for tools was 73% compliance with subscale items, including stationary power tools anchored to the floor, stationary tools arranged so that individuals are protected from hazards of other machines, etc. The school in highest compliance scored 100% and the poorest compliance score was 34%. Welding, cutting and brazing compliance was the highest of any category with an overall score of 92%. The lowest compliance was 46% with thirteen schools in 100% compliance.

Subscale items included arc welder cables, electrode holders and ground clamps in good repair, compressed gas cylinders chained or secured in an upright position, friction lighter available and used to light welding or cutting flame or pilot light, etc. Electrical subscales included electrical outlets and fixtures properly grounded, electrical disconnects identified, extension cords and portable power tools properly grounded or double insulated, etc. The overall percentage was 81% with the lowest compliance being 43% and the highest 100% for four schools. Compressed air equipment was in compliance an overall average of 56%. Subscale items included pressure gauge in air line, air used for cleaning regulated to not more than 30 psi, etc. The school in highest compliance scored 100% and the six schools with the least compliance scored 0%.

The final category was environmental control. Items included total laboratory ventilating, illumination, noise level, washing and clean up, safety stands, guarding, etc. The overall percentage compliance was 93% with a high compliance of 100% and a low compliance of 42%.

Table 1 reflects the percentage compliance based upon

Table 1. Facility Safety Compliance Score Overall

School	Percentage	School	Percentage	School	Percentage
1	84.00	8	77.74	15	68.30
2	76.20	9	79.34	16	76.80
3	54.00	10	81.10	17	32.03
4	62.88	11	56.00	18	89.86
5	82.36	12	79.90	19	80.35
6	76.00	13	94.70	20	63.58
7	81.60	14	68.20	21	82.26

the total compliance points possible and the score by school. Wide variations can be seen between schools with the highest compliance overall being 94.7% and the lowest being 32.03.

We Need To Improve

Clearly, there are disturbing shortcomings in the compliance of vocational education laboratories in Maricopa and Pima Counties, Arizona. The 21 sample schools vary widely, but it is clear that as a general trend, schools which score poorly in one category are generally weak in most areas. Many factors could contribute to these deficiencies. The age of the facility has an impact on several categories. Other categories where compliance is low, however, must be recognized as a matter of neglect or negligence. There can be no acceptable reason for failure to comply at a level of 100% in areas of medical first aid, personal protective equipment, and fire protection. Certainly, those in the agricultural industry could not stay in business if they failed to meet basic personnel safety standards. The oldest facility can be clean and painted. Every school budget must afford personal protective equipment critical to the safety of students and teacher. Every laboratory can be equipped with a medical first-aid kit and clearly marked evacuation plans.

A renewed effort must be placed on compliance with basic standards of safety in vocational education laboratories. This research clearly demonstrates that efforts in enforcement of safety standards must be pursued aggressively. If students are to use supervised experience in agricultural mechanics, then we must be sure that the safety as well as the competencies reflect industry standards.

References

Fletcher, W.E. & Johnson, D.M. (1990). Safety practices and equipment used in Mississippi. Proceedings of the Seventeenth Annual National Agricultural Education Research Meeting, Cincinnati, Ohio, November 30, 1991, pages 88-97.

Hard, D.L. & Miller, L.E. (1990). Correlates of accidents in Ohio Vocational agriculture mechanics laboratories. Proceedings of The National Agricultural Education Research Meeting, Cincinnati, Ohio, Vol. XVII, pp. 97-104.

Miller, G.M. (1990). The effect of hearing protection devices on student performance while operating the portable circular saw. Proceedings of the 9th Annual Western Region Agricultural Education Research Meeting, Fresno, California, pages 206-218.

Westrom, L.E. & Lee, J.S. (1990). Health factors as predictors of agriculture teacher efficiency. Proceedings of the Seventeenth Annual National Agricultural Education Research Meeting, Cincinnati, Ohio, November 30, 1990, pages 88-97.

Historical Review — Dec. 1941 & 1966

(Continued from page 17)

responsibility for teaching 2 to 4 classes and be under the supervision of a master teacher. The intern would also be involved with seminars taught by university staff.

Froehlich and Bundy (Iowa State University) reported a study on why qualified vo-ag teachers don't teach. Their survey collected data from 823 non-teaching agricultural education graduates from Iowa State (70.8%

of all graduates from January 1, 1940 to July 1, 1964). The most common professional areas entered were farming, feed and seed business, extension service, and high school teacher other than agriculture. Respondents who left the teaching profession cited such reasons as lack of advancement opportunity, salary, too many evening responsibilities, long hours, and state reports.

Other articles included Occupational Choice and Tenure of Ag Ed Grads (Hoernor and Bundy), the Supervising Teacher (Binkley), and Providing Information about College (Atherton).

The

Agricultural Education Magazine

December, 1991
Volume 64
Number 6

Application Through Experience

THEME: Supervised Experience

THE
AGRICULTURAL EDUCATION
MAGAZINE

December, 1991

Volume 64

Number 6

MANAGING EDITORS

Editor

PHILLIP ZURBRICK, 232 Forbes Building, Dept. of Ag Ed, The University of Arizona, Tucson, AZ 85721

Editor-Elect

EDWARD W. OSBORNE, Agricultural Education, 67 Mumford Hall, University of Illinois, Urbana, IL 61801

Business Manager

GLENN A. ANDERSON, 1803 Rural Point Road, Mechanicsville, VA 23111

Consulting Editor

BLANNIE E. BOWEN, Ag & Ext. Education, Armsby Building, Pennsylvania State University, University Park, PA 16802

REGIONAL EDITORS

Eastern Region

STACY GARTIN, West Virginia University

Southern Region

BARBARA MALPIEDI KIRBY, North Carolina State University

Central Region

ROBERT MARTIN, Iowa State University

Western Region

LOU RIESENBERG, University of Idaho

SPECIAL EDITORS

International Agriculture

JANET L. HENDERSON, The Ohio State University

Teaching Tips Co-Editor

ROSE JONES, University of Minnesota; ED OSBORNE, University of Illinois

Book Review

DAVID HOWELL, University of New Hampshire

Historical Review

JOHN HILLISON, Virginia Polytechnic Institute and State University

Computer Technology - Co-Editors

NATHANIEL JAEGGLI, University of Arizona; W. WADE MILLER, Iowa State University

Computer Software

JEFFREY A. WOOD, Illinois State University

Agricultural Mechanization

JOE HARPER, Clemson University

The Council

JOHN POPE, The National Council

EDITING-MANAGING BOARD

Chairman

Stacy Gartin, West Virginia University

Secretary

Blannie E. Bowen, Pennsylvania State University

Editor

Phillip R. Zurbrick, University of Arizona

Members

Glenn A. Anderson, Virginia Department of Education

Larry Case, U.S. Department of Education

Merle Richter, NVATA, Bloomer, WI

Frank Tropme, NVATA, Daphne, AL

Robert Graham, NVATA, Alexandria, VA

Tom Parker, NVATA, Casper, WY

William G. Smith, Rutgers University

Table of Contents

EDITOR'S PAGE	Page
From Torpedoes to Revolution..... Phillip R. Zurbrick	3
THEME: SUPERVISED EXPERIENCE	
It is Time to Stop Quibbling	
Over the Acronym..... David E. Cox	4
Information Rich — Experience Poor Jack Elliot	
Harry N. Boone, David L. Doerfert	6
SAE Selection Process: Surrounded	
By Choices Jim Yokum, Kent Boggs	9
The Point System — A Solution to the	
Supervised Experience Problem? Steve Fraze, Paul Vaughn	11
Supervised Experience: Urban	
Diversity Rural Style John Morgan, Mike Henry	13
Non-Occupational Supervised Experience Barry Croom	15
Reflecting Industry — Supervised Experience	
in Agricultural Mechanics Glen M. Miller	18
Reinventing Experience Programs in	
Agriculture Robert A. Martin	20
FEATURE COLUMNS	
Agricultural Mechanization Joe G. Harper	5
Historical Review John Hillison	17
Computer Technology Resources Nathaniel D. Jaeggli	21
STORIES IN PICTURES	24

ARTICLE SUBMISSION

Articles and photographs should be submitted to the Editor, Regional Editors, or Special Editors. Items to be considered for publication should be submitted at least 90 days prior to the date of issue intended for the article or photograph. All submissions will be acknowledged by the Editor. No items are returned unless accompanied by a written request. Articles should be typed, double-spaced, and include information about the author(s). Two copies of articles should be submitted. A recent photograph should accompany an article unless one is on file with the Editor.

PUBLICATION INFORMATION

THE AGRICULTURAL EDUCATION MAGAZINE (ISSN 7324677) is the monthly professional journal of agricultural education. The journal is published by THE AGRICULTURAL EDUCATION MAGAZINE INC., and is printed at M & D Printing Co., 616 Second Street, Henry, IL 61537.

Second-class postage paid at Mechanicsville, VA 23111; additional entry at Henry, IL 61537.

POSTMASTERS: Send Form 3579 to Glenn A. Anderson, Business Manager, 1803 Rural Point Road, Mechanicsville, Virginia 23111.

SUBSCRIPTIONS

Subscription prices for THE AGRICULTURAL EDUCATION MAGAZINE are \$7 per year. Foreign subscriptions are \$20 (U.S. Currency) per year for surface mail, and \$40 (U.S. Currency) foreign airmail (except Canada). Student subscriptions in groups (one address) are \$4 for eight issues. Single copies and back issues less than ten years old are available at \$1 each (\$2.00 for foreign mail). All back issues are available on microfilm from Xerox University Microfilms, 300 North Zeeb Road, Ann Arbor, MI 48106. In submitting subscriptions, designate new or renewal and address including ZIP code. Send all subscriptions and requests for hardcopy back issues to the Business Manager: Glenn A. Anderson, Business Manager, 1803 Rural Point Road, Mechanicsville, VA 23111. Publication No. 73246