

Q0264

SRC TR 81-504

SECOND DRAFT (REVISED)

Information Profiles on Potential Occupational
Hazards: Aluminum and Compounds

Center for Chemical Hazard Assessment
Syracuse Research Corporation
Merrill Lane
Syracuse, New York 13210

Contract No. 210-79-0030

March 1981

Prepared for:

National Institute for Occupational Safety and Health
5600 Fishers Lane
Rockville, Maryland 20857

BIBLIOGRAPHIC INFORMATION

PB89-216238

Report Nos: SRC-TR-81-504

Title: Information Profiles on Potential Occupational Hazards: Aluminum and Compounds. Second Draft (Revised).

Date: Mar 81

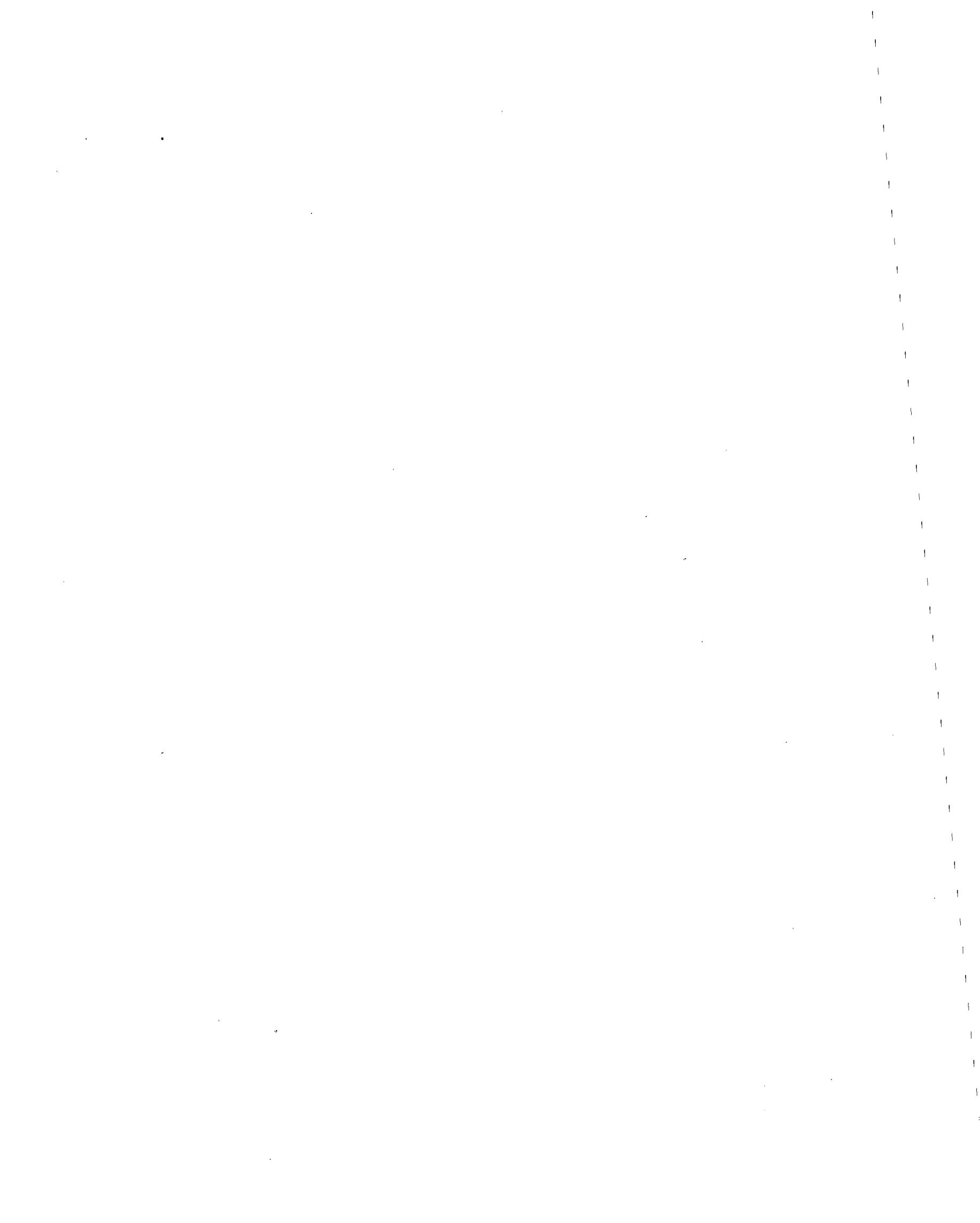
Performing Organization: Syracuse Research Corp., NY. Center for Chemical Hazard Assessment.

Sponsoring Organization: *National Inst. for Occupational Safety and Health, Rockville, MD.

Contract Nos: PHS-NIOSH-210-79-0030

Supplementary Notes: Sponsored by National Inst. for Occupational Safety and Health, Rockville, MD.

NTIS Field/Group Codes: 57U, 57Y, 94D, 41I, 68G


Price: PC A11/MF A01

Availability: Available from the National Technical Information Service, Springfield, VA. 22161

Number of Pages: 231p

Keywords: *Aluminum, *Industrial medicine, *Aluminum organic compounds, Exposure, Toxicity, Control equipment, Hazards, Toxicology, Chemical properties, Pathology, *Occupational safety and health, *Toxic substances.

Abstract: Information profiles are working papers used by the National Institute for Occupational Safety and Health to assist the Institute in establishing priorities. The profile summarizes data on organic and inorganic substances containing aluminum as the only metal. Each summary presents data on known and suspected health effects, the extent of worker exposure, physical and chemical properties and the industrial importance of the following aluminum compounds: aluminum metal, aluminum ammonium sulfate, aluminum chlorhydrate, aluminum chloride anhydrous, aluminum chloride hydrous, aluminum distearate, aluminum ethoxide, aluminum fluoride, aluminum hydride, aluminum hydroxide, aluminum nitrate, aluminum oxide, aluminum ortho-phosphate, aluminum potassium sulfate, aluminum silicate, aluminum sodium sulfate, aluminum sulfate, calcium aluminum silicate, diethylaluminum chloride, sodium aluminate, tri-n-butylaluminum, triethylaluminum, tri-n-hexylaluminum, triisobutylaluminum, tri-n-octylaluminum. Detailed literature searches are conducted to identify information to be used in the profile summaries.

INTRODUCTION

An information profile is a working paper used by the National Institute for Occupational Safety and Health (NIOSH) to assist in establishing Institute priorities. It is an initial step in determining the need to develop comprehensive documents or to initiate research. Each profile summarizes data on known and suspected health effects, the extent of worker exposure, physical and chemical properties, and the industrial importance of individual chemicals and classes of chemicals. The profile may also be used by industry, labor, and the occupational health community as a synopsis of information on each subject and to identify possible health hazards associated with their workplaces.

Although detailed literature searches are conducted using computerized and manual searching techniques to identify pertinent and recent information, not all the literature obtained is incorporated in the report due to the summary nature of the profiles. Further, literature published after 1979 may not be included in these profiles because it was generally unavailable at the time the search was completed.

TABLE OF CONTENTS

	<u>Page</u>
INTRODUCTION	ii
I. SCOPE OF DOCUMENT AND SUMMARY OF MAJOR FINDINGS	1
A. CLASS IDENTIFICATION	1
B. CHEMICALS TO BE ADDRESSED	1
C. SUMMARY OF BIOLOGICAL ACTIVITY	2
II. DATA FOR COMMERCIALLY IMPORTANT CHEMICALS NOT INDIVIDUALLY PROFILED	6
III. INFORMATION PROFILES	27
A. ALUMINUM METAL	27
B. ALUMINUM AMMONIUM SULFATE	43
C. ALUMINUM CHLORHYDRATE	48
D. ALUMINUM CHLORIDE, ANHYDROUS	56
E. ALUMINUM CHLORIDE, HYDROUS	72
F. ALUMINUM DISTEARATE	82
G. ALUMINUM ETHOXIDE	87
H. ALUMINUM FLUORIDE	90
I. ALUMINUM HYDRIDE	97
J. ALUMINUM HYDROXIDE	100
K. ALUMINUM NITRATE	112
L. ALUMINUM OXIDE	119
M. ALUMINUM ORTHO-PHOSPHATE	135
N. ALUMINUM POTASSIUM SULFATE	140
O. ALUMINUM SILICATES	146
P. ALUMINUM SODIUM SULFATE	152
Q. ALUMINUM SULFATE	156
R. CALCIUM ALUMINUM SILICATE	174
S. DIETHYLALUMINUM CHLORIDE	177
T. SODIUM ALUMINATE	181
U. TRI- <i>n</i> -BUTYLALUMINUM	188
V. TRIETHYLALUMINUM	192
W. TRI- <i>n</i> -HEXYLALUMINUM	198
X. TRIISOBUTYLALUMINUM	202
Y. TRI- <i>n</i> -OCTYLALUMINUM	207
APPENDIX	211
REFERENCES	216

I. SCOPE OF DOCUMENT AND SUMMARY OF MAJOR FINDINGS

A. CLASS IDENTIFICATION

The compounds considered for inclusion in this report are all inorganic and organic substances containing aluminum as the only metal. The oxidation state of aluminum in its compounds is 3+ except under certain extreme conditions. All commercial aluminum compounds have an oxidation state of 3+.

B. CHEMICALS TO BE ADDRESSED

Individual profiles have been prepared for the following aluminum compounds:

- Aluminum metal
- Aluminum ammonium sulfate
- Aluminum chlorhydrate
- Aluminum chloride, anhydrous
- Aluminum chloride, hydrous
- Aluminum distearate
- Aluminum ethoxide
- Aluminum fluoride
- Aluminum hydride
- Aluminum hydroxide
- Aluminum nitrate
- Aluminum oxide
- Aluminum ortho-phosphate
- Aluminum potassium sulfate
- Aluminum silicates
- Aluminum sodium sulfate
- Aluminum sulfate
- Calcium aluminum silicate
- Diethylaluminum chloride
- Sodium aluminate
- Tri-n-butylaluminum
- Triethylaluminum
- Tri-n-hexylaluminum
- Triisobutylaluminum
- Tri-n-octylaluminum

These compounds were deliberately selected for profiles on the basis that each is produced in commercial quantities of at least 1 million pounds per year. Significant biological data are available for only a few of these compounds.

C. SUMMARY OF BIOLOGICAL ACTIVITY

1. Pharmacokinetic Considerations

The biological role of aluminum in mammals has not been clearly established, but aluminum is generally regarded as an essential metal. The pharmacokinetics of aluminum compounds are not well characterized. The presence of aluminum in human organs indicates that absorption of the metal occurs, and, within the range of usual intake, there is an apparent homeostatic regulation of tissue levels. Approximately 1-2% of an ingested dose of aluminum hydroxide is retained by humans, and inhalation exposure to alumina dust has been reported to increase blood aluminum levels 2-3 times the baseline value, but quantitative estimates for absorption of other aluminum compounds have not been published. Once absorbed into the body, aluminum is present in chelated form.

Studies of normal tissue distribution of aluminum in humans indicate that the highest concentrations are found in the lungs (approximately 200-300 mg/kg); most of the other organs are reported to contain 1/10 or less of this value (Norseth, 1979). Aluminum in the lung is probably a result of local deposition from inhaled air. Aluminum has been monitored in fetal and newborn blood, and newborn blood aluminum levels higher than maternal blood levels have been reported (Sorenson et al., 1974). If it can be confirmed that bioconcentration of aluminum occurs in the fetus, then this must be taken into consideration in the assessment of health risk for pregnant workers. Various diseases influence the aluminum concentration in organs (Sorenson et al., 1974). Elevated bone, brain, and muscle levels of aluminum have been observed in uremic patients on hemodialysis (Allfrey et al., 1976; Elliott et al., 1978; Ellis et al., 1979); in these cases which have limited occupational significance, the main sources of aluminum were its salts in the dialysate water, and aluminum hydroxide administered to control hyperphosphatemia. Crapper et al. (1973)

reported high brain levels of aluminum in patients with Alzheimer's disease (presenile dementia).

2. Effects of Major Concern

There is a paucity of information on the biological effects of many of the specific aluminum compounds addressed in this report. Several generalizations are evident, however. Excessive exposure to aluminum may result in expression of symptoms of toxicity, but there appear to be no major qualitative differences in the effects of various aluminum compounds (although soluble salts are much more toxic than insoluble compounds). The fact that structurally dissimilar aluminum compounds cause similar biological effects *in vivo* is most likely related to the conversion of the aluminum compound into chelates of similar nature. Animal and human studies suggest that the toxic effects of aluminum may result from phosphate depletion caused by binding of phosphate in the intestine (Ondreicka *et al.*, 1966; Thurston *et al.*, 1972; Sorenson *et al.*, 1974). Gross toxicity seen with high concentrations of aluminum (e.g., retarded growth, bone changes) may result from adverse effects on phosphate metabolism, and biochemical reactions in the body associated with phosphate utilization (particularly glycolysis and phosphorylation) appear to be easily affected by excess aluminum.

A. Pulmonary Effects

Single intratracheal instillations of aluminum powder, aluminum oxide, and aluminum phosphate have produced pulmonary fibrosis in rodents after 3-6 months, but chronic exposure to aluminum via inhalation does not appear to be fibrogenic. Weekly intratracheal instillation of aluminum oxide dust for 15 weeks also produced lung fibrosis in hamsters. Three intratracheal inoculations of aluminum chlorhydrate at 3-day intervals caused acute respiratory broncholitis in rabbits, but no other histological changes.

Human occupational studies have established that pulmonary fibrosis may develop in workers exposed to aluminum powder, particularly those exposed to fine "pyro" powder. Workers engaged in the manufacture of aluminum oxide have reportedly experienced lung fibrosis accompanied by emphysema, but these effects have not been noted in the recent literature. Pulmonary effects were not noted in paint and ink manufacturing workers exposed to aluminum dust or in workers employed in the grinding of duraluminum propellers with calcined aluminum oxide abrasive. Human pulmonary fibrotic reactions caused specifically by aluminum-containing dusts other than aluminum metal or aluminum oxide have not been reported.

B. Carcinogenicity, Mutagenicity, and Teratogenicity

Carcinogenic effects have not been observed in rats inoculated intrapleurally with single doses of aluminum oxide suspension or aluminum silicate, in hamsters that received weekly intratracheal instillations of aluminum oxide dust for 15 weeks, or in mice fed aluminum potassium sulfate orally for their lifetimes. Inhalation exposure to aluminum chlorhydrate for 12 months did result in lung irritation and granuloma formation in the lungs of rats and guinea pigs. Aluminum hydroxide and aluminum chlorhydrate have been reported to cause granuloma formation in guinea pigs after intradermal or subcutaneous injection. Injection-site sarcomas developed in mice inoculated with aluminum-dextran (Haddow and Horning, 1960), but this so-called "solid state" phenomenon has long been observed with several other metal complexes and inert materials.

Elemental aluminum and aluminum salts tested for mutagenicity in bacterial or mammalian systems failed to show positive effects.

Aluminum chloride has not shown significant teratogenic effects in rats, but is embryotoxic. Decreased spermatozoa counts and lowered

sperm motility have been reported in rats following 6 months' oral exposure to aluminum chloride, and intratesticular injection of aluminum sulfate produced testicular degeneration in the same species.

C. Other Effects

Elevated serum or tissue levels of aluminum have been correlated with toxic encephalopathy (Allfrey *et al.*, 1976; Elliott *et al.*, 1978) and osteomalacia and impaired bone mineralization (Ellis *et al.*, 1979) in dialysis patients, and with an increased prothrombin time in Bayer-process workers exposed to aluminum oxide dust.

Aqueous solutions of aluminum chloride and nitrate have been shown to be damaging to the skin of rabbits, rats, and guinea pigs following topical application, but aluminum chlorhydrate, hydroxide, and sulfate are without effect. The irritant aluminum solutions are more acid than the non-irritant compounds, but the pH of the test solutions does not appear to contribute to the pathological damage observed following application (Lansdown, 1973). Epidermal damage appears instead to be related directly to the deposition of aluminum in the keratin, which is enhanced by the acid solutions.

Intracranial injections of aluminum hydroxide and aluminum hydroxide gels have produced neurofibrillary degeneration and evidence of epilepsy in experimental mammals, but this route of exposure is difficult to correlate with human exposure.

II. DATA FOR COMMERCIALLY IMPORTANT CHEMICALS NOT INDIVIDUALLY PROFILED

Other aluminum compounds that have or may have some commercial importance are presented in Tables 1, 2, and 3; these compounds were not treated in individual profiles. Table 1 lists synonyms, CAS numbers, RTECS numbers, and chemical structures; Table 2 presents chemical and physical properties; Table 3 lists production volumes and uses, and summarizes manufacturing processes, and Table 4 lists manufacturers of aluminum compounds.

All aluminum chemicals considered for selection, regardless of their commercial importance, are listed in the Appendix.

Table 1. Aluminum Compounds

Compound and Synonyms	CAS Number	RTECS Number	Chemical Structure
Aluminum acetate Acetic acid, aluminum salt (2,4-pentanedionato-0,0')-, (OC-6-11)-	139-12-8 (triacetate) 142-03-0 (diacetate, subacetate, basic)	---	$\text{Al}(\text{C}_2\text{H}_3\text{O}_2)_3$ $\text{Al}(\text{OH})(\text{COOCH}_3)_2$
Aluminum acetylacetone Aluminum, tris (2,4-pentanedionato-0,0')-, (OC-6-11)-	13963-57-0	BD2230000	$\text{Al}(\text{C}_5\text{H}_7\text{O}_2)_3$
Aluminum acetylsalicylate Aluminum aspirin Aluminum bis(acetyl- salicylate) bis[2-(Acetoxy)- benzoato-0']hydroxyaluminum Aluminum diacetylsalicylate	147-31-9 29825-08-9 23413-80-1	---	
Aluminum barium oxide Barium aluminum oxide	12004-04-5	---	$\text{BaO} \cdot \text{Al}_2\text{O}_3$
Aluminum benzoate Benzolic acid, aluminum salt	555-32-8	---	$(\text{C}_6\text{H}_5\text{COO})_3\text{Al}^{3+}$
Aluminum borate	11121-16-7	---	$2\text{Al}_2\text{O}_3 \cdot \text{B}_2\text{O}_3$
Aluminum boride Aluminum diboride	12041-50-8	---	AlB_2
Aluminum borohydride Aluminum tetrahydroborate	16962-07-5	---	$\text{Al}(\text{BH}_4)_3$

Table 1. Aluminum Compounds (Cont'd.)

Compound and Synonyms	CAS Number	RTECS Number	Chemical Structure
Aluminum bromide	7727-15-3 (anhydrous) 7784-11-4 (hexahydrate)	BD0350000	AlBr_3
Aluminum sec-butoxide Aluminum sec-butylyate 2-Butanol, aluminum salt	2269-22-9	---	$\text{Al}(\text{OC}_4\text{H}_9)_3$
Aluminum tert-butoxide 2-Methyl-2-propanol, aluminum salt 2-Propanol, 2-methyl-, aluminum salt	556-91-2	---	$\text{Al}(\text{OC}_4\text{H}_9)_3$
Aluminum carbide	1299-86-1	---	Al_4C_3
Aluminum carbonate, basic	1339-92-0	---	variable $\text{Al}_2\text{O}_3 \cdot \text{CO}_2$
Aluminum Chelates:			
1. Aluminum diisopropoxide acetoacetic ester chelate			
2. Aluminum isopropoxide bis- (acetoacetic ester chelate)			
3. Aluminum isopropoxide sterate acetoacetic ester chelate			
4. Aluminum di-sec-butoxide acetoacetic ester chelate			
5. Aluminum monoalkoxy chelates			

Table 1. Aluminum Compounds (Cont'd)

Compound and Synonyms	CAS Number	RTECS Number	Chemical Structure
Aluminum chlorhydroxy allantoinate Alcloxa	1317-25-5	---	$\text{Al}_2(\text{OH})_4\text{ClC}_2\text{H}_4\text{NHC}(=\text{O})\text{NH}_2$
Aluminum chromate(VI) Chromic acid, aluminum salt	54991-58-1	---	$\text{xAl}_2\text{O}_3 \cdot \text{yCrO}_3 \cdot \text{zH}_2\text{O}$ (where $x > y$)
Aluminum dihydroxy allantoinate Aldioxa	5579-81-7	---	$\text{Al}(\text{OH})_2\text{C}_2\text{H}_4\text{NHC}(=\text{O})\text{NH}_2$
Aluminum 2-ethylhexanoate Aluminum octoate α -Ethylicaproic acid, aluminum salt Aluminum ethylhexoate	6028-57-5	---	$[\text{C}_4\text{H}_9\text{CH}(\text{C}_2\text{H}_5)\text{COO}]_3\text{Al}$
Aluminum formate Formic acid, aluminum salts	7360-53-4 (normal) 18748-09-0 (dibasic) 51575-25-8 (monobasic)	---	$\text{Al}(\text{OOCH})_3$ $(\text{HO})_2\text{Al}(\text{OOCH})$ $(\text{HO})\text{Al}(\text{OOCH})_2$
Aluminum formoacetate	61827-57-4	---	$\text{Al}(\text{OH})(\text{OOCH})(\text{OOCCCH}_3)$

Table 1. Aluminum Compounds (Cont'd)

Compound and Synonyms	CAS Number	RTECS Number	Chemical Structure
Aluminum iodide Aluminum isopropylate 2-Propanol, aluminum salt	7784-23-8 (anhydrous) 10090-53-6 (hexahydrate)	---	AlI_3
Aluminum isopropoxide	555-31-7	BD0975000	$\text{Al}[\text{OCH}(\text{CH}_3)_2]_3$
Aluminum magnesium carbonate hydroxide Magnesium aluminum carbonate hydroxide	14492-59-2	---	$\text{AlMg}(\text{CO}_3)(\text{OH})_3$
Aluminum monostearate Aluminum dihydroxy (octadecanoato-0)- Aluminum monobasic stearate	7047-84-9	---	$[\text{CH}_3(\text{CH}_2)_6\text{COO}]_2\text{Al}(\text{OH})_2$
Aluminum naphthenate Naphthenic acid, aluminum salt	---	---	$[\text{CH}_3(\text{CH}_2)_6\text{COO}]_2\text{Al}(\text{OH})_2$
Aluminum nitride	24304-00-5	---	AlN
Aluminum octanoate Octanoic acid, aluminum salt Caprylic acid, aluminum salt	6028-57-5	---	$\text{C}_{16}\text{H}_{31}\text{AlO}_5$
Aluminum oleate Oleic acid, aluminum salt	688-37-9	---	$\text{Al}(\text{C}_{18}\text{H}_{33}\text{O}_2)_3$
Aluminum palmitate Hexadecanoic acid, aluminum salt	555-35-1	---	$[\text{CH}_3(\text{CH}_2)_4\text{COO}]_2\text{Al}(\text{OH})_2$

Table 1. Aluminum Compounds (Cont'd)

Compound and Synonyms	CAS Number	RTECS Number	Chemical Structure
Aluminum phenolsulfonate Aluminum sulfocarboxlate Aluminum 1-phenol-4-sulfonate	1300-35-2	---	$\text{Al}_2(\text{C}_6\text{H}_4\text{OHSO}_3)_6$
Aluminum meta-phosphates Aluminum m-phosphate	13776-88-0	---	$\text{Al}(\text{PO}_3)_3$
Aluminum phosphide	20859-73-8	---	AlP
Aluminum resinate Resin acids, aluminum salt Resin acids, aluminum salt	61789-65-9	---	variable
Aluminum tristearate Octadecanoic acid, aluminum salt	637-12-7	---	$\text{Al}[\text{OOC}(\text{CH}_2)_6\text{CH}_3]_3$
Calcium aluminate Tricalcium aluminate Aluminum calcium oxide	12042-78-3	---	$3\text{CaO}\cdot\text{Al}_2\text{O}_3$
Diethylaluminum ethoxide DEAEO Aluminum, diethylethoxy	1586-92-1	---	$(\text{C}_2\text{H}_5)_2\text{AlOC}_2\text{H}_5$
Diethylaluminum fluoride DEAF Aluminum, diethylfluoro-	367-44-2	---	$(\text{C}_2\text{H}_5)_2\text{AlF}$
Diethylaluminum hydride Aluminum, diethylhydro-	871-27-2	---	$(\text{C}_2\text{H}_5)_2\text{AlH}$

Table 1. Aluminum Compounds (Cont'd)

Compound and Synonyms	CAS Number	RTECS Number	Chemical Structure
Diethylaluminum iodide DEAI Aluminum, diethyliodo-	2040-00-8	---	$(C_2H_5)_2AlI$
Diisobutylaluminum chloride Aluminum, chlorobis (2-methylpropyl)- DIBAC	1779-25-5	---	$[(CH_3)_2CHCH_2]_2AlCl$
Diisobutylaluminum hydride Aluminum, hydrobis (2-methylpropyl)- DIBAL-H	1191-15-7	---	$[(CH_3)_2CHCH_2]_2AlH$
Dimethylaluminum chloride DMAC Aluminum, chlorodimethyl	1184-58-3	---	$(CH_3)_2AlCl$
Ethylaluminum dichloride EADC Aluminum, dichloroethyl-	563-43-9	---	$C_2H_5AlCl_2$
Ethylaluminum sesquichloride EASC Aluminum, trichlorotriethylidio-	12075-68-2	---	$(C_2H_5)_3Al_2Cl_3$
Isobutylaluminum dichloride IBADC Aluminum, dichloro(2- methylpropyl)-	1888-87-5	---	$[(CH_3)_2CHCH_2]AlCl_2$

Table 1. Aluminum Compounds (Cont'd)

Compound and Synonyms	CAS Number	RTECS Number	Chemical Structure
Isobutylaluminum sesquichloride IBASC Aluminum, trichloro- trisobutylidene	---	---	$[(\text{CH}_3)_2\text{CHCH}_2]_3\text{Al}_2\text{Cl}_3$
Isoprenylaluminum Isoprenyl	---	---	---
Lithium aluminate Aluminate, lithium-	12003-67-7	---	LiAlO_2
Lithium aluminum hydride Aluminate(1-), tetrahydro-, lithium	16853-85-3	BD0100000	LiAlH_4
Lithium alanate	---	---	---
Lithium aluminohydride	---	---	---
Magnesium aluminum silicate Aluminosilicic acid, magnesium salt Aluminum dimagnesium silicate	1327-43-1	---	$2\text{MgO} \cdot \text{Al}_2\text{O}_3 \cdot \text{SiO}_2 \cdot \text{H}_2\text{O}$ (variable)
Methylaluminum sesquichloride MASC Aluminum, trichloro- trimethylidene	12541-85-7	---	$(\text{CH}_3)_3\text{Al}_2\text{Cl}_3$
Sodium aluminum diethyl dihydride OMH-1 Reducing Agent	---	---	---
Tri-n-decyaluminum Aluminum, tri-n-decyl Tri-1-decyaluminum	1726-66-5	---	$(\text{C}_{10}\text{H}_{21})_3\text{Al}$

Table 1. Aluminum Compounds (Cont'd)

Compound and Synonyms	CAS Number	RTECS Number	Chemical Structure
Trimethylaluminum Al ₃ Aluminum, trimethyl-	75-24-1	---	(CH ₃) ₃ Al
Tri-2-methylpentylaluminum Triisohexylaluminum	---	---	(C ₆ H ₁₃) ₃ Al
Tripropylaluminum Aluminum, tripropyl- Tri-n-propylaluminum	102-67-0	---	(C ₃ H ₇) ₃ Al

Table 2. Aluminum Compounds: Chemical and Physical Properties

Compound	Description	Boiling Point (°C)	Melting Point (°C)	Vapor Pressure	Water Solubility ^a	Specific Gravity	Molecular Weight
Aluminum acetate (tri-)	white solid	--- ^b	decomp.	---	very sl. sol.	---	204.12
Aluminum acetylacetonate	colorless solid	315	189	---	insol.	1.27	324.31
Aluminum acetylalicylate	white to off-white powder or granules	---	decomp.	---	nearly insol.	---	402.30
Aluminum barium oxide	solid	---	---	---	---	---	255.29
Aluminum benzoate	crystalline powder	---	---	---	very sl. sol.	---	390.30
Aluminum borate	white granular powder	---	1050	---	nearly insol.	---	273.56
Aluminum boride	copper-red solid	---	975 decomp.	---	---	3.19	46.60
Aluminum borohydride	volatile pyrophoric liquid	41.5	-64.5	---	decomp.	---	71.53
Aluminum bromide (anhydrous)	white to yellow solid	265	97.5	---	sol. with violence	3.01	266.72
Aluminum bromide (hexahydrate)	white to yellow solid	decomposes	93	---	sol.	2.54	374.80
Aluminum sec-butoxide	yellow to white crystals	180 (0.4 mm Hg)	88-101.5	---	decomp.	0.9671	246.33
Aluminum <u>tert</u> -butoxide	powder	---	sublimes (180°C)	---	---	---	246.33
Aluminum carbide	yellow crystals or powder	---	2100	---	decomp.	2.36	143.91
Aluminum carbonate, basic	white solid	---	---	---	insol.	---	variable
Aluminum chlorohydrate	white to off-white powder	---	---	---	insol.	---	---
Aluminum chlorinate	yellow amorphous salt	---	---	---	---	---	variable
Aluminum dihydroxy allantoinate	white to off-white powder	---	---	---	insol.	---	---
Aluminum 2-ethylhexanoate	solid	---	---	---	sl. sol. (cold)	---	456.50
Aluminum formate (normal)	white crystalline powder	---	---	---	251 sol. (boiling)	---	162.03
Aluminum formoacetate	white powder	---	---	---	sol.	---	148.05
Aluminum iodide (anhydrous)	brownish-black pieces commercially	302-305	191	---	sol.	3.9825	407.73

Table 2. Aluminum Compounds: Chemical and Physical Properties (Continued)

Compound	Description	Boiling Point (°C)	Melting Point (°C)	Vapor Pressure	Water Solubility ^a	Specific Gravity	Molecular Weight
Aluminum isoproxide	white solid	138-148 (10 mm Hg)	128-133	---	decomp.	1.035	204-25
Aluminum magnesium carbonate hydroxide	solid	---	---	---	---	---	130.31
Aluminum monostearate	fine white to yellowish-white powder	---	155	---	insol.	1.020	314.5
Aluminum naphthenate	yellow substance, rubbery consistency	---	---	---	---	---	---
Aluminum nitride	bluish-white crystals	2000 sublimes	>2200 (in N ₂)	---	decomp.	3.26	40.99
Aluminum octanoate	solid	---	---	---	---	---	474.4
Aluminum oleate	yellowish-white viscous mass	---	---	---	insol.	---	871.36
Aluminum palmitate	white powder	---	200	---	insol.	1.072	310.41
Aluminum phenolsulfonate	reddish-white powder	---	---	---	sol.	---	546.49
Aluminum <u>meta</u> -phosphate	white powder	---	1537	---	insol.	2.779	263.90
Aluminum phosphide	dark gray to dark yellow crystals	>1000	---	---	decomp.	2.85	57.96
Aluminum resinate	brown solid	---	---	---	insol.	---	variable
Aluminum tri stearate	white powder	---	115	---	insol.	1.070	877.4
Calcium aluminate	white crystals or powder	---	decomposes (1535°C)	---	insol.	3.038 (25°C)	270.20
Diethylaluminum ethoxide	---	---	---	---	---	---	130.16
Diethylaluminum fluoride	colorless liquid	90-100 (1-2 mm Hg)	---	---	---	104.11	---
Diethylaluminum hydride	colorless pyrophoric liquid	55-56 (10 ⁻³ to 10 ⁻² mm Hg)	---	---	decomp. (20°C)	0.808	66.11
Diethylaluminum iodide	colorless liquid	262	---	---	---	1.525	212.00
Disobutylaluminum chloride	colorless liquid	152 (10 mm Hg)	-39.5	---	decomp.	0.905	176.66

Table 2. Aluminum Compounds: Chemical and Physical Properties (Continued)

Compound	Description	Boiling Point (°C) or (°F)	Melting Point (°C)	Vapor Pressure	Water Solubility ^a	Specific Gravity	Molecular Weight
Diisobutylaluminum hydride	colorless pyrophoric liquid	105 (0.2 mm Hg)	-80	---	decomp.	0.799	142.22
Dimethylaluminum chloride	colorless liquid	126-127	-21 to -45	---	---	1.00	92.50
Ethylaluminum dichloride	clear, yellow pyrophoric liquid	194 (extrapolated)	32	---	decomp.	1.222	126.94
Ethylaluminum sesquichloride	clear, yellow, pyrophoric liquid	204	-50	---	decomp.	1.08	247.50
Isobutylaluminum dichloride	liquid	118 (10 mm Hg)	-29.8	---	---	1.1218	155.00
Isobutylaluminum sesquichloride	---	---	---	---	---	---	331.66
Isopropyaluminum	white powder	66	1900-2000	---	Insol.	2.55 (25°C)	65.92
Lithium aluminum hydride	white crystalline solid	decomposes (125°C)	---	decomp.	0.917	37.95	
Magnesium aluminum silicate	solid	---	---	---	---	---	variable
Methylaluminum sesquichloride	colorless liquid	103.7	22.8	---	decomp.	1.1629	205.42
Sodium aluminum diethyl dihydride	25% solution in aromatic	60	---	---	0.87825	---	
Tri-n-decylaluminum	---	---	---	---	---	---	450.82
Triethylaluminum	colorless pyrophoric liquid	126	10, 15.4	---	---	0.752	72.09
Tri-2-methylpentylaluminum	---	---	---	---	---	---	282.49
Tripropylaluminum	colorless pyrophoric liquid	110 (13 mm Hg)	-84	---	---	0.820	156.25

^a decomp. = decomposes; Insol. = insoluble; sl. sol. = slightly soluble; sol. = soluble.

^b " " = information not readily available.

Table 3. Production Volumes, Uses, and Manufacturing Processes of Various Aluminum Compounds (Cont'd.)

Compound	Production	Uses	Manufacturing Processes
Aluminum acetates	1977: >0.1-1.0 million lb (U.S. EPA, 1980) 1958: 0.222 million lb (Stewart, 1963)	Water-proofing cloth; mordant in textile dyeing; preparation of lakes; embalming fluids; calico printing; treatment of dermatitis (Hawley, 1977).	Reaction of aluminum salt with acetic acid or acetic anhydride and precipitating to obtain solid. An aqueous solution--Burrow's solution--is also available (Stewart, 1963).
Aluminum acetylacetone	Not available	Deposition of aluminum; catalyst (Hawley, 1977); chelating agent.	Not available.
Aluminum acetylacetoate	Not available	In medicine as an analgesic and antipyretic (Hawley, 1977; <u>The Merck Index</u> , 1976).	Reaction of aluminum hydroxide with acetylacetoic acid (Hawley, 1977).
Aluminum ammonium sulfate	1977: 1-10 million lb (U.S. EPA, 1980)	Medicines; mordant in dyeing, water purification; dressing of skins (Barragh, 1970); sizing paper; ingredient in baking powder; food additive (Hawley, 1977).	By crystallization from a mixture of ammonium and aluminum sulfates or by treating aluminum sulfate and H_2SO_4 with MgI_2 (Darragh, 1978).
Aluminum barium oxide	1977: 1-11 thousand lb (U.S. EPA, 1980)	Catalysts; pigments (various patent literature).	By-product of barium metal production via barium oxide plus aluminum powder (Kunesh, 1978).
Aluminum benzoate	1977: >1000 lb (U.S. EPA, 1980)	As an additive to prevent flocculation of copper phthalocyanine pigment (Hoser, 1968); also, in gelling of hydrocarbons.	Not available.
Aluminum borate	Not available	Catalyst for polymerizations; in glass and ceramic manufacturing (Hawley, 1977; <u>The Merck Index</u> , 1976).	Interaction of Al(OH)_3 and boric acid (Hawley, 1977).
Aluminum boride	1977: 0.1-1.0 million lb (U.S. EPA, 1980)	Reactor cores and cutting tools (Lawler, 1977); nuclear shielding (Hawley, 1977).	Reduction of mixtures of metallic and boron oxides with aluminum followed by purification (Bentorf, 1978).
Aluminum borohydride	Not available	Reducing agent; preparation of borohydrides of heavy metals; fuel for jet engines and rockets (<u>The Merck Index</u> , 1976).	(1) Reaction of sodium borohydride and AlCl_3 in the presence of tributyl phosphate. (2) Reaction of triethyl aluminum and diborane (Hawley, 1977).
Aluminum bromide	Not available	Irradiation, alkylation, and isomerization catalyst. In organic syntheses (Hawley, 1977).	Anhydrous--by passing Br_2 over heated Al (Hawley);--reaction of tBuR with Al(OH)_3 (Hawley, 1977).

Table 3. Production Volumes, Uses, and Manufacturing Processes of Various Aluminum Compounds (Cont'd.)

Compound	Production	Production Basis ^a	Manufacturing Processes
Aluminum <u>sec</u> -butoxide	Not available	Intermediate (Bratzinger and Josten, 1978).	Not available.
Aluminum <u>tart</u> -butoxide	1977: under 1000 lb (U.S. EPA, 1980)	Reagent for oxidation of alcohols to ketones; in destabilization of ortho-esters (The Merck Index, 1976).	Prepared from aluminum <u>tert</u> -butoxide and mercuric chloride (The Merck Index, 1976).
Aluminum carbide	Not available	Generating methane; catalyst; metallurgy; drying agent; reducing metal oxides; manufacturing aluminum nitride (Hawley, 1977); The Merck Index, 1976).	Heating Al_2O_3 and coke in an electric furnace (Hawley, 1977).
Aluminum carbonate, basic	Not available	Mild astringent and styptic (Hawley, 1977).	Not available.
Aluminum chelates	Not available	Curing of epoxies, phenol, castor oil alkyls and high molecular weight polymers which are hydroxyl or carboxyl bearing; tertile hydrophobing in solvent-based systems; adhesion promotion (Hawley, 1977).	Not available.
Aluminum chlorhydrate	1977: ca. 11-60 million lb (U.S. EPA, 1980)	Antiperspirant deodorants (Isacoff, 1979); also, water purification and sewage treatment (Hawley, 1977).	Prepared by reacting hydrochloric acid with aluminum or salts (Marsteller, 1978).
Aluminum chlorhydroxy allantoinate	Not available	Used in antiperspirant deodorants, after shave lotions, oils and astringent preparations (Hawley, 1970).	Derived from allantoin (Mecca, 1970).
Aluminum chromate	1977: 0-1000 lb (U.S. EPA, 1980)	Ceramic composition (Hartford, 1979).	Precipitation of $AlCl_3$ with sodium chromate (Hartford and Copson, 1964).
Aluminum dihydroxy allantoinate	Not available	Used in diaper rash creams, lotions, compressed powder, talcuses, etc. (Hawley, 1970).	Derived from allantoin by dissolving in NaOH and treating with aluminum chloride (Warner, 1978).
Aluminum distearate	1978: 1.694 million lb (USITC, 1979)	Used and extensile as an agent to improve consistency of paints and varnishes; preparation of cosmetic gels and powders; gasoline gelling agent (Warner, 1978); water repellent; in cement production (Hawley, 1977).	Reaction of sodium stearate with aqueous aluminum sulfate or chloride (Warner, 1978); the precipitate is filtered, washed, and dried.
Aluminum 2- ethylhexanoate		See aluminum octanoate	Derived from 2-ethylhexanoic acid (Hawley, 1977).

Table 3. Production Volumes, Uses, and Manufacturing Processes of Various Aluminum Compounds (Continued)

Compound	Production	Uses	Manufacturing Processes
Aluminum fluoride	1978: 182 million lb (Gall, 1980)	Principal use as a make-up ingredient in the molten electrolyte of aluminum reduction cell and in the electrolytic process for refining aluminum; lower volume uses include incorporation into glass, glazes and enamels, and ceramics, in fluxes, in catalysts, and in production of aluminum silicate fiber (Gall, 1980).	Reaction of hydrofluoric acid or HF gas with alumina hydrate (Gall, 1980).
Aluminum formate	<1 million lb annually (SRC estimate)	Principal use is waterproofing formulations for textiles and other materials; dyeing sorbant; fabric printing (Warner, 1978).	Reaction of 98% formic acid with an aluminum salt (Warner, 1978).
Aluminum formoacetate	Not available	In textile water repellents (Hawley, 1977).	Corroding Al metal with aqueous acetic and formic acids containing stabilizers. The solution is filtered and spray-dried (Toubes, 1963).
Aluminum iodide	1977: <2000 lb (U.S. EPA, 1980)	Catalyst in organic reactions (The Merck Index, 1976; Martindale, 1978).	Heating Al and iodine in a sealed tube (Hawley, 1977).
Aluminum isopropoxide	1977: >0.1-1.0 million lb (U.S. EPA, 1980)	Selective reducing agent for aldehydes and ketones; intermediate for making aluminum salt and antiperspirants; paint additive for removing water; water resistance (Anderson and Thomas, 1963).	Reaction of aluminum and isopropyl alcohol in a distillation tower. Isopropoxide is separated and purified via distillation (Bretzinger and Josten, 1978).
Aluminum magnesium carbonate hydroxide	1977: 0.1-1 million lb	Antacid (The Merck Index, 1976); in pigments and ceramics.	Not available.
Aluminum monostearate	1974: 0.425 million lb (USITC, 1976)	Gelling agent in medicines; preparation of synthetic greases; in water repellent formulations; preparation of fiber lubricants (Warner, 1978).	Treating an aqueous solution of chlorodihydry aluminum with a sodium stearate solution (Warner, 1978).
Aluminum naphthenate	Not available	Paint and varnish drier and bodying agent; detergent in lube oils (Hawley, 1977).	Precipitate is filtered, washed, and dried.
Aluminum nitride	1977 Import: 0-3000 lb (U.S. EPA, 1980)	In semiconductor electronics; in steel manufacturing (The Merck Index, 1976).	Reaction of an aluminum salt with an alkali naphthenate in aqueous solution (Hawley, 1977).
		Arco high-purity aluminum electrodes in a nitrogen atmosphere (Anderson and Haapin, 1978).	

Table 3. Production Volumes, Uses, and Manufacturing Processes of Various Aluminum Compounds (Continued)

Compound	Production	Uses	Manufacturing Processes
Aluminum octanoate	1977: >0.11-1.1 million lb 1977: 1-10 thousand lb (import) (U.S. EPA, 1980)	Oil repellent (Warner, 1978).	Reaction of sodium 2-ethylhexanoate with aluminum sulfate (Warner, 1978).
Aluminum oleate	Not available	Waterproofing; paint drier; lube oil thickener; medicines; metal lacquer, plastic lubricant; food additive (Hawley, 1977).	Heating aluminum hydroxides, water, and oleic acid; then filtering and drying (Hawley, 1977).
Aluminum palmitate	<1 million lb annually (SRC Estimate)	Oil repellent (Warner, 1978); waterproofing; thickening lubricating oils, paints, and inks; production of high gloss-on leather and paper; varnish component; food additive (Hawley, 1977).	Refluxing an isopropanol solution of aluminum isopropoxide and palmitic acid (Warner, 1978).
Aluminum phenol-sulfonate	Not available	Medicines (Hawley, 1977).	Not available.
Aluminum meta-phosphate	1977: 10-100 thousand lb (U.S. EPA, 1980)	The meta-phosphate has uses as a constituent of glasses, enamels and glasses, and high temperature insulating cement (Hawley, 1977).	Not available.
Aluminum phosphide	1977: 0.1-1.0 million lb (U.S. EPA, 1980)	Major use--fumigant; other--insecticide, source of phosphine, in semiconductor research (Hawley, 1977; The Merck Index, 1976).	Prepared from red phosphorus and aluminum powder (The Merck Index, 1976).
Aluminum resinate	1977: >0.1-1.0 million lb (U.S. EPA, 1980)	Drier for varnishes (Hawley, 1977).	Heating soluble aluminum salts and resin (Hawley, 1977).
Aluminum tristearate	1977: 297 thousand lb (USITC, 1978)	Oil repellent agent in cosmetics, pharmaceuticals, paints, greases, lubricants and petroleum fractions; dye improver; waterproofing agents and porous materials (Warner, 1978); additive for chewing gums (Hawley, 1977).	Reaction of aluminum isopropoxide and stearic acid in anhydrous pyridine; the tristearate precipitates as a pyridine complex and the pyridine is removed under vacuum (Warner, 1978).
Calcium aluminate	1977: 1-10 thousand lb (U.S. EPA, 1980)	In refractory cements (Hawley, 1977)	Not available.

Table 3. Production Volumes, Uses, and Manufacturing Processes of Various Aluminum Compounds (Continued)

Compound	Production	Uses	Manufacturing Processes
Diethylaluminum ethoxide	Not available	Catalyst in manufacturing of polyolefins and polydiolefins.	Not available.
Diethylaluminum fluoride	Not available	Catalyst.	Not available.
Diethylaluminum hydride	Not available	Catalyst reducing agent (Hawley, 1977).	Action of ethylene and hydrogen on aluminum (Hawley, 1977).
Diethylaluminum iodide	Not available	Catalyst	Not available.
Diisobutylaluminum chloride	1974: 3.5 million lb for all isobutyl aluminum compounds (Coscalett and Gerry, 1976)	Polymerization co-catalysts in the manufacture of polybutadiene, polyisoprene, and polypropylene, 70%; alpha-olefin manufacture and transalkylations, 30% (Coscalett and Gerry, 1976).	Action of high purity isobutylene, hydrogen, and aluminum (Coscalett and Gerry, 1976).
Diisobutylaluminum hydride	1974: 3.5 million lb for all isobutyl aluminum compounds (Coscalett and Gerry, 1976)	Polymerization co-catalysts in the manufacture of polybutadiene, polyisoprene, and polypropylene, 70%; alpha-olefin manufacture and transalkylations, 30% (Coscalett and Gerry, 1976).	Action of high purity isobutylene, hydrogen, and aluminum (Coscalett and Gerry, 1976).
Dimethylaluminum chloride	Not available	Polymerization catalyst.	Prepared from methylaluminum sesquichloride (Anderson, 1963).
Ethylaluminum dichloride	Not available	Catalyst for olefin polymerization, aromatic hydrogenation; intermediate (Hawley, 1977).	Reaction of aluminum chloride with ethylaluminum sesquichloride (Hawley, 1977).
Ethylaluminum sesquichloride	Not available	Catalyst for olefin polymerization, aromatic hydrogenation; intermediate (Hawley, 1977).	Reaction of ethylchloride and aluminum (Hawley, 1977).
Isobutylaluminum dichloride	Not available	Catalyst.	Not available.
Isobutylaluminum sesquichloride	Not available	Catalyst; organoaluminum synthesis	Not available.
Isoprenylaluminum	Not available	Catalyst.	Not available.
Lithium aluminate	Not available	As a flux in high-refractory procelain enamels (Hawley, 1977).	Not available.

Table 3. Production Volumes, Uses, and Manufacturing Processes of Various Aluminum Compounds (Continued)

Compound	Production	Uses	Manufacturing Processes
Lithium aluminum hydride	1977 Import: 1-10 thousand lb (U.S. EPA, 1980)	Reducing agent for over 60 different functional groups, especially for pharmaceutical, perfume, and fine organic chemicals; converts esters, aldehydes, and ketones to alcohols; and nitriles to amines; sources of hydrogen; propellant; catalyst in polymerizations (Hawley, 1977).	Addition of a diethyl ether solution of AlCl_3 to a slurry of lithium hydride (Sullivan and Wade, 1980).
Magnesium aluminum silicate	1977: 1-10 thousand lb (U.S. EPA, 1980)	Antacid (The Merck Index, 1976); in pigments and ceramics.	Not available.
Methylaluminum sesquichloride	Not available	Catalyst (Hawley, 1977); organoaluminum synthesis.	Prepared from methyl chloride and aluminum (Anderson, 1963).
Sodium aluminum diethyl dihydride	Not available	Reducing agent.	Not available.
Tri- α -decyaluminum	Not available	Catalyst; organic synthesis.	Not available.
Trimethylaluminum	Not available	Catalyst intermediate for polymerization of olefins, especially ethylene; propellant fuel; production of alpha-olefins and long chain alcohols; gas plating of aluminum (Hawley, 1977).	By sodium reduction of diethyl aluminum chloride (Hawley, 1977).
Tri-2-methyl pentyl-aluminum	Not available	Catalyst for polyolefins (Hawley, 1977).	Reaction of 2-methylpentane and isobutylaluminum (Hawley, 1977).
Tripropylaluminum	Not available	Polyolefin catalyst (Hawley, 1977).	Reaction of propylene and isobutyl-aluminum (Hawley, 1977).

S E C T I O N T H R E E

Table 4. Manufacturers of Aluminum Compounds
(SRI International, 1980; U.S. EPA, 1980)

Compound	Manufacturers
Aluminum acetate	American Cyanamid Co. (Woodbridge, NJ) Union Carbide Corp. (Niagara Falls, NY) CP Chemicals (Sewaren, NJ)
Aluminum acetylacetone	MacKenzie Chem. Works (Bush, LA) Shepherd Chem. Co. (Cincinnati, OH) Chattem Chem. (Chattanooga, TN)
Aluminum acetylsalicylate	---
Aluminum barium oxide	Barium and Chemicals (Steubenville, OH) Great Western Inorganics (Golden, CO)
Aluminum benzoate	Exxon (Pittsburg, PA) Harmon Colors Corp. (Hawthorne, NJ) Chemetron Pigments (Holland, MI) DuPont (Newark, NJ)
Aluminum boride	Shieldalloy Corp. (Newfield, NJ) Cabot Corp. (Boyertown, PA) Thickol Corp. (Danvers, MA)
Aluminum borate	---
Aluminum borohydride	---
Aluminum bromide	Boulder Sci. (Boulder, CO) Halocarbon Products (Hackensack, NJ)
Aluminum <u>sec</u> -butoxide	Chattem Chem. (Chattanooga, TN)
Aluminum <u>tert</u> -butoxide	Columbia Organics (Columbia, SC)
Aluminum carbide	---
Aluminum carbonate	Revlon, Reheis Chem. (Berkeley Hgts., NJ)
Aluminum chelates	Chattem Chem. (Chattanooga, TN)
Aluminum chlorhydroxy allantionate	Carroll Prod., Schuylkill Chem. (Philadelphia, PA)
Aluminum chromate	Sermetel Inc. (Limerick, PA)
Aluminum dihydroxy allantoinate	Carroll Prod., Schuylkill Chem. (Philadelphia, PA)
Aluminum formate	Eastern Color and Chem. (Providence, RI) Union Carbide Corp. (Niagara Falls, NY) American Cyanamid (Woodbridge, NJ)
Aluminum formoacetate	---
Aluminum iodide	Deepwater Chem. (Compton, CA)
Aluminum isopropoxide	Chattem Chem. (Chattanooga, TN) Joseph Ayers Inc. (Bethlehem, PA)

Table 4. Manufacturers of Aluminum Compounds (Cont'd.)
(SRI International, 1980; U.S. EPA, 1980)

Compound	Manufacturers
Aluminum magnesium carbonate hydroxide	Reheis Chem. (Berkeley Heights, NJ)
Aluminum monostearate	Chattem Chem. (Chattanooga, TN; Fort Worth, TX) Diamond Shamrock (Cedartown, GA) Norac, Mathe Div. (Lodi, NJ) Smith Chem. and Color (Jamaica, NY) Tenneco (Piscataway, NJ) Witco Chem. (Clearing, IL; Lynwood, CA; Perth Amboy, NJ) Synthetic Products (Cleveland, OH)
Aluminum naphthenate	The Shepherd Chem. Co. (Cincinnati, OH)
Aluminum nitride	Thiokol, Ventron-Alfa (Danvers, MA)
Aluminum octanoate	Norac, Mathe Div. (Lodi, NJ) Troy Chem. Co. (Newark, NJ) Diamond Shamrock (Cedartown, GA) Witco Chem. (Clearing, IL; Lynwood, CA)
Aluminum 2-ethylhexanoate	Witco Chem. (Clearing, IL; Lynwood, CA) Diamond Shamrock (Cedartown, GA) Norac, Mathe Div. (Lodi, NJ)
Aluminum palmitate	Diamond Shamrock (Cedartown, GA) Synthetic Products (Cleveland, OH)
Aluminum phenolsulfonate	Salsbury Lab (Charles City, IA)
Aluminum oleate	—
Aluminum <u>meta</u> -phosphate	Chicago Heights Plant (Chicago Hgts., IL)
Aluminum resinate	Eastman Kodak (Rochester, NY) Hercules (Glen Falls, NY)
Aluminum tristearate	CPC, Penick (Newark, NJ) Dart Ind., Synthetic Prod. (Cleveland, OH) Diamond Shamrock (Cedartown, OH) Tenneco (Piscataway, NJ) Witco Chem. (Clearing, IL; Lynwood, CA; Perth Amboy, NJ) Eastman Kodak (Rochester, NY) H and S Chem. (Wallington, NJ) Barrier Ind. (Port Jervis, NY) Charles S. Tanner Co. (Greenville, SC) Norac, Mathe Div. (Lodi, NJ) Chattem Chem. (Chattanooga, TN)
Calcium aluminate	United Catalysts (Louisville, KY)
Diethylaluminum ethoxide	Texas Alkyls (Deer Park, TX) Ethyl Corp.

Table 4. Manufacturers of Aluminum Compounds (Cont'd.)
(SRI International, 1980; U.S. EPA, 1980)

Compound	Manufacturers
Diethylaluminum fluoride	Texas Alkyls (Deer Park, TX)
Diethylaluminum hydride	Texas Alkyls (Deer Park, TX) Ethyl Corp.
Diethylaluminum iodide	Texas Alkyls (Deer Park, TX) Ethyl Corp. (Orangeburg, SC)
Diisobutylaluminum chloride	Texas Alkyls (Deer Park, TX) Ethyl Corp. (Orangeburg, SC)
Diisobutylaluminum hydride	Texas Alkyls (Deer Park, TX) Ethyl Corp. (Orangeburg, SC; Pasadena, TX)
Dimethylaluminum chloride	Texas Alkyls (Deer Park, TX) Ethyl Corp.
Ethylaluminum dichloride	Texas Alkyls (Deer Park, TX) Ethyl Corp. (Orangeburg, SC)
Ethylaluminum sesquichloride	Texas Alkyls (Deer Park, TX) Ethyl Corp. (Orangeburg, SC) Hercules Inc. (Lake Charles, LA)
Isobutylaluminum dichloride	Texas Alkyls (Deer Park, TX) Ethyl Corp. (Orangeburg, SC)
Isobutylaluminum sesquichloride	Texas Alkyls (Deer Park, TX) Ethyl Corp. (Orangeburg, SC; Pasadena, TX)
Isoprenylaluminum	Texas Alkyls (Deer Park, TX)
Lithium aluminate	Lithium Corp. of America (Bessemer City, NC)
Lithium aluminum hydride	Belmont Metals (Brooklyn, NY) Thiokol Corp-Ventron (Beverly, MA)
Magnesium aluminum silicate	NL Industries (Perth Amboy, NJ) Mason Color and Chem. (East Liverpool, OH)
Methylaluminum sesquichloride	Texas Alkyls (Deer Park, TX) Ethyl Corp. (Orangeburg, SC; Pasadena, TX)
Sodium aluminum diethyl dihydride	Ethyl Corp.
Tri- <i>n</i> -decylaluminum	Texas Alkyls (Deer Park, TX)
Trimethylaluminum	Texas Alkyls (Deer Park, TX) Ethyl Corp. (Orangeburg, SC)
Tri-2-methylpentylaluminum	Texas Alkyls (Deer Park, TX)
Tri- <i>n</i> -propylaluminum	Texas Alkyls (Deer Park, TX) Ethyl Corp.

III. INFORMATION PROFILES

A. ALUMINUM METAL

1. Chemical Name: Aluminum (metal)
2. Chemical Structure: Al
3. Synonyms: Aluminum
Pigment metal I
C.I. 77000
4. Chemical Abstracts Service (CAS) Number: 7429-90-5
5. Registry of Toxic Effects of Chemical Substances (RTECS) Number:
BDO330000
6. Chemical and Physical Properties:

Description: silvery white crystalline solid

Molecular Weight: 26.9815

Boiling Point: 2450°C

Melting Point: 660°C

Vapor Pressure: 1 mm Hg (1284°C)

Solubility: insoluble in water, nitric acid, hot acetic acid
soluble in sulfuric and, hydrochloric acids, alkalis

Specific Gravity: 2.708

Stability: fine powders form flammable and explosive mixtures with air; metal surfaces gradually oxidize in moist air; corrodes rapidly in contact with other metals because it is strongly electropositive

7. Production

U.S. production (manufacture) of primary aluminum metal and secondary recovery aluminum has been as follows (Anderson and Haupin, 1978; Stamper and Kurtz, 1976; PEDCo Environmental, 1978):

<u>Year</u>	<u>Primary Production</u> (thousand short tons)	<u>Secondary Recovery</u> (thousand short tons)
1976	4250	1155
1975	3879	---
1974	4903	304
1973	4529	265
1972	4122	250
1965	2754	205
1960	2015	---

U.S. demand for aluminum metal is projected to increase at an annual average growth rate of 5.1% until 1985, based upon 1973 figures (Stamper and Kurtz, 1976).

Data available from the U.S. EPA (1980) regarding producers of aluminum metal and production volumes are presented in Table 5.

8. Use

The distribution of end-use shipment of aluminum products in 1976 was the following (PEDCo Environmental, 1978):

	<u>Quantity</u> (thousand short tons)	<u>Percentage</u>
Building and construction	1478	23.2
Transportation	1227	19.2
Containers and packaging	1284	20.2
Electrical	664	10.4
Consumer durables	449	8.1
Machinery and equipment	452	7.1
Exports	421	6.6
Other	328	5.2
	<hr/> 6303	

Other uses, as mentioned above, include non-recoverable applications of aluminum (Stamper and Kurtz, 1976). Examples are the use of aluminum powders and flakes in decorative and insulating paints, in explosives, in pyrotechnics, and in rocket fuels.

Many grades of aluminum powder are available ranging from coarse granules to the finest pyro dusts. Inhalation potential to the user increases

Table 5. Producers of Aluminum Metal and Production Ranges
(U.S. EPA, 1980)

Producer and Location	Type of Production	1977 Production Range (CAS No. 7429-90-5)
Foote Mineral Co. Cambridge, OH New Haven, WV	Manufacturer Manufacturer	0.1-1.0 million lb zero
Engelhard Industries Newark, NJ	Manufacturer	10-100 thousand lb
Eastalco Aluminum Co. Frederick, MD	Manufacturer	100-500 million lb
Haven Chemical Philadelphia, PA	Manufacturer	confidential
Intalco Aluminum Corp. Ferndale, WA	Manufacturer	100-500 million lb
Consolidated Aluminum Corp. Lake Charles, LA Waverly, TN	Manufacturer Manufacturer	50-100 million lb 100-500 million lb
Valumet Processing Corp. Sayreville, NJ	Manufacturer	10-100 thousand lb
Ormet Corp. Hannibal, OH	Manufacturer	100-500 million lb
Aluminum Company of America Palestine, TX Alcoa, TN Wenatchee, WA Newburgh, IN Vancouver, WA Rockdale, TX Massena, NY Badin, NC Point Comfort, TX	Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer	1-10 million lb confidential confidential confidential confidential confidential confidential confidential confidential
ABC Compounding Co. Atlanta, GA	Manufacturer	10-100 thousand lb
The Anaconda Co. Columbia Falls, MT Near Sebree, KY	Manufacturer Manufacturer	100-500 million lb 100-500 million lb
Martin Marietta, Aluminum The Dalles, OR Goldendale, WA	Manufacturer Manufacturer	100-500 million lb 100-500 million lb

Table 5. Producers of Aluminum Metal and Production Ranges
(U.S. EPA, 1980) (Cont'd.)

Producer and Location	Type of Production	1977 Production Range (CAS No. 7429-90-5)
National Aluminum Hawesville, KY	Manufacturer	100-500 million lb
Noranda Aluminum New Madrid, MO	Manufacturer	100-500 million lb
National Southwire Aluminum Co. Hawesville, KY	Manufacturer	100-500 million lb
Revere Aluminum Reduction Scottsboro, AL	Manufacturer	100-500 million lb
Kaiser Aluminum Ravenswood, WA Tacoma, WA Chalmette, LA Spokane, WA Oakland, CA	Manufacturer Manufacturer Manufacturer Manufacturer Importer	100-500 million lb 100-500 million lb 100-500 million lb 100-500 million lb over 1 billion lb
Reynolds Metals Co. Sheffield, AL Massena, NY Troutdale, OR Arkadelphia, AR Gregory, TX Longview, WA Malvern, AR	Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer	100-500 million lb 100-500 million lb 100-500 million lb 100-500 million lb zero 100-500 million lb 100-500 million lb
Republic Foil Salisbury, NC	Manufacturer	10-50 million lb
Ross Aluminum Foundries Sidney, OH	Manufacturer	0.1-1.0 million lb
United Minerals and Chemical NYC, NY	Importer	0.1-1.0 million lb
Cominco American Inc. Spokane, WA	Importer	10-100 thousand lb
Henley and Co. NYC, NY	Importer	confidential
Intsel Corp. NYC, NY	Importer	10-50 million lb
Revelli Chemicals Yonkers, NY	Importer	0.1-1.0 million lb

Table 5. Producers of Aluminum Metal and Production Ranges
(U.S. EPA, 1980) (Cont'd.)

Producer and Location	Type of Production	1977 Production Range (CAS No. 7429-90-5)
Dow Chemical Midland, MI	Importer	50-100 million lb
IMC Libertyville, IL	Importer	10-100 thousand lb
BASF Wyandotte Corp. Parsippany, NJ	Importer	1-10 thousand lb
Asarco Inc. Tacoma, WA NYC, NY	Importer Importer	1-10 million lb 1-10 million lb
Alusuisse Metals Inc. Fort Lee, NJ	Importer	confidential
HC Starck Inc. NYC, NY	Importer	zero
F.W. Myers and Co. Rouses Pt., NY	Importer/ Small Manufacturer	0-1000 lb
Philipp Brothers NYC, NY	Importer	confidential
Magnesium Elektron Inc. Flemington, NJ	Importer	confidential
Hummel Chemical Co. South Plainfield, NJ	Importer/ Small Manufacturer	1-10 thousand lb
General Motors Corp. Detroit, MI	Importer	0.2-2.0 million lb
Xerox Corp. Rochester, NY	Importer	10-100 thousand lb
Degussa Corp. Teterboro, NJ	Importer	1-10 thousand lb
Indussa, Div. of African Metals NYC, NY	Importer	0-1000 thousand lb
Kawasaki Beryllco Ind. Reading, PA	Importer	1-10 million lb
Alcan Aluminum Corp. Cleveland, OH	Importer	100-500 million lb
Amalgamet Inc. NYC, NY	Importer	zero

with a decrease in aluminum particle size. The pyro dusts, which may be less than 400 mesh in particle size, are used primarily in explosives (military) and civilian fireworks. The most used and most reactive pyro powder for fireworks is made by charring a special lacquered paper backing on aluminum foil and then powdering the foil in a stamp mill; the product contains a certain percentage of carbon matter, which gives the powder a blackish appearance. This grade of pyro powder has been obtained from Germany in the past but has become available domestically in recent years. The fireworks industry consumes on the order of several thousands of tons of pyro powder per year (SRC estimate). Fireworkers are exposed directly to the airborn dust during mixing operations; dust masks are commonly worn by the workers involved.

9. Manufacturers and Distributors

The primary aluminum manufacturers are listed in Table 6. Producers cited by the U.S. EPA (1980) are listed in Table 5. Approximately 28% of the primary manufacturing capacity is located in the state of Washington; the remaining capacity is spread among 15 states from coast to coast.

The distributors of aluminum and aluminum products are too numerous to identify or list; however, the manufacturers are likely to be major distributors.

10. Manufacturing Processes

Most of the world's aluminum is derived by converting bauxite ore to alumina via the Bayer process, followed by electrolytic reduction of the alumina to the metal (Anderson and Haupin, 1978).

Figure 1 diagrams the bauxite to alumina operations. Figure 2 diagrams the electrolytic operations.

In 1976, Alcoa began producing aluminum metal at their Palestine, TX, plant by electrolysis of aluminum chloride (Treskon, 1976b).

Table 6. Primary Aluminum Manufacturing Plant Locations and Capacity
(Parsons, 1977)

Producer and Location	Capacity ^a
Aluminum Company of America	
Alcoa, TN	265
Badin, NC	115
Massena, NY	130
Point Comfort, TX	184
Rockdale, TX	280
Vancouver, WA	100
Warrick, IN	225
Wenatchee, WA	175
Anaconda Aluminum Company	
Columbia Falls, MT	180
Sebree, KY	120
Consolidated Aluminum Corp.	
New Johnsonville, TN	140
Lake Charles, LA	35
Eastalco Aluminum Company	
Frederick, MD	87
Martin-Marietta Aluminum Inc.	
The Dalles, OR	91
Goldendale, WA	110
Intalco Aluminum Co.	
Ferndale, WA	265
Kaiser Aluminum and Chem. Corp.	
Chalmette, LA	260
Mead, WA	206
Ravenswood, WV	163
Tacoma, WA	81
National-Southwire Aluminum Co.	
Hawesville, KY	180
North West Aluminum Co.	
Astoria, OR	68
Noranda Aluminum, Inc.	
New Madrid, MO	70
Ormet Corporation	
Hannibal, OH	250
Revere Copper and Brass, Inc.	
Scottsboro, AL	112

Table 6. Primary Aluminum Manufacturing Plant Locations and Capacity
(Parsons, 1977) (Cont'd)

Producer and Location	Capacity ^a
Reynolds Metals Co.	
Arkadelphia, AR	63
Jones Mills, AR	122
Listerhill, AL	221
Longview, WA	190
Massena, NY	128
Corpus Christi, TX	111
Troutdale, OR	140
TOTAL 32 plants	4868

^aCapacity is a variable value. Stated values are estimates expressed in 1000 short tons.

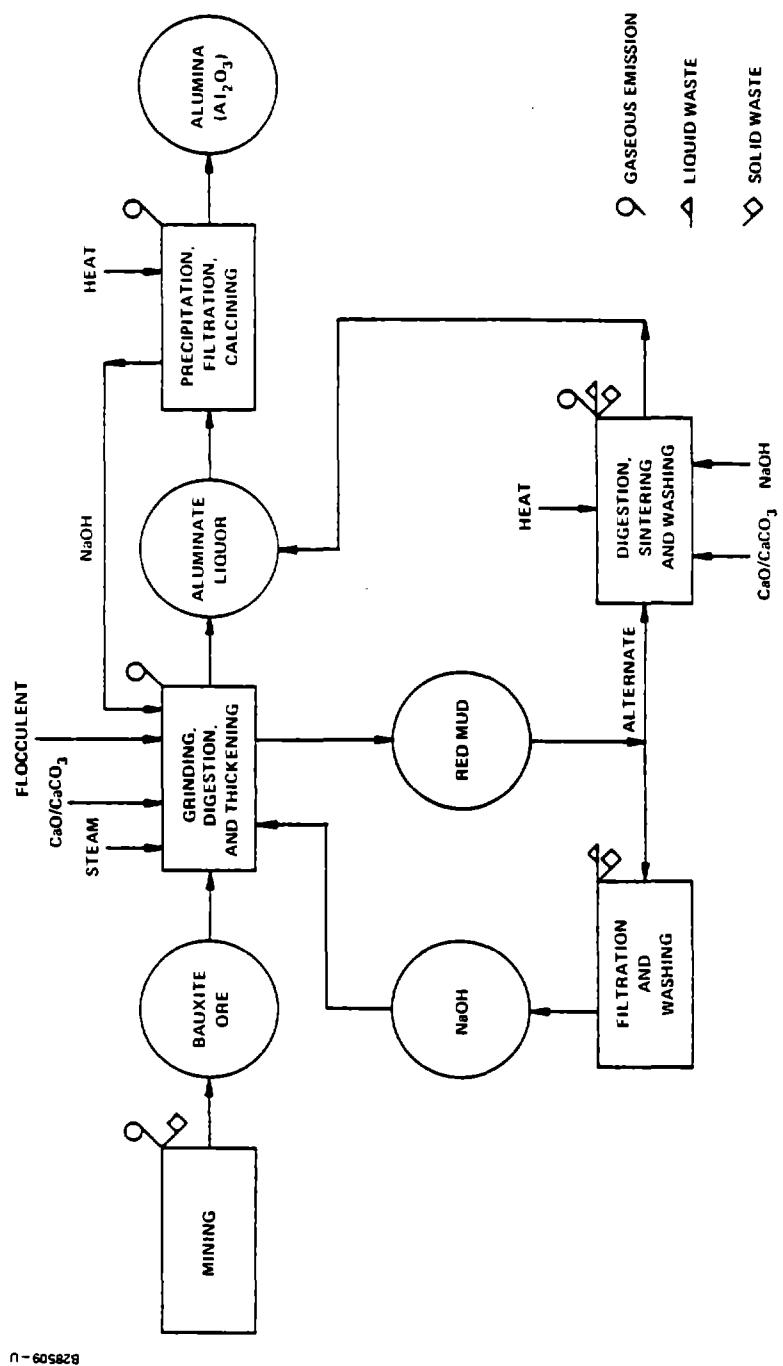


Figure 1. Bauxite Processing to Alumina (Parsons, 1977).

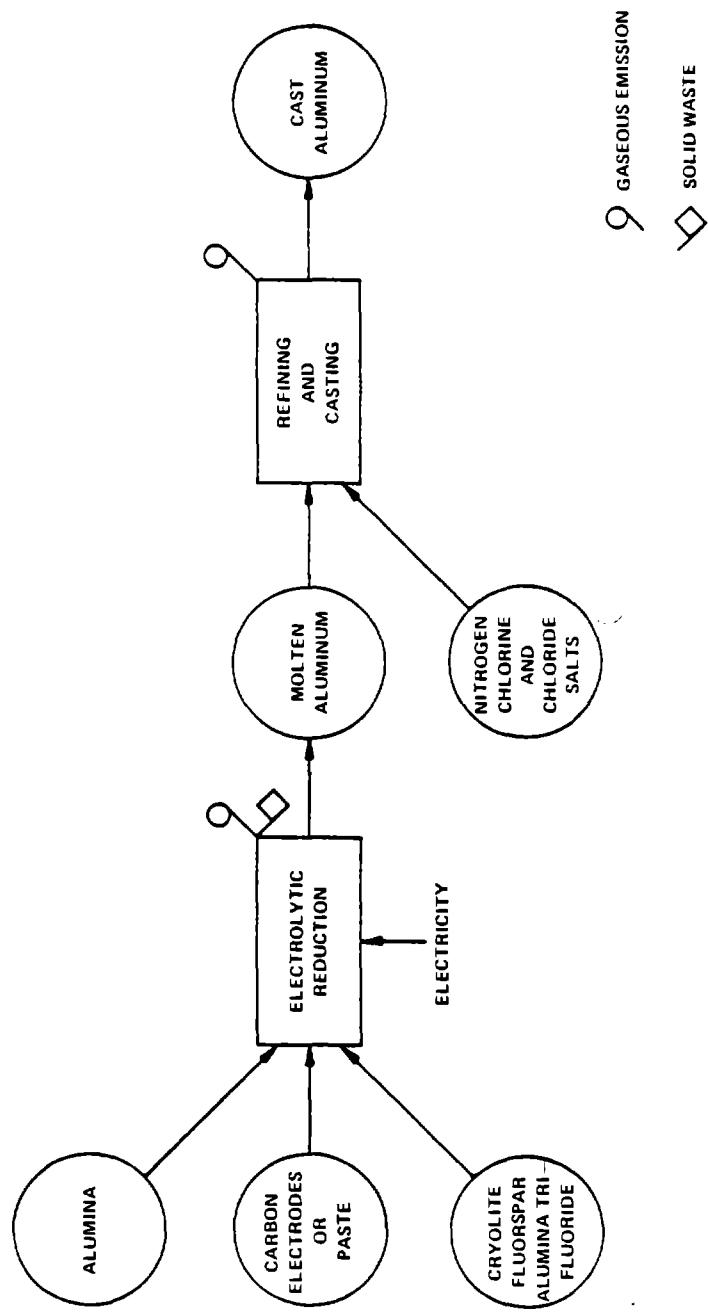


Figure 2. Electrolytic Reduction of Alumina to Aluminum (Parsons, 1977)

11. Impurities or Additives

Molten aluminum removed from electrolytic cells is normally 99.6-99.9% pure. The principal impurities are Fe, Si, Ti, V, and Mn, largely from the anode, but also from the impurities in the alumina (Anderson and Haupin, 1978).

Many aluminum alloys are produced commercially (Anderson and Haupin, 1978). Aluminum is commonly alloyed with magnesium, silicon, copper, nickel, zinc, and other metals.

12. Occupational Exposure

The National Occupational Hazard Survey indicates that 684,231 and 31,333 workers are potentially exposed to aluminum metal and C.I. 77000 (powdered aluminum), respectively.

13. Control Technology and Work Practices

Concern has been expressed by the Russian, Konstantinov (1979), over the use of electrodes in which coal tar is used as the binder. He suggests that electrolyzers with roasted anodes be used in the aluminum industry.

In Japan, a gas and vapor suction unit is placed on a horizontally moving platform to collect gas and vapor evolved during the resetting of pins in electrodes of upright Soderberg electrolytic aluminum extractors (Yamori *et al.*, 1977).

Uporov (1972) has reported that in a building for aluminum refining, electrolyzers are enclosed in a special housing with a gas-evacuation system to reduce emissions of fluoride compounds.

14. Biological Effects

a. Animal Studies

(1) Acute Exposures

The intratracheal instillation of 100 mg of metallic aluminum powder produced nodular fibrosis in the lungs of rats after 60 days

(King et al., 1958). By 210 days, the nodules were large, acellular, and composed of thick reticulin and collagen. Corrin (1963) similarly found that high intratracheal doses (100 mg) of stamped aluminum powders (oil-coated or uncoated "pyro" powder, produced by the stamping of cold aluminum metal) caused severe nodular fibrosis in rats, but that a granular aluminum powder (produced by atomizing molten aluminum metal) caused only minimal fibrosis after 12 months and was considered to be biologically inert. The pulmonary fibrogenic action of aluminum powders was confirmed by Gross et al. (1973), who showed that this intratracheal response was dose dependent in rats; no fibrosis occurred in the lungs of hamsters injected intratracheally with the same powders.

(2) Subchronic Exposures

Greenberg (1977) implanted small aluminum wires (3 mm x 0.25 mm) into the lungs of Swiss mice for 1-45 days. Following a response of edema and congestion, consequent to the introduction of the wire, a fibrosis developed after 30 days that reportedly was not consistent with the size of the original injury. It was suggested that accompanying mononuclear cell infiltration may have been indicative of a hypersensitivity reaction to the metal.

(3) Chronic Exposures

Although pulmonary fibrosis has been demonstrated in rats following intratracheal injection of aluminum powders (see Acute Exposures), Gross et al. (1973) could not produce fibrosis in rats, hamsters, or guinea pigs by exposing them via inhalation to atomized aluminum pyro aluminum or aluminum oxide at levels of 15-100 mg/m³ for 6-12 months. Alveolar proteinosis developed in all three species, although it was more pronounced in rats.

(4) Carcinogenicity

No information was found in the literature searched.

(5) Mutagenicity

Elemental aluminum (0.1 mg dissolved in dimethyl sulphoxide) failed to produce mutagenic effects in Salmonella typhimurium strains TA98, TA1535, and TA1538 in an Ames assay (Milvy and Kay, 1978).

(6) Teratogenicity

No information was found in the literature searched.

(7) Reproductive Effects

No information was found in the literature searched.

(8) Other Relevant Information

No information was found in the literature searched.

b. Human Studies

(1) Pharmacokinetics

No information was found in the literature searched.

(2) Health Effects

McLaughlin et al. (1962) described a patient employed as a ball-mill operator in an aluminum flake-powder factory in whom an encephalopathy developed that had many of the features of dialysis encephalopathy syndrome, including an elevated brain concentration of aluminum.

The inhalation of metallic aluminum powder (particle diameter $>1.2 \mu\text{m}$) appears to be effective in the prevention and therapy of silicosis (Sorenson et al., 1974). Upon generation, the particles become oxidized to Al_2O_3 , which is considered to be the active SiO_2 -inhibiting agent. Aluminum powder treatment has been used with apparent effectiveness in the gold mining and ceramic industries, but there is, however, no unequivocal evidence that the procedure is of clinical utility. A lack of controlled clinical studies suggested to Sorenson and coworkers (1974) the possibility that the improved health experienced by the treated workers may be due to improved mine hygiene and

air cleaning rather than to aluminum inhalation. The therapeutic use of aluminum dust has no effect on reversing established silicotic disease.

(3) Target Organ Toxicity

Clinical reports of pulmonary fibrosis in British workers exposed to stearin-coated aluminum flake powder ("pyro") have been described by McLaughlin et al. (1962) and Mitchell et al. (1961). Based on animal studies, Gross et al. (1973) have suggested that the size of inhaled aluminum particles and the formation of aggregates influence the development of fibrosis.

(4) Epidemiology

A study of 27 British workers exposed to aluminum flakes ("pyro") and aluminum powder during the production of explosives and fireworks revealed 6 cases of pulmonary fibrosis (Mitchell et al., 1961). The mean exposure level recorded for time periods of 30-90 minutes per shift was 95 mg/m³ respirable dust (exposure levels varied from 19 to 114 mg/m³), and the duration of exposure varied from 1 to 9 years. The investigators concluded that exposure to fine "pyro" powder presented a greater risk than did exposure to the coarse aluminum powder (Mitchell et al., 1961). Goralewski (1947) summarized findings of pulmonary fibrosis in 163 of 628 workers employed in the manufacture of aluminum powder ("pyro") for explosives, but details of exposure levels and duration were unavailable. Symptoms of exposure included dyspnea, spontaneous pneumothorax, cough, and sputum.

No adverse respiratory system effects were found in an investigation of 125 aluminum workers exposed to aluminum powder used in the manufacture of paint and ink (Crombie et al., 1944). Exposure of this cohort to aluminum dust ranged from 6 to 26 years, but exposure levels were not reported.

Aluminum smelter workers involved in the electrolytic reduction of aluminum have been reported to develop an asthma-like condition and

to show an excess risk of lung cancer and some types of leukemia and lymphoma (Aluminum Association, 1977; Gibbs and Horowitz, 1979; Milham, 1979). These effects appear, however, to be due primarily to exposure to coal tar pitch volatiles emitted during the manufacturing process. Sulfur dioxide and fluorine compounds, particularly hydrogen fluoride, may also constitute major hazards to aluminum plant workers (Sorenson *et al.*, 1974; Norseth, 1979). Fluorides evolve from the use of cryolite (Na_3AlF_6), either natural or synthetic, as a flux in the electrolytic reduction of alumina to aluminum.

15. Ongoing Studies

An epidemiological investigation of aluminum reduction workers is under way to assess cancer risk and other mortality causes (Brown *et al.*, 1980).

16. Exposure Standards

The ACGIH has recommended a Time-Weighted Average (TWA) occupational exposure limit for aluminum metal of 10 mg/m^3 , based on consideration of the metal as an inert dust (ACGIH, 1979). For aluminum pyro powders, a Threshold Limit Value (TLV) of 5 mg/m^3 as Al is recommended; this limit is intended to protect against lung changes. The recommended TLV for aluminum fume as developed in arc welding is 5 mg/m^3 .

17. Sources of Additional Relevant Information

The following relevant NIOSH publications were identified:

<u>Title</u>	<u>Publication No.</u>
Environmental Surveys of Aluminum Reduction Plants	NIOSH 74-101
Molten Aluminum - Water Explosion Initiation Mechanism Study	CONTR HSM-95-73-27
Health Hazard Evaluation, Alcan Aluminum Corp., Fairmont, WV	HHE 78-88-533
Health Hazard Evaluation, Amax Aluminum Mill Products Co., Riverside, CA	HHE 73-187-151

Health Hazard Evaluation, American Concrete Division, Union Metal Co., Waukegan, IL	HHE	78-47-570
Health Hazard Evaluation, Chalfant Manufacturing Co., Elyria, OH	HHE	78-32-507
Health Hazard Evaluation, Conalco, Hannibal, OH	HHE	72-32-459
Health Hazard Evaluation, FMC Corp. Chain Div., Indianapolis, IN	HHE	76-97-430
Health Hazard Evaluation, Franklin Electric Co., Bluffton, IN	HHE	75-124-382
Health Hazard Evaluation, General American Transportation Corp., Masury, OH	HHE	77-41-505
Health Hazard Evaluation, Gerico, Inc., Boulder, CO	HHE	78-14-476
Health Hazard Evaluation, Gorsuch Foundry Co., Inc., Jeffersonville, IN	HHE	73-27-200
Health Hazard Evaluation, Kaiser Aluminum and Chemical Corp., Ravenswood, WV	HHE	74-25-267
Health Hazard Evaluation, Melroe Division of Clark Equipment Co., Gwinner, ND	HHE	78-87-573
Health Hazard Evaluation, Prefinish Metals, Inc., Elk Grove Village, IL	HHE	77-78-466
Health Hazard Evaluation, Steiger Tractor, Inc., Fargo, ND	HHE	77-58-428
Health Hazard Evaluation, Superior Metals Products, Inc., Lima, OH	HHE	73-3-65
Health Hazard Evaluation, Willard Bronze Co., Cincinnati, OH	HHE	72-7-10

18. Other Pertinent Data

No other information that would aid in the assessment of aluminum metal as an occupational hazard was found in the literature searched.

B. ALUMINUM AMMONIUM SULFATE

1. Chemical Name: Aluminum Ammonium Sulfate
2. Chemical Structure: $\text{NH}_4\text{Al}(\text{SO}_4)_2 \cdot 12\text{H}_2\text{O}$
3. Synonyms: Ammonia alum
Ammonium aluminum sulfate
Ammonium alum
Sulfuric acid, aluminum ammonium salt
4. Chemical Abstracts Service (CAS) Numbers: 7784-25-0 (anhydrous)
7784-26-1 (dodecahydrate)

5. Registry of Toxic Effects of Chemical Substances (RTECS) Number:
Not listed.

6. Chemical and Physical Properties:

Description:	colorless crystals
Molecular Weight:	453.33 (dodecahydrate)
Boiling Point:	decomposes above 280°C
Melting Point:	94.5°C
Vapor Pressure:	---
Solubility:	15 g/100 cc water (20°C) soluble in glycerine insoluble in alcohol
Specific Gravity:	1.645
Stability:	noncombustible

7. Production

Data available from the U.S. EPA (1980) regarding producers of aluminum ammonium sulfate and production volumes are presented in Table 7. Darragh (1978) estimates the annual production to be several thousand metric tons.

8. Use

Aluminum ammonium sulfate is used in medicine, as a mordant in dyeing, in water purification, in paper sizing, and in the dressing of skins

Table 7. Producers of Aluminum Ammonium Sulfate and Production Ranges (U.S. EPA, 1980)

Producer and Location	Type of Production	1977 Production Range (CAS No. 7784-25-0)
Allied Chemical Corp. Claymont, DE	Manufacturer	1-10 million lb
ABC Chemical Corp. Naipahu, HI	Manufacturer	0-1000 lb
J.T. Baker Chemical Co. Phillipsburg, NJ	Manufacturer	1-10 thousand lb
United Mineral and Chemical Corp. NYC, NY	Importer	0-1000 lb
ICI Americas Inc. Wilmington, DE	Importer	zero

(Darragh, 1978). It also has uses as a food additive, as an ingredient in baking powders, in the manufacture of pigments, lakes, artificial gems, paper, vegetable glue, marble and porcelain cements, in fireproofing, and in electrolytic copperplating (Hawley, 1977; The Merck Index, 1976).

9. Manufacturers and Distributors

SRI International (1980) lists Allied Chemical Corp. (Claymont, DE, and Marcus Hook, PA) as the only manufacturer.

Data available from the U.S. EPA (1980) regarding producers of aluminum ammonium sulfate and production volumes are presented in Table 7.

The distributors in addition to the manufacturers, include (1980-81 OPD Chemical Buyers Directory, 1980; Chemical Week: 1981 Buyers Guide Issue, 1980); Chem Sources--USA, 1980):

Alfa Prod.	Independent Chem. Corp.
Aldrich Chem.	LaPine Sci.
Anachemia Chem.	Laporte Ltd.
Ashland Chem.	Mallinckrodt
Atomeric Chemetals	MCB Reagents
Cooper Chem.	Orion Chem.
Chem. Services	Pioneer Salt and Chem.
Delmar Inc.	E.M. Sergeant Pulp and Chem. Co.
EM Labs.	Sigma Chem.
Fisher Sci.	Thompson-Hayward Chem.
Gallard-Schelsinger Chem.	Van Waters and Rogers

10. Manufacturing Processes

Aluminum ammonium sulfate is manufactured by crystallization from a mixture of ammonium sulfate and aluminum sulfate or by treating aluminum sulfate and sulfuric acid with ammonia gas. It is sold commercially in several forms including lumps, granular, and powder (Darragh, 1978).

11. Impurities or Additives

Aluminum ammonium sulfate is sold in N.F. and technical grades.

12. Occupational Exposure

The National Occupational Hazard Survey indicates that 26,952 workers are potentially exposed to aluminum ammonium sulfate.

13. Control Technology and Work Practices

Specific factors that may contribute to or prevent employee exposure to aluminum ammonium sulfate were not found in the literature searched.

14. Biological Effects

No information regarding the biological effects of aluminum ammonium sulfate was found in the literature searched.

15. Ongoing Studies

No current toxicological or environmental studies of aluminum ammonium sulfate were found.

16. Exposure Standards

The ACGIH (1979) currently recommends a Threshold Limit Value (TLV) of 2 mg/m^3 as Al for the soluble salts of aluminum. The TLV for these soluble salts, such as the chloride and sulfate, is based on the amount of hydrolyzed acid and the corresponding TLV. On the basis that 3 mol of HCl, with a TLV of 5 ppm, hydrolyze from 1 mol of AlCl_3 , a TLV of 2 mg/m^3 as Al is recommended to provide the same degree of freedom from irritation that is provided by the TLV for HCl. As the acute toxicity from $\text{Al}_2(\text{SO}_4)_3$ is only slightly greater than that of AlCl_3 , and the toxicity of the alums is considerably less, the 2 mg/m^3 is considered to be suitable for the soluble salts of aluminum (ACGIH, 1979).

17. Sources of Additional Relevant Information

No sources of additional relevant information were identified.

18. Other Pertinent Data

No other information that would aid in the assessment of aluminum ammonium sulfate as an occupational hazard was found in the literature searched.

C. ALUMINUM CHLORHYDRATE

1. Chemical Name: Aluminum Chlorhydrate
2. Chemical Structure: $[\text{Al}_2(\text{OH})_5\text{Cl}]_x$ or $\text{Al}_2(\text{OH})_5\text{Cl} \cdot 2\text{H}_2\text{O}$
3. Synonyms:

ACH	Locron extra
Aluminum chloride hydroxide	Locron Flakes
Aluminum hydroxy chloride	Locron powder
Aluminum chlorhydrat	Locron solution
Aluminum chlorhydrat	Micro dry
Aluminum chlorhydrat	Wickenol 303
Astringen	Wickenol 321
Chlorhydrat, granular	Wickenol 323
Chlorhydrat, impalpable	Wickenol 324
4. Chemical Abstracts Service (CAS) Numbers: 12042-91-0
1327-41-9
5. Registry of Toxic Effects of Chemical Substances (RTECS) Number:
BDQ550000
6. Chemical and Physical Properties:

Description:	glassy solid
Molecular Weight:	variable
Boiling Point:	---
Melting Point:	---
Vapor Pressure:	---
Solubility:	dissolves in water, forming slightly turbid colloidal solution (up to 55% w/w)
Specific Gravity:	---
Stability:	noncombustible

7. Production

Data available from the U.S. EPA (1980) regarding producers of aluminum chlorhydrate and production volumes are presented in Table 8.

8. Use

Aluminum chlorhydrate is a widely used ingredient in deodorants and antiperspirants (Isacoff, 1979). It is also used for water purification and

Table 8. Producers of Aluminum Chlorhydrate and Production Ranges
(U.S. EPA, 1980)

Producer and Location	Type of Production	1977 Production Range
<u>For CAS No. 1327-41-9:</u>		
Reheis Chemical Co. Berkeley Heights, NJ	Manufacturer	10-50 million lb
Wicken Products, Inc. Huguenot, NY	Manufacturer/ Produced Site Limited	10-100 thousand lb
Huguenot, NY	Manufacturer	0.12-1.2 million lb
American Hoechst Corp. Bridgewater, NJ	Importer	confidential
<u>For CAS No. 12042-91-0:</u>		
Summit Research Laboratories Franklin TWSP, NJ	Manufacturer	1-10 million lb
Robinson Wagner Co. Mamaroneck, NY	Manufacturer	0.1-1 million lb
Wicken Products, Inc. Huguenot, NY	Manufacturer	1.2-12 million lb
Struktrol C. of America Akron, OH	Small Manufacturer/ Importer	confidential confidential

treatment of sewage and plant effluent (Hawley, 1977). A variety of patent literature indicates that aluminum chlorhydrate is useful as a binder for refractories and ceramics and as a paper sizing agent.

9. Manufacturers and Distributors

SRI International (1980) lists the following manufacturers of aluminum chlorhydrate:

Revlon (Reheis Chem. Co.)	Berkeley Heights, NJ
Robinson-Wagner Co.	Guilford, NJ

Data available from the U.S. EPA (1980) regarding producers of aluminum chlorhydrate and production volumes are presented in Table 8.

In addition to the manufacturers listed above and in Table 8, the distributors include (1980-81 OPD Chemical Buyers Directory, 1980; Chem Sources--USA, 1980):

American Hoechst Corp.
Orion Chem.
Pfaltz and Bauer
Santell Chem. Co.
Universal Preservachem.

10. Manufacturing Processes

Aluminum chlorhydrate is commercially produced by reacting hydrochloric acid with aluminum metal or an aluminum salt (such as the hydroxide, oxide, or chloride) at various temperature and pressure conditions. Bellan and Deneke (1972) describe the process as trickling HCl solution over Al chips in a solid bed with air exclusion, continuous replacement of consumed Al, and removal of hydrogen gas; the lower part of the column is heated to give an aluminum chlorhydrate solution. Danner and Krieg (1974) describe the process as mixing $Al(OH)_3$ (65% Al_2O_3) and aqueous HCl and heating the mixture to a boil; the resultant product is filtered to obtain the chlorhydrate.

Aluminum chlorhydrate has also been prepared experimentally by electrolysis of aluminum chloride solution (Ringk and Theimer, 1978).

11. Impurities or Additives

No information was found in the literature searched.

12. Occupational Exposure

The National Occupational Hazard Survey indicates that 37,709 workers are potentially exposed to aluminum chlorhydrate.

13. Control Technology and Work Practices

Specific factors that may contribute to or prevent employee exposure to aluminum chlorhydrate were not found in the literature searched.

14. Biological Effects

a. Animal Studies

(1) Acute Exposures

Martin et al. (1966) determined a mouse oral LD50 value of 8.4 g/kg for an antiperspirant product (Rehydrol A.S.C.) that contains 93-100% aluminum chlorhydrate-propylene glycol complex. When 10 rats were exposed via inhalation to 320 mg/l of this product for 1 hour, 1 death occurred within a 14-day observation period.

Intratracheal inoculation of aluminum chlorhydrate (10 mg suspended in 3 ml of saline, administered three times at 3-day intervals) induced respiratory bronchiolitis in rabbits (Stankus et al., 1978); 0.1 mg and 1.0 mg inoculations did not result in significant bronchopulmonary histopathology. No well-defined pulmonary granulomas were evident in any of these exposure groups, and, 28 days after the last intratracheal injection, the inflammatory response observed at the 10-mg dose had subsided. With an in vitro phagocytic assay, an increase in bacterial phagocytosis following the intratracheal inoculations was demonstrated. An absence of demonstrable delayed skin reactivity after intradermal injection or migration inhibition factor

production in the inoculated rabbits suggested that the bronchopulmonary macrophage activation was non-immunological (Stankus et al., 1978).

Prior and Cronk (1959) reported that single percutaneous applications of 22% aluminum chlorhydrate to rabbit ears (applied on saturated cotton pads) caused slight redness that faded with 24 hours. The antiperspirant product, Rehydrol A.S.C., did not irritate rabbit skin (Draize test) at a concentration of 30% after a single exposure for 24 hours (Martin et al., 1966).

Intradermal injection of aluminum chlorhydrate (5 mg, 0.5 mg, or 0.05 mg) produced granulomatous lesions in the skin of guinea pigs after 14 days (Turk and Parker, 1977). These changes were succeeded by intense fibrosis. A total of 1.4 mg of aluminum chlorhydrate injected intradermally over a 6-week period in rabbits produced granulomas at the injection site, but was not sensitizing (Kang et al., 1977). Subcutaneous injection of 110 mg aluminum chlorhydrate into rabbit back skin caused fibrotic lesions at the injection sites and a few granulomas in the dermis after 7 weeks (Prior and Cronk, 1959); when aluminum chlorhydrate (110 mg) was injected a second time 7 weeks after the original experiment, multiple granulomas were produced. Single or repeated (after 7 weeks) intracutaneous injections of 22 mg aluminum chlorhydrate into the ears of rabbits resulted in slight irritation, but no lesions (Prior and Cronk, 1959).

When the antiperspirant product Rehydrol A.S.C. was instilled (0.1 ml) at a concentration of 30% into the eyes of rabbits (Draize procedure), mild conjunctival irritation resulted (Martin et al., 1966). The irritation cleared in 2 to 4 days.

(2) Subchronic Exposures

Lansdown (1973) found that 10% and 25% aluminum chlorhydrate did not produce any visible or microscopic changes to the uncovered back skin of mice, rabbits, or guinea pigs when applied daily for 5 consecutive days. When a 15% solution of an antiperspirant product containing 93-100% aluminum chlorhydrate-propylene glycol complex was injected intracutaneously into guinea pigs every other day for a total of 10 injections, with an 11th injection 2 weeks later, sensitization did not occur. The first and 11th injections were 0.05 ml, and the remaining injections were 0.1 ml; reaction readings were made 24 hours after each injection.

(3) Chronic Exposures

When groups of Fischer rats and Hartley strain guinea pigs were exposed to 0.25, 2.5, or 25 mg/m³ of aluminum chlorhydrate for 6 hours/day, 5 days/week, for 6 months, depressed body weight, increased lung-body weight ratios, multifocal granulomatous pneumonia, and increases in lung aluminum concentrations were observed (Cavender *et al.*, 1978). The pneumonia was characterized by a macrophagic reaction in the alveoli near the terminal bronchioles. After 12 months of exposure, granulomas were present in the lungs and peribronchial lymph nodes in both the rats and guinea pigs exposed to 2.5 mg/m³ aluminum chlorhydrate. Aluminum concentrations in the lung in all exposure groups had further increased at this time, and numerous unspecified changes in the free-cell population of the lungs of both species were reported.

(4) Carcinogenicity

No information was found in the literature searched.

(5) Mutagenicity

No information was found in the literature searched.

(6) Teratogenicity

No information was found in the literature searched.

(7) Reproductive Effects

No information was found in the literature searched.

(8) Other Relevant Information

Aluminum chlorhydrate is toxic to guinea pig peritoneal macrophages and fibroblasts in vitro and is hemolytic (Badenoch-Jones et al., 1978).

b. Human Studies

(1) Pharmacokinetics

No information was found in the literature searched.

(2) Health Effects

Aluminum chlorhydrate (50%), when applied to scarified skin (occlusive conditions) once a day for of 3 days, was mildly irritating at the end of the exposure (Frosch and Kligman, 1976).

Extensive consumer experience in the use of antiperspirant preparations containing aluminum chlorhydrate suggests that this compound is unlikely to prove irritating to human skin except in people with extremely sensitive skin (Lansdown, 1974). Aluminum chlorhydrate has not been implicated as a sensitizing agent in humans (Stankus et al., 1978).

(3) Target Organ Toxicity

No information was found in the literature searched.

(4) Epidemiology

No information was found in the literature searched.

15. Ongoing Studies

No current toxicological or environmental studies of aluminum chlorhydrate were found.

16. Exposure Standards

No recommended or promulgated occupational exposure standards for aluminum chlorhydrate were found.

17. Sources of Additional Relevant Information

No sources of additional relevant information were identified.

18. Other Pertinent Data

No other information that would aid in the assessment of aluminum chlorhydrate as an occupational hazard was found in the literature searched.

D. ALUMINUM CHLORIDE, ANHYDROUS

1. Chemical Name: Aluminum Chloride, Anhydrous
2. Chemical Structure: AlCl_3
3. Synonyms: Aluminum trichloride
Trichloroaluminum
Aluminum chloride (1:3)
Aluminum(III) chloride
4. Chemical Abstracts Service (CAS) Number: 7446-70-0
5. Registry of Toxic Effects of Chemical Substances (RTECS) Number:
BD0525000
6. Chemical and Physical Properties:

Description: white or yellowish crystals
Molecular Weight: 133.34
Boiling Point: sublimes at 178°C
Melting Point: 190°C (2.5 atm)
Vapor Pressure: 1 mm Hg (100°C)
Solubility: 69.9 g/100 cc (15°C) with violence
100 g/100 cc absolute alcohol (12.5°C)
0.072 g/100 cc chloroform (25°C)
freely soluble in benzophenone, benzene,
nitrobenzene, carbon tetrachloride, and
many organic solvents
soluble in ether
slightly soluble in benzene
Specific Gravity: 2.44 (25°C)
Stability: can react violently with water;
noncombustible

7. Production

During 1965-1975, annual production of anhydrous aluminum chloride ranged from 29 to 40 thousand short tons (Treskon, 1976c). In 1976, production increased sharply when Alcoa brought on-stream a plant for the captive use of aluminum chloride to make aluminum metal (Marsteller, 1978); in 1977, this plant produced between 5 and 25 thousand tons of aluminum chloride (U.S. EPA,

1980), and it has, at present, a total capacity of 200 thousand tons per year (CMR, 1980a).

CMR (1980a) estimates the future growth of demand to be 2.5% per year through 1984; this is exclusive of Alcoa's aluminum chloride to aluminum plant, which is captive. CMR (1980a) also reports that the Alcoa plant has yet to resolve the problems of particle size and PCB contamination in its material.

Data available from the U.S. EPA (1980) regarding producers of aluminum chloride and production volumes are presented in Table 9.

8. Use

The following tabulation presents the percentage of the total amount of anhydrous aluminum chloride produced that is used in each of the applications listed (exclusive of that used in aluminum metal production) (CMR, 1980a):

	<u>Percentage of Total</u>
Detergent alkylate	18
Ethylbenzene catalyst	15
Hydrocarbon resins	12
Titanium dioxide processing	10
Dyestuff intermediate	10
Miscellaneous (including cosmetic and pharmaceutical applications, butyl rubber and polybutenes, ethyl chloride)	35

Since 1976, the major single use of anhydrous aluminum chloride has been in the electrolytic production of aluminum (Marsteller, 1978).

9. Manufacturers and Distributors

The following companies manufacture aluminum chloride (CMR, 1980a):

Table 9. Producers of Anhydrous Aluminum Chloride and Production Ranges
(U.S. EPA, 1980)

Producer and Location	Type of Production	1977 Production Range (CAS No. 7446-70-0)
Eastman Kodak Rochester, NY	Manufacturer	0.1-1.0 million lb
Baton Rouge Plant Baton Rouge, LA	Manufacturer	10-100 thousand lb
Allied Chemical Corp. Chicago, IL Ransomville, NY	Manufacturer Manufacturer	1-10 million lb 10-50 million lb
Dow Chemical Freeport, TX	Manufacturer	1-10 million lb
Engelhard Industries Newark, NJ	Manufacturer	10-100 thousand lb
E.I. duPont de Nemours East Chicago, IN Linden, NJ	Manufacturer Manufacturer	zero 1-10 million lb
Pennwalt Corp. Delaware, OH Los Angeles, CA Montgomery, AL Calumet City, IL Cornwall Heights, PA Orange, CA	Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer	0-1 thousand lb 0-1 thousand lb 0-1 thousand lb 0-1 thousand lb 0-1 thousand lb 0-1 thousand lb
Monsanto Texas City, TX	Manufacturer	1-10 million lb
Vanchlor Chemical Co. Lockport, NY	Manufacturer	1-10 million lb
Aluminum Co. of America Alcoa, TN Palestine, TX	Manufacturer Manufacturer	confidential 10-50 million lb
Shell Chemical Co. Axis, AL	Manufacturer	1-10 million lb
Pearsall Chemical Corp. Phillipsburg, NJ Laporte, TX	Manufacturer Manufacturer	10-50 million lb 10-50 million lb
Oxirane Chemical Co. Channelview, TX	Manufacturer	0.1-1.0 million lb
Reheis Chemical Co. Berkeley Heights, NJ	Manufacturer	10-100 thousand lb

Table 9. Producers of Anhydrous Aluminum Chloride and Production Ranges
(U.S. EPA, 1980) (Cont'd)

Producer and Location	Type of Production	1977 Production Range (CAS No. 7446-70-0)
Great Western Inorganics Golden, CO	Manufacturer	0-1 thousand lb
Process Div. UOP Inc. Shreveport, LA	Manufacturer	confidential
McCook, IL	Manufacturer	confidential
Continental Oil Co. Baltimore, MD	Manufacturer	10-50 million lb
CP Chemicals Inc. Sewaren, NJ	Manufacturer	confidential
Chattem Chemical Chattanooga, TN	Manufacturer	confidential
Degussa Corp. Theodore, AL	Manufacturer/ Produced Site Limited	0.1-1.0 million lb
United Mineral and Chemical Corp. NYC, NY	Importer	0-1 thousand lb
Fallek Chemical NYC, NY	Importer	1-10 thousand lb
American Hoechst Corp. Bridgewater, NJ	Importer	confidential
Tridom Chemical Inc. Hauppauge, NY	Importer/ Small Manufacturer	confidential
Southeastern Adhesives Co. Lenoir, NC	Importer	10-100 thousand lb
Rohm and Haas Co. Philadelphia, PA	Importer	0.1-1.0 million lb
Carey Industries Danbury, CT	Importer	zero

		Annual Capacity (in Tons)
ACL Industries	Elkton, MD	2,500
Alcoa	Palestine, TX	100,000 ^a
Allied Chem.	Ransomville, NY	10,000
Ascension	Tonawanda, NY	4,000
	Huntsville, TX	3,000
Van De Mark	Lockport, NY	4,800
Witco (Peavysall)	LaPorte, TX	7,000
	Phillipsburg, NJ	12,000
		<hr/>
		143,300

^aAlcoa alternates production between twin units.

Producers cited by the U.S. EPA (1980) are listed in Table 9; however, some of the manufacturers listed in Table 9 are actually reprocessors of spent AlCl₃ catalyst and do not make AlCl₃ from raw materials.

In addition to the manufacturers, the distributors include (1980-81 OPD Chemical Buyers Directory, 1980; Chemical Week: 1981 Buyers' Guide Issue, 1980; Chem Sources--USA, 1980):

Aldrich Chem.	Hudson Labs
Alfa Products	ICN/K and K
Anachemia Chem.	LaPine Sci.
Apache Chem.	Mallinckrodt
Atomergic Chemetals	MCB Reagents
J.T. Baker Chem.	Nippon Soda
Bodman Chem.	Noah Chem.
Brown Chem.	Orbis Prod.
Cationics Inc.	Orion Chem.
Cerac Inc.	Pfaltz and Bauer
Chem Services	Pioneer Salt and Chem.
Columbia Organics	Prior Chem.
Cortlic Chem.	Sigma Chem.
Eastern Chem.	Spex Ind.
EM Labs	Suburban Chem.
Fallek Chem.	T.R. America
Fisher Sci.	Tridom Chem.
Gallard-Schelsinger	Joseph Turner and Co.
Gulbrandsen Co.	George Uhe Co.
J.F. Henry Co.	Vanchlor Co.
Hetako Chem.	VWR Sci.

10. Manufacturing Processes

Anhydrous aluminum chloride is produced commercially by reacting chlorine with either molten aluminum or with alumina (Marstiller, 1978). In the first method, scrap aluminum or a mixture of scrap and pig aluminum is charged to a refractory crucible furnace in which it is melted. Dry chlorine is passed into the molten charge and forms aluminum chloride, which vaporizes and leaves the furnace through a vapor duct in the top. The vapors are then passed into air-cooled condensers, where aluminum chloride sublimes and is periodically removed (Lowenheim and Moran, 1975). The condensed product is crushed, sized, and packaged under an atmosphere of dry air or nitrogen. Overall purity of the aluminum chloride produced by this process is >98% (Marstiller, 1978). This process is outlined in Figure 3.

Alcoa prepares high-purity aluminum chloride for electrolytic reduction to aluminum (Marstiller, 1978). The starting material is Bayer's process alumina which is coked or impregnated with carbon and reacted with chlorine at 600°C in a fluidized-bed reactor. The effluent gases from the reactor are cooled but maintained above the condensation temperature of aluminum chloride and filtered. Materials retained on the filter are returned in controlled amounts to the reactor to improve efficiency. The gas stream, containing essentially pure $AlCl_3$ and carbon oxides, is conducted to a desublimer, where the aluminum chloride vapor can be condensed on solid particles of aluminum chloride. This process is outlined in Figure 4.

11. Impurities or Additives

Typical specifications of anhydrous aluminum chloride are as follows (Marstiller, 1978):

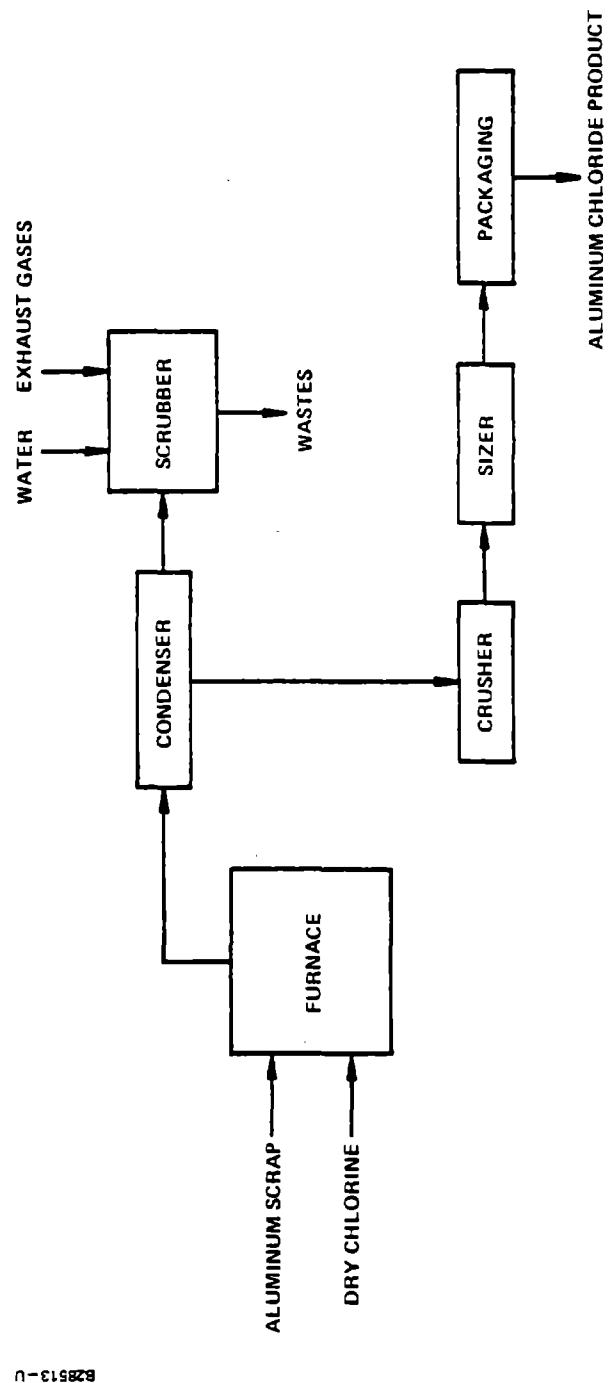


Figure 3. Aluminum Chloride from Molten Aluminum and Chlorine

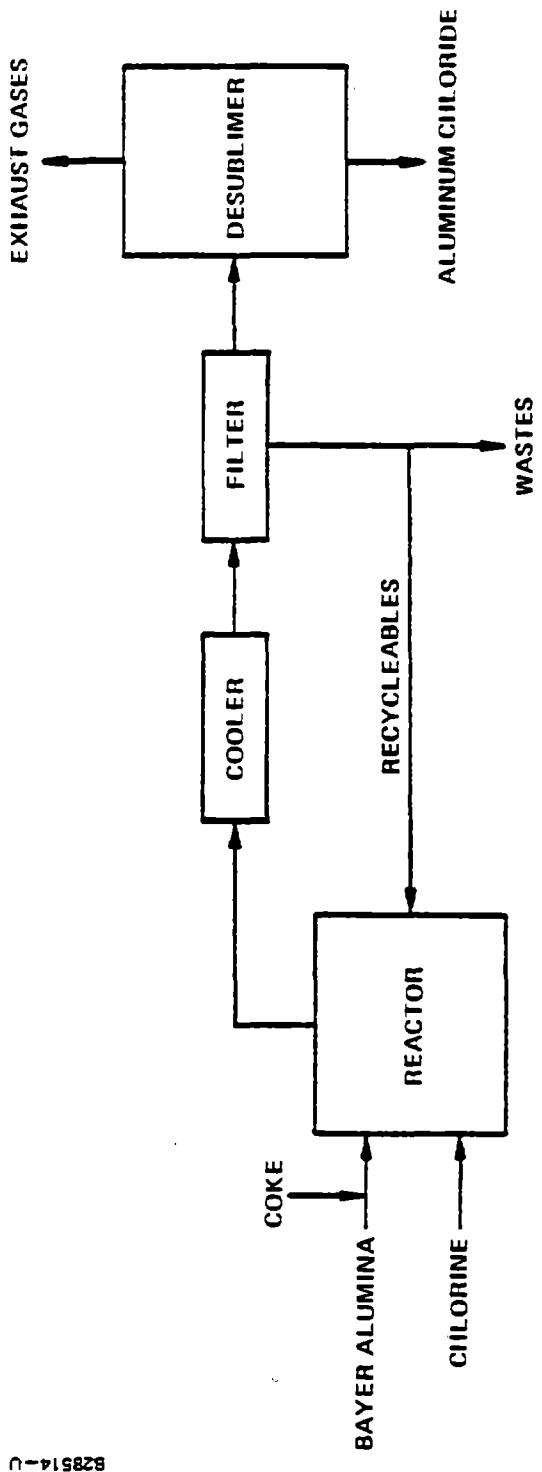


Figure 4. Aluminum Chloride from Alumina and Chlorine

AlCl ₃ , %	99.8
FeCl ₃ , %	0.08
SiCl ₄ , %	0.05
NaCl, %	0.02
sublimate, %	99.7
water-insoluble material, %	0.05
nonvolatile material, %	0.29

12. Occupational Exposure

The National Occupational Hazard Survey indicates that 178,148 workers are potentially exposed to anhydrous aluminum chloride.

13. Control Technology and Work Practices

Specific factors that may contribute to or prevent employee exposure to anhydrous aluminum chloride were not found in the literature searched.

14. Biological Effects

Most of the reports on the biological effects of aluminum chloride do not state whether the test compound is in the anhydrous or the hydrated form. It may be assumed that anhydrous AlCl₃ was employed in studies where the state of hydration was not mentioned (only two studies were found in which hydrated AlCl₃ was specified), but it must be emphasized that anhydrous AlCl₃ is rapidly hydrated upon contact with water, both in test solution and in vivo. Exposure to atmospheric moisture is sufficient to cause rapid hydration. Therefore, because the two forms of this compound are indistinguishable at the point of absorption into the body and consequently have identical biological effects, studies involving both compounds are summarized in this profile.

a. Animal Studies

(1) Acute Exposures

The results of oral administration of aluminum chloride to several animal species (Table 10) indicate that this compound has a low level of toxicity, which may be due in part to poor absorption of the compound from the gastrointestinal tract (Ondreicka et al., 1966). The administration of oral

Table 10. Acute Toxicity of Aluminum Chloride

Route	Species	Dose	Response	Reference
oral	rats	250	0/5 deaths	Berlyne <u>et al.</u> , 1972
oral	rats	380	LD50	Krasovskii <u>et al.</u> , 1979
oral	rats	3700	LD50	<u>The Merck Index</u> , 1968
oral	mice	770	LD50	Ondreicka <u>et al.</u> , 1966
oral	guinea pigs	400	LD50	Krasovskii <u>et al.</u> , 1979
oral	rabbits	400	LD50	Krasovskii <u>et al.</u> , 1979

lethal doses of 1% AlCl_3 to rats that were nephrectomized resulted in symptoms of lethargy, anorexia, and orbital bleeding (Berlyne et al., 1972). It was noted that these signs of aluminum intoxication could also be induced in normal rats.

Benett et al. (1975) reported that intraperitoneal injection of pregnant rats with 75, 100, or 200 mg/kg aluminum chloride on days 9 to 13 or 14 to 18 of gestation resulted in ascites, adhesions between organs, perihepatic granulomas, and signs of centrilobular necrosis. A high incidence of maternal deaths followed treatment at the higher (100 and 200 mg/kg) dose levels.

Inhalation of a propylene glycol complex of aluminum-chloride-hydroxide (alchlor, an antiperspirant preparation compound) at an average concentration of 164 mg/m³ for 4-6 hours/day for 3 days produced bronchopneumonia, alveolar wall thickening, and small granulomatous foci in the lungs of hamsters (Drew et al., 1974). Lung irritation was also observed in rabbits following similar exposures to alchlor.

(2) Subchronic Exposures

When aluminum chloride was given orally for 20-30 days to rats and guinea pigs (6, 17, or 50 mg/kg) and rabbits (3, 9, or 27 mg/kg), the kidneys of these animals were reported to show moderate dystrophy of protein in the epithelium of the proximal tubules (Krasovskii et al., 1979). In addition, an increase in desquamation of the epithelium, pyknosis, and epithelial hyperplasia of the medullar rays were noted.

Ellis et al. (1979) noted that when rats were given daily intraperitoneal injections of aluminum chloride (approximately 2 increasing to 12 mg/kg x 52 days; approximately 0.8 increasing to 8 mg/kg x 48-85 days), there was an accumulation of aluminum in bone. After 53 days of aluminum treatment, rats developed osteomalacia that increased in severity with continued injections. The increased bone aluminum and

osteomalacia persisted after injections had been stopped for up to 49 days, although endochondrial ossification was restored to normal.

Lansdown (1973) found evidence of skin irritation when the uncovered back skin of mice, rabbits, and guinea pigs was treated daily for 5 consecutive days with 10% solutions of aluminum chloride. Epidermal changes consisting of hyperplasia, microabscess formation, dermal inflammatory cell infiltration, and occasionally ulceration were apparent in all three species. Macroscopic changes consisted of erythema, thickening, and scaling. A high degree of aluminum deposition was present in the epidermal keratin of the damaged skin. When mice were treated with 2.5, 5, 10, and 25% solutions of aluminum chloride, the degree of macroscopic and microscopic skin damage and aluminum deposition in the keratin was found to be directly related to the dose (no damage at 2.5%).

Following inhalation exposures to 50 mg/m³ levels of a propylene glycol complex of aluminum-chloride-hydroxide (alchlor) for 6 hours/day, 5 days/week, for 10-30 exposure days, granulomas were observed in the lungs of hamsters (Drew et al., 1974). The reversibility of these lesions was not determined.

(3) Chronic Exposures

Marked growth retardation has been reported in the second and third generations of mice treated with 19.3 mg/kg levels of aluminum chloride in drinking water for 180-390 days (Ondreicka et al., 1966).

When rats were exposed orally to 2.5 mg/kg levels of aluminum chloride for 6 months, decreased alkaline phosphatase in the blood and a slow down in development and reinforcement of conditioned reflexes were noted (Krasovskii et al., 1979).

(4) Carcinogenicity

No information was found in the literature searched.

(5) Mutagenicity

Testing of aluminum chloride in two strains of recombination-deficient Bacillus subtilis (H17 and M45) did not indicate any mutagenic effects in the rec assay (Nishioka, 1975; Kanematsu et al., 1980).

Chromosomal aberrations were detected in the bone marrow cells of mice following the intraperitoneal injection of 100 mol/l of aluminum chloride (Manna and Das, 1972). Aberrations included chromatid and subchromatid breaks, translocations, gaps, and constrictions.

Aluminum chloride failed to enhance the transformation of Syrian hamster embryo cells by simian adenovirus SA7 (Casto et al., 1979).

(6) Teratogenicity

Aluminum chloride injected intraperitoneally at 75-200 mg/kg levels for days 9-13 or 14-18 of gestation produced embryotoxic effects (decreased fetal weight and crown-rump length, increased incidence of resorptions in rats) (Benett et al., 1975). At the 100 mg/kg level, gross fetal abnormalities (wavy and missing ribs, abnormal digits, poor ossification) were noted. A high incidence of dead fetuses was observed in mothers that had been treated with 200 mg/kg aluminum chloride on days 9-13 of gestation.

Dietary administration of aluminum chloride at levels of 500 or 1000 ppm on days 6-19 of gestation (McCormack et al., 1979) or intraperitoneal injection of 40 mg/kg on days 9 or 13 of gestation (Benett et al., 1975) did not produce embryotoxic or teratogenic effects in rats. In mice, teratogenic or embryotoxic effects were not seen following the administration of 19.3 mg/kg aluminum chloride for 180-390 days in the drinking water (Ondreicka et al., 1966).

Injection of high levels (15 mg) of aluminum chloride into the yolk sac or chorioallantoic membrane of developing chick embryos produced toxic effects but failed to show teratogenic effects (Ridgway and Karnofsky, 1952).

(7) Reproductive Effects

The inclusion of hydrated aluminum chloride in the drinking water of male rats at levels as high as 500 ppm for periods up to 90 days had no effect on reproductive capacity as measured by histopathological evaluation, plasma gonadotropin levels, and mating index (Dixon et al., 1979).

Decreased spermatozoa counts and lowered sperm motility have been reported in rats following a 6-month oral exposure to 2.5 mg/kg levels of aluminum chloride (Krasovskii et al., 1979).

(8) Other Relevant Information

Intracranial injection of cats with solutions of aluminum chloride has been reported to produce neurofibrillary degeneration (NFD) with progressive encephalopathy (King et al., 1975). Even at brain concentrations of 5 to 6 times that found in the cat, however, aluminum chloride-injected rats did not display evidence of NFD (Crapper et al., 1973).

(b) Human Studies

(1) Pharmacokinetics

No information was found in the literature searched.

(2) Health Effects

Aluminum chloride ($\text{AlCl}_3 \cdot 6\text{H}_2\text{O}$) (2.5%), when applied to scarified skin (occlusive conditions) once daily for 3 days, was mildly irritating at the end of the exposure (Frosch and Klingman, 1976). Hydrated aluminum chloride (5%) resulted in marked irritation in the same test.

(3) Target Organ Toxicity

In skin tests on the forearms of 20 experimental subjects, Papa and Kligman (1967) found that the occlusive application of 20% aqueous AlCl_3 for 18 hours resulted in reduced perspiration, but in most cases no histological damage to the sweat apparatus. Three subjects showed miliaria rubra confined to the aluminum treated sites, but it was noted that these changes were not typical of aluminum anidrosis.

(4) Epidemiology

No information was found in the literature searched.

15. Ongoing Studies

No current toxicological or environmental studies of anhydrous aluminum chloride were found.

16. Exposure Standards

The ACGIH (1979) currently recommends a Threshold Limit Value (TLV) of 2 mg/m^3 as Al for the soluble salts of aluminum. The TLV for these soluble salts, such as the chloride and sulfate, is based on the amount of hydrolyzed acid and the corresponding TLV. On the basis that 3 mol of HCl, with a TLV of 5 ppm, hydrolyze from 1 mol of AlCl_3 , a TLV of 2 mg/m^3 as Al is recommended to provide the same degree of freedom from irritation that is provided by the TLV for HCl. As the acute toxicity from $\text{Al}_2(\text{SO}_4)_3$ is only slightly greater than that of AlCl_3 , and the toxicity of the alums is considerably less, the 2 mg/m^3 is considered to be suitable for the soluble salts of aluminum (ACGIH, 1979).

17. Sources of Additional Relevant Information

A NIOSH Health Hazard Evaluation (HHE) relating to aluminum chloride has been conducted at Dawes Laboratories, Chicago Heights, IL (HHE No. 77-75-494).

18. Other Pertinent Data

No other information that would aid in the assessment of anhydrous aluminum chloride as an occupational hazard was found in the literature searched.

E. ALUMINUM CHLORIDE, HYDROUS

1. Chemical Name: Aluminum Chloride, Hydrous
2. Chemical Structure: $\text{AlCl}_3 \cdot 6\text{H}_2\text{O}$
3. Synonyms: Aluminum chloride, hexahydrate
Aluminum trichloride, hexahydrate
4. Chemical Abstracts Service (CAS) Number: 7784-13-6
5. Registry of Toxic Effects of Chemical Substances (RTECS) Number:
BD0530000
6. Chemical and Physical Properties:

Description:	white or yellowish deliquescent crystalline powder
Molecular Weight:	241.43
Boiling Point:	decomposes
Melting Point:	decomposes
Vapor Pressure:	---
Solubility:	soluble in water (1 g/9 ml), ether, alcohol
Specific Gravity:	2.4 (solid) 1.28 (commercial aqueous liquid)
Stability:	noncombustible

7. Production

Production of hydrous aluminum chloride ranged from 3.2 to 8.1 thousand tons per year from 1950-1971 (Treskon, 1976c) on a 100% AlCl_3 basis. More recent, specific figures are not available.

CMR (1980b) estimates demand for hydrous AlCl_3 to be 5.6 thousand tons (100% AlCl_3 basis) in both 1979 and 1980. CMR (1980b) also projects future growth to 2.5% per year through 1984.

8. Use

CMR (1980b) reports that hydrous aluminum chloride is used in the following applications: cosmetics and pharmaceuticals, 60% (of total amount produced); miscellaneous, including pigments, roofing, specialty papers and photography, 40% (of total amount produced).

Hydrous aluminum chloride is normally available as a solution. It is employed in antiperspirant and deodorant preparations. Roofing granules and mineral aggregates for bituminous products are treated with the solution to improve adhesion of the asphalt. It is used in textile finishing to impart crease recovery and non-yellowing properties to cotton fabrics and antistatic characteristics to polyester, polyamide, and acrylic fabrics and to improve the flammability rating of nylon (Marsteller, 1978).

9. Manufacturers and Distributors

The manufacturers of hydrous aluminum chloride are the following (CMR, 1980b; SRI International, 1980):

		Annual Capacity (100% AlCl ₃ Basis) (thousand of tons)
Allied Chemical	Chicago, IL	2.2
Chattem Chemical	Chattanooga, TN	1.4
Cortlinc Chemical	Baltimore, MD	1.4
DuPont	Linden, NJ	1.7
Revlon (Reheis Chem.)	Berkeley Heights, NJ	5.6
		<hr/> 12.3

In addition to the manufacturers, the distributors include (Chemical Week: 1981 Buyers' Guide Issue, 1980); Chem Sources--USA, 1980):

American Hoechst
J.T. Baker Chem.
Barker Industries
Fisher Scientific
Mallinckrodt
Tridom Chem.
United Mineral and Chem.

10. Manufacturing Processes

Hydrous aluminum chloride is usually made by dissolving aluminum hydroxide, Al(OH)₃, in concentrated hydrochloric acid. When the acid is depleted, the solution is cooled to 0°C and gaseous hydrogen chloride is introduced. Crystalline aluminum chloride hydrate is precipitated, filtered from the

liquor, washed with ethyl ether, and dried (Marstiller, 1978). This process is shown in Figure 5.

Alternatively, anhydrous AlCl_3 may be hydrolyzed in chilled dilute hydrochloric acid (Marstiller, 1978).

11. Impurities or Additives

A typical specification is 97.2% $\text{AlCl}_3 \cdot 6\text{H}_2\text{O}$, 30 ppm Fe, and 0.01% insoluble (Gottlieb, 1963).

12. Occupational Exposure

The National Occupational Hazard Survey does not provide an estimate of the number of workers who are potentially exposed to hydrated aluminum chloride.

13. Control Technology and Work Practices

Specific factors that may contribute to or prevent employee exposure to hydrous aluminum chloride were not found in the literature searched.

14. Biological Effects

Most of the reports on the biological effects of aluminum chloride do not state whether the test compound is in the anhydrous or hydrated form. Only two studies were found in which the use of hydrated AlCl_3 was specifically stated, but it must be noted that anhydrous AlCl_3 is rapidly hydrated upon contact with water, both in test solution and in vivo. Exposure to atmospheric moisture is sufficient to cause rapid hydration. Therefore, because the two forms of the compound are indistinguishable at the point of absorption into the body and consequently have identical biological effects, studies involving both compounds are summarized in this profile.

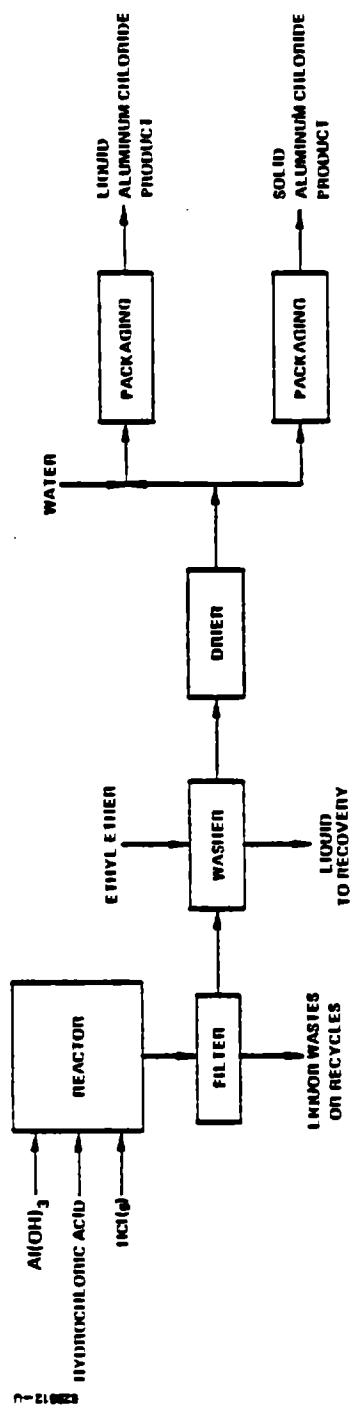


Figure 5. Manufacture of Hydrous Aluminum Chloride

a. Animal Studies

(1) Acute Exposures

The results of oral administration of aluminum chloride to several animal species (Table 10, p. 65) indicate that this compound has a low level of toxicity, which may be due in part to poor absorption of the compound from the gastrointestinal tract (Ondreicka et al., 1966). The administration of oral lethal doses of 1% AlCl_3 to rats that were nephrectomized resulted in symptoms of lethargy, anorexia, and orbital bleeding (Berlyne et al., 1972). It was noted that these signs of aluminum intoxication could also be induced in normal rats.

Benett et al. (1975) reported that intraperitoneal injection of pregnant rats with 75, 100, or 200 mg/kg aluminum chloride on days 9 to 13 or 14 to 18 of gestation resulted in ascites, adhesions between organs, perihepatic granulomas, and signs of centrilobular necrosis. A high incidence of maternal deaths followed treatment at the higher (100 and 200 mg/kg) dose levels.

Inhalation of a propylene glycol complex of aluminum-chloride-hydroxide (alchlor, an antiperspirant preparation compound) at an average concentration of 164 mg/m³ for 4-6 hours/day for 3 days produced bronchopneumonia, alveolar wall thickening, and small granulomatous foci in the lungs of hamsters (Drew et al., 1974). Lung irritation was also observed in rabbits following similar exposures to alchlor.

(2) Subchronic Exposures

When aluminum chloride was given orally for 20-30 days to rats and guinea pigs (6, 17, or 50 mg/kg) and rabbits (3, 9, or 27 mg/kg), the kidneys of these animals were reported to show moderate dystrophy of protein in the epithelium of the proximal tubules (Krasovskii et al., 1979). In addition,

an increase in desquamation of the epithelium, pyknosis, and epithelial hyperplasia of the medullar rays were noted.

Ellis et al. (1979) noted that when rats were given daily intraperitoneal injections of aluminum chloride (approximately 2 increasing to 12 mg/kg x 52 days; approximately 0.8 increasing to 8 mg/kg x 48-85 days), there was an accumulation of aluminum in bone. After 53 days of aluminum treatment, rats developed osteomalacia that increased in severity with continued injections. The increased bone aluminum and osteomalacia persisted after injections had been stopped for up to 49 days, although endochondrial ossification was restored to normal.

Lansdown (1973) found evidence of skin irritation when the uncovered back skin of mice, rabbits, and guinea pigs was treated daily for 5 consecutive days with 10% solutions of aluminum chloride. Epidermal changes consisting of hyperplasia, microabscess formation, dermal inflammatory cell infiltration, and occasionally ulceration were apparent in all three species. Macroscopic changes consisted of erythema, thickening, and scaling. A high degree of aluminum deposition was present in the epidermal keratin of the damaged skin. When mice were treated with 2.5, 5, 10, and 25% solutions of aluminum chloride, the degree of macroscopic and microscopic skin damage and aluminum deposition in the keratin was found to be directly related to the dose (no damage at 2.5%).

Following inhalation exposures to 50 mg/m³ levels of a propylene glycol complex of aluminum-chloride-hydroxide (alchlor) for 6 hours/day, 5 days/week, for 10-30 exposure days, granulomas were observed in the lungs of hamsters (Drew et al., 1974). The reversibility of these lesions was not determined.

(3) Chronic Exposures

Marked growth retardation has been reported in the second and third generations of mice treated with 19.3 mg/kg levels of aluminum chloride in drinking water for 180-390 days (Ondreicka et al., 1966).

When rats were exposed orally to 2.5 mg/kg levels of aluminum chloride for 6 months, decreased alkaline phosphatase in the blood and a slow down in development and reinforcement of conditioned reflexes were noted (Krasovskii et al., 1979).

(4) Carcinogenicity

No information was found in the literature searched.

(5) Mutagenicity

Testing of aluminum chloride in two strains of recombination-deficient Bacillus subtilis (H17 and M45) did not indicate any mutagenic effects in the rec assay (Nishioka, 1975; Kanematsu et al., 1980).

Chromosomal aberrations were detected in the bone marrow cells of mice following the intraperitoneal injection of 100 mol/l of aluminum chloride (Manna and Das, 1972). Aberrations included chromatid and subchromatid breaks, translocations, gaps, and constrictions.

Aluminum chloride failed to enhance the transformation of Syrian hamster embryo cells by simian adenovirus SA7 (Casto et al., 1979).

(6) Teratogenicity

Aluminum chloride injected intraperitoneally at 75-200 mg/kg levels for days 9-13 or 14-18 of gestation produced embryotoxic effects (decreased fetal weight and crown-rump length, increased incidence of resorptions in rats) (Benett et al., 1975). At the 100 mg/kg level, gross fetal abnormalities (wavy and missing ribs, abnormal digits, poor ossification) were

noted. A high incidence of dead fetuses was observed in mothers that had been treated with 200 mg/kg aluminum chloride on days 9-13 of gestation.

Dietary administration of aluminum chloride at levels of 500 or 1000 ppm on days 6-19 of gestation (McCormack et al., 1979) or intra-peritoneal injection of 40 mg/kg on days 9 or 13 of gestation (Bennett et al., 1975) did not produce embryotoxic or teratogenic effects in rats. In mice, teratogenic or embryotoxic effects were not seen following the administration of 19.3 mg/kg aluminum chloride for 180-390 days in the drinking water (Ondreicka et al., 1966).

Injection of high levels (15 mg) of aluminum chloride into the yolk sac or chorioallantoic membrane of developing chick embryos produced toxic effects but failed to show teratogenic effects (Ridgway and Karnofsky, 1952).

(7) Reproductive Effects

The inclusion of hydrated aluminum chloride in the drinking water of male rats at levels as high as 500 ppm for periods up to 90 days had no effect on reproductive capacity as measured by histopathological evaluation, plasma gonadotropin levels, and mating index (Dixon et al., 1979).

Decreased spermatozoa counts and lowered sperm motility have been reported in rats following a 6-month oral exposure to 2.5 mg/kg levels of aluminum chloride (Krasovskii et al., 1979).

(8) Other Relevant Information

Intracranial injection of cats with solutions of aluminum chloride has been reported to produce neurofibrillary degeneration (NFD) with progressive encephalopathy (King et al., 1975). Even at brain concentrations of 5 to 6 times that found in the cat, however, aluminum chloride-injected rats did not display evidence of NFD (Crapper et al., 1973).

(b) Human Studies

(1) Pharmacokinetics

No information was found in the literature searched.

(2) Health Effects

Aluminum chloride ($AlCl_3 \cdot 6H_2O$) (2.5%), when applied to scarified skin (occlusive conditions) once daily for 3 days, was mildly irritating at the end of the exposure (Frosch and Kligman, 1976). Hydrated aluminum chloride (5%) resulted in marked irritation in the same test.

(3) Target Organ Toxicity

In skin tests on the forearms of 20 experimental subjects, Papa and Kligman (1967) found that the occlusive application of 20% aqueous $AlCl_3$ for 18 hours resulted in reduced perspiration, but in most cases no histological damage to the sweat apparatus. Three subjects showed miliaria rubra confined to the aluminum treated sites, but it was noted that these changes were not typical of aluminum anidrosis.

(4) Epidemiology

No information was found in the literature searched.

15. Ongoing Studies

No current toxicological or environmental studies of hydrous aluminum chloride were found.

16. Exposure Standards

The ACGIH (1979) currently recommends a Threshold Limit Value (TLV) of 2 mg/m³ as Al for the soluble salts of aluminum. The TLV for these soluble salts, such as the chloride and sulfate, is based on the amount of hydrolyzed acid and the corresponding TLV. On the basis that 3 mol of HCl, with a TLV of 5 ppm, hydrolyze from 1 mol of $AlCl_3$, a TLV of 2 mg/m³ as Al is recommended to provide the same degree of freedom from irritation that is provided by the TLV

for HCl. As the acute toxicity from $Al_2(SO_4)_3$ is only slightly greater than that of $AlCl_3$, and the toxicity of the alums is considerably less, the 2 mg/m³ is considered to be suitable for the soluble salts of aluminum (ACGIH, 1979).

17. Sources of Additional Relevant Information

A NIOSH Health Hazard Evaluation (HHE) relating to aluminum chloride has been conducted at Dawes Laboratories, Chicago Heights, IL (HHE No. 77-75-494).

18. Other Pertinent Data

No other information that would aid in the assessment of hydrous aluminum chloride as an occupational hazard was found in the literature searched.

F. ALUMINUM DISTEARATE

1. Chemical Name: Aluminum Distearate
2. Chemical Structure: $\text{Al(OH)(C}_{18}\text{H}_{35}\text{O}_2)_2$
3. Synonyms: Aluminum, hydroxybis(octadecanoato-O)-
4. Chemical Abstracts Service (CAS) Number: 300-92-5
5. Registry of Toxic Effects of Chemical Substances (RTECS) Number:
Not listed.
6. Chemical and Physical Properties:

Description: white powder
Molecular Weight: 610.9
Boiling Point: ---
Melting Point: 145°C
Vapor Pressure: ---
Solubility: insoluble in water
Specific Gravity: 1.009
Stability: combustible

7. Production

Production of aluminum distearate in recent years is as follows (USITC, 1979, 1978, 1977a, 1977b):

<u>Year</u>	<u>Production (in millions of pounds)</u>
1978	1.694
1977	3.005
1976	2.419
1975	1.943

Data available from the U.S. EPA (1980) regarding producers of aluminum distearate and production volumes are presented in Table 11.

8. Use

Aluminum distearate is used most extensively as an agent to improve the consistency of linseed alkyd resin paints and varnishes. It has wide applications in the cosmetics industry in the preparation of clear cosmetic gels

Table 11. Producers of Aluminum Distearate and Production Ranges
(U.S. EPA, 1980)

Producer and Location	Type of Production	1977 Production Range (CAS No. 300-92-5)
Joseph Ayers Inc. Bethlehem, PA	Manufacturer	0-1000 lb
Tenneco Chemicals Inc. Piscataway, NJ Elizabeth, NJ	Manufacturer Manufacturer	1-10 million lb zero
Synthetic Products Co. Cleveland, OH	Manufacturer	confidential
Penick Corp. Newark, NJ	Manufacturer	confidential

and pomades. It is also used as a gasoline gelling agent and may find use in the melt spinning of polypropylene to enhance the dyeability and weatherability of the fiber (Warner, 1978).

Other uses include thickener in greases, water repellent, lubricant in plastics and ropes, and cement production (Hawley, 1977).

9. Manufacturers and Distributors

SRI International (1980) lists the following manufacturers:

Chattem Inc. (Petrochems Co.)	Fort Worth, TX
CPC International (Penick Corp.)	Newark, NJ
Dart Industries (Synthetic Prod.)	Cleveland, OH
Diamond Shamrock Corp.	Cedartown, GA
Tenneco Inc.	Piscataway, NJ
Witco Chem. Corp.	Clearing, IL
	Lynwood, CA
	Perth Amboy, NJ

USITC (1979) lists Diamond Shamrock, Joseph Ayers Inc., Norac Co., Synthetic Prod., and Witco as manufacturers.

Data available from the U.S. EPA (1980) regarding producers of aluminum distearate and production volumes are presented in Table 11.

In addition to the manufacturers, distributors include (1980-81 OPD Chemical Buyers Directory, 1980; Chemical Week: 1981 Buyers' Guide Issue, 1980):

Ashland Chem.	Phillips Bro. Chem.
C.P. Hall Co.	Ruger Chem.
Harshaw Chem.	Sattva Trading Co.
International Commodities	Sea Land Chem.
Export Corp.	Smith Chem. and Color
Kraft Chem.	Sobin Chem.
Mallinckrodt	Thompson-Hayward Chem.
Pacific Gateway	Joseph Turner and Co.
Pennwalt Corp.	Universal Preservachem.

10. Manufacturing Processes

Aluminum distearate is prepared by the reaction of a solution of sodium stearate at pH 7.3 with an aqueous solution of aluminum sulfate or aluminum chloride (Warner, 1978).

The commercial process can be either batch or continuous operations. The process begins by dissolving caustic soda in water and adding stearic acid to form the sodium stearate. A solution of aluminum sulfate is then slowly charged to the reactor, causing the aluminum distearate to precipitate. The resulting slurry is filtered and washed in plate and frame filter presses, vacuum filters, or centrifugal separators. The partially dried filter cakes are placed in tray dryers and the remaining water is removed. The dried product may then be ground and separated to produce a uniform particle size powder (Whitaker, 1965).

11. Impurities and Additives

No information was found in the literature searched.

12. Occupational Exposure

The National Occupational Hazard Survey indicates that 8,282 workers are potentially exposed to aluminum distearate.

13. Control Technology and Work Practices

Specific factors that may contribute to or prevent employee exposure to aluminum distearate were not found in the literature searched.

14. Biological Effects

No information regarding the biological effects of aluminum distearate was found in the literature searched.

15. Ongoing Studies

No current toxicological or environmental studies of aluminum distearate were found.

16. Exposure Standards

No recommended or promulgated occupational exposure standards for aluminum distearate were found.

17. Sources of Additional Relevant Information

No sources of additional relevant information were identified.

18. Other Pertinent Data

No other information that would aid in the assessment of aluminum distearate as an occupational hazard was found in the literature searched.

G. ALUMINUM ETHOXIDE

1. Chemical Name: Aluminum Ethoxide
2. Chemical Structure: $\text{Al}(\text{OC}_2\text{H}_5)_3$
3. Synonyms: Ethanol, aluminum salt
4. Chemical Abstracts Service (CAS) Number: 555-75-9
5. Registry of Toxic Effects of Chemical Substances (RTECS) Number:
Not listed
6. Chemical and Physical Properties:

Description: white solid
Molecular Weight: 162.15
Boiling Point: 189°C (at 3 mm Hg); 200°C (6-8 mm Hg)
Melting Point: 140°C
Vapor Pressure: ---
Solubility: decomposed by water
slightly soluble in hot xylene;
chlorobenzene, and other high
boiling solvents
Specific Gravity: ---
Stability: ---

7. Production

Data available from the U.S. EPA (1980) regarding producers of aluminum ethoxide and production volumes are presented below:

Continental Oil Co. (Westlake, LA)
Manufacturer - Not distributed
1977 Production: 1-10 million lb

Eastman Kodak (Rochester, NY)
Manufacturer
1977 Production: under 1000 lb

8. Use

The only commercial manufacturer uses its production captively (see data from U.S. EPA above). Aluminum ethoxide can be used as a catalyst in organic reactions and polymerizations, in the reduction of aldehydes and ketones

(Hayes, 1963; The Merck Index, 1976), and as a chemical intermediate (Bretzinger and Josten, 1978).

9. Manufacturers and Distributors

The manufacturers are listed above in Section 7.

Distributors include (Chem Sources--USA, 1980):

Columbia Organics
Chem Services
Fisher Sci.
ICN/K and K
Orion Chem.
Pflatzz and Bauer
Reliable Chem.

10. Manufacturing Processes

The commercial process is unavailable. Aluminum ethoxide can, however, be prepared by reacting aluminum powder with absolute alcohol (ethanol) in xylene using small amounts of mercuric chloride and iodine as catalysts (The Merck Index, 1976).

11. Impurities or Additives

No information was found in the literature searched.

12. Occupational Exposure

The National Occupational Hazard Survey does not provide an estimate of the number of workers who are potentially exposed to aluminum ethoxide.

13. Control Technology and Work Practices

Specific factors that may contribute to or prevent employee exposure to aluminum ethoxide were not found in the literature searched.

14. Biological Effects

No information regarding the biological effects of aluminum ethoxide was found in the literature searched.

15. Ongoing Studies

No current toxicological or environmental studies of aluminum ethoxide were found.

16. Exposure Standards

No recommended or promulgated occupational exposure standards for aluminum ethoxide were found.

17. Sources of Additional Relevant Information

No sources of additional relevant information were identified.

18. Other Pertinent Data

No other information that would aid in the assessment of aluminum ethoxide as an occupational hazard was found in the literature searched.

H. ALUMINUM FLUORIDE

1. Chemical Name: Aluminum Fluoride
2. Chemical Structure: AlF_3
3. Synonyms: Aluminum trifluoride
4. Chemical Abstracts Service (CAS) Number: 7784-18-1
5. Registry of Toxic Effects of Chemical Substances (RTECS) Number: BD2100000
6. Chemical and Physical Properties:

Description: white crystalline solid
Molecular Weight: 83.98
Boiling Point: ---
Melting Point: sublimes at 1272°C
Vapor Pressure: 1 mm Hg (1238°C)
Solubility: 0.559 g/100 cc water
 insoluble in most organic solvents
 sparingly soluble in acids and alkalies
Specific Gravity: 2.882²⁵₄
Stability: not combustible

7. Production

The following production figures for aluminum fluoride are available (MCA, 1975):

<u>Year</u>	Production (in short tons)
1973	140,187
1972	138,853

Gall (1980) has estimated that the volume of production in 1978 was about 91,000 tons, excluding recycled material or production from fluorosilicic acid.

Data available from the U.S. EPA (1980) regarding producers of aluminum fluoride and production volumes are presented in Table 12.

Table 12. Producers of Aluminum Fluoride and Production Ranges
(U.S. EPA, 1980)

Producer and Location	Type of Production	1977 Production Range (CAS No. 7784-18-1)
Kawecki Berylco Industries Boyertown, PA	Manufacturer	0-1000 lb
Greens Bayou Plant Houston, TX	Manufacturer	10-50 million lb
Allied Chemical Co. Geismar, LA	Manufacturer	50-100 million lb
Aluminum Co. of America Forte Meade, FL Point Comfort, TX Pittsburg, PA	Manufacturer Manufacturer Importer	confidential confidential 1-10 million lb
Process Div. UOP Inc. Shreveport, LA Shreveport, LA	Manufacturer Importer	confidential confidential
Pennwalt Corp. Cornwall Heights, PA Tulsa, OK	Manufacturer Manufacturer	0-1000 lb 1-10 thousand lb
E.I. DuPont De Nemours and Co. Newark, NJ	Manufacturer	confidential
Kaiser Chemicals Gramercy, LA Oakland, CA	Manufacturer Importer	50-100 million lb 1-10 million lb
United Mineral and Chem. Corp. NYC, NY	Importer	0-2000 lb
Amalgamet, Inc. NYC, NY	Importer	zero
Bulkley Dunton and Co. NYC, NY	Importer	0-1000 lb
Revere Copper and Brass, Inc. Rome, NY	Importer	1-10 million lb
Alcan Aluminum Corp. Cleveland, OH	Importer	0.1-1 million lb

The demands for aluminum fluoride can be expected to grow more slowly than the volume of aluminum production, because of greater efficiency in recycling fluorine and reduction of fluoride losses. The demand for aluminum fluoride may be reduced if the chloride process for aluminum metal production becomes widely used (Gall, 1980).

8. Use

The principal use of aluminum fluoride is as a make-up ingredient in the molten electrolyte of the aluminum reduction cell and in the electrolytic process for refining aluminum. Lower volume uses for aluminum fluoride include incorporation into glass (optical, laser, and electrically conducting), in low-melting glazes and enamels, and ceramics (electrical resistors), in fluxes (for casting, welding, brazing, and soldering), in catalyst compositions as inhibitors in fermentation processes, and in the manufacture of aluminum silicate fiber (Gall, 1980).

9. Manufacturers and Distributors

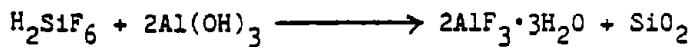
SRI International (1980) lists the following manufacturers of aluminum fluoride:

Allied Chem. Corp.	Geismar, LA
Aluminum Co. of America	Fort Meade, FL
	Point Comfort, TX
Kaiser Aluminum and Chem.	Gramercy, LA
Pennwalt (Ozark-Mahoning)	Tulsa, OK

Data available from the U.S. EPA (1980) regarding producers of aluminum fluoride and production volumes are presented in Table 12.

In addition to the manufacturers, the distributors include (1980-81 OPD Chemical Buyers Directory, 1980; Chemical Week: 1981 Buyers' Guide Issue, 1980; Chem Sources--USA, 1980):

Alcan Aluminum Corp.	Hudson Labs
Aldrich Chem.	ICN K and K
Alfa Products (Thickol/Ventron)	Intsel Corp.
American Fluoride Corp.	Jayar-Hoag Chem.
American Hoechst Corp.	LaPine Sci.
Apache Chem.	MCB Reagents
Atomergic Chemetals Corp.	Mitsui and Co. (USA)
Bodman Chem.	Noah Chem.
Cerac Inc.	Orion Chem.
Chem. Service	Pfaltz and Bauer
City Chem.	Signo Trading
Engelhard Ind.	Spex Ind.
Five Seas Trading Co.	Stauffer Chem.
Gallard-Schlesinger Chem.	Ultra Pure Chem.


10. Manufacturing Processes

Gall (1980), in the Kirk-Othmer Encyclopedia of Chemical Technology, describes the manufacturing processes as follows:

In a typical wet process, alumina hydrate is added to aqueous 15% hydrofluoric acid in makeup tanks of steel lined with rubber and carbon brick using HF-resistant mortar. Solution of the alumina hydrate and formation of crystalline $AlF_3 \cdot 3H_2O$ takes place in continuous-flow crystallizers with the slurry held for about 3 hours at 93°C with continuous agitation. Continuous dewatering on rubber-lined rotary suction filters gives a washed cake with ca 10% moisture. The product is calcined in rotating horizontal kilns. In a similar process, employing continuous reaction of hydrate and acid, hydrofluoric acid of higher concentration is used.

In a dry process, partially dehydrated alumina hydrate reacts with HF gas at elevated temperature. The alumina may be packed in pellet form into vertical contact towers, but fluidized beds are more commonly used. Fluidization is maintained by the hydrogen fluoride gas and by the steam produced in the reaction. In one reported installation, the reactor is made of Inconel, divided into three superimposed zones by two horizontal sieve plates. Alumina trihydrate is fed into the top zone, and spent gases (water, hydrogen fluoride, silicon tetrafluoride, and dust) leave at this point. These gases may be used in the manufacture of cryolite. Hydrogen fluoride enters the bottom zone and receives heat from the departing aluminum trifluoride. The major reaction occurs in the middle zone to maintain a high temperature.

Aluminum trifluoride may also be made from fluorine values gained from waste gases from phosphate rock acidulation in fertilizer manufacture. The silicon tetrafluoride in the gas is first converted to fluorosilicic acid which then reacts with alumina hydrate:

For economic operation loss of aluminum trifluoride to the filter cake must be low, and phosphorus contamination must be avoided. The conditions of operation are critical. The alumina is added slowly to fluorosilicic acid which should contain excess silica, with the F/Si ratio ca 5. With slow addition, a well-filterable silica is obtained, but the reaction time should not be long enough for conversion of alpha alumina hydrate, formed first, to the less soluble beta form. After removal of the precipitated silica, seed crystals are added and beta aluminum trifluoride crystallizes at an elevated temperature (Gall, 1980).

11. Impurities and Additives

Commercial technical aluminum trifluoride usually has the following composition:

assay as AlF ₃ , typical	90.0%
free alumina as Al ₂ O ₃ , typical	9.5
silica as SiO ₂ , max	0.1
iron as Fe ₂ O ₃ , max	0.1
sulfur as SO ₂ , max	0.32

12. Occupational Exposure

The National Occupational Hazard Survey indicates that 1757 workers are potentially exposed to aluminum fluoride.

13. Control Technology and Work Practices

Specific factors that may contribute to or prevent employee exposure to aluminum fluoride were not found in the literature searched.

14. Biological Effects

a. Animal Studies

(1) Acute Exposures

Oral doses of 600 mg/kg and subcutaneous doses of 300 mg/kg have been reported to cause death in 48 hours in adult guinea pigs (Waldbott, 1963).

(2) Subchronic Exposures

No information was found in the literature searched.

(3) Chronic Exposures

No information was found in the literature searched.

(4) Carcinogenicity

No information was found in the literature searched.

(5) Mutagenicity

No information was found in the literature searched.

(6) Teratogenicity

No information was found in the literature searched.

(7) Reproductive Effects

No information was found in the literature searched.

(8) Other Relevant Data

No information was found in the literature searched.

b. Human Studies

(1) Pharmacokinetics

No information was found in the literature searched.

(2) Health Effects

No information was found in the literature searched.

(3) Target Organ Toxicity

No information was found in the literature searched.

(4) Epidemiology

No information was found in the literature searched.

15. Ongoing Studies

No current toxicological or environmental studies of aluminum fluoride were found.

16. Exposure Standards

No recommended or promulgated occupational exposure standards for aluminum fluoride were found.

17. Sources of Additional Relevant Information

No sources of additional relevant information were identified.

18. Other Pertinent Data

Exposure to fluorides may occur during the manufacture and use of aluminum fluoride. The toxicity of fluoride ion has been extensively reviewed by many sources, including NIOSH (1975). It has been recommended (NIOSH, 1975; ACGIH, 1977) and promulgated (OSHA, 1976) that occupational exposure to fluoride be controlled to concentrations no greater than 2.5 mg/m^3 (as F) determined as a time-weighted average (TWA) exposure for up to a 10-hour work day, 40-hour work week.

I. ALUMINUM HYDRIDE

1. Chemical Name: Aluminum Hydride
2. Chemical Structure: AlH_3
3. Synonyms: None available
4. Chemical Abstracts Service (CAS) Number: 7784-21-6
5. Registry of Toxic Effects of Chemical Substances (RTECS) Number:
BD0930000
6. Chemical and Physical Properties:

Description: white to gray powder
Molecular Weight: 29.99
Boiling Point: ---
Melting Point: decomposes (160°C)
Vapor Pressure: ---
Solubility: decomposes with water
Specific Gravity: ---
Stability: dangerous fire and explosion risk

7. Production

Data available from the U.S. EPA (1980) regarding producers of aluminum hydride and production volumes are presented below:

Continental Oil Co. (Westlake, LA)
Manufacturer - Not distributed
1977 Production: 1-10 million lb

8. Use

The only manufacturer (listed above) uses its production captively. Aluminum hydride can be used in the production of catalysts for polymerizations and elastomers (Tucker and Horne, 1979), in the production of tri-isobutyl aluminum (Hoff et al., 1978), in electroless coatings on plastics, textiles, fibers, and other metals, and as a possible rocket fuel (Hawley, 1977).

9. Manufacturers and Distributors

See Section 7.

10. Manufacturing Processes

The commercial method is not available. Aluminum hydride can be prepared by treating an ether solution of lithium hydride with aluminum chloride (The Merck Index, 1976) or by treating an ether solution of lithium aluminum hydride with aluminum chloride (Sullivan and Wade, 1980).

11. Impurities or Additives

No information was found in the literature searched.

12. Occupational Exposure

The National Occupational Hazard Survey does not provide an estimate of the number of workers who are potentially exposed to aluminum hydride.

13. Control Technology

Specific factors that may contribute to or prevent employee exposure to aluminum hydride were not found in the literature searched.

14. Biological Effects

No information regarding the biological effects of aluminum hydride was found in the literature searched.

15. Ongoing Studies

No current toxicological or environmental studies of aluminum hydride were found.

16. Exposure Standards

No recommended or promulgated occupational exposure standards for aluminum hydride were found.

17. Sources of Additional Relevant Information

No sources of additional relevant information were identified.

18. Other Pertinent Data

No other information that would aid in the assessment of aluminum hydride as an occupational hazard was found in the literature searched.

J. ALUMINUM HYDROXIDE

1. Chemical Name: Aluminum Hydroxide
2. Chemical Structure: Al(OH)_3 or $\text{Al}_2\text{O}_3 \cdot 3\text{H}_2\text{O}$
3. Synonyms:

Aluminum trihydrate	Amphajel
Aluminum hydrate	Co-lu-gel
Aluminum hydroxide trihydrate	Creamalin
Hydrated alumina	Aluminic acid
Hydrated aluminum oxide	C 4D
α -Trihydrate	Kolantyl gel
Mylanta	Oxaine-M
Maalox	Silain-gel
Kudrox	Wingel
Amberol ST 140F	British Aluminum AF-260
Aluminum trihydroxide	Trihydroxyaluminum
Alusal	CI 77002
Haijiraito	Higilite
Algelium	Hydral 705
Gelusil	Hychol 705

4. Chemical Abstracts Service (CAS) Number: 21645-51-2
5. Registry of Toxic Effects of Chemical Substances (RTECS) Number:
BD0940000
6. Chemical and Physical Properties:

Description:	white crystalline powder, balls, or granules
Molecular Weight:	78.01
Boiling Point:	decomposes
Melting Point:	decomposes
Vapor Pressure:	---
Solubility:	practically insoluble in water and alcohol soluble in mineral acids and caustic soda
Specific Gravity:	2.42
Stability:	noncombustible

7. Production

The most recent production figures for aluminum hydroxide (alumina trihydrate) are the following (Treskon, 1976a):

<u>Year</u>	Production ($\text{Al}_2\text{O}_3 \cdot 3\text{H}_2\text{O}$ basis) (thousand of tons)
1974	532
1973	607
1972	529
1971	476
1970	364

Data available from the U.S. EPA (1980) regarding producers of aluminum hydroxide and production volumes are presented in Table 13.

In 1978, 48.6 thousand tons of aluminum hydroxide were exported (USDC, 1979).

8. Use

In 1976, the major market for aluminum hydroxide (a-trihydrate) in the United States was as a flame-retardant filler for carpet backing, plastics, and building board. When a product filled with trihydrate is exposed to fire, the hydrate decomposes endothermically (releasing most of its chemically-bound water) and acts as a heat sink to absorb the heat of the fire (MacZura *et al.*, 1978).

Other major markets include the manufacture of aluminum sulfate, sodium aluminate, aluminum fluoride, other aluminum compounds, and catalysts as well as pigments for paper, rubber, and paint (MacZura *et al.*, 1978). Extensive amounts are used in the manufacture of glass, vitreous enamels, pottery, and china glazes. Fine grades are used as a base for cosmetic powders (Papee and Tertian, 1963) and as a constituent in toothpaste and pharmaceutical stomach antacids (MacZura *et al.*, 1978).

Table 13. Producers of Aluminum Hydroxide and Production Ranges
(U.S. EPA, 1980)

Producer and Location	Type of Production	1977 Production Range (CAS No. 21645-51-2)
H. Kohnstamm and Co. Brooklyn, NY	Manufactuer	confidential
Chevron USA Richmond, CA	Manufacturer	zero
Keystone Color Works York, PA	Manufacturer	10-100 thousand lb
Katalco Corp. Chicago, IL	Manufacturer/ Produced Site Limited	confidential
Engelhard Industries Newark, NJ Newark, NJ	Manufactuer Importer	1.1-11 million lb 1-10 million lb
Aluminum Co. of America Bauxite, AZ Mobile, AL Point Comfort, TX	Manufacturer Manufacturer Manufacturer	confidential confidential confidential
United Catalysts Inc. Louisville, KY	Manufacturer/ Produced Site Limited	1-10 thousand lb
Nalco Chemical Co. Chicago, IL	Manufacturer Produced Site Limited	confidential
The Mearl Corp. Peekskill, NH	Manufacturer	0-1 thousand lb
Hercules Inc. Glen Falls, NY	Manufacturer	confidential
Harmons Colors Corp. Hawthorne, NJ	Manufactuer	zero
The Harshaw Chemical Co. Louisville, KY	Manufacturer/ Produced Site Limited	10-100 thousand lb
Reheis Chemical Co. Berkely Heights, NJ	Manufacturer	10-50 million lb
Pennwalt Corp. Homer, NY	Manufacturer	1-10 thousand lb

Table 13. Producers of Aluminum Hydroxide and Production Ranges
(U.S. EPA, 1980) (Cont'd)

Producer and Location	Type of Production	1977 Production Range (CAS No. 21645-51-2)
CP Chemicals, Inc. Sewaren, NJ	Manufacturer	confidential
Cattem Chemicals Chattanooga, TN	Manufacturer	confidential
Allusuisse Metals, Inc. Fort Lee, NJ	Importer	10-100 thousand lb
Napp Chemicals Lodi, NJ	Importer	1-10 thousand lb
Alcan Aluminum Corp. Cleveland, OH	Importer	10-50 million lb

The following tabulation presents the percentage of the total amount of aluminum hydroxide marketed that is used in each of the applications listed (SRC estimate):

	<u>Percentage of Total</u>
Flame retardant	50
Aluminum sulfate (iron-free)	15
Other aluminum compounds	5-10
Cosmetics	5
Miscellaneous (pigments, catalysts, glass, etc.)	20-25

9. Manufacturers and Distributors

SRI International (1980) lists the following manufacturers:

Aluminum Co. of America	Bauxite, AR
	Mobile, AL
	Point Comfort, TX
Barcroft Co.	Lewes, DE
H. Kohnstamm and Co.	Camden, NJ
Revlon (Reheis)	Berkeley Heights, NJ
Reynolds Metals	Bauxite, AR
Solem Industries	Benton, AR
	Fairmount, GA
Sterling Drug	Glenbrook, CT

Other producers are listed in Table 13.

In addition to the manufacturers, the distributors include (Chemical Week: 1981 Buyers' Guide Issue, 1980); 1980-81 OPD Chemical Buyers Directory, 1980; Chem Sources--USA, 1980):

Accurate Chem.	Kaiser Chem.
Alcan Aluminum	Kraft Chem.
Alfa Chem.	LaPine Sci.
AluChem	MCB Reagents
Anachemia Chem.	Mutchler Chem.
Apache Chem.	MWM Chem.
Atomergic Chemetals	Noah Chem.
Austin Chem.	Orion Chem.
J.T. Baker Chem.	Pacific Gateway
Bodman Chem.	Pfaltz and Bauer
R.E. Carroll Inc.	Reliable Chem.
Chemical Dynamics	Rhone-Poulenc

Chem. Services	Roussel Corp.
Delmar Inc.	H.M. Royal Inc.
EM Labs	E.M. Sergeant Pulp and Chem.
Fisher Sci.	S.S.T. Corp.
Gallard-Schlesinger	Superior Materials
Hammill and Gillespie Inc.	Tridom Chem.
Harrison and Crosfield	George Uhe Co.
Hudspeth Corp.	Willow Chem.
Intsel Corp.	Willow Labs.
	Young Chem.

10. Manufacturing Processes

The crystallized, naturally-occurring compound, known as gibbsite or hydragillite, is the principal constituent of tropical bauxites. Industrially, the α -trihydrate (aluminum hydroxide) is obtained directly by the Bayer process, which consists of treating the bauxite with sodium hydroxide under pressure, followed by decomposition of the resulting sodium aluminate solution and seeding with previously formed hydrate (MacZura *et al.*, 1978). The Bayer process is shown in Figure 6.

11. Impurities or Additives

The main impurity in the hydroxide obtained from the Bayer process is sodium (0.35-0.5% Na_2O); a few hundred parts per million of iron oxides and silicon oxides are also present (Papee and Tertian, 1963).

12. Occupational Exposure

The National Occupational Hazard Survey indicates that 97,273 workers are potentially exposed to aluminum hydroxide.

13. Control Technology and Work Practices

Specific factors that may contribute to or prevent employee exposure to aluminum hydroxide were not found in the literature searched.

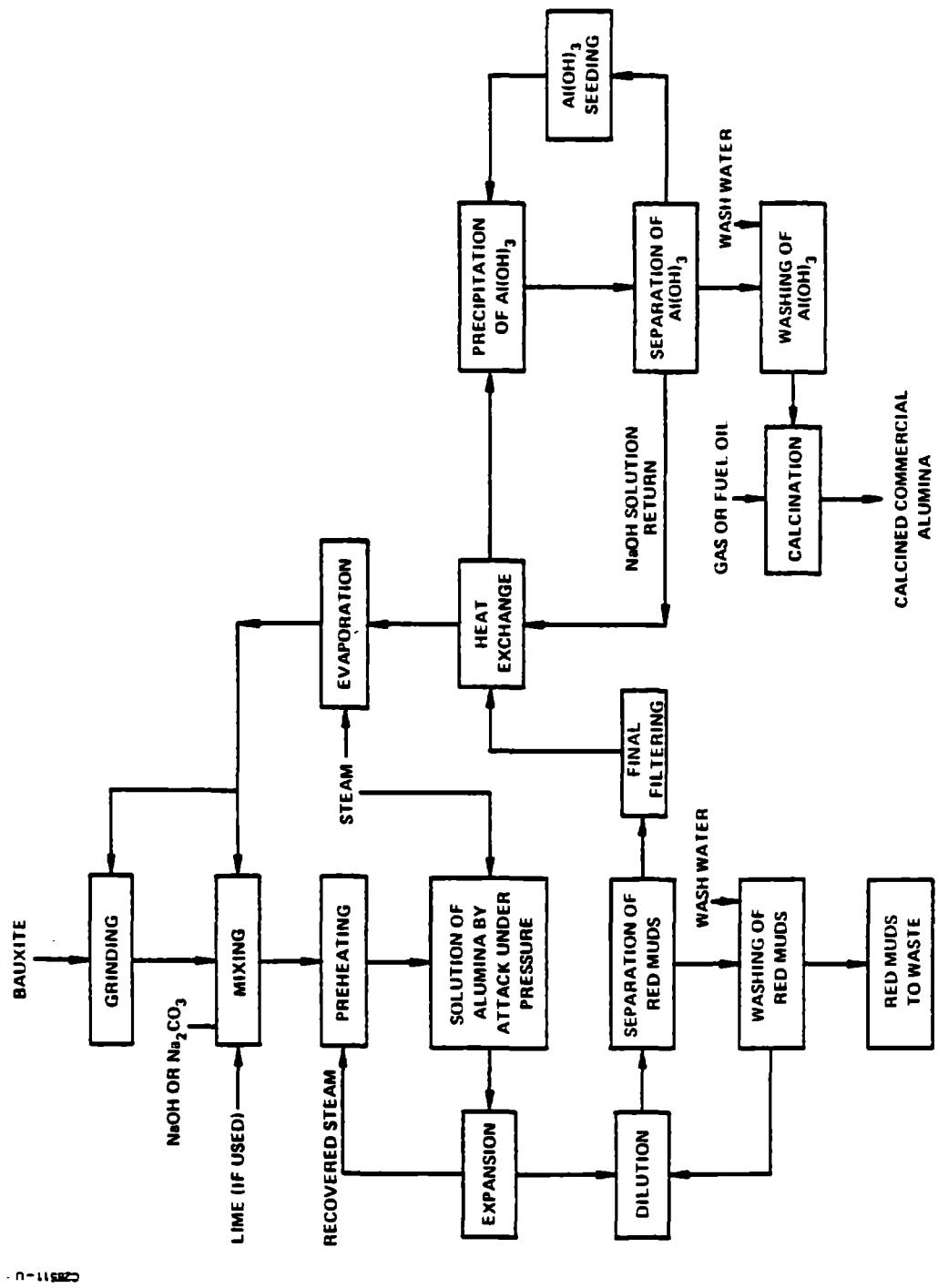


Figure 6. The Bayer Process (Anderson and Haupin, 1978)

14. Biological Effects

a. Animal Studies

(1) Acute Exposures

The acute toxicity of aluminum hydroxide is summarized in Table 14. The administration of lethal oral and intraperitoneal doses of aluminum hydroxide to rats that were 5/6 nephrectomized resulted in symptoms of lethargy, anorexia, and orbital bleeding (Berlyne et al., 1972). It was noted that these signs of aluminum intoxication could also be induced in normal rats.

Intradermal injection of aluminum hydroxide (6.5, 0.65, or 0.065 mg) produced severe granulomas in the skin of guinea pigs, but no evidence of fibrosis (Turk and Parker, 1977).

(2) Subchronic Exposures

Thurston et al. (1972) reported that retarded growth and rachitic bone changes occurred in weanling rats that were fed a diet with aluminum hydroxide (3.2 g/kg added) for a 4-week period; these effects were corrected by the addition of dietary phosphate supplements.

Lansdown (1973) found that 10% aluminum hydroxide did not produce any visible or microscopic changes to the uncovered back skin of mice, rabbits, or guinea pigs when applied daily for 5 consecutive days.

(3) Chronic Exposures

No information was found in the literature searched.

(4) Carcinogenicity

No information was found in the literature searched.

(5) Mutagenicity

Mammalian mutagenic effects were evaluated in several animal species following single intraperitoneal injections of aluminum hydroxide (Nashed, 1975). At levels of 5-40 mg/kg, aluminum hydroxide produced no increase

Table 14. Acute Toxicity of Aluminum Hydroxide

Route ^a	Species	Dose (mg/kg)	Response	Reference
gavage	rats	150 mg Al/kg/day	0/5 deaths x 5 days	Berlyne <u>et al.</u> , 1972
i.p.	rats	150 mg Al/kg/day	5/5 deaths x 5 days	Berlyne <u>et al.</u> , 1972
s.c.	rats	150 mg Al/kg/day	0/8 deaths x 5 days	Berlyne <u>et al.</u> , 1972

^ai.p. = intraperitoneal; s.c. = subcutaneous.

in chromosome aberrations, but did stimulate mitosis in peritoneal cells of mice, rats, and hamsters.

(6) Teratogenicity

No information was found in the literature searched.

(7) Reproductive Effects

No information was found in the literature searched.

(8) Other Relevant Information

Aluminum hydroxide is toxic to guinea pig peritoneal macrophages and fibroblasts in vitro, and is hemolytic (Badenoch-Jones et al., 1978).

Intracranial injection of aluminum hydroxide and aluminum hydroxide gels (alumina cream) have produced electroencephalographic and clinical signs of epilepsy and neurofibrillary degeneration in dogs, cats, monkeys, and other mammalian species (Crapper et al., 1973; Sorenson et al., 1974; King et al., 1975; Feria-Velasco et al., 1980).

b. Human Studies

(1) Pharmacokinetics

Approximately 1-2% of an ingested dose of aluminum hydroxide is retained in the human body (Berlyne and Rubin, 1977). Patients with renal failure show higher gastrointestinal absorption of aluminum hydroxide (Berlyne et al., 1970), with values as high as 15% absorption reported (Clarkson et al., 1972).

Elevated bone, brain and muscle levels of aluminum have been observed in uremic patients or hemodialysis patients (Alfrey et al., 1976; Elliott et al., 1978; Ellis et al., 1979). One main source of this aluminum is aluminum hydroxide, which is administered to control hyperphosphatemia.

Metabolic balance studies in patients whose diets were supplemented with antacids containing 1-3 g of aluminum (as the hydroxide) per day for 7-21 6-day periods indicated an average positive daily balance of 23 to 303 mg of aluminum (Gorsky *et al.*, 1979). The largest source of elimination of aluminum was through the feces, with small amounts (<1%) excreted in the urine.

(2) Health Effects

High brain levels of aluminum in dialysis patients maintained on aluminum hydroxide treatment have been correlated with incidences of fatal encephalopathy (Crapper *et al.*, 1973; Alfrey *et al.*, 1976). Symptoms included the development of a progressive dementia with paranoia, confusion, speech disorders, delirium, and electroencephalographic abnormalities. Cerebral gray matter was found to contain aluminum at a level of 25 ppm in victims of this neurological syndrome (Alfrey *et al.*, 1976).

Osteomalacia and impaired bone mineralization in renal dialysis patients have been correlated with increased bone levels of aluminum (Ellis *et al.*, 1979); based on animal experiments, these authors do not believe that this defect is the result of altered phosphate levels.

(3) Target Organ Toxicity

No information was found in the literature searched.

(4) Epidemiology

No information was found in the literature searched.

15. Ongoing Studies

Metabolic studies of aluminum in renal disease patients and normal controls are in progress (Kaehny, 1980).

16. Exposure Standards

No recommended or promulgated occupational exposure standards for aluminum hydroxide were found.

17. Sources of Additional Relevant Information

No sources of additional relevant information were identified.

18. Other Pertinent Data

No other information that would aid in the assessment of aluminum hydroxide as an occupational hazard was found in the literature searched.

K. ALUMINUM NITRATE

1. Chemical Name: Aluminum Nitrate
2. Chemical Structure: $\text{Al}(\text{NO}_3)_3 \cdot 9\text{H}_2\text{O}$
3. Synonyms: Aluminum nitrate, nonahydrate
Nitric acid, aluminum salt
4. Chemical Abstracts Service (CAS) Number: 7784-27-2 (nonahydrate)
13473-90-0 (anhydrous)

5. Registry of Toxic Effects of Chemical Substances (RTECS) Number:
BD1050000 (nonahydrate)
BD1040000 (anhydrous)

6. Chemical and Physical Properties:

Description: white crystalline solid
Molecular Weight: 375.19
Boiling Point: decomposes (150°C)
Melting Point: 73.5°C
Vapor Pressure: ---
Solubility: 63.7 g/100 cc water (25°C)
soluble in alcohol, acetone,
nitric acid
almost insoluble in ethylacetate
and pyridine
Specific Gravity: ---
Stability: strong oxidizing agent--do not
store near combustible materials

7. Production

Data available from the U.S. EPA (1980) regarding producers of aluminum nitrate and production volumes are presented in Table 15.

8. Use

Only aluminum nitrate nonahydrate has commercial significance. It is used primarily as a salting-out agent in the solvent extraction of actinides in the recovery of spent nuclear fuel (Marstiller, 1978; Anderson, 1963).

Table 15. Producers of Aluminum Nitrate and Production Ranges
(U.S. EPA, 1980)

Producer and Location	Type of Production	1977 Production Range (CAS No. 13473-90-0)
Mineral Research and Dev. Corp. Concord, NC	Manufacturer	confidential
Wasatch Chem. (Entrada) Salt Lake City, UT	Manufacturer	1-10 million lb
Eastman Kodak Rochester, NY	Manufacturer	10-100 thousand lb
Katalco Corp. Chicago, IL	Manufacturer/ Produced Site Limited	confidential
J.T. Baker Chem. Phillipsburg, NJ	Manufacturer	10-100 thousand lb
W.R. Grace and Co. Curtis Bay, MD	Manufacturer/ Produced Site Limited	0.1-1.0 million lb
GTE Sylvania Inc. Towanda, PA	Manufacturer	1-10 thousand lb
Dan River Inc. Danville, VA	Manufacturer	zero
Pennwalt Corp. Cornwall Heights, PA	Manufacturer	0-1 thousand lb
CP Chemicals Sewaren, NJ	Manufacturer	confidential
Chevron Chemical Kennewick, WA	Manufacturer	confidential
United Mineral and Chem. New York, NY	Importer	0-1 thousand lb
EM Laboratories Inc. Elmsford, NY	Importer	1-10 thousand lb
American Hoechst Corp. Bridgewater, NJ	Importer	confidential

Aluminum nitrate is also used as a source of alumina in the preparation of insulating papers, on transformer core laminates, and in cathode ray tube heating elements (Marstiller, 1978). Other applications include textile mordant, leather tanning, and catalyst in petroleum refining (Hawley, 1977). At one time, some hundreds of tons per year were used in catalyst production (Schliffer, 1947).

9. Manufacturers and Distributors

SRI International (1980) lists the following manufacturers:

J.T. Baker Chem.	Phillipsburg, NJ
MCB Reagents	Norwood, OH
Mineral Research and Dev. Corp.	Concord, NC
United Catalysts	Louisville, KY

Other producers are listed in Table 15.

Distributors include (1980-81 OPD Chemical Buyers Directory, 1980; Chemical Week: 1981 Buyers' Guide Issue, 1980; Chem Sources--USA, 1980):

Alfa Prod.	Gallard-Schlesinger
American Hoechst Corp.	Hetako
American Sci.	LaPine Sci.
Anachemia Chem.	Mallinckrodt
Apache Chem.	MCB Reagents
Aran Isles Chem.	Orion Chem.
Barker Ind.	Pfaltz and Bauer
Campbell Chem.	Reliable Chem.
Chem. Services	Sattva Trading Co.
Delamar Inc.	G. Fredrick Smith Co.
E.M. Labs	Spex Ind.
Fisher Sci.	United Mineral and Chem.

10. Manufacturing Processes

Aluminum nitrate is prepared by dissolving aluminum or aluminum hydroxide in dilute nitric acid, and crystallizing the aluminum nitrate from the resulting aqueous solution. Commercially, aluminous materials (such as bauxite), and nitric acid can be used (Marstiller, 1978). Prior to the crystallization, impurities in the crude nitrate are removed (Anderson, 1963).

11. Impurities or Additives

Aluminum nitrate is available in technical grade, C.P. grade, and 99.75% (Hawley, 1977).

12. Occupational Exposure

The National Occupational Hazard Survey does not provide an estimate of the number of workers who are potentially exposed to aluminum nitrate.

13. Control Technology and Work Practices

Specific factors that may contribute to or prevent employee exposure to aluminum nitrate were not found in the literature searched.

14. Biological Effects

a. Animal Studies

(1) Acute Exposures

Nekipelov (1966) determined an oral LD50 of 264 mg/kg for rats. The effect of aluminum nitrate on the rats was expressed by general sluggishness, reduced motor activity, somnolence, and profuse salivation; some of the rats developed "neurotic" tendencies. Gross examination of the rats that died during the experiment revealed necrotic tissue in the gastric mucosa (in which deposits of aluminum nitrate were found) and ulcerations. Histological examination of the internal organs of the rats that had received aluminum nitrate doses of up to 250 mg/kg revealed fatty degeneration of the liver and reticulo-endothelial hyperplasia with marked accumulation of megakaryocytes in the spleen.

A single oral dose of 10 mg/kg to rats had no significant effect on the oxygen uptake of rats, but doses of 40 and 100 mg/kg reduced uptake an average of 70-80% (Nekipelov, 1966).

(2) Subchronic Exposures

When mice and rats were injected intraperitoneally with aluminum nitrate for 10 consecutive days, the following lethal dose levels were reported (Hart and Adamson, 1971):

	<u>LD50*</u> (mg/kg)	<u>LD10*</u> (mg/kg)
CDF, male mice	320	213
Sprague-Dawley female rats	327	240

* the observation period totaled 30 days from first injection.

The oral administration of aluminum nitrate in doses of 25, 50, and 100 mg/kg for 10 days reduced the "working capacity" of rats and rabbits, as determined by the "spinning test" (Nekipelov, 1966). The same doses of aluminum nitrate were also reported to adversely affect reflex responses in rabbits.

Daily peroral doses of 0.1, 1, and 10 mg/kg aluminum nitrate for 6 months had no effect on the general condition, behavior, weight, blood pattern, gastric secretion, or functional state of the nervous system of rats, although a significant reduction in oxygen uptake was observed at 10 mg/kg (Nekipelov, 1966). In rabbits, aluminum nitrate doses of 0.1 and 1 mg/kg had no effect on general condition, weight, duration of "narcotic state," gastric secretion, or blood pattern. At 10 mg/kg, however, changes in gastric secretions (total acidity decreased by 47%, the content of free hydrochloric acid decreased by 21%, and the digestive capacity of the gastric juice decreased by 15%) and decreases in weight, red blood cell counts and hemoglobin, and duration of the "narcotic stage" were observed.

Lansdown (1973) found evidence of skin irritation when the uncovered back skin of mice, rabbits, and guinea pigs was treated daily for 5 consecutive days with 10% aluminum nitrate. Epidermal changes consisting of

hyperplasia, microabscess formation, dermal inflammatory cell infiltration, and occasionally ulceration were apparent in all three species. A high degree of aluminum deposition was present in the epidermal keratin of the damaged skin.

(3) Chronic Exposures

No information was found in the literature searched.

(4) Carcinogenicity

No information was found in the literature searched.

(5) Mutagenicity

No information was found in the literature searched.

(6) Teratogenicity

No information was found in the literature searched.

(7) Reproductive Effects

No information was found in the literature searched.

(8) Other Relevant Information

No information was found in the literature searched.

b. Human Studies

(1) Pharmacokinetics

No information was found in the literature searched.

(2) Health Effects

No information was found in the literature searched.

(3) Target Organ Toxicity

No information was found in the literature searched.

(4) Epidemiology

No information was found in the literature searched.

15. Ongoing Studies

No current toxicological or environmental studies of aluminum nitrate were found.

16. Exposure Standards

The ACGIH (1979) currently recommends a Threshold Limit Value (TLV) of 2 mg/m³ as Al for the soluble salts of aluminum. The TLV for these soluble salts, such as the chloride and sulfate, is based on the amount of hydrolyzed acid and the corresponding TLV. On the basis that 3 mol of HCl, with a TLV of 5 ppm, hydrolyze from 1 mol of AlCl₃, a TLV of 2 mg/m³ as Al is recommended to provide the same degree of freedom from irritation that is provided by the TLV for HCl. As the acute toxicity from Al₂(SO₄)₃ is only slightly greater than that of AlCl₃, and the toxicity of the alums is considerably less, the 2 mg/m³ is considered to be suitable for the soluble salts of aluminum (ACGIH, 1979).

17. Sources of Additional Relevant Information

No sources of additional relevant information were identified.

18. Other Pertinent Data

No other information that would aid in the assessment of aluminum nitrate as an occupational hazard was found in the literature searched.

L. ALUMINUM OXIDE

1. Chemical Name: Aluminum Oxide
2. Chemical Structure: Al_2O_3
3. Synonyms: Alumina
4. Chemical Abstracts Service (CAS) Number: 1344-28-1
5. Registry of Toxic Effects of Chemical Substances (RTECS) Number:
BD1200000
6. Chemical and Physical Properties (pure compound):

Description:	white solid
Molecular Weight:	101.96
Boiling Point:	2980°C
Melting Point:	2045°C
Vapor Pressure:	1 mm Hg (2148°C)
Solubility:	insoluble in water very slightly soluble in acids and alkalis practically insoluble in non-polar solvents
Specific Gravity:	3.965 ²⁵
Stability:	very stable under ambient conditions; noncombustible

7. Production

Treskon (1976a) lists the following production volumes for aluminum oxide:

<u>Year</u>	<u>Production -</u> (in thousands of short tons)
1974	6950
1973	6751
1972	6204
1971	6445

Current industry capacity to produce aluminum oxide is 7930 thousand tons per year (SRI International, 1980).

Data available from the U.S. EPA (1980) regarding producers of aluminum oxide and production volumes are presented in Table 16.

8. Use

About 90% of the produced alumina is used in the production of aluminum metal. The remainder is consumed in other applications such as flame retardant fillers, preparation of aluminum compounds, pigments, adsorbents, catalysts, ceramics, refractories, and abrasives (MacZura et al., 1978).

Various types of commercial alumina are produced; these include calcined, fused, activated, tabular (sintered), and various low sodium grades. The calcined alumina market consumes slightly more than 50% of the chemical alumina production; these markets are shown in Table 17 (MacZura et al., 1978).

North American fused alumina production has stabilized at an average not exceeding 200 kilotons/year. It is used in refractories, abrasives, and production of alumina-silica fibers (MacZura et al., 1978).

United States production of activated aluminas is 20-25 kilotons/year. They are widely used in adsorption for the drying of gases and liquids and in catalysis applications such as Claus converters, alcohol dehydration, and isomerization of olefins (MacZura et al., 1978).

Tabular alumina is used primarily in refractories and ceramics but also has applications in molten metal filter media, ground filler for epoxy and polyester resins, inert supporting beds for adsorbents or catalysts, and heat exchange media, among others (MacZura et al., 1978).

9. Manufacturers and Distributors

The manufacturers of aluminum oxide, as listed by SRI International (1980), are shown in Table 18. A substantial percentage of the domestic capacity is located in Texas and Louisiana.

Table 16. Producers of Aluminum Oxide and Production Ranges
(U.S. EPA, 1980)

Producer and Location	Type of Production	1977 Production Range (CAS No. 1344-28-1)
Springhill Mill Springhill, LA	Manufacturer	50-100 million lb
Chervon Richmond, CA	Manufacturer	confidential
Kerr-McGee Chemical Corp. Hamilton, MS	Manufacturer	1.2-12 million lb
Katalco Corp. Chicago, IL	Manufacturer	confidential
Engelhard Industries Newark, NJ Newark, NJ	Manufacturer Importer	2-20 million lb 10-50 million lb
Haven Chemical Philadelphia, PA	Manufacturer	confidential
Monsanto Co. Texas City, TX St. Louis, MO	Manufacturer Importer	0.1-1 million lb 10-100 thousand lb
Ferro Corp. Cleveland, OH	Manufacturer/ Produced Site Limited	1-10 thousand lb
Valumet Processing Corp. Sayreville, NJ	Manufacturer	1-10 thousand lb
Ormet Corp. Burnside, LA	Manufacturer	over 1 billion lb
Aluminum Co. of America Bauxite, AZ Mobile, AL Pittsburgh, PA Point Comfort, TX	Manufacturer Manufacturer Manufacturer Manufacturer	confidential confidential 1 billion lb confidential
Armak Catalysts Pasadena, TX	Manufacturer	confidential
American Cyanamid Wayne, NJ Fort Worth, TX Michigan City, IN Stamford, CT Willow Island, WV	Manufacturer Importer Manufacturer Manufacturer Manufacturer	zero confidential confidential 0.1-1 million lb confidential
Adrian Joyce Works Baltimore, MD	Manufacturer	confidential

Table 16. Producers of Aluminum Oxide and Production Ranges
(U.S. EPA, 1980) (Cont'd)

Producer and Location	Type of Production	1977 Production Range (CAS No. 1344-28-1)
United Catalysts Inc. Louisville, KY Louisville, KY	Manufacturer Manufacturer	1.2-12 million lb 0.3-3 million lb
Union Carbide Corp. Chickasaw, AL	Manufacturer	0.1-1 million lb
Dresser Industries Niagara Falls, NY	Manufacturer	confidential
W.R. Grace and Co. Chattanooga, TN Curtis Bay, MD	Manufacturer Manufacturer	0.1-1 million lb 0.1-1 million lb
General Refractories Co. Philadelphia, PA	Manufacturer	confidential
Process Div. UOP Inc. Shreveport, LA Importer McCook, IL	Manufacturer/ confidential Manufacturer	confidential confidential
Chemical Products Plant Cleveland, OH	Manufacturer	0-1000 lb
Continental Oil Co. Westlake, LA	Manufacturer	10-50 million lb
Chattem Chemical Chattanooga, TN	Manufacturer	confidential
Kaiser Chemicals Gramercy, LA Baton Rouge, LA Oakland, CA	Manufacturer Manufacturer Importer	over 1 billion lb over 1 billion lb over 1 billion lb
Reynolds Metal Co. Bauxite, AZ Gregory, TX Troutdale, OR Longview, WA	Manufacturer Manufacturer Importer Importer	500-1000 million lb over 1 billion lb 1-10 million lb 500-1000 million lb
Alumax Extrusions Inc. Plant City, FL St. Charles, IL Hernando, MS	Manufacturer Manufacturer Manufacturer	0.1-1 million lb 0.1-1 million lb 0.1-1 million lb
Alumax Mill Products Morris, IL Riverside, CA	Manufacturer Manufacturer	1-10 million lb 1-10 million lb

Table 16. Producers of Aluminum Oxide and Production Ranges
(U.S. EPA, 1980) (Cont'd)

Producer and Location	Type of Production	1977 Production Range (CAS No. 1344-28-1)
Alumax Foils St. Louis, MO	Manufacturer	0.1-1 million lb
V.E. Anderson Rome, GA	Manufacturer	1-10 thousand lb
Apex International Alloys Carson, CA	Manufacturer	1-10 million lb
Checotah, OK	Manufacturer	1-10 million lb
Cleveland, OH	Manufacturer	1-10 million lb
Chicago, IL	Manufacturer	1-10 million lb
United Mineral and Chem. Corp. NYC, NY	Importer	0-1000 lb
Cincinnati Milacron Prod. Cincinnati, OH	Importer	confidential
Intsel Corp. NYC, NY	Importer	2-20 thousand lb
Universal Grindingwheel Co. Philadelphia, PA	Importer	10-100 thousand lb
Allied Chemical Charlotte, NC	Importer	1-10 thousand lb
E.I. DuPont De Nemours and Co. Cleveland, OH	Manufacturer	confidential
Texas Instruments Inc. Sherman, TX	Manufacturer	zero
C.E. Minerals Greeneville, TN	Manufacturer	10-100 thousand lb
SCM Corp. Astabula, OH	Manufacturer	confidential
Martin Marietta St. Croix, VI	Manufacturer	over 1 billion lb
The Dalles, OR	Importer	100-500 million lb
Goldendale, WA	Importer	100-500 million lb
Mobile Oil Corp. Paulsboro, NJ	Manufacturer	1-10 million lb
Nalco Chemical Co. Chicago, IL	Manufacturer	1-10 million lb

Table 16. Producers of Aluminum Oxide and Production Ranges
(U.S. EPA, 1980) (Cont'd)

Producer and Location	Type of Production	1977 Production Range (CAS No. 1344-28-1)
Porocel Corp. Little Rock, AR	Manufacturer	0.1-1 million lb
The Marshaw Chemical Co. Cleveland, OH	Manufacturer	0.1-1 million lb
Elyria, OH	Manufacturer	0.1-1 million lb
Cleveland, OH	Importer	0.1-1 million lb
The Exolon Co. Tonawanda, NY	Importer	confidential
E.M. Laboratories Elmsford, NY	Importer	1-10 thousand lb
Eastalco Aluminum Co. Fredrick, MO	Importer/ Produced Site Limited	500-1000 million lb
Exxon Co. Houston, TX	Importer	0.1-1 million lb
Great Lakes Carbon Corp. NYC, NY	Importer	1-10 million lb
Ferroxcube Amperex Corp. Saugerties, NY	Importer	1-10 thousand lb
Intalco Aluminum Corp. Ferndale, WA	Importer	500-1000 million lb
Stauffer Chemical Co. Portland, OR	Importer	10-50 million lb
Bulkley Dunton and Co. NYC, NY	Importer	1-10 thousand lb
The Carborundum Corp. Niagara Falls, NY	Importer	50-100 million lb
Imperial Wallpaper Mills Plattsburgh, NY	Importer	10-100 thousand lb
Consolidated Aluminum Co. St. Louis, MO	Importer	100-500 million lb
BASF Wyandotte Corp. Parsippany, NJ	Importer	zero
Aceto Chemical Co. Flushing, NY	Importer	0.1-1 million lb

Table 16. Producers of Aluminum Oxide and Production Ranges
(U.S. EPA, 1980) (Cont'd)

Producer and Location	Type of Production	1977 Production Range (CAS No. 1344-28-1)
Alusuisse Metals Inc. Fort Lee, NJ	Importer	confidential
Atlantic Richfield Co. Los Angeles, CA	Importer	over 1 billion lb
The Anaconda Co. Louisville, KY	Importer	over 1 billion lb
Adolf Meller Co. Providence, RI	Importer	confidential
Uniroyal Naugatuck, CT	Importer	10-100 thousand lb
Superior Materials NYC, NY	Importer	0.1-1 million lb
Sumitomo Shoji America NYC, NY	Importer	1-10 thousand lb
H.C. Starck Inc. NYC, NY	Importer	0-1000 lb
Billiton Metals and Ores NYC, NY	Importer	2-20 million lb
Bodman Chemicals Aston, PA	Importer	1-10 thousand lb
Lukens Chemical Co. Cambridge, MA	Importer	0.1-1 million lb
Montedison USA NYC, NY	Importer	0-1000 lb
Norton Co. Worcester, MA	Importer	confidential
Titanium Pigment Div. South Amboy, NJ	Importer	1-10 million lb
Mead Corp. Dayton, OH	Importer	10-100 thousand lb
Petro-Tex Chem. Corp. Houston, TX	Importer	zero
GTE Sylvania Towanda, PA	Importer	10-100 thousand lb
Harrison Crosfield Newton Beach, CA	Importer	20-200 thousand lb

Table 16. Producers of Aluminum Oxide and Production Ranges
(U.S. EPA, 1980) (Cont'd)

Producer	Type of Production	1977 Production Range (CAS No. 1344-28-1)
General Motors Corp. Detroit, MI	Importer	2-20 million lb
Rhone-Poulenc Freeport, TX	Importer	1-10 million lb
Groveton Papers Co. Groveton, NH	Importer	0.1-1 million lb
Chevron Research Co. Elyria, OH	Importer	confidential
Degussa Corp. Teterboro, NJ	Importer	0.1-1 million lb
Celanese Corp. NYC, NY	Importer	10-100 thousand lb
Kawecki Berylco Ind. Reading, PA	Importer	1-10 thousand lb
Alcan Aluminum Corp. Cleveland, OH	Importer	10-50 million lb
A.P. De Sanyo and Son, Inc. Santa Cruz, CA	Importer	0.1-1 million lb
National Bottle Mfg. Co. Rockdale, IL	Importer	1-10 million lb

Table 17. World Nonaluminum Calcined Alumina Markets
 (MacZura *et al.*, 1978)

Market	1968	1975
	(percentage)	
Refractories (includes fused-cast and refractories made with sintered tabular grains)	38	62
Abrasive (fused and polishing aluminas)	21	16
Ceramics, electronic and technical (80+% Al_2O_3 , includes spark plug insulators)	29	11
Whitewares (includes electrical insulators below 80% Al_2O_3)	6	9
Glass enamels	4	1
Miscellaneous	2	1

Table 18. Manufacturers of Aluminum Oxide (Activated, Calcined, and Tabular)
(SRI International, 1980)

Producer	Location	Annual Capacity (thousands of tons)
Akzona Inc.		
Armak Co., subsid.		
Armak Catalysts Div.	Pasadena, TX	n.a.
Aluminum Co. of America	Bauxite, AR	375
	Mobile, AL	990
	Point Comfort, TX	1335
Combustion Engineering, Inc.		
C-E Minerals Div.	Greeneville, TN	n.a.
Conoco Inc.		
Conoco Chems. Co. Div.	Lake Charles, LA	20
Ferro Corp.		
Transelco Div.	Penn Yan, NY	n.a.
Kaiser Aluminum and Chem. Corp.		
Kaiser Aluminum Div.	Baton Rouge, LA	1025
	Gramercy, LA	800
Kaiser Chems. Div.	Baton Rouge, LA	n.a.
H. Kohnstamm and Co., Inc.	Camden, NJ	n.a.
Martin Marietta Corp.		
Martin Marietta Aluminum Inc., subsid.	St. Croix, VI	560
Norton Co.	Worcester, MA	n.a.
Ormet Corp.	Burnside, LA	600
Reynolds Metals Co.		
Chems. Div.	Bauxite, AR	840
	Corpus Christi, TX	1385
	ADD TOTAL	7930

Source: SRI International estimates.

n.a. = not available

Data available from the U.S. EPA (1980) regarding producers of aluminum oxide and production volumes are presented in Table 16.

The many distributors of alumina, in addition to the manufacturers, include (1980-81 OPD Chemical Buyers Directory, 1980; Chemical Week: 1981 Buyers' Guide Issue, 1980; Chem Sources--USA, 1980):

Accurate Chem.	Hammill and Gillespie Inc.
Air Products and Chemicals	Harbison-Walker
Aldrich Chem.	Harrison and Crosfield Inc.
Alfa Products	Intsel Corp.
Allpax	Kay-Fries
Aluchem	LaPine Sci.
Anachemia Chem.	Metalsmart
Apache Chem.	National Casein
Aremco Prod.	Noah Chem.
Atomergic Chemetals	Norton Co.
J.T. Baker	Orion Chem.
Biochemical Labs	Peltz/Rowley Chem.
Bodman Chem.	Pesses Co.
Campbell Chem.	Pfaltz and Bauer
Carborundum Co.	Rhone-Poulenc Chem. Co.
Cerac Inc.	Reliable Chem.
Chem. Services	H.M. Royal Inc.
Degussa Corp.	Signo Trading International
Denimex Development Corp.	Spex Ind.
Dynamit Nobel	Tridom Chem.
E.M. Chem.	Ultra Pure Chem.
E.M. Labs	United Mineral and Chem.
Erlanger and Co.	Var-Lac-Oid Chem.
Fisher Sci.	Kum Yang Co. Ltd.
Gallard-Schlesinger Chem.	Whittaker, Clark and Daniels Inc.
Great Western Inorganics	

10. Manufacturing Processes

Aluminum oxide (alumina) occurs abundantly in nature, most often as impure hydroxides, which are the essential constituents of bauxites and laterites. Most of the world's alumina is produced by refining bauxite via the Bayer process (MacZura *et al.*, 1978). A diagram of the Bayer process is shown in the Aluminum Hydroxide profile (III.H). The Bayer process consists of leaching bauxite with caustic soda followed by precipitation of a hydrated aluminum oxide

by hydrolysis and seeding of the solution. The alumina hydrate is then washed, filtered, and calcined to remove water and obtain the anhydrous oxide.

The various types of commercial aluminas are made by processing the Bayer-output with heat, pressure, and/or reshaping techniques.

11. Impurities or Additives

The compositions of some typical grades of alumina are presented in Table 19 (Treskon, 1976a).

12. Occupational Exposure

The National Occupational Hazard Survey indicates that 1,958,561 workers are potentially exposed to aluminum oxide.

13. Control Technology and Work Practices

Specific factors that may contribute to or prevent employee exposure to aluminum oxide were not found in the literature searched.

14. Biological Effects

a. Animal Studies

(1) Acute Exposures

Single intratracheal instillations of 35-100 mg of alumina (0.005-2 μm) have produced areas of dense collagenous fibrosis in the lungs of rats after 6-12 months (King *et al.*, 1955; Stacy *et al.*, 1959; Klosterkotter, 1960). The degree of fibrosis reached depended upon the dosage, type of alumina, and particle size. Fibrosis due to anhydrous (gamma) alumina was generally more severe than that resulting from powdered hydrated alumina, and condensed fume from a corundum furnace (consisting of approximately one-half alumina and one-half silica) produced less severe pulmonary fibrosis than hydrated alumina.

Table 19. The Compositions of Some Typical Grades of Alumina (Treskon, 1976a)

	Calcined	Low Soda	Activated	Tabular	White Fused	Brown Fused
Al_2O_3	99.2%	99.6-99.8%	93.0%	99.54%	99.6%	95%
SiO_2	0.02%	0.02-0.1%	0.02%	0.04%	0.1%	1.0%
Fe_2O_3	0.04%	0.01-0.05%	0.02%	0.06%	0.06%	0.2%
Na_2O	0.5%	0.05-0.1%	0.4%	0.02%	0.2%	--
TiO_2	0.002%	0.0002%	0.0002%	0.0002%	--	3.0%
Other	0.3%	0.1-0.3%	6.0%	0	0	0
Specific Gravity	3.7-3.9	3.9	3.1	3.65-3.8	3.95	3.95

(2) Subchronic Exposures

Stenback and coworkers (1976) reported that the intratracheal instillation of aluminum oxide dust into Syrian hamsters, as a 3 mg saline solution once per week for 15 weeks, produced interstitial lung fibrosis with occasional alveolar accumulations of macrophages and multinucleated giant cells.

(3) Chronic Exposures

Inhalation of high levels of gamma-alumina (approximately 33 g/m³, 0.005-0.04 μ m average size), 5 hours daily for up to 285 days, caused heavy desquamation of alveolar cells and secondary inflammation, but only slight evidence of fibrosis in rats (Klosterkotter, 1960).

(4) Carcinogenicity

Stenback et al. (1976) were unable to demonstrate an increase in tracheal or laryngeal tumors when aluminum oxide dust was instilled intratracheally into Syrian hamsters as a 3 mg saline solution once per week for 15 weeks.

Intrapleural inoculation of a single dose of aluminum oxide suspension (20 mg/animal) did not produce significant increases in mesothelioma in rats or compared to asbestos-treated animals (Wagner et al., 1973).

(5) Mutagenicity

Testing of aluminum oxide in two strains of recombination-deficient Bacillus subtilis (H17 and M45) did not indicate any mutagenic effects in the rec assay (Kanematsu et al., 1980).

(6) Teratogenicity

Colloidal alumina (Baymal) produced encephalocele and eyelid defects in chick embryos when inoculated into the amniotic cavity (0.01-0.1 mg/egg) on day 5 of incubation (Williamson et al., 1963). Severe

twisting and distortion of the body axis and appendages were also noted, particularly at the higher doses, although the appendages appeared normal in general development. The embryonic defects were attributed to the presence of the extraneous alumina particulate matter in contact with the developing embryo.

(7) Reproductive Effects

No information was found in the literature searched.

(8) Other Relevant Information

No information was found in the literature searched.

b. Human Studies

(1) Pharmacokinetics

Inhalation exposure of alumina workers to Al_2O_3 dust has been reported to increase blood levels of aluminum two to three times those in controls (Waldron-Edward et al., 1971); it is not clear, however, to what extent inhaled particles were swallowed and subsequently absorbed from the gastrointestinal tract.

(2) Health Effects

Workers engaged in the manufacture of aluminum oxide have experienced lung disease with symptoms of varied intensity that included cough accompanied by sputum, dyspnea, and substernal discomfort (Shaver and Riddell, 1947).

(3) Target Organ Toxicity

Shaver and Riddell (1947) described a characteristic non-nodular lung fibrosis that developed in workers who were engaged in the manufacture of aluminum oxide abrasive (corundum) in four different plants. The disease was, on occasion, rapidly progressive, and the fibrosis was accompanied by profound emphysema. Exposure levels, however, were not reported, and the workers were also exposed to silica dust during this manufacturing process. It

has been noted that the recent literature does not reveal examples of distinctive pulmonary fibrosis and emphysema in aluminum oxide workers (Sorenson *et al.*, 1974; ACGIH, 1979).

An increased prothrombin time has been noted in workers exposed to aluminum oxide dust during its manufacture by the Bayer process (Waldron-Edward *et al.*, 1971).

(4) Epidemiology

Pulmonary effects were not observed in workers exposed to aluminum dust during the grinding of duralumin propellers (95% aluminum, 4.5% copper, and traces of other metals) with alundum (calcined aluminum oxide) abrasive (Hunter *et al.*, 1944). Atmospheric levels of aluminum particles in the workplace ranged from 0.1-2.7 mg/m³.

15. Ongoing Studies

No current toxicological or environmental studies of aluminum oxide were found.

16. Exposure Standards

The ACGIH has recommended a Time-Weighted Average (TWA) occupational exposure limit for aluminum oxide of 10 mg/m³, based on consideration of the compound as an inert dust (ACGIH, 1979).

17. Sources of Additional Relevant Information

A NIOSH Health Hazard Evaluation (HHE) relating to aluminum oxide has been conducted at the Reynolds Aluminum Company, Bauxite, AR (HHE No. 71-13-47).

18. Other Pertinent Data

No other information that would aid in the assessment of aluminum oxide as an occupational hazard was found in the literature searched.

M. ALUMINUM ORTHO-PHOSPHATE

1. Chemical Name: Aluminum ortho-Phosphate
2. Chemical Structure: AlPO_4
3. Synonyms: Aluminum phosphate
Phosphoric acid, aluminum salt (1:1)
Aluminum monophosphate
4. Chemical Abstracts Service (CAS) Number: 7784-30-7
5. Registry of Toxic Effects of Chemical Substances (RTECS) Number:
Not listed
6. Chemical and Physical Properties:

Description: white infusible crystals or powder
Molecular Weight: 121.95
Boiling Point: ---
Melting Point: >1500°C
Vapor Pressure: ---
Solubility: practically insoluble in water and alcohols
soluble in acids and alkalis
Specific Gravity: 2.566
Stability: stable at ambient conditions

7. Production

Data available from the U.S. EPA (1980) regarding producers of aluminum ortho-phosphate and production volumes are presented in Table 20.

8. Use

The most important use for the aluminum phosphates is as high-temperature bonding agents. The aluminum poly-ortho-phosphates, made from the ortho-phosphate, are used as adhesive binders for refractories subjected to furnace temperatures; they are also employed in glasses and ceramics as well as in catalysts. Aluminum phosphate has also found considerable use as a modifying agent in silicate glasses (Van Wazer, 1968).

Table 20. Producers of Aluminum ortho-Phosphate and Production Ranges
(U.S. EPA, 1980)

Producer	Type of Production	1977 Production Range (CAS No. 7784-30-7)
Joseph Turner and Co. Ridgefield, NJ	Manufacturer	confidential
The Shepherd Chem. Co. Cincinnati, OH	Manufacturer	confidential
Hercules Inc. Glen Falls, NY	Manufacturer	confidential
Max Marx Color and Chem. Irvington, NJ	Manufacturer	confidential
Olin Corp. Joliet, IL	Manufacturer	1-10 million lb
Chemical Products Plant Cleveland, OH	Manufacturer	0-1000 lb
Imperial Wallpaper Mills Plattsburg, NY	Importer	1-10 thousand lb
American Hoechst Corp. Bridgewater, NJ	Importer	zero
Superior Materials Inc. NYC, NY	Importer	1-10 thousand lb
Lukens Chem. Co. Cambridge, MA	Importer	2-20 thousand lb

Other uses include applications in dental cements, in paints and varnishes, in pulp and paper, in pharmaceutical gels such as Aluphas, Ulcocid, or Phosphaljel, as a cement in admixture with calcium sulfate and sodium silicate, and as an antacid (Hawley, 1977; The Merck Index, 1976).

9. Manufacturers and Distributors

SRI International (1980) lists the Mobil Oil Corp. (Fernald, OH) as a manufacturer.

Data available from the U.S. EPA (1980) regarding producers of aluminum ortho-phosphate and production volumes are presented in Table 20.

In addition to the manufacturers, the following are distributors (1980-81 OPD Chemical Buyers Directory, 1980; Chem Sources--USA, 1980):

American Hoechst Corp.
Gallard-Schlesinger Chem.
Nitron Chemical Corp.
S.S.T. Corp.
Stauffer Chemical Corp.

10. Manufacturing Processes

Aluminum orthophosphate occurs in nature as the minerals angelite, coeruleolactite, evansite, luncinite, metavariscite, sterretite, variscite, vashegyite, wavellite, and zepharonvicht (The Merck Index, 1976).

The synthetic material of commerce is prepared by the interaction of solutions of aluminum sulfate and sodium phosphate (Hawley, 1977). It can also be prepared from NaAlO_2 and H_3PO_4 (The Merck Index, 1976).

11. Impurities or Additives

No information was found in the literature searched.

12. Occupational Exposure

The National Occupational Hazard Survey indicates that 10,671 workers are potentially exposed to aluminum ortho-phosphate.

13. Control Technology and Work Practices

Specific factors that may contribute to or prevent employee exposure to aluminum ortho-phosphate were not found in the literature searched.

14. Biological Effects

a. Animal Studies

(1) Acute Exposures

Intratracheal injection of 50 mg aluminum ortho-phosphate resulted in the development of reticulin nodules in the lungs of rats after 309 days (King et al., 1955; Stacy et al., 1959). During the following 6-12 months, the lesions became larger and more fibrous, and collagen formation was prominent.

(2) Subchronic Exposures

No information was found in the literature searched.

(3) Chronic Exposures

No information was found in the literature searched.

(4) Carcinogenicity

No information was found in the literature searched.

(5) Mutagenicity

Testing of aluminum phosphate in two strains of recombination-deficient Bacillus subtilis (H17 and M45) did not indicate any mutagenic effects in the rec assay (Kanematsu et al., 1980).

(6) Teratogenicity

No information was found in the literature searched.

(7) Reproductive Effects

No information was found in the literature searched.

(8) Other Relevant Information

No information was found in the literature searched.

b. Human Studies

(1) Pharmacokinetics

No information was found in the literature searched.

(2) Health Effects

No information was found in the literature searched.

(3) Target Organ Toxicity

No information was found in the literature searched.

(4) Epidemiology

No information was found in the literature searched.

15. Ongoing Studies

No current toxicological or environmental studies of aluminum ortho-phosphate were found.

16. Exposure Standards

The ACGIH (1979) currently recommends a Threshold Limit Value (TLV) of 2 mg/m³ as Al for the soluble salts of aluminum. The TLV for these soluble salts, such as the chloride and sulfate, is based on the amount of hydrolyzed acid and the corresponding TLV. On the basis that 3 mol of HCl, with a TLV of 5 ppm, hydrolyze from 1 mol of AlCl₃, a TLV of 2 mg/m³ as Al is recommended to provide the same degree of freedom from irritation that is provided by the TLV for HCl. As the acute toxicity from Al₂(SO₄)₃ is only slightly greater than that of AlCl₃, and the toxicity of the alums is considerably less, the 2 mg/m³ is considered to be suitable for the soluble salts of aluminum (ACGIH, 1979).

17. Sources of Additional Relevant Information

No sources of additional relevant information were identified.

18. Other Pertinent Data

No other information that would aid in the assessment of aluminum ortho-phosphate as an occupational hazard was found in the literature searched.

N. ALUMINUM POTASSIUM SULFATE

1. Chemical Name: Aluminum Potassium Sulfate
2. Chemical Structure: $KAl(SO_4)_2 \cdot 12H_2O$
3. Synonyms:
 - Potassium aluminum sulfate
 - Potassium alum
 - Potash alum
 - Kalinite
 - Cube alum
 - Alum flour
 - Alum meal
 - Sulfuric acid, aluminum potassium salt
4. Chemical Abstracts Service (CAS) Numbers: 7784-24-9 (dodecahydrate)
10043-67-1 (anhydrous)
5. Registry of Toxic Effects of Chemical Substances (RTECS) Number:
Not listed
6. Chemical and Physical Properties (dodecahydrate):

Description:	white crystal
Molecular Weight:	474.39
Boiling Point:	loses H_2O at 200°C
Melting Point:	92.5°C
Vapor Pressure:	---
Solubility:	11.4 g/100 c water (20°C) insoluble in alcohol
Specific Gravity:	1.757
Stability:	attracts moisture from air; noncombustible

7. Production

Data available from the U.S. EPA (1980) regarding producers of aluminum potassium sulfate and production volumes are presented in Table 21. Darragh (1978) estimates the annual production to be several thousand metric tons.

Table 21. Producers of Aluminum Potassium Sulfate and Production Ranges
(U.S. EPA, 1980)

Producer and Location	Type of Production	1977 Production Range (CAS No. 10043-67-1)
Allied Chemical Co.		
Claymont, DE	Manufacturer	1-10 million lb
Marcus Hook, PA	Manufacturer	confidential
J.T. Baker Chemical Co.		
Phillipsburg, NJ	Manufacturer	10-100 thousand lb
Mead Paper		
Kingsport, TN	Manufacturer/ Produced Site Limited	10-50 million lb
American Hoechst Corp.		
Bridgewater, NJ	Importer	zero
ICI Americas Inc.		
Wilmington, DE	Importer	zero

8. Use

Potassium alum is used in water purification, in paper sizing, in medicine, as a mordant in dyeing, in the dressing of skins, and in food applications (Darragh, 1978). Only a small amount is used in food applications; in 1973, only 5 tons was consumed for this purpose. According to Table 21, the largest producer of potassium alum (Mead Paper) is a captive user; captive use is likely for a combination of water purification and paper sizing.

Other uses include matches, paints, waterproofing agents, aluminum salts, manufacture of dyes, lakes, vegetable glue, marble cement, and porcelain cement, in hardening gelatin, sugar clarifying, hardening plastic casts, electrolytic copper plating, catalyst for ammonia synthesis, and hardening agent in microscopy (Hawley, 1977; The Merck Index, 1976).

9. Manufacturers and Distributors

SRI International (1980) lists Allied Chemical Corp. (Claymont, DE) as the only manufacturer.

Data available from the U.S. EPA (1980) regarding producers of aluminum potassium sulfate and production volumes are presented in Table 21.

In addition to the manufacturers, distributors include (1980-81 OPD Chemical Buyers Directory, 1980; Chemical Week: 1981 Buyers' Guide Issue, 1980):

Alfa Prod.	Gallard-Schlesinger
American Cyanamid	Independent Chem. Corp.
American Hoechst Corp.	LaPine Sci.
American Sci. and Chem.	Laporte Ltd.
Anachemia Chem.	Mallinckrodt
Atomergic Chemetals	MCB Reagents
Chem. Service	Pfaltz and Bauer
Continental Oil Co.	Pioneer Salt and Chem. Co.
Delmar	Stauffer
E.M. Labs	Suburban Chem.
Ethyl Corp.	Joseph Turner and Co.
Fisher Sci.	Van Waters and Rogers
	Worth Chem.

10. Manufacturing Processes

Commercially, potassium alum is produced by treating bauxite with sulfuric acid and then potassium sulfate (Darragh, 1978); see the profile on Aluminum Sulfate (III.O) for a similar process description and diagram. Other methods of preparation include: (1) calcination of alunite, leaching with sulfuric acid, and crystallizing the potassium alum with recovery aluminum sulfate from the mother liquors and (2) conversion of aluminum sulfate by addition of potassium sulfate (Darragh, 1978).

Potassium alum is available in several forms including lump, ground, and powder.

11. Impurities or Additives

Potassium alum is sold in N.F. and technical grades.

12. Occupational Exposure

The National Occupational Hazard Survey does not provide an estimate of the number of workers who are potentially exposed to aluminum potassium sulfate.

13. Control Technology and Work Practices

Specific factors that may contribute to or prevent employee exposure to aluminum potassium sulfate were not found in the literature searched.

14. Biological Effects

a. Animal Studies

(1) Acute Exposures

No information was found in the literature searched.

(2) Subchronic Exposures

No information was found in the literature searched.

(3) Chronic Exposures

Lifetime feeding studies of aluminum potassium sulfate administered in drinking water at 5-ppm levels showed no major toxic symptoms or significant growth retardation produced by this level of compound in either rats or mice (Schroeder and Mitchener, 1975a, 1975b).

(4) Carcinogenicity

Lifetime feeding of aluminum potassium sulfate at a level of 5 ppm in drinking water produced a slight increase of lymphoma leukemia in female (but not male) mice that the authors did not attribute to a tumorigenic action of the compound (Schroeder and Mitchener, 1975a). A similar study conducted by these investigators in rats failed to show significant tumorigenic effects (Schroeder and Mitchener, 1975b).

(5) Mutagenicity

Mutagenicity testing of aluminum potassium sulfate, at levels up to 5%, showed no effects in Salmonella typhimurium or Saccharomyces cerevisiae (Litton, 1977).

(6) Teratogenicity

No information was found in the literature searched.

(7) Reproductive Effects

No information was found in the literature searched.

(8) Other Relevant Information

No information was found in the literature searched.

b. Human Studies

(1) Pharmacokinetics

No information was found in the literature searched.

(2) Health Effects

No information was found in the literature searched.

(3) Target Organ Toxicity

No information was found in the literature searched.

(4) Epidemiology

No information was found in the literature searched.

15. Ongoing Studies

No current toxicological or environmental studies of aluminum potassium sulfate were found.

16. Exposure Standards

No recommended or promulgated occupational exposure standards for aluminum potassium sulfate were found.

17. Sources of Additional Relevant Information

No sources of additional relevant information were identified.

18. Other Pertinent Data

No other information that would aid in the assessment of aluminum potassium sulfate as an occupational hazard was found in the literature searched.

0. ALUMINUM SILICATES

1. Chemical Name: Aluminum Silicates
2. Chemical Structure: (1) $\text{Al}_6\text{O}_{13}\text{Si}_2$ — $3\text{Al}_2\text{O}_3 \cdot 2\text{SiO}_2$
(2) Al_2SiO_5 — $\text{Al}_2\text{O}_3 \cdot \text{SiO}_2$
(3) $\text{Al}_2\text{Si}_3\text{O}_9$ — $\text{Al}_2(\text{SiO}_3)_3$
(4) $x\text{Al}_2\text{O}_3 \cdot \text{SiO}_2$ (variable)
3. Synonyms: (1) Aluminum oxide silicate; mullite
(2) Aluminum silicate oxide; andalusite; sillimanite; kyanite; cyanite
(4) Aluminosilicate
4. Chemical Abstracts Service (CAS) Number: (1) 1206856-3
(2) 12141-46-7; 1302-76-7
(3) 14504-95-1
(4) 1327-36-2

5. Registry of Toxic Effects of Chemical Substances (RTECS) Number:
(2) BD1450000

6. Chemical and Physical Properties:

Description:	solids
Molecular Weight:	(1) 426.05 (2) 162.04
Boiling Point:	(2) $>1545^\circ\text{C}$
Melting Point:	(1) 1920°C (2) decomposes at 1545°C to $\text{Al}_2\text{O}_3 \cdot 2\text{SiO}_2$
Vapor Pressure:	---
Solubility:	insoluble in water
Specific Gravity:	(1) 3.156 (2) 3.247
Stability:	noncombustible

7. Production

Data available from the U.S. EPA (1980) regarding producers of aluminum silicates and production volumes are presented in Table 22. Data are

Table 22. Producers of Aluminum Silicates and Production Ranges
(U.S. EPA, 1980)

Producer and Location	Type of Production	1977 Production Range
<u>Aluminum Silicate (1): CAS No. 12068-56-3</u>		
United Catalysts Inc. Louisville, KY	Manufacturer	1-10 thousand lb
E.I. duPont de Nemours and Co. Cleveland, OH	Manufacturer	confidential
CE Minerals Greenville, TN	Manufacturer	10-100 thousand lb
Taylor Refinery, Div. NL Indus. South Shore, KY	Manufacturer	10-50 million lb
<u>Aluminum Silicate (2): CAS No. 12141-46-7</u>		
Chevron USA Richmond, CA	Manufacturer	1-10 million lb
United Catalysts Louisville, KY	Manufacturer Manufacturer	0-1 thousand lb 1-10 thousand lb
<u>Aluminum Silicate (4): CAS No. 1327-36-2</u>		
Mobil Chemical Co. Beaumont, TX NYC, NY	Manufacturer Importer	0.1-1.0 million lb 0.1-1.0 million lb
Kaiser Refractories Mexico, MO	Manufacturer	50-100 million lb
W.R. Grace and Co. South Gate, CA Cincinnati, OH Lake Charles, LA	Manufacturer Manufacturer Manufacturer	10-50 million lb 10-50 million lb 100-500 million lb
Henkel Inc. Teaneck, NJ	Importer	0-1 thousand lb
Mobay Chemical Corp. Pittsburgh, PA	Importer	confidential
Rhone-Poulenc Freeport, TX	Importer	zero
Hamill and Gillespie Inc. Livingston, NJ	Importer	0.1-1.0 million lb

available for aluminum silicates (1), (2), and (4) as numbered in the chemical structures above; no data are available for (3).

Aluminum silicate (1), mullite, occurs naturally but is industrially produced by synthetic means. In 1974, synthetic mullite production amounted to approximately 25 thousand tons (Hamme, 1979).

Aluminum silicate (2) occurs naturally and is primarily obtained from mining the ore.

8. Use

Aluminum silicate (1), mullite, is used in refractories with about 90% being consumed in the metallurgical and glass industries (Hamme, 1979).

Aluminum silicate (2) has uses similar to those of clay, namely ceramic products, refractories, colloidal suspensions, oil-well drilling fluids, fillers for rubber and plastic products, paper coating, decolorizing oils, temporary molds, filtration, carrier in insecticidal sprays, and catalyst supports (Hawley, 1977). The kinds of manufacturers of the synthetic aluminum silicate (2), as listed in Table 22, would indicate uses in the petroleum industry and in catalysts.

Aluminum silicate (3) has uses as a pigment and colorant in plastics (Webber, 1979).

Aluminum silicate (4) is used in petroleum refining and petroleum-cracking catalysts (Wills, 1969).

9. Manufacturers and Distributors

SRI International (1980) lists the following manufacturers of aluminum silicate:

Combustion Engineering	
C-E Minerals	Narvon, PA
	Washington, GA
Smith Color and Chemical Co.	Jamaica, NY

A more complete listing is given in Table 22.

In addition to the manufacturers, the distributors include
(Chemical Week: 1981 Buyers' Guide Issue, 1979; Chem Sources--USA, 1980):

Alfa Prod.	Georgia Kaolin
Apache Chem.	Johns-Manville
Atomergic Chemetals	Lowe's Inc.
J.T. Baker Chem.	Metron, Inc.
Burgess Pigment Co.	Noah Chem.
Chemical Procurement Labs	Orion Chem.
Chem Services	Petrarch Systems
Commercial Minerals	Pfaltz and Bauer
Degussa	Smith Chem
Engelhard Minerals	Southeastern Clay Co.
Fisher Sci.	Thiele Kaolin
Freeport Kaolin	Thompson-Hayward
Gallard-Schlesinger Chem.	R.T. Vanderbilt Co.
	Charles Wagner Co.

10. Manufacturing Processes

Synthetic aluminum silicate (1) is produced by heating naturally-occurring aluminum silicate (2) to the decomposition ranges of 1100-1650°C (Hamme, 1979). The decomposition product is synthetic mullite.

Aluminum silicate (2) is a naturally-occurring mineral that is commercially mined. Synthetic aluminum silicates (2) and (3) are produced by the precipitation reaction of aluminum sulfate and a soluble silicate solution (Wills, 1969). The precipitate must be filtered, washed, dried, sized, and packaged. A special grade of aluminum silicate (2) is synthetically made by heating aluminum fluoride at 1000-1200°C with silica and water vapor; the crystals or whiskers obtained are up to 1 cm long, have high strength, and are used in reinforced plastics (Hawley, 1977).

Aluminum silicate (4) is formed by heating compositions of carefully controlled proportions of silica, alumina, and alkalis under conditions found to promote the required crystal structure (Wills, 1969).

11. Impurities or Additives

No information was found in the literature searched.

12. Occupational Exposure

The National Occupational Hazard Survey (NOHS) indicates that 331,723 workers are potentially exposed to aluminosilicate. NOHS estimates of the number of workers exposed to the other aluminum silicate compounds addressed in this profile are not available.

13. Control Technology and Work Practices

Specific factors that may contribute to or prevent employee exposure to the aluminum silicates were not found in the literature searched.

14. Biological Effects

a. Animal Studies

(1) Acute Exposures

No information was found in the literature searched.

(2) Subchronic Exposures

Dietary exposure to 1.3 g/kg/day of aluminum silicate for 4 weeks did not result in renal lesions in dogs or rats (Newberne and Wilson, 1970).

(3) Chronic Exposures

No information was found in the literature searched.

(4) Carcinogenicity

Intrapleural inoculation of a single dose (20 mg) of synthetic aluminum silicate fibers did not produce significant increases in mesothelioma in rats as compared to asbestos-treated animals (Wagner *et al.*, 1973).

(5) Mutagenicity

No information was found in the literature searched.

(6) Teratogenicity

No information was found in the literature searched.

(7) Reproductive Effects

No information was found in the literature searched.

(8) Other Relevant Information

No information was found in the literature searched.

b. Human Studies

(1) Pharmacokinetics

No information was found in the literature searched.

(2) Health Effects

No information was found in the literature searched.

(3) Target Organ Toxicity

No information was found in the literature searched.

(4) Epidemiology

No information was found in the literature searched.

15. Ongoing Studies

The NCI is currently conducting a carcinogenesis bioassay of sodium aluminosilicate administered in lifetime feeding studies (NTP, 1980).

The co-carcinogenic activity of aluminum silicates administered intratracheally along with benzo[a]pyrene is under investigation in the golden hamster (Neimeier, 1980).

16. Exposure Standards

No recommended or promulgated occupational exposure standards for the aluminium silicates were found.

17. Sources of Additional Relevant Information

No sources of additional relevant information were identified.

18. Other Pertinent Data

No other information that would aid in the assessment of the aluminum silicates as an occupational hazard was found in the literature searched.

P. ALUMINUM SODIUM SULFATE

1. Chemical Name: Aluminum Sodium Sulfate
2. Chemical Structure: $\text{NaAl}(\text{SO}_4)_2 \cdot 12\text{H}_2\text{O}$
3. Synonyms: Sodium alum
Soda alum
Sodium aluminum sulfate
SAS
Alum, porous
Sulfuric acid, aluminum sodium salt
4. Chemical Abstracts Service (CAS) Numbers: 7784-28-3 (dodecahydrate)
10102-71-3 (anhydrous)

5. Registry of Toxic Effects of Chemical Substances (RTECS) Number:
Not listed

6. Chemical and Physical Properties:

Description:	colorless crystal with astringent taste
Molecular Weight:	458.23
Boiling Point:	---
Melting Point:	61°C
Vapor Pressure:	---
Solubility:	110 g anhydrous salt/100 cc water (15°C) practically insoluble in alcohol
Specific Gravity:	1.675
Stability:	noncombustible

7. Production

In 1973, 5.9 million pounds of sodium alum were used for its major use in baking powder (Darragh, 1978).

Data available from the U.S. EPA (1980) regarding producers of aluminum sodium sulfate and production volumes are presented in Table 23.

8. Use

The largest use of sodium alum is as a leavening acid in baking applications (Darragh, 1978). The aluminum sodium sulfate reacts with sodium bicarbonate to liberate carbon dioxide, which raises the dough.

Table 23. Producers of Aluminum Sodium Sulfate and Production Ranges
(U.S. EPA. 1980)

Producer and Location	Type of Production	1977 Production Range (CAS No. 10102-71-3)
Allied Chem. Corp. East St. Louis, IL	Manufacturer	1-10 million lb
MCB Reagents Inorwood, OH	Manufacturer	under 1000 lb

Other uses include textiles (mordant and waterproofing), dry colors, ceramics, tanning, paper size precipitant, matches, inks, engraving, sugar refining, water purification, medicine, confectionary, and food additives (Hawley, 1977).

9. Manufacturers and Distributors

SRI International (1980) lists Allied Chemical (East St. Louis, IL) as the only manufacturer.

Data available from the U.S. EPA (1980) regarding producers of aluminum sodium sulfate and production volumes are presented in Table 23.

In addition to the manufacturers, the distributors include (1980-81 OPD Chemical Buyers Directory, 1980; Chemical Week: 1981 Buyers' Guide Issue, 1980; Chem Sources--USA, 1980):

Fallek Chemical
George Uhe Co.
LaPine Sci
MCB Reagents
Olin Corp.

10. Manufacturing Processes

Sodium alum is produced from aluminum sulfate by addition of a clear solution of sodium sulfate. The charge is then diluted to 30°Béu and heated, and a slurry of potassium sulfate, sodium silicate, and alkali (soda ash) is added to improve the characteristics of the product. The charge is next pumped to the digestor, where it is mixed for several hours by circulation. During this period, chemical analysis is made and the ratio of aluminum sulfate to sodium sulfate is adjusted by additions of either salt solutions or aluminum sulfate solutions. The charge is then pumped to the evaporators where it is evaporated to such a consistency that on discharge upon the cooling pans it will yield a hard cake. This sodium aluminum sulfate cake is charged into roasters, and, after heating, is ground to a fineness of 99% through a 100-mesh screen.

The finished product is packed normally in 100-pound paper bags or in 400-pound fiber drums (Saeman, 1963; Darragh, 1978).

11. Impurities or Additives

Aluminum sodium sulfate is sold as pure crystals, and technical, C.P., and F.C.C. grades (Hawley, 1977).

12. Occupational Exposure

The National Occupational Hazard Survey does not provide an estimate of the number of workers who are potentially exposed to aluminum sodium sulfate.

13. Control Technology and Work Practices

Specific factors that may contribute to or prevent employee exposure to aluminum sodium sulfate were not found in the literature searched.

14. Biological Effects

No information regarding the biological effects of aluminum sodium sulfate was found in the literature searched.

15. Ongoing Studies

No current toxicological or environmental studies of aluminum sodium sulfate were found.

16. Exposure Standards

No recommended or promulgated occupational exposure standards for aluminum sodium sulfate were found.

17. Sources of Additional Relevant Information

No sources of additional relevant information were identified.

18. Other Pertinent Data

No other information that would aid in the assessment of aluminum sodium sulfate as an occupational hazard was found in the literature searched.

Q. ALUMINUM SULFATE

1. Chemical Name: Aluminum Sulfate
2. Chemical Structure: $\text{Al}_2(\text{SO}_4)_3 \cdot 18\text{H}_2\text{O}$
3. Synonyms:
Alum, commercial
Alum, liquid
Sulfuric acid, aluminum salt (3:2)
Paper makers alum
Pearl alum
Pickle alum
Cake alum
Patent alum
4. Chemical Abstracts Service (CAS) Number: 7784-31-8 ($\cdot 18\text{H}_2\text{O}$)
10043-01-3 (anhydrous)

5. Registry of Toxic Effects of Chemical Substances (RTECS) Number:
BD1700000

6. Chemical and Physical Properties

Description:	amorphous solid
Molecular Weight:	666.43
Boiling Point:	decomposes
Melting Point:	decomposes
Vapor Pressure:	---
Solubility:	27.8 g/100 g water (25°C) (anhydrous salt) practically insoluble in alcohol soluble in dilute acid
Specific Gravity:	1.69 ¹⁷
Stability:	stable in air; noncombustible

7. Production

Recent production of aluminum sulfate is as follows
(Chemical and Engineering News, 1980; Darragh, 1978):

Production
(57% $\text{Al}_2(\text{SO}_4)_3$ Basis)
(thousands of tons)

<u>Year</u>	<u>Commercial and Municipal</u>	<u>Iron-Free Grade</u>
1979	1223	---
1978	1309	---
1977	1255	---
1976	1202	---
1975	1146	---
1974	1257	232
1973	1233	230
1972	1193	207

Data available from the U.S. EPA (1980) regarding producers of aluminum sulfate and production volumes are presented in Table 24.

8. Use

The following tabulation presents the percentage of the total amount of aluminum sulfate produced that is used in each of the applications listed:

	<u>Percentage of Total</u>
Pulp and paper	48
Treatment of water and waste	44
Miscellaneous (fire-retardants, deodorants, foaming agent in fire foams, grease and oil recovery)	5
Export	3

The paper industry uses aluminum sulfate for the clarification of process waters, pH control of pulp slurries, settling of certain dyes, and precipitating colloidal clay and dissolved resin into the size on the fibers of the paper. The alum sold for this use is usually in solution form (Darragh, 1978).

In water and waste treatment, it is used as a coagulant for the removal of turbidity-causing materials, for water softening, for pH control, and as a flocculating agent (Treskon, 1976d).

In addition to the miscellaneous uses listed above, other minor uses include mordant for dyeing, fireproofing cloth, tanning of white leather,

Table 24. Producers of Aluminum Sulfate and Production Ranges (U.S. EPA, 1980)

Producer and Location	Type of Production	1977 Production Range (CAS No. 10043-01-3)
Hollard Co. Adams, MA	Manufacturer	50-100 million lb
Delta Chem. Searsport, ME	Manufacturer	confidential
Imperial West Chem. Antioch, CA Spokane, WA	Manufacturer Manufacturer	confidential confidential
N-Ren Corp. South St. Paul, MN	Manufacturer	10-50 million lb
Kodak (Eastman) Rochester, NY	Manufacturer	0.1-1 million lb
Stauffer Chem. Springhill, LA Dominguez, CA Bastrop, LA Baton Rouge, LA Counce, TN Pennington, AL Richmond, CA Portland, OR Tacoma, WA Houston, TX	Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer	10-50 million lb 10-50 million lb 50-100 million lb 10-100 thousand lb 10-50 million lb 10-50 million lb 10-50 million lb 10-50 million lb 1-10 million lb 100-500 million lb
Olin Corp. Baltimore, MD	Manufacturer	10-50 million lb
Allied Chem. Detroit, MI Dorado, PR Pittsburg, CA Claymont, DE Denver, CO El Segundo, CA Cleveland, OH Newall, PA Kennewick, WA Middletown, OH Menasha, WI Monroe, LA Wisconsin Rapids, WI Kalamazoo, MI Tacoma, WA East Point, GA Vancouver, WA Marrero, LA Chillicothe, OH	Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer	10-50 million lb 10-50 million lb 10-50 million lb 100-500 million lb 10-50 million lb 10-50 million lb 10-50 million lb 10-50 million lb 1-10 million lb 10-50 million lb 1-10 million lb 10-50 million lb 10-50 million lb 10-50 million lb

Table 24. Producers of Aluminum Sulfate and Production Ranges (U.S. EPA, 1980)
(Cont'd)

Producer and Location	Type of Production	1977 Production Range (CAS No. 10043-01-3)
Covington, VA	Manufacturer	10-50 million lb
Port St. Joe, FL	Manufacturer	10-50 million lb
Hopewell, VA	Manufacturer	50-100 million lb
Johnsonburg, PA	Manufacturer	10-50 million lb
Pine Bluff, AR	Manufacturer	10-50 million lb
Redwood, MS	Manufacturer	10-50 million lb
Macon, GA	Manufacturer	10-50 million lb
Jacksonville, FL	Manufacturer	10-50 million lb
Savannah, GA	Manufacturer	10-50 million lb
East St. Louis, IL	Manufacturer	100-500 million lb
Morristown, NJ	Importer	10-50 million lb
Engelhard Ind. Newark, NJ	Manufactuer	0.2 million lb
Essex Chem. Corp. Newark, NH	Manufacturer	50-100 million lb
H. Kohnstamm and Co. Camden, NJ	Manufacturer	confidential
Cities Service Co. Cedar Springs, CA	Manufacturer	confidential
Augusta, GA	Manufacturer	confidential
Crown Zellerbach Bogalusa, LA	Manufacturer	10-50 million lb
Carthage, NY	Importer	0.1-1 million lb
ABC Compounding Co. Atlanta, GA	Manufacturer	10-100 thousand lb
Armak Catalysts Pasadena, TX	Manufacturer	confidential
E.I. duPont de Nemours Linden, NJ	Manufacturer	10-50 million lb
U.S. Filter Corp. Salt Lake City, UT	Manufacturer	1-10 million lb
Nalco Chem. Co. Chicago, IL	Manufacturer	confidential
Titanium Pigment Div. St. Louis, MO	Manufacturer	1-10 million lb
South Amboy, NJ	Manufacturer	1-10 million lb

Table 24. Producers of Aluminum Sulfate and Production Ranges (U.S. EPA, 1980)
(Cont'd)

Producer and Location	Type of Production	1977 Production Range (CAS No. 10043-01-3)
W.R. Grace and Co. South Gate, CA	Manufacturer	10-50 million lb
Cincinnati, OH	Manufacturer	10-50 million lb
Lake Charles, LA	Manufacturer	100-500 million lb
Dan River Inc. Danville, VA	Manufacturer	1-10 million lb
UOP Process Div. Shreveport, LA	Manufacturer	confidential
Witco Chem. Corp. Lynwood, CA	Manufacturer	confidential
CP Chemicals Sewaren, NJ	Manufacturer	confidential
Continental Oil Co. Westlake, LA	Manufacturer	10-50 million lb
Russ Chemical Co. Odessa, TX	Manufacturer	1-10 million lb
J.M. Huber Corp. Etowah, TN	Manufacturer	10-50 million lb
W.H. Shurtleff Co. Portland, ME	Importer	1-10 million lb
Browning Chem. NYC, NY	Importer	zero
Fraser Paper Lmt. Madawaska, ME	Importer	1-10 million lb
American Cyanamid Co. Kalamazoo, MI	Importer	confidential
Escanaba, MI	Importer	confidential
Georgetown, SC	Importer	confidential
Demopolis, AL	Importer	confidential
Coosa Pines, AL	Importer	confidential
Mobile, AL	Importer	confidential
Joliet, IL	Importer	confidential
Michigan City, IN	Importer	confidential
De Rideler, LA	Importer	confidential
Cloquet, MN	Importer	confidential
Ferguson, MS	Importer	confidential
Plymouth, NC	Importer	confidential
Hamilton, OH	Importer	confidential
Chattanooga, TN	Importer	confidential
Charlotte, NC	Importer	confidential
Linden, NJ	Importer	confidential
Fort Worth, TX	Importer	confidential

Table 24. Producers of Aluminum Sulfate and Production Ranges (U.S. EPA, 1980)
 (Cont'd)

Producer and Location	Type of Production	1977 Production Range (CAS No. 10043-01-3)
Agfa-Gevaett Inc. Teterboro, NJ	Importer	1-10 thousand lb
A and S Corp. Parsippany, NJ	Importer	zero
Hamblet and Hayes Co. Salem, MA	Importer	0.1-1 million lb
Polar Chemicals Lewistown, ME	Importer	0.1-1 million lb
Mead Corp. Dayton, OH	Importer	10-100 thousand lb
Diamond Shamrock Plattsburgh, NY	Importer	0.2-2 million lb
Alcan Aluminum Corp. Cleveland, OH	Importer	1-10 million lb

manufacturing of synthetic rubber, catalyst, waterproofing agent for concrete, clarifying agent, lubricating compositions, and the production of other aluminum compounds (Treskon, 1976d).

The iron-free grade is used as a reagent for dyes, for the sizing of high-grade satin paper, as a color fixing agent for textile dyes, for the production of white latex, for the treatment of some white leathers, and as a food additive (Treskon, 1976d).

9. Manufacturers and Distributors

There are numerous plants in the United States that manufacture aluminum sulfate. SRI International (1980) lists the following (those manufacturers marked with an asterisk are known to make the iron-free grade):

Allied Chem Corp.
Chems. Co.

Chillicothe, OH
Claymont, DE*
Cleveland, OH*
Covington, VA
Denver, CO
Detroit, MI
Dorado, PR
East Point, GA*
East St. Louis, IL
El Segundo, CA*
Hopewell, VA
Jacksonville, FL
Johnsonburg, PA
Kalamazoo, MI
Kennewick, WA
Macon, GA
Marrero, LA
Menasha, WI
Middletown, OH*
Monroe, LA
Newell, PA
Pine Bluff, AR
Pittsburg, CA
Port St. Joe, FL
Savannah, GA
Tacoma, WA*
Vancouver, WA
Vicksburg, MS
Wisconsin Rapids, WI

Pages misnumbered - no information is missing between page 161 and 163.

American Cyanamid Co.
Indust. Chems. Div.

Chattanooga, TN
Cloquet, MN
Coosa Pines, AL
Demopolis, AL
De Ridder, LA
Escanaba, MI
Georgetown, SC
Hamilton, OH
Joliet, IL
Kalamazoo, MI
Linden, NJ*
Mobile, AL
Monticello, MS
Plymouth, NC

Burris Chem. Inc.

Catawba, SC
East Point, GA
Springfield, TN

Midland Chem. Co., subsid.
Ciba-Geigy Corp.
Dyestuffs and Chems. Div.
Hamblet and Hayes Co.,
subsid.

Salem, MA

Cities Service Co.
Minerals Group

Augusta, GA
Cedar Springs, GA
Fernandina Beach, FL

Crown Zellerbach Corp.
Chem. Products Div.

Bogalusa, LA

Dan River, Inc.
Chem. Products Div.

Danville, VA

Delta Chems., Inc.

Searsport, ME

E.I. duPont de Nemours
and Co., Inc.
Chems., Dyes and Pigments
Dept.

Linden, NJ*

Essex Chem. Corp.
Indust. Chems. Div.

Newark, NJ

Ethyl Corp.
Chems. Group

Pasadena, TX

W.R. Grace and Co.
Indust. Chems. Group
Davison Chem. Div.

Cincinnati, OH*
Curtis Bay, MD*
Lake Charles, LA*

Howerton Gowen Chems., Inc.

Chesapeake, VA

Imperial West Chem. Co.

Antioch, CA

The Mead Corp.

Kingsport, TN

NRen Corp.
North Star Div.

Pine Bend, MN

Olin Corp.	
Olin Chems. Group	Curtis Bay, MD
Sacramento, City of	Sacramento, CA
Stauffer Chem. Co.	
Indust. Chem. Div.	Bastrop, LA*
	Baton Rouge, LA
	Counce, TN
	Dominguez, CA
	Houston, TX*
	Naheola, AL
	North Portland, OR
	Richmond (Stege), CA*
	Springhill, LA
	Tacoma, WA

United States Filter Corp.
Filtral Corp., subsid. Salt Lake City, UT

Several of the above producers are known to use all production captively.

There are many distributors of aluminum sulfate. In addition to the previously listed manufacturers, the distributors include (1980-81 OPD Chemical Buyers Directory, 1980; Chemical Week: 1981 Buyers' Guide Issue, 1980; Chemical Sources--USA, 1980):

Alcan Aluminum	Jayar-Hoag Chem.
Aldrich Chem.	Jones Chem.
Alfa Prod.	E and F King and Co.
Anachemia Chem.	LaPine Sci
Apache Chem.	Mallickrodt
A and S Corp.	MCB Regents
Ashland Chem.	McKesson Chem.
Atomergic Chemetals	Mida Chem.
J.T. Baker Chem.	Montedison
Barker Ind.	Mutchler Chem.
Bio-Clinical Labs	Pioneer Salt and Chem.
Boehm Chem.	Pfaltz and Bauer
Brown Chem.	Ruger Chem.
Browning Chem.	Sal Chem.
Burris Chem.	E.M. Sargeant Pulp and Chem.
Leonard J. Buck and Co.	Chas Schaeffer Sons Inc.
Chemical Ind.	Signo Trading
Chem. Services	G. Fredick Smith Co.
Delamar Inc.	Spex Ind.
Eagle Chem.	Stinnes Oil and Chem.
E. M. Labs	Suburban Chem.
Fielding Chem.	TAB Chem.
Fisher Sci.	Thompson-Hayward Chem.
Gallard-Schlesinger	T.R. America
Great Lakes Chem.	Tridon Chem.

C.P. Hall Co.	Joseph Turner and Co.
Hamblet and Hayes	Ulrich Chem.
Hawkins Chem.	Universal Preservachem.
Helm NY Chem.	Van Waters and Rogers
Henderson Chem.	Westco Chem.
Holland Co.	Worth Chem.
Hukill Chem.	Young Chem.
Int'l Commodities Export.	

10. Manufacturing Processes

The following passages from Faith, Keyes, and Clark's Industrial Processes (Lowenheim and Moran, 1975) describe the manufacturing process:

Aluminum sulfate is produced by the reaction of sulfuric acid on bauxite, a naturally occurring hydrated alumina ore having the approximate formula $Al_2O_3 \cdot 2H_2O$. The mined material varies in composition and generally contains one to three molecules of water plus impurities such as iron, silica, titanium, and selenium. The soluble aluminum oxide (Al_2O_3) content of a typical bauxite varies from 52 to 57% and it may contain 1 to 10% ferric oxide (Fe_2O_3).

The crude bauxite ore is ground to a fine powder (80% passes 200 mesh) and charged into open lead-lined steel reaction tanks. Sulfuric acid (sp gr 1.7) is added, and the raw materials are thoroughly agitated using paddle agitators, hot air, or live steam. The reaction mixture is kept at a temperature of 105 to 110°C by the live steam or lead steam coils. An excess of bauxite is fed to the reactor, so that there is an excess of 0.1 to 0.2% of soluble aluminum oxide. From 15 to 20 hours are required to complete the reaction. At the end of this time, a reducing material is added to the reaction mixture to reduce the iron (ferric sulfate) to a colorless ferrous condition. Barium sulfide in the form of black ash is commonly utilized, although sodium sulfide, hydrogen sulfide, sodium bisulfite, or sulfur dioxide may also be used.

If the operation is performed in batches, the charge is allowed to settle in settling tanks. Flaked glue or some similar coagulable substance is generally added to remove the finely divided suspended material remaining in the supernatant liquid. This liquid is drawn off, and the residue is washed several times. The washings are combined with the decanted liquor, which is then sent to concentrators.

The process is generally operated in a continuous manner by using a battery of combined reaction and settling tanks. A common variation of this process is

the Dorr procedure, which utilizes reaction agitators in series. The reactants are thoroughly mixed and heated, using mechanical agitators, air, and live steam. Black ash (barium sulfide) is added to the last reactor to reduce the ferric sulfate. The reaction mixture is sent through a series of thickeners, operating countercurrently, which remove the undissolved material. At the same time the waste is washed thoroughly, so that it contains practically no aluminum sulfate when discarded. Glue is generally added to the first thickener as a coagulant.

The clarified aluminum sulfate solution, from the countercurrent decantation system, is concentrated in open steam-coil-heated, lead-lined evaporators. Here, the specific gravity is increased from about 1.3 to about 1.7. The concentrated solution is run into flat iron pans or onto a cooling table. The liquid quickly and completely solidifies, and when cool, is broken up and ground to a uniform powder for shipment.

Commercial aluminum sulfate generally contains only about 13 or 14 moles of water instead of the theoretical 18 moles. Also, it is usually in the basic form containing excess alumina. Anhydrous aluminum sulfate may be obtained by dehydration. The yield of aluminum sulfate based on the amount of aluminum oxide in both the finished product and raw material is 90 to 95% (Lowenheim and Moran, 1975).

The manufacturing process is shown in Figure 7.

The iron-free grade is produced by using pure alumina trihydrate in place of bauxite or clay (Darragh, 1978).

11. Impurities or Additives

Aluminum sulfate is commonly marketed in the technical or commercial grade. The commercial grade is available both as a lump or granular solid containing 17.0-17.5% Al_2O_3 (57% $\text{Al}(\text{SO}_4)_3$ basis; $\text{Fe}_2\text{O}_3 < 0.5\%$; water of composition 42-43%; and insolubles <1.0%) and as a solution containing 7.5-8.5% Al_2O_3 (Darragh, 1978). The iron-free grade has $< 0.005\% \text{Fe}_2\text{O}_3$.

12. Occupational Exposure

The National Occupational Hazard Survey indicates that 189,639 workers are potentially exposed to aluminum sulfate.

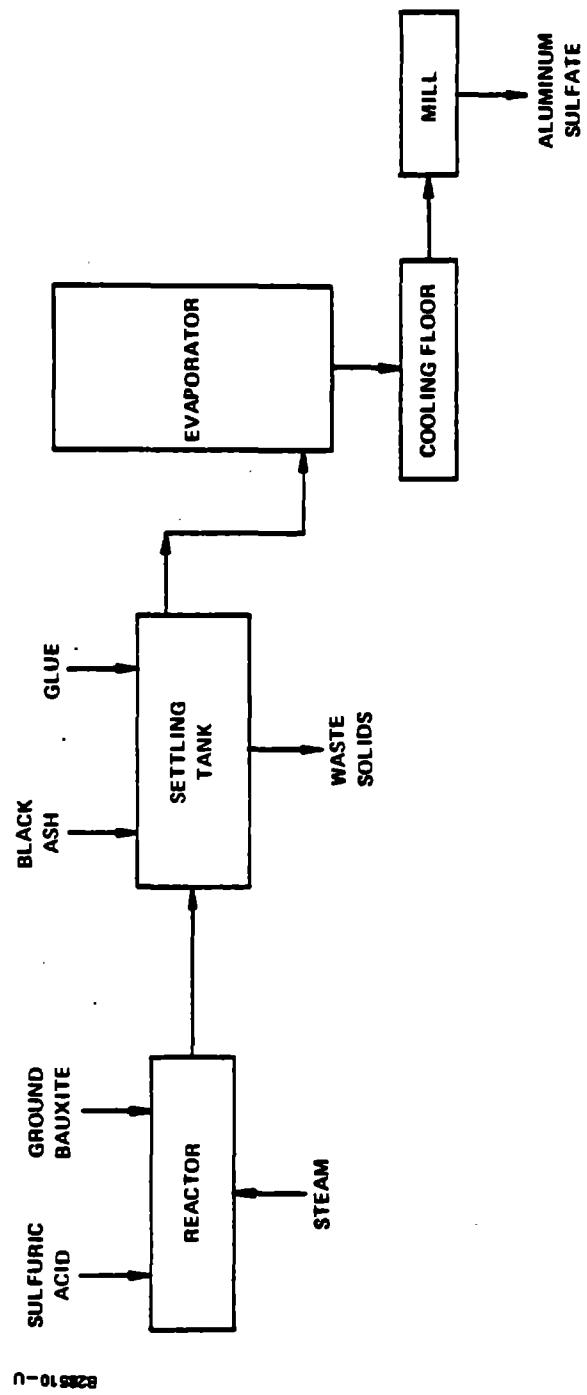


Figure 7. Manufacture of Aluminum Sulfate (Lowenheim and Moran, 1975)

13. Control Technology and Work Practices

Specific factors that may contribute to or prevent employee exposure to aluminum sulfate were not found in the literature searched.

14. Biological Effects

a. Animal Studies

(1) Acute Exposures

The acute toxicity of aluminum sulfate is summarized in Table 25. The administration of lethal oral doses of 1 or 2% $\text{Al}_2(\text{SO}_4)_3$ to rats that were 5/6 nephrectomized resulted in symptoms of lethargy, anorexia, and orbital bleeding (Berlyne *et al.*, 1972). In non-nephrectomized rats, 350 mg Al/kg/day of 2% $\text{Al}_2(\text{SO}_4)_3$ caused periorbital bleeding in 3 of 5 rats, but no mortality when administered in the drinking water.

Ulcerations that progressively healed and associated inflammatory reactions that persisted for at least 3 weeks were noted in rabbit back skin following single and repeated (after 8 weeks) subcutaneous injections of 85 mg aluminum sulfate (Prior and Cronk, 1959). Similar changes were found in rabbit ears following single or repeated intracutaneous injections of 17 mg aluminum sulfate. Percutaneous application of a 17% solution of aluminum sulfate (applied with saturated cotton pads) produced a transient redness during the first 48 hours that gradually disappeared during the second 48 hours; this did not develop into a granulomatous response.

(2) Subchronic Exposures

Pulmonary function alterations (increased pulmonary resistance, respiratory frequencies, functional residual capacity, and static deflation volumes) were reported in rats following 7 weeks of continuous exposure to aluminum sulfate aerosol at a 2 mg/m³ level (Lewkowski *et al.*, 1979). When rats were exposed to smaller particles of aluminum sulfate (1.4 mm) at a slightly

Table 25. Acute Toxicity of Aluminum Sulfate

Route	Species	Dose	Response	Reference
oral	mice	980 mg/kg	LD50	Ondreicka <i>et al.</i> , 1966
oral	rats	200 mg Al/kg/day	0/5 deaths	Berylne <i>et al.</i> , 1972
oral	rats	350 mg/kg/day	0/5 deaths	Berylne <i>et al.</i> , 1972
i.p. ^a	mice	270 mg/kg	LD50	Bienvenu <i>et al.</i> , 1963

^ai.p. = intraperitoneal

higher concentration (2.6 mg/m³) for 8 weeks, an increase in respiratory frequency and a decrease in lung compliance were observed.

Lansdown (1973) found that 10% aluminum sulfate did not produce any visible or microscopic changes to the uncovered back skin of mice, rabbits, or guinea pigs when applied daily for 5 consecutive days.

(3) Chronic Exposures

No information was found in the literature searched.

(4) Carcinogenicity

No information was found in the literature searched.

(5) Mutagenicity

Testing of aluminum sulfate in two strains of recombination-deficient Bacillus subtilis (H17 and M45) did not indicate any mutagenic effects in the rec assay (Kanematsu *et al.*, 1980).

Aluminum sulfate failed to enhance the transformation of Syrian hamster embryo cells by simian adenovirus SA7 (Casto *et al.*, 1979).

Sirover and Loeb (1976) reported that aluminum sulfate at a concentration of 0.99 mM did not affect the accuracy of DNA synthesis in a cell-free DNA transcription assay system.

(6) Teratogenicity

No information was found in the literature searched.

(7) Reproductive Effects

Single intratesticular injections of aluminum sulfate (0.08 mmol/kg) have been reported to reduce the weight of the testis and produce degeneration of the seminiferous tubules in rats after 2 and 7 days (Kamboj and Kar, 1963). When administered subcutaneously in 30 daily doses, 0.08 mmol/kg aluminum sulfate reduced testicular weight in mice but had no necrotic effect.

(8) Other Relevant Information

Aluminum has been shown to accumulate in the skeleton, liver, testes, and adrenals of rats administered high levels of aluminum sulfate (2835 ppm in the feed) for 24 days (Ondreicka *et al.*, 1966).

b. Human Studies

(1) Pharmacokinetics

No information was found in the literature searched.

(2) Health Effects

No information was found in the literature searched.

(3) Target Organ Toxicity

No information was found in the literature searched.

(4) Epidemiology

No information was found in the literature searched.

15. Ongoing Studies

The role of brain aluminum levels in producing toxic encephalopathy in rats and mice is currently being studied (Delaney, 1980).

16. Exposure Standards

The ACGIH (1979) currently recommends a Threshold Limit Value (TLV) of 2 mg/m³ as Al for the soluble salts of aluminum. The TLV for these soluble salts, such as the chloride and sulfate, is based on the amount of hydrolyzed acid and the corresponding TLV. On the basis that 3 mol of HCl, with a TLV of 5 ppm, hydrolyze from 1 mol of AlCl₃, a TLV of 2 mg/m³ as Al is recommended to provide the same degree of freedom from irritation that is provided by the TLV for HCl. As the acute toxicity from Al₂(SO₄)₃ is only slightly greater than that of AlCl₃, and the toxicity of the alums is considerably less, the 2 mg/m³ is considered to be suitable for the soluble salts of aluminum (ACGIH, 1979).

17. Sources of Additional Relevant Information

No sources of additional relevant information were identified.

18. Other Pertinent Data

No other information that would aid in the assessment of aluminum sulfate as an occupational hazard was found in the literature searched.

R. CALCIUM ALUMINUM SILICATE

1. Chemical Name: Calcium Aluminum Silicate
2. Chemical Structure: $\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot \text{SiO}_2 \cdot \text{H}_2\text{O}$ (variable)
3. Synonyms: Aluminosilicic acid ($\text{H}_2\text{Al}_2\text{SiO}_6$), calcium salt (1:1)
Aluminum calcium silicate
4. Chemical Abstract Service (CAS) Number: 12252-33-4
5. Registry of Toxic Effects of Chemical Substances (RTECS) Number:
Not listed
6. Chemical and Physical Properties:

Description: solid
Molecular Weight: variable
Boiling Point: ---
Melting Point: ---
Vapor Pressure: ---
Solubility: practically insoluble in water
Specific Gravity: ---
Stability: noncombustible

7. Production

Data available from the U.S. EPA (1980) regarding producers of calcium aluminum silicate and production volumes are presented below:

Hooker Chemical and Plastics (Columbia, TN)
Manufacturer
1977 Production: 500 million to 1 billion lb

United Mineral and Chem. Corp. (NYC, NY)
Importer
1977 Production: under 1000 lb

8. Use

A variety of patent literature indicates that calcium aluminum silicate is useful as a filler in plastics, rubbers, glasses, and gypsum. It can

also be used as an anticaking agent in food products (Chapman and Kertesz, 1966), as a bore hole plugging component, and as a glass formatant.

9. Manufacturers and Distributors

See Section 7.

10. Manufacturing Processes

The commercial process is not available; however, calcium aluminum silicate can be prepared by reacting an aqueous aluminum salt (such as $AlCl_3$) with calcium silicate, which is prepared from sodium silicate (Allen, 1957).

11. Impurities or Additives

No information was found in the literature searched.

12. Occupational Exposure

The National Occupational Hazard Survey does not provide an estimate of the number of workers who are potentially exposed to calcium aluminum silicate.

13. Control Technology and Work Practices

Specific factors that may contribute to or prevent employee exposure to calcium aluminum silicate were not found in the literature searched.

14. Biological Effects

No information regarding the biological effects of calcium aluminum silicate was found in the literature searched.

15. Ongoing Studies

No current toxicological or environmental studies of calcium aluminum silicate were found.

16. Exposure Standards

No recommended or promulgated occupational exposure standards for calcium aluminum silicate were found.

17. Sources of Additional Relevant Information

No sources of additional relevant information were identified.

18. Other Pertinent Data

No other information that would aid in the assessment of calcium aluminum silicate as an occupational hazard was found in the literature searched.

S. DIETHYALUMINUM CHLORIDE

1. Chemical Name: Diethylaluminum Chloride
2. Chemical Structure: $(C_2H_5)_2AlCl$
3. Synonyms: Aluminum diethylmonochloride
Aluminum, chlorodiethyl
Chlorodiethyl aluminum
DEAC
4. Chemical Abstracts Service (CAS) Number: 96-10-6
5. Registry of Toxic Effects of Chemical Substances (RTECS) Number:
Not listed
6. Chemical and Physical Properties:

Description:	colorless pyrophoric liquid
Molecular Weight:	120.56
Boiling Point:	208-214°C
Melting Point:	-50 to -74°C
Vapor Pressure:	---
Solubility:	decomposes with water
Specific Gravity:	0.971 ²⁵ ₂₅
Stability:	highly flammable on air contact

7. Production

Data available from the U.S. EPA (1980) regarding producers of diethylaluminum chloride and production volumes are presented in Table 26.

8. Use

Diethylaluminum chloride is used as a polymerization catalyst in the production of polyclefins, polybutadienes, and ethylene-propylene elastomers. It is also used as an intermediate in the synthesis of organometallics (Kuzma and Kelly, 1979; Borg, 1979; Hawley, 1977).

9. Manufacturers and Distributors

SRI International (1980) lists Texas Alkyls (Deer Park, TX) and Ethyl Corp. (Pasadena, TX, and Orangeburg, SC) as manufacturers; in addition, see Table 26.

Table 26. Producers of Diethylaluminum Chloride and Production Ranges
(U.S. EPA, 1980)

Producer and Location	Type of Production	1977 Production Range (CAS No. 96-10-6)
Texas Alkyls, Inc. Deer Park, TX	Manufacturer	confidential
Ethyl Corp. Pasadena, TX	Manufacturer	confidential
Shell Oil Co. Woodburg, NJ Houston, TX	Manufacturer/ Produced Site Limited Importer	0.1-1 million lb 1-10 thousand lb
Plant Site Not on File	Importer	0-1000 lb

In addition to being distributed by the manufacturers, DEAC is distributed by Stauffer Chem. (1980-81 OPD Chemical Buyers Directory, 1980), a joint owner of Texas Aklyls. Other distributors include (Chem Sources--USA, 1980):

Aldrich Chem.	EM Labs
Alfa Prod.	ICN/K and K
Apache Chem.	Orion Chem.
Atomergic Chemetals	Pfaltz and Bauer
Chemical Procurement Labs	Reliable Chem.
Columbia Organic Chem.	Tridom Chem.

10. Manufacturing Processes

Diethylaluminum chloride is manufactured industrially by producing ethylaluminum sesquichloride from aluminum powder and ethyl chloride and then reacting the sesquichloride with triethylaluminum to obtain the diethylaluminum chloride (Anderson, 1963; Hawley, 1977).

It can also be prepared by reacting triethylaluminum with aluminum chloride (Anderson, 1973).

11. Impurities or Additives

No information was found in the literature searched.

12. Occupational Exposure

The National Occupational Hazard Survey does not provide an estimate of the number of workers who are potentially exposed to diethylaluminum chloride.

13. Control Technology and Work Practices

Specific factors that may contribute to or prevent employee exposure to diethylaluminum chloride were not found in the literature searched.

14. Biological Effects

No information regarding the biological effects of diethylaluminum chloride was found in the literature searched.

15. Ongoing Studies

No current toxicological or environmental studies of diethyl aluminum chloride were found.

16. Exposure Standards

No recommended or promulgated occupational exposure standards for diethylaluminum chloride were found.

17. Sources of Additional Relevant Information

No sources of additional relevant information were identified.

18. Other Pertinent Data

No other information that would aid in the assessment of diethyl-aluminum chloride as an occupational hazard was found in the literature searched.

T. SODIUM ALUMINATE

1. Chemical Name: Sodium Aluminate
2. Chemical Structure: NaAlO_2 ; $\text{Na}_2\text{O}\cdot\text{Al}_2\text{O}_3$; or $\text{Na}_2\text{Al}_2\text{O}_4$
The commercial product, however, has the amount of excess caustic as indicated by typical values of $\text{Na}_2\text{O}/\text{Al}_2\text{O}_3$ between 1.05 and 1.50.
3. Synonyms: Aluminum sodium oxide
Sodium meta-aluminate
4. Chemical Abstracts Service (CAS) Number: 1302-42-7
5. Registry of Toxic Effects of Chemical Substances (RTECS) Number:
BD1600000
6. Chemical and Physical Properties:

Description:	white crystalline solid in pure form
Molecular Weight:	variable
Boiling Point:	---
Melting Point:	1650-1800°C
Vapor Pressure:	---
Solubility:	soluble in water insoluble in alcohol
Specific Gravity:	---
Stability:	noncombustible

7. Production

Sodium aluminate has been known for many years as an intermediate product in the extraction of aluminum hydroxide from bauxite by the Bayer process. As a final product for commercial use, total production of sodium aluminate in 1976 was estimated to be 50,000 metric tons (approximately 110 million pounds) (Busler, 1978).

Data available from the U.S. EPA (1980) regarding producers of sodium aluminate and production volumes are presented in Table 27.

Table 27. Producers of Sodium Aluminate and Production Ranges
(U.S. EPA, 1980)

Producer and Location	Type of Production	1977 Production Range (CAS No. 1302-42-7)
Los Angeles Chemical Co. South Gate, CA	Manufacturer	30-300 thousand lb
Olin Corp. Kansas City, KS	Manufacturer	10-100 thousand lb
Katalco Corp. Chicago, IL	Manufacturer - Not distributed	confidential
Ethyl Corp. _____, TX	Manufacturer	1-10 million lb
H. Kohnstamm and Co. Camden, NJ	Manufacturer	confidential
Vinings Chemical Co. Marietta, GA	Manufacturer	confidential
Consolidated Foods Corp. Atlanta, GA	Manufacturer	1-10 thousand lb
Ormet Corp. Burnside, LA	Manufacturer - Not distributed	over 1 billion lb
Union Carbide Corp. South Charleston, WV	Manufacturer - Not distributed	1-10 thousand lb
Aluminum Co. of Amer. Mobile, AL	Manufacturer	confidential
Armak Catalysts Pasadena, TX	Manufacturer	confidential
Adrian Joyce Works Baltimore, MD	Manufacturer - Not distributed	confidential
PPC Corpus Christi Refinery Corpus Christi, TX	Manufacturer	none
SCM Corp. Astabula, OH	Manufacturer	confidential
The Mogul Corp. Chagrin Falls, OH	Manufacturer	10-100 thousand lb
Minneapolis, MN	Manufacturer	under 1000 lb
Charlotte, NC	Manufacturer	1-10 thousand lb
Matthey Bishop Inc. Winslow, NJ	Manufacturer	1-10 million lb

Table 27. Producers of Sodium Aluminate and Production Ranges
(U.S. EPA, 1980) (Continued)

Producer and Location	Type of Production	1977 Production Range (CAS No. 1302-42-7)
Nalco Chemical Co. Chicago, IL Grayville, LA	Manufacturer Manufacturer	confidential confidential
Titanium Pigment Division St. Louis, MO	Manufacturer - Not distributed	1-10 million lb
South Amboy, NJ	Manufacturer - Not distributed	0.1-1 million lb
W.R. Grace and Co. South Gate, LA	Manufacturer - Not distributed	1-10 million lb
Cincinnati, OH	Manufacturer - Not distributed	1-10 million lb
Lake Charles, LA	Manufacturer - Not distributed	10-50 million lb
South Pittsburg, TN Curtis Bay, MD	Manufacturer Manufacturer - Not distributed	1-10 million lb 10-50 million lb
Dan River Inc. Danville, VA	Manufacturer	10-100 thousand lb
Groveton Papers Groveton, NH	Manufacturer - Not distributed	under 1000 lb
The Chemithon Corp. Seattle, WA	Manufacturer	confidential
Culligan USA San Bernardino, CA	Manufacturer	confidential
Reynolds Metal Co. Bauxite, AR Sheffield, AL	Manufacturer Manufacturer - Not distributed	over 1 billion lb 0.1-1 million lb
Massena, NY	Manufacturer - Not distributed	1-10 million lb
Troutdale, OR	Manufacturer - Not distributed	0.1-1 million lb
Gregory, TX	Manufacturer - Not distributed	100-500 million lb
Longview, WA	Manufacturer - Not distributed	1-10 million lb

Table 27. Producers of Sodium Aluminate and Production Ranges
(U.S. EPA, 1980) (Continued)

Producer and Location	Type of Production	1977 Production Range (CAS No. 1302-42-7)
J.M. Huber Corp. Havre De Grace, MD	Manufactuer - Not distributed	10-50 million lb
United Mineral and Chem. NYC, NY	Importer	under 1000 lb
Henkel Inc. Teaneck, NJ	Importer	under 1000 lb
American Cyanamid Michigan City, IN	Importer - Not distributed	confidential
Savannah, GA	Importer - Not distributed	confidential
Fort Worth, TX	Importer - Not distributed	confidential
Para-Chem. Southern Inc. Philadelphia, PA	Importer	10-100 thousand lb
The Harshaw Chemical Co. Elyria, OH	---	1-10 million lb

8. Use

Sodium aluminate is used in treatments of industrial and municipal water supplies as a clarifying agent, precipitant, and coagulant aid. It is an effective precipitant for soluble phosphates in sewage and wastewaters of low alkalinity (Busler, 1978).

Large quantities of sodium aluminate are used in the papermaking industry to improve sizing and filler retention. The addition of sodium aluminum to titanium dioxide paint pigment improves the nonchalking performance of outdoor paints. The etching of glass and ceramics by alkaline washing solutions is inhibited by the inclusion of sodium aluminate in the formulations. The use of sodium aluminate solutions in the processing of acrylic and polyester synthetic fibers improves drying, antipiling, and antistatic properties of the fiber. Sodium aluminate is also used as a binder in foundry molds, in the preparation of zeolite catalysts, and in rigid insulating foams (Busler, 1978).

Other uses include the manufacture of milk-glass, soap and cleaning compounds, and lakes; the hardening of building stones (Hawley, 1977; The Merck Index, 1976); the coating of steel surfaces for protection from galvanizing; and in oil well drilling muds (Ryznar and Thompson, 1963).

9. Manufacturers and Distributors

SRI International (1980) lists the following manufacturers:

Chemed Corp. (Dearborn Chem.)	Lake Zurich, IL
Ciba-Geigy Corp. (Hamblet and Hayes)	Salem, MA
Culligan International	San Bernardino, CA
W.R. Grace and Co.	Cincinnati, OH
	Curtis Bay, MD
Howerton Gowen Chems.	Lake Charles, LA
Valco Chem. Co.	Roanoke Rapids, NC
Vinings Chem. Co.	Chicago, IL
	Vinings, GA

Data available from the U.S. EPA (1980) regarding producers of sodium aluminate and production volumes are presented in Table 27.

In addition to the manufacturers, the distributors include (1980-81 OPD Chemical Buyers Directory, 1980; Chemical Week; 1980 Buyers' Guide Issue, 1980; Chem Sources--USA, 1980):

Anachemia Chem.	Kay-Fries Inc.
Ashland Chem.	LaPine Sci.
Carus Chem.	MCB Reagents
Chem. Services	Metalene Chem. Co.
Coastal Aluminate	Orion Chem.
Dan River Inc.	Pfaltz and Bauer
Delmar Inc.	Thompson-Hayward Chem.
Delta Chemical	T.R. America
Fisher Sci.	United Mineral and Chem.
ICN/K and K	Vining Chem.
	A.B. Wood Chemical

10. Manufacturing Processes

Commercial quantities of sodium aluminate are made from alumina (Busler, 1978). The alumina used may be naturally occurring bauxites or the product of the Bayer process. The alumina is reacted with sodium hydroxide to form the aluminate; the process can be either an aqueous or dry operation depending upon the form of the aluminate to be produced.

In practice, about half of the digestion liquor produced in the aqueous process is sold as liquid sodium aluminate after filtration and dilution or concentration to conform with product specifications. Liquid sodium aluminate is available in steel drums, tank trucks, or railway tank cars with a density usually in the range of 1400-1600 kg/m³. Solid products are available in bags, drums, or hopper cars.

11. Impurities or Additives

Some liquid sodium aluminate products contain small amounts of powdered insoluble solids that act as precipitation or coagulation aids in water treatment processes. Concentrated solutions of sodium aluminate tend to

decompose by alumina precipitation; decomposition is controlled by addition of excess caustic and small quantities of certain organic compounds (Busler, 1978).

12. Occupational Exposure

The National Occupational Hazard Survey does not provide an estimate of the number of workers who are potentially exposed to sodium aluminate.

13. Control Technology and Work Practices

Specific factors that may contribute to or prevent employee exposure to sodium aluminate were not found in the literature searched.

14. Biological Effects

No information regarding the biological effects of sodium aluminate was found in the literature searched.

15. Ongoing Studies

No current toxicological or environmental studies of sodium aluminate were found.

16. Exposure Standards

No recommended or promulgated occupational exposure standards for sodium aluminate were found.

17. Sources of Additional Relevant Information

No sources of additional relevant information were identified.

18. Other Pertinent Data

No other information that would aid in the assessment of sodium aluminate as an occupational hazard was found in the literature searched.

U. TRI-n-BUTYLALUMINUM

1. Chemical Name: Tri-n-butylaluminum
2. Chemical Structure: $(\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2)_3\text{Al}$
3. Synonyms: Tributylaluminum
Aluminum, tributyl-
TNBA
4. Chemical Abstracts Service (CAS) Number: 1116-70-7
5. Registry of Toxic Effects of Chemical Substances (RTECS) Number:
Not listed

6. Chemical and Physical Properties:

Description: colorless pyrophoric liquid
Molecular Weight: 198.33
Boiling Point: 120°C (2 mm Hg)
Melting Point: -26.7°C
Vapor Pressure: ---
Solubility: decomposes in water
Specific Gravity: 0.823
Stability: ignites spontaneously in air

7. Production

Data available from the U.S. EPA (1980) regarding producers of tri-n-butylaluminum and production volumes are presented in Table 28.

8. Use

The tri-n-butylaluminum used captively by Conoco is likely used as an intermediate in the manufacture of linear primary alcohols and alpha-olefins.

Tri-n-butylaluminum is also used in the synthesis of organo-tin compounds (Hawley, 1977).

Table 28. Producers of Tri-n-butylaluminum and Production Ranges
(U.S. EPA, 1980)

Producer and Location	Type of Production	1977 Production Range (CAS No. 1116-70-7)
Texas Alkyls, Inc. Deer Park, TX	Manufacturer	confidential
Continental Oil Co. Westlake, LA	Manufacturer/ Produced Site Limited	1-10 million lb

9. Manufacturers and Distributors

SRI International (1980) lists Texas Alkyls as a manufacturer of tri-n-butylaluminum; Table 28 also cites Continental Oil Co. (Conoco) as a manufacturer. Ethyl Corp. produces tri-n-butylaluminum in developmental quantities (Chemical Week: 1981 Buyers' Guide Issue, 1980).

In addition to the manufacturers, tri-n-butylaluminum is distributed by Stauffer Chem. (1980-81 OPD Chemical Buyers Directory, 1980), a joint owner of Texas Alkyls. Other distributors include (Chem Sources--USA, 1980):

Apache Chem.
ICN/K and K
Noah Chem.
Pfaltz and Bauer
Reliable Chem.
Tridom Chem.

10. Manufacturing Processes

Tri-n-butylaluminum is manufacturerd by the exchange reaction of 1-butene and isobutylaluminum (Hawley, 1977). This type of transalkylation process is shown in Figure 10 in the Tri-n-octylaluminum profile (III.V).

11. Impurities or Additives

No information was found in the literature searched.

12. Occupational Exposure

The National Occupational Hazard Survey does not provide an estimate of the number of workers who are potentially exposed to tri-n-butylaluminum.

13. Control Technology and Work Practices

Specific factors that may contribute to or prevent employee exposure to tri-n-butylaluminum were not found in the literature searched.

14. Biological Effects

No information regarding the biological effects of tri-n-butylaluminum was found in the literature searched.

15. Ongoing Studies

No current toxicological or environmental studies of tri-n-butyl-aluminum were found.

16. Exposure Standards

No recommended or promulgated occupational exposure standards for tri-n-butylaluminum were found.

17. Sources of Additional Relevant Information

No sources of additional relevant information were identified.

18. Other Pertinent Data

No other information that would aid in the assessment of tri-n-butylaluminum as an occupational hazard was found in the literature searched.

V. TRIETHYLALUMINUM

1. Chemical Name: Triethylaluminum
2. Chemical Structure: $(C_2H_5)_3Al$
3. Synonyms: Aluminum, triethyl
ATE
TEA
4. Chemical Abstracts Service (CAS) Number: 97-93-8
5. Registry of Toxic Effects of Chemical Substances (RTECS) Number:
BD2050000
6. Chemical and Physical Properties:

Description: colorless, pyrophoric liquid
Molecular Weight: 114.17
Boiling Point: 194°C
Melting Point: -52.5°C
Vapor Pressure: ---
Solubility: decomposes in water
miscible with saturated hydrocarbons
Specific Gravity: 0.837
Stability: highly flammable, ignites spontaneously
in air; reacts violently with water,
acids, alcohols, halogens, and amines;
Flash point: -63°F

7. Production

Data available from the U.S. EPA (1980) regarding producers of triethylaluminum and production volumes are presented in Table 29.

8. Use

The most important commercial uses of triethylaluminum are in the production of primary linear alcohols and alpha-olefins. Continental Oil Co. (Conoco) and Ethyl Corp. produce linear alcohols from triethylaluminum that is captively consumed. Conoco's capacity to produce linear alcohols is 214 million pounds per year, whereas the capacity of Ethyl Corp. is 220 million pounds per

Table 29. Producers of Triethylaluminum and Production Ranges
(U.S. EPA, 1980)

Producer and Location	Type of Production	1977 Production Range (CAS No. 97-93-8)
Texas Alkyls, Inc. Deer Park, TX	Manufacturer	confidential
Ethyl Corp. Orangeburg, SC Pasadena, TX	Manufacturer Manufacturer	confidential confidential
Continental Oil Co. Westlake, LA	Manufacturer/ Produced Site Limited	50-100 million lb
Plant Site Not on File	Importer/ Produced Site Limited	0-1000 lb

year (Gautreaux *et al.*, 1978). As seen in Table 29, Conoco captively consumed between 50 and 100 million pounds of triethylaluminum in 1977.

Ethyl Corp. and Gulf Oil Corp. produce alpha-olefins using ethylene and a triethylaluminum catalytic initiator. Bradley (1976) has estimated that the amount of ethylene consumed in the production of aluminum alkyls for initiators and catalysts was 5-10 million in 1973; this could correlate to a triethylaluminum usage of 15-30 million pounds.

Triethylaluminum is also used as a catalyst in the synthesis of olefin polymers, as an intermediate in production of other organometallics and other organic chemicals, in the gas plating of aluminum onto other materials by thermal decomposition, and in pyrophoric fuels for turbojet engines (Anderson, 1963; Hawley, 1977).

9. Manufacturers and Distributors

Data available from the U.S. EPA (1980) regarding producers of triethylaluminum and production volumes are presented in Table 29. SRI International (1980) lists the same manufacturers as shown in Table 29.

In addition to the manufacturers, triethylaluminum is distributed by (Chemical Week: 1981 Buyers Guide Issue, 1980; Chem Sources--USA, 1980):

Aldrich Chem.	Orion Chem.
Alfa Products	Pfaltz and Bauer
(Thiokol/Ventron)	Reliable Chem.
Apache Chem.	Stauffer Chemicals
Atomergic Chemetals	Synthetic Prod.
EM Labs	Tridon Chem.

10. Manufacturing Processes

Triethylaluminum is manufactured by either a one- or two-stage process. In the two-stage process, aluminum powder is added to recycle triethylaluminum, and the slurry reacts with hydrogen to produce diethylaluminum hydride, which reacts with ethylene to produce triethylaluminum. In the one-

stage process, hydrogen and ethylene are simultaneously fed into a reactor containing triethylaluminum and aluminum powder (Gautreaux *et al.*, 1978).

A sample flow diagram illustrating triethylaluminum manufacture is shown in Figure 8.

11. Impurities or Additives

The specifications for triethylaluminum are as follows (Anderson, 1963):

<u>Chemical Composition</u>	<u>Percent By Weight</u>	<u>Typical Analysis (Percent)</u>
Triethylaluminum	88-94	91.25
Soluble aluminum	23.0, min.	23.3
Tri-n-butylaluminum	5-7	5.5
Triisobutylaluminum	2, max.	0.94
Hydride as AlH_3	2, max.	0.92

12. Occupational Exposure

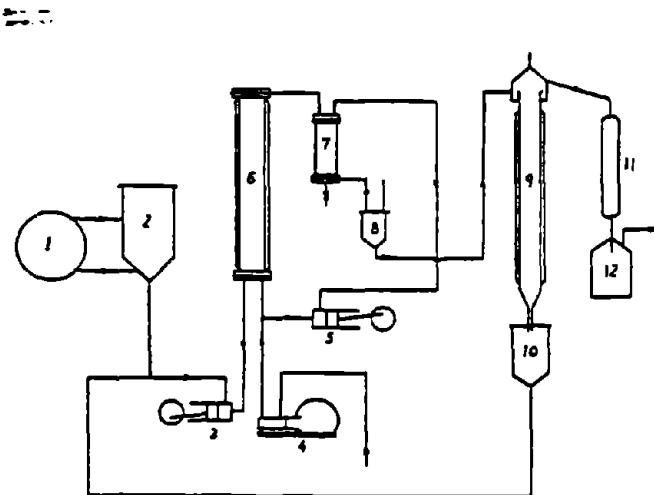
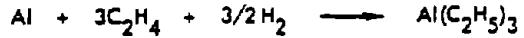
The National Occupational Hazard Survey indicates that 5961 workers are potentially exposed to triethylaluminum.

13. Control Technology and Work Practices

Specific factors that may contribute to or prevent employee exposure to triethylaluminum were not found in the literature searched.

14. Biological Effects

No information regarding the biological effects of triethylaluminum was found in the literature searched.



15. Ongoing Studies

No current toxicological or environmental studies of triethylaluminum were found.

16. Exposure Standards

No recommended or promulgated occupational exposure standards for triethylaluminum were found.

Reaction:

1. Wet micropulverizer for Al / Al (C₂H₅)₃ mixture
2. Slurry storage tank
3. Plunger pump
4. Mixed (2:1) ethylene-hydrogen feed compressor
5. Recycle gas pump
6. Reactor
7. Gas-liquid separator
8. Crude product receiver
9. Falling film evaporator
10. Still residue receiver
11. Cooler
12. Refined product receiver

Feed Materials:
Aluminum
Ethylene
Hydrogen

Catalyst: Iodine (Optional)
Phase: Liquid
Reactor type: Tubular Autoclave
Solvent used: None
Temperature, °C: 110-150
Pressure ps: 1500-2250
Reaction time: 2 hours

Figure 8. Manufacture of Triethylaluminum (from Sittig, 1967: based on U.S. Patent 3,016,369 by T. Irie *et al.* to Sumitomo Chemical Co., Jan. 9, 1962)

17. Sources of Additional Relevant Information

No sources of additional relevant information were identified.

18. Other Pertinent Data

No other information that would aid in the assessment of tri-ethylaluminum as an occupational hazard was found in the literature searched.

W. TRI-n-HEXYLALUMINUM

1. Chemical Name: Tri-n-hexylaluminum
2. Chemical Structure: $(C_6H_{13})_3Al$
3. Synonyms: Aluminum, trihexyl-
Trihexylaluminum
4. Chemical Abstracts Service (CAS) Number: 1116-73-0
5. Registry of Toxic Effects of Chemical Substances (RTECS) Number:
Not listed
6. Chemical and Physical Properties:

Description: colorless pyrophoric liquid
Molecular Weight: 282.49
Boiling Point: 210°C (0.05-0.06 mm Hg)
Melting Point: ---
Vapor Pressure: ---
Solubility: decomposes in water
Specific Gravity: ---
Stability: ignites at room temperature

7. Production

Data available from the U.S. EPA (1980) regarding producers of tri-n-hexylaluminum and production volumes are presented in Table 30.

8. Use

The tri-n-hexylaluminum captively used by Conoco is probably used as an intermediate in the manufacture of primary linear alcohols and alpha-olefins.

Tri-n-hexylaluminum is also used as a polyolefin catalyst (Hawley, 1977).

9. Manufacturers and Distributors

SRI International (1980) lists Texas Alkyls (Deer Park, TX) as a manufacturer of tri-n-hexylaluminum; Table 30 also lists Continental Oil Co. (Conoco).

Table 30. Products of Tri-n-hexylaluminum and Production Ranges
(U.S. EPA, 1980)

Producer and Location	Type of Production	1977 Production Range (CAS No. 1116-73-0)
Texas Alkyls, Inc. Deer Park, TX	Manufacturer	confidential
Continental Oil Co. Westlake, LA	Manufacturer/ Produced Site Limited	10-50 million lb

In addition to the manufacturers, tri-n-hexylaluminum is distributed by Stauffer Chem. (1980-81 OPD Chemical Buyers Directory, 1980), a joint owner of Texas Alkyls. It is also distributed by Pfaltz and Bauer and Reliable Chem. (Chem Sources--USA, 1980).

10. Manufacturing Processes

Tri-n-hexylaluminum is derived by an exchange reaction between hexene and isobutylaluminum (Hawley, 1977). This type of transalkylation process is shown in Figure 10 in the Tri-n-octylaluminum profile (III.V).

11. Impurities or Additives

No information was found in the literature searched.

12. Occupational Exposure

The National Occupational Hazard Survey does not provide an estimate of the number of workers who are potentially exposed to tri-n-hexylaluminum.

13. Control Technology and Work Practices

Specific factors that may contribute to or prevent employee exposure to tri-n-hexylaluminum were not found in the literature searched.

14. Biological Effects

No information regarding the biological effects of tri-n-hexylaluminum was found in the literature searched.

15. Ongoing Studies

No current toxicological or environmental studies of tri-n-hexylaluminum were found.

16. Exposure Standards

No recommended or promulgated occupational exposure standards for tri-n-hexylaluminum were found.

17. Sources of Additional Relevant Information

No sources of additional relevant information were identified.

18. Other Pertinent Data

No other information that would aid in the assessment of tri-n-hexylaluminum as an occupational hazard was found in the literature searched.

X. TRIISOBUTYLALUMINUM

1. Chemical Name: Triisobutylaluminum
2. Chemical Structure: $[(\text{CH}_3)_2\text{CHCH}_2]_3\text{Al}$
3. Synonyms: Aluminum, triisobutyl-
TIBAL
TIBA
Aluminum, tris (2-methylpropyl)-
4. Chemical Abstracts Service (CAS) Number: 100-99-2
5. Registry of Toxic Effects of Chemical Substances (RTECS) Number:
Not listed
6. Chemical and Physical Properties:

Description: colorless, pyrophoric liquid
Molecular Weight: 198.33
Boiling Point: 212°C; 114°C (30 mm Hg)
Melting Point: +1 to -5.6°C
Vapor Pressure: 1 mm Hg (47°C)
Solubility: decomposes with water
Specific Gravity: 0.7876
Stability: ignites spontaneously in air;
Flash point: below 32°F

7. Production

Cosslett and Gerry (1976) estimated that 3.5 million pounds of isobutylaluminum were produced in 1974; this included triisobutylaluminum and diisobutylaluminum chloride and hydride. The diisobutylaluminum compounds are prepared from triisobutylaluminum (Hoff et al., 1978; Anderson, 1963). In 1977, about 2 million pounds of isobutylene were used in the production of di- and triisobutylaluminums (Hoff et al., 1978); this corresponds to a triisobutylaluminum production of roughly 2 million pounds.

Production of triisobutylaluminum may be somewhat higher than the above figures would indicate. In 1977, Conoco produced from 1-10 million pounds of tributylaluminum and 10-50 million pounds of trihexylaluminum (U.S. EPA,

1980). Both compounds are apparently produced by exchange reactions with triisobutyl aluminum (Hawley, 1977). Therefore, a sizable amount of triisobutylaluminum may have been generated as an intermediate to produce these compounds.

Production ranges from the U.S. EPA (1980) are not available for triisobutylaluminum.

8. Use

As stated above, triisobutylaluminum is used as an intermediate in the production of other aluminum alkyl compounds. It is also used as a polymerization co-catalyst in the manufacture of polybutadiene, polyisoprene, and polypropylene (Cosslett and Gerry, 1976).

Other uses include manufacture of primary alcohol and alpha-olefins and use as a pyrophoric fuel (Hawley, 1977).

9. Manufacturers and Distributors

SRI International (1980) and U.S. EPA (1980) list the following manufacturers:

Ethyl Corp.	Orangeburg, SC
	Pasadena, TX
Texas Alkyls, Inc.	Deer Park, TX

In addition to the manufacturers, triisobutyl aluminum is distributed by Stauffer Chem. (1980-81 OPD Chemical Buyers Directory, 1980), a joint owner of Texas Alkyls. Other distributors include (Chem Sources--USA, 1980):

Aldrich Chem.	ICN/K and K
Apache Chem.	Orion Chem.
Atomergic Chemetals	Pfaltz and Bauer
Chemical Procurement Labs	Reliable Chem.
EM Labs	Tridom Chem.

10. Manufacturing Processes

Triisobutylaluminum is manufactured by reaction of isobutylene with aluminum at 80°C and 200 atmospheres pressure of hydrogen (Hoff et al., 1978). A sample flow diagram depicting this type of process is shown in Figure 9.

11. Impurities or Additives

Triisobutylaluminum has the following specifications (Anderson, 1963):

<u>Chemical Composition</u>	<u>Percent By Weight</u>	<u>Typical Analysis (Percent)</u>
Triisobutylaluminum	95.6, min.	95.7
Soluble aluminum	13.4, min.	13.66
Tri-n-butylaluminum	0.4, max.	0.33
Hydride as AlH ₃	0.8, max.	0.56
Dissolved isobutylene	4.0, max.	2.98

12. Occupational Exposure

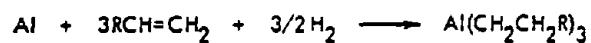
The National Occupational Hazard Survey indicates that 6377 workers are potentially exposed to triisobutylaluminum.

13. Control Technology and Work Practices

Specific factors that may contribute to or prevent employee exposure to triisobutylaluminum were not found in the literature searched.

14. Biological Effects

No information regarding the biological effects of triisobutylaluminum was found in the literature searched.



15. Ongoing Studies

No current toxicological or environmental studies of triisobutylaluminum were found.

16. Exposure Standards

No recommended or promulgated occupational exposure standards for triisobutylaluminum were found.

Reaction:

Feed Materials:
Aluminum
Isobutylene
Hydrogen

Catalyst: Chlorine as Activator
Phase: Mixed Liquid-Gas
Reactor type: Tower
Solvent used: None
Temperature, °C: 110-150
Pressure psi: 1500-2250
Reaction time: 3 hrs.
Heat Required: Yes

Figure 9. Manufacture of Triisobutylaluminum (from Sittig, 1967: based on U.S. Patent 3,000,919 by G. Wetroff *et al.* to Pechiney, Sept. 19, 1961)

17. Sources of Additional Relevant Information

No sources of additional relevant information were identified.

18. Other Pertinent Data

No other information that would aid in the assessment of triisobutylaluminum as an occupational hazard was found in the literature searched.

Y. TRI-n-OCTYLALUMINUM

1. Chemical Name: Tri-n-octylaluminum
2. Chemical Structure: $(C_8H_{17})_3Al$
3. Synonyms: Aluminum, trioctyl-
4. Chemical Abstracts Service (CAS) Number: 1070-00-4
5. Registry of Toxic Effects of Chemical Substances (RTECS) Number:
Not listed
6. Chemical and Physical Properties:

Description: colorless pyrophoric liquid
Molecular Weight: 366.65
Boiling Point: ---
Melting Point: ---
Vapor Pressure: ---
Solubility: ---
Specific Gravity: ---
Stability: flammable; ignites in air

7. Production

Data available from the U.S. EPA (1980) indicate that the Continental Oil Co. produced between 10 and 50 million pounds of tri-n-octyl-aluminum in 1977 for captive use only.

8. Use

Tri-n-octylaluminum is used as a polyolefin catalyst (Hawley, 1977). The captive use by Conoco may also include use in the manufacture of primary linear alcohols and alpha-olefins.

9. Manufacturers and Distributors

SRI International (1980) lists Texas Alkyls (Deer Park, TX) as a manufacturer. The U.S. EPA (1980) lists the Continental Oil Co. (Westlake, LA) as a captive manufacturer.

In addition to the manufacturers, tri-*n*-octylaluminum is distributed by Stauffer Chem. (1980-81 OPD Chemical Buyers Directory, 1980), a joint owner of Texas Alkyls. Other distributors include (Chem Sources--USA, 1980):

Atomergic Chemetals
Chemical Procurement Labs
EM Labs
ICN/K and K
Orion Chem.
Pfaltz and Bauer
Reliable Chem.

10. Manufacturing Processes

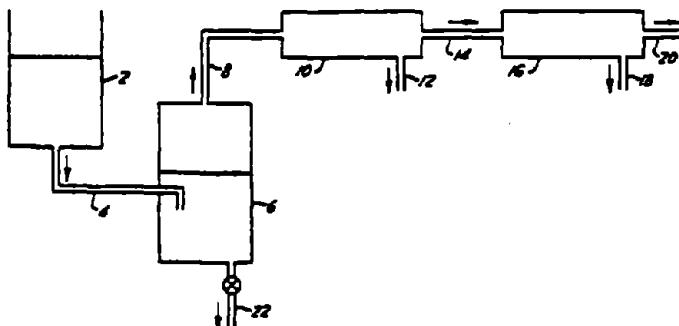
Tri-*n*-octylaluminum is made by the reaction of octene and isobutylaluminum (Hawley, 1977). This type of transalkylation process is shown in Figure 10.

11. Impurities or Additives

No information was found in the literature searched.

12. Occupational Exposure

The National Occupational Hazard Survey does not provide an estimate of the number of workers who are potentially exposed to tri-*n*-octylaluminum.


13. Control Technology and Work Practices

Specific factors that may contribute to or prevent employee exposure to tri-*n*-octylaluminum were not found in the literature searched.

14. Biological Effects

No information regarding the biological effects of tri-*n*-octylaluminum was found in the literature searched.

Reaction:

- 2-Octene storage
- 4-Octene feed line
- 6-Reactor
- 8-Gaseous products line
- 10-Condenser
- 12-Unreacted octene out
- 14-Gaseous products line
- 16-Condenser
- 18-Isobutylene out
- 20-Hydrogen vent
- 22-Product outlet

Feed Materials:
Aluminum Triisobutyl
1-Octene

Catalyst: None
Phase: Mixed Liquid-Gas
Reactor type: Tower
Solvent used: None
Temperature, °C: 70-250
Pressure psi: 1.0 psi absolute
Reaction time: 1-10 hrs.
Heat Required: -
Heat evolved: -
Product yield: 95%

Coproducts:
Isobutylene
Octene Dimers

Figure 10. Aluminum Alkyls by Transalkylation (from Sittig, 1967: based on U.S. Patent 3,014,941 by W.L. Walsh to Goodrich-Gulf Chemicals Inc., Dec. 26, 1961)

15. Ongoing Studies

No current toxicological or environmental studies of tri-n-octyl-aluminum were found.

16. Exposure Standards

No recommended or promulgated occupational exposure standards for tri-n-octylaluminum were found.

17. Sources of Additional Relevant Information

No sources of additional relevant information were identified.

18. Other Pertinent Data

No other information that would aid in the assessment of tri-n-octylaluminum as an occupational hazard was found in the literature searched.

APPENDIX
ALUMINUM COMPOUNDS

The following alphabetical list of chemicals comprises all aluminum compounds considered for inclusion in this information profile, regardless of their commercial importance or biological activity.

Aluminum
Aluminum acetate, mono-
Aluminum acetate, di-
Aluminum acetate, tri-
Aluminum acetate, sub-
Aluminum acetotartrate
Aluminum acetylacetone
Aluminum acetylsalicylate
Aluminum acrylate
Aluminum p-aminobenzoate
Aluminum ammonium chloride
Aluminum ammonium fluoride
Aluminum ammonium sulfate
Aluminum amphotycin
Aluminum anilide
Aluminum antimonide
Aluminum arsenate
Aluminum arsenide
Aluminum barium oxide
Aluminum benzoate
Aluminum bismuth hydroxide carbonate
Aluminum bismuth oxide
Aluminum borate
Aluminum boride
Aluminum boroformate
Aluminum borohydride
Aluminum borotannate
Aluminum bromide
Aluminum n-butoxide
Aluminum sec-butoxide
Aluminum tert-butoxide
Aluminum sec-butoxide diisopropoxide
Aluminum sec-butoxide stearate
Aluminum calcium hydride
Aluminum calcium iron oxide
Aluminum calcium oxide
Aluminum calcium silicate
Aluminum caprate
Aluminum caproate
Aluminum caprylate
Aluminum carbide
Aluminum carbonate
Aluminum cesium sulfate

Aluminum chlorate
Aluminum chlorhydrate
Aluminum chlorhydrol
Aluminum chlorhydroxy allantoinate
Aluminum chloride, anhydrous
Aluminum chloride, hydrous
Aluminum chloride hydroxide
Aluminum chlorite
Aluminum chlorohydroxide
Aluminum chromate
Aluminum citrate
Aluminum cobalt oxide
Aluminum copper phosphate
Aluminum cyclohexane butyrate
Aluminum dihydroxy allantoinate
Aluminum dihydroxy aminoacetate
Aluminum diisopropoxide acetoacetic ester chelate
Aluminum dimagnesium silicate
Aluminum diphenylamide
Aluminum diphenylchloride
Aluminum dodecarboride
Aluminum dodecylbenzenesulfonate
Aluminum dodecylsulfate
Aluminum ethoxide
Aluminum 2-ethylhexanoate
Aluminum ferrocyanide
Aluminum fluoborate
Aluminum fluoride
Aluminum fluorosulfate, hydrate
Aluminum fluosilicate
Aluminum formate, di-
Aluminum formate, tri-
Aluminum formate, basic
Aluminum formoacetate
Aluminum glycinate
Aluminum heptylate
Aluminum hexacyanoferrate
Aluminum hexadecyclooxide isopropoxide stearate
Aluminum hexafluoroacetylacetone
Aluminum hexafluorosilicate
Aluminum hexaurea dinitrate triiodide
Aluminum hexaurea sulfate triiodide
Aluminum hydride
Aluminum hydroxide acetate
Aluminum hydroxychloride
Aluminum 8-hydroxyquinolate
Aluminum hydroxystearate
Aluminum hypophosphite
Aluminum iodide
Aluminum iron silicide
Aluminum isopropoxide
Aluminum isopropoxide chelates
Aluminum lactate
Aluminum laurate

Aluminum lauryl sulfate
Aluminum lignosulfonate
Aluminum lithium hydride
Aluminum lithium silicate
Aluminum magnesium acetate hydroxide
Aluminum magnesium carbonate hydroxide
Aluminum magnesium hydroxide
Aluminum magnesium phosphide
Aluminum magnesium silicate
Aluminum magnesium sulfate
Aluminum metaphosphate
Aluminum methacrylate
Aluminum methoxide
Aluminum σ -molybdate
Aluminum myristate
Aluminum naphthenate
Aluminum 2-naphthol-3,6-disulfonate
Aluminum nicotinate
Aluminum nitrate
Aluminum nitride
Aluminum octanoate
Aluminum oleate
Aluminum orthohydroxyquinoline sulfate
Aluminum orthophosphate
Aluminum oxide
Aluminum oxychloride
Aluminum palmitate
Aluminum perchlorate
Aluminum permanganate
Aluminum phenolsulfonate
Aluminum phenoxide
Aluminum phosphate
Aluminum phosphide
Aluminum phthalocyanine chloride
Aluminum picrate
Aluminum polygalacturonate
Aluminum potassium chloride
Aluminum potassium oxide
Aluminum potassium sulfate
Aluminum propoxide
Aluminum resinate
Aluminum beta-resorcylate
Aluminum ricinoleate
Aluminum rubidium sulfate
Aluminum salicylate
Aluminum selenate
Aluminum selenide
Aluminum selenite
Aluminum silicates
Aluminum silicide
Aluminum silicofluoride
Aluminum sodium chlorhydroxy lactate
Aluminum sodium chloride
Aluminum sodium fluoride

Aluminum sodium lactate
Aluminum sodium oxide
Aluminum sodium sulfate
Aluminum stearate, mono-
Aluminum stearate, di-
Aluminum stearate, tri-
Aluminum suboxide
Aluminum sulfamate
Aluminum sulfate
Aluminum sulfide
Aluminum tantalide
Aluminum tartrate
Aluminum tellurate
Aluminum telluride
Aluminum tellurite
Aluminum tetraisoproxide
Aluminum thiocyanate
Aluminum thiophenoxyde
Aluminum m-titamate
Aluminum triacetylide
Aluminum tri-sec-butoxide
Aluminum trihydrate
Aluminum tungstate
Aluminum zinc sulfate
Aluminum m-zirconate
Calcium aluminate
Dibutylaluminum chloride
Diethylaluminum amide
Diethylaluminum chloride
Diethylaluminum cyanide
Diethylaluminum ethoxide
Diethylaluminum fluoride
Diethylaluminum hydride
Diethylaluminum iodide
Diisobutylaluminum chloride
Diisobutylaluminum ethoxide
Diisobutylaluminum hydride
Dimethylaluminum chloride
Dipropylaluminum chloride
Dipropylaluminum hydride
Ethylaluminum dibromide
Ethylaluminum dichloride
Ethylaluminum diethoxide
Ethylaluminum sesquibromide
Ethylaluminum sesquichloride
Isobutylaluminum dichloride
Isobutylaluminum sesquichloride
Isoprenylaluminum
Lithium aluminate
Lithium aluminum hydride
Magnesium aluminum silicate
Methylaluminum dichloride
Methylaluminum sesquibromide
Methylaluminum sesquichloride

Potassium aluminate
Sodium aluminate
Sodium aluminum bis(2-methoxyethoxy)dihydride
Sodium aluminum diethyl dihydride
Sodium aluminum hydride
Sodium aluminum phosphate
Sodium aluminum silicate
Tributylaluminum
Tri-*n*-decylaluminum
Triethylaluminum
Tri-*n*-hexylaluminum
Triisobutylaluminum
Trimethylaluminum
Tri-2-methylpentylaluminum
Tri-*n*-octylaluminum
Tri-*n*-propylaluminum

REFERENCES

ACGIH (American Conference of Governmental Industrial Hygienists) (1979). Documentation of the Threshold Limit Values for Substances in Workroom Air, 3rd ed., 1971, with supplements through 1979. Cincinnati, OH: ACGIH.

Allen, E.M. (1957). Alumina-silica compositions. U.S. Patent 2,786,776 (to Columbia-Southern Chem. Corp.). March 26, 1957. Taken from: Chem. Abst. 51:10019d, 1957.

Allfrey, A.; LeGendre, G.; and Kaehny, W. (1976). Dialysis dementia. New Engl. J. Med. 294:184.

Aluminum Association, Inc. (1977). Mortality of Aluminum Workers. Final Report. Unpublished report submitted to NIOSH by the Aluminum Association, Inc., NY, May 1977, 74 pp. (Cited in: NIOSH (National Institute of Occupational Safety and Health (1977). Criteria for a Recommended Standard: Occupational Exposure to Coal Tar Products, DHEW (NIOSH) Publication No. 78-107. Cincinnati, OH: U.S. Dept. of Health, Education, and Welfare, Public Health Service, Center for Disease Control, NIOSH.)

Anderson, A.R. (1963). Aluminum compounds. In: Kirk-Othmer Encyclopedia of Chemical Technology, 2nd ed. Standen, A., editor. New York: John Wiley and Sons, Inc., Vol. 2, pp. 25-40.

Anderson, W.A., and Haupin, W.E. (1978). Aluminum and alloys. In: Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed. Grayson, M., and Eckroth, D., editors. New York: John Wiley and Sons, Inc., Vol. 1, pp. 140-144, 155.

Anderson, A.F., and Thomas, I.M. (1963). Alkoxides, metal. In: Kirk-Othmer Encyclopedia of Chemical Technology, 2nd ed. Standen, A., editor. New York: John Wiley and Sons, Inc., Vol. 1, p. 845.

Badenoch-Jones, P.; Turk, J.L.; and Parker, D. (1978). The effects of some aluminum compounds and zirconium compounds on guinea pig peritoneal macrophages and skin fibroblasts in culture. J. Pathol. 124:51-62.

Bellan, A., and Deneke, K. (1972). Basic aluminum chloride. German Patent 2,048,273 (assigned to Dynamit Nobe AG). April 6, 1972. Taken from: Chem. Abst. 77:7928g, 1972.

Benett, R.; Persaud, T.; and Moore, K. (1975). Experimental studies on the effects of aluminum on pregnancy and fetal development. Anat. Anz. Bd. 138:365-378.

Berlyne, G.; Ben-Ari, J.; Knopf, E.; Yagil, R.; Weinberger, G.; and Danovitch, G. (1972). Aluminum toxicity in rats. Lancet 1:564-567.

Berlyne, G.M.; Ben-Ari, J.; Pest, D.; Weinberger, J.; Stern, M.; Gilmore, G.R.; and Levine, R. (1970). Hyperaluminaemia from aluminum resins in renal failure. Lancet, September 5, pp. 494-496.

Berlyne, G., and Rubin, J. (1977). Aluminum ion: Metabolism and toxicity. J. Human Nutr. 31:439-442.

Bienvenu, P.; Nofre, C.; and Cier, A. (1963). [General comparative toxicity of metal ions. Relationship with their periodic classification.] C.R.H. Acad. 256:1043-1044. (In Fr.)

Borg, E.L. (1979). Elastomers, synthetic (ethylene-propylene). In: Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed. Grayson, M., and Eckroth, D., editors. New York: John Wiley and Sons, Inc., Vol. 8, p. 495.

Bradley, R.F. (1976). Linear alpha-olefins. In: Chemical Economics Handbook. Menlo Park, CA: Stanford Research Institute, pp. 681.5032 B-D.

Bretzinger, D., and Josten, W. (1978). Alkoxides, metal. In: Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed. Grayson, M., and Eckroth, D., editors. New York: John Wiley and Sons, Inc., Vol. 2, pp. 12-13.

Brown, D.; Brown, J.; and Egan, B. (1980). Epidemiology and Industrial Hygiene Study of Aluminum Reduction Workers. National Institute for Occupational Safety and Health, Division of Surveillance, Hazard Evaluations, and Field Studies, Cincinnati, OH. Grant No. VMHC22563. Taken from: Smithsonian Science Information Exchange (1980). SSIE Current Research. The Lockheed Dialog Retrieval Service, File 65.

Busler, W.R. (1978). Aluminum compounds (aluminates). In: Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed. Grayson, M., and Eckroth, D., editors. New York: John Wiley and Sons, Inc., Vol. 2, pp. 199-200.

Casto, B.C.; Meyers, J.; and DiPaolo, J.A. (1979). Enhancement of viral transformation for evaluation of the carcinogenic or mutagenic potential of inorganic metal salts. Cancer Res. 39:193-198.

Cavender, F.L.; Steinhagen, W.H.; and Cockrell, B.Y. (1978). Chronic toxicity of aluminum chlorhydrate. Clin. Tox. 12:606 (Abstract).

Chapman, D.G., and Kertesz, Z.I. (1966). Food additives. In: Kirk-Othmer Encyclopedia of Chemical Technology, 2nd ed. Standen, A., editor. New York: John Wiley and Sons, Inc., Vol. 10, p. 4.

Chemical and Engineering News (1980). Untitled. June 9, 1980, p. 39.

Chemical Week: 1981 Buyers' Guide Issue (1980). October, 1980. New York: McGraw Hill, Inc., pp. 196, 349-353, 356-359, 637, 681.

Chem Sources--USA, 1980 ed. (1980). Ormond Beach, FL: Directories Publishing Company, Inc., pp. 24-25, 218, 552, 598, 602, 607, 614.

Clarkson, E.; Luck, V.; and Hynson, W. (1972). The effect of aluminum hydroxide on calcium, phosphorous, and aluminum balances; the serum parathyroid concentration; and the aluminum content of bones in patients with chronic renal failure. Clin. Sci. 43:519-531.

CMR (Chemical Marketing Reporter) (1980a). Chemical profile: $AlCl_3$, anhydrous. June 9, 1980, p. 9.

CMR (Chemical Marketing Reporter) (1980b). Chemical profile: $AlCl_3$, hydrous. June 16, 1980, p. 9.

Corrin, B. (1963). Aluminum pneumoconiosis. II. Effect on the rat lung of intratracheal injections of stamped aluminum powders containing different lubricating agents and of a granular aluminum powder. *Brit. J. Ind. Med.* 20:268-276.

Cosslett, P.D., and Gerry, R.T. (1976). Butylenes. In: *Chemical Economics Handbook*. Menlo Park, CA: Stanford Research Institute, p. 620.5043C.

Crapper, D.; Krishnan, S.; and Dalton, A. (1973). Brain aluminum distribution in Alzheimer's disease and experimental neurofibrillary degeneration. *Science* 180:511-513.

Crombie, D.; Blaisdell, J.; and MacPherson, G. (1944). The treatment of silicosis by aluminum powder. *Can. Med. Assoc. J.* 50:318-321.

Danner, M., and Krieg, M. (1974). Basic aluminum chloride solution. German Patent 2,309,610 (assigned to Farbwerke Hoechst AG). September 12, 1974. Taken from: *Chem. Abst.* 81:61296r, 1975.

Darragh, K.V. (1978). Aluminum compounds ($Al_2(SO_4)_3$, alums). In: *Kirk-Othmer Encyclopedia of Chemical Technology*, 3rd ed. Grayson, M., and Eckroth, D., editors. New York: John Wiley and Sons, Inc., Vol. 2, pp. 244-250.

Delaney, J.F. (1980). Role of Aluminum in a Pathogenesis of Alzheimer's Disease. U.S. Veterans Administration Hospital, Dept. of Medicine and Surgery, Pittsburgh, PA. Grant No. 159321479; 646001P. Taken from: Smithsonian Science Information Exchange (1980). SSIE Current Research. The Lockheed Dialog Retrieval Service, File 65.

Dixon, R.L.; Sherins, R.J.; and Lee, I.P. (1979). Assessment of environmental factors affecting male fertility. *Environ. Health Perspect.* 30:53-68.

Drew, R.; Bhola, N.; Bend, J.; and Hook, G. (1974). Inhalation studies with a glycol complex of aluminum chloride hydroxide. *Arch. Environ. Health* 28:321.

Ellcott, H.L.; Dryburgh, F.; Fell, G.S.; Sabet, S.; and MacDougall, A.I. (1978). Aluminum toxicity during regular hemodialysis. *Brit. Med. J.* 1(6120): 1101-1103.

Ellis, H.; McCarthy, J.; and Herrington, J. (1979). Bone aluminum in hemodialysed patients and in rats injected with aluminum chloride: Relationship to impaired mineralization. *J. Clin. Pathol.* 32:832-844.

Feria-Velasco, A.; Olivares, N.; Rivas, F.; Velasco, M.; and Velasco, F. (1980). Alumina cream-induced focal motor epilepsy in cats. IV. Thickness and cellularity of layers in the perilesional motor cortex. *Arch Neurol.* 37:287-290.

Frosch, P.J., and Kligman, A.M. (1977). The chamber-scarification test for assessing irritancy of topically applied substances. In: Conference on Cutaneous Toxicity, 3rd, Washington, DC, 1976. Drill, V.A., and Lazard, P., editors. New York: Academic Press, Inc., pp. 127-154.

Gall, J.F. (1980). Fluorine compounds, inorganic. In: Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed. Grayson, M., and Eckroth, D., editors. New York: John Wiley and Sons, Inc., Vol. 10, pp. 661-663.

Gautreaux, M.F.; Davis, W.T.; and Travis, E.D. (1978). Alcohols, higher aliphatic (synthetic). In: Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed. Grayson, M., and Eckroth, D., editors. New York: John Wiley and Sons, Inc., Vol. 1, pp. 740-747.

Gibbs, G.W., and Horowitz, I. (1979). Lung cancer mortality in aluminum reduction plant workers. *J. Occup. Med.* 21:347-353.

Goralewski, G. (1947). Aluminum lung: A new occupational disease. *Z. Gesamte Inn. Med.* 2:665. (In Ger.)

Gorsky, J.; Dietz, A.; Spencer, H.; and Osis, D. (1979). Metabolic balance of aluminum studied in six men. *Clin. Chem.* 25:1739-1743.

Gottlieb, R. (1963). Aluminum compounds. In: Kirk-Othmer Encyclopedia of Chemical Technology, 2nd ed. Standen, A., editor. New York: John Wiley and Sons, Inc., Vol. 2, p. 24.

Greenberg, S.R. (1977). The pulmonary effects of pure aluminum. *Bull. Soc. Pharmacol. Environ. Pathol.* 5(4):8-11.

Gross, P.; Harley, R.; and deTreville, R. (1973). Pulmonary reaction to metallic aluminum powders. *Arch. Environ. Health* 26:227.

Haddow, A., and Horning, E. (1960). On the carcinogenicity of an iron-dextran complex. *J. Nat. Cancer Inst.* 24:109-127.

Hamme, J.V. (1979). Ceramics (raw materials). In: Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed. Grayson, M., and Eckroth, D., editors. New York: John Wiley and Sons, Inc., Vol. 5, p. 247.

Hart, M., and Adamson, R. (1971). Antitumor activity and toxicity of salts of inorganic Group IIIa metals: Aluminum, gallium, indium, and thallium. *Proc. Nat. Acad. Sci.* 68:1623.

Hartford, W.H. (1979). Chromium compounds. In: Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed. Grayson, M., and Eckroth, D., editors. New York: John Wiley and Sons, Inc., Vol. 6, p. 113.

Hartford, W.H., and Copson, R.L. (1964). Chromium compounds. In: Kirk-Othmer Encyclopedia of Chemical Technology, 2nd ed. Standen, A., editor. New York: John Wiley and Sons, Inc., Vol. 5, p. 499.

Hawley, G.G., editor (1977). The Condensed Chemical Dictionary, 9th ed. New York: Van Nostrand Reinhold Company, p. 31-37, 149, 213, 285-287, 352, 517-518, 559, 875, 881, 884, 890, 892.

Hayes, E.R. (1963). Acetaldehyde. In: Kirk-Othmer Encyclopedia of Chemical Technology, 2nd ed. Standen, A., editor. New York: John Wiley and Sons, Inc., Vol. 1, p. 82.

Hoff, M.C.; Im, U.K.; Hauschildt, W.F.; and Puskas, I. (1978). Butylenes. In: Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed. Grayson, M., and Eckroth, D., editors. New York: John Wiley and Sons, Inc., Vol. 4, pp. 349, 361, 366.

Hunter, D.; Milton, R.; Perry, K.; and Thompson, D. (1944). Title unavailable. Brit. J. Ind. Med. 1:159. (Cited in McLaughlin, 1962.)

Isacoff, H. (1979). Cosmetics. In: Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed. Grayson, M., and Eckroth, D., editors. New York: John Wiley and Sons, Inc., Vol. 7, p. 151.

Kaehny, W.D. (1980). Aluminum Metabolism (Human). University of Colorado, Medical Center School of Medicine, Denver, CO. Sponsored by: U.S. Dept. of Health, Education, and Welfare, Public Health Service, National Institute for Occupational Safety and Health, Bethesda, MD. Grant No. M01RR00051180344. Taken from: Smithsonian Science Information Exchange (1980). SSIE Current Research. The Lockheed Dialog Retrieval Service, File 65.

Kamboj, U., and Kar, A. (1964). Antitesticular effects of metallic and rare earth salts. J. Reprod. Fert. 7:21-28.

Kanematsu, N.; Hara, M.; and Kada, T. (1980). Rec assay and mutagenicity studies on metal compounds. Mutat. Res. 77:109-116.

Kang, K.; Bill, D.; Hoffman, E.; D'Amato, R.; and Salvaggio, J. (1977). Experimental studies of sensitization to beryllium, zirconium, and aluminum compounds in the rabbit. J. Allergy Clin. Immunol. 59:425-436.

King, E.J.; Harrison, C.V.; Mohanty, G.P.; and Nagelschmidt, G. (1955). The effect of various forms of alumina on the lungs of rats. J. Pathol. Bacteriol. 69:81-93.

King, E.J.; Harrison, C.V.; Mohanty, G.P.; and Yoganathan, M. (1958). The effect of aluminum and of aluminum containing 5 per cent quartz in the lungs of rats. J. Pathol. Bacteriol. 75:429-434.

King, G.; DeBoni, U.; and Crapper, D. (1975). Effect of aluminum upon conditioned avoidance response acquisition in the absence of neurofibrillary degeneration. Pharmacol. Biochem. Behav. 3:1003-1009.

Klosterkotter, W. (1960). Effects of ultramicroscopic gamma-aluminum oxide on rats and mice. AMA Arch. Ind. Health 21:458.

Krasovskii, G.; Yasukovich, L.; and Chariev, O. (1979). Experimental study of biological effects of lead and aluminum following oral administration. *Environ. Health Perspect.* 30:47-51.

Kunesh, C.J. (1978). Barium compounds. In: *Kirk-Othmer Encyclopedia of Chemical Technology*, 3rd ed. Grayson, M., and Eckroth, D., editors. New York: John Wiley and Sons, Inc., Vol. 3, pp. 459-460.

Kuzma, L.J., and Kelly, W.J. (1979). Elastomers, synthetic (polybutadiene). In: *Kirk-Othmer Encyclopedia of Chemical Technology*, 3rd ed. Grayson, M., and Eckroth, D., editors. New York: John Wiley and Sons, Inc., Vol. 8, p. 555.

Lansdown, A.B.G. (1973). Production of epidermal damage in mammalian skins by some simple aluminum compounds. *Brit. J. Dermatol.* 89:67-76.

Lansdown, A.B.G. (1974). Aluminum compounds in the cosmetics industry. Their action as antiperspirants and safety in use. *Soap Perfume Cosmet.* 47(5):209-212.

Lawler, G.M., editor. (1977). *Chemical Origins and Markets*, 5th ed. Menlo Park, CA: Stanford Research Institute, pp. 31, 93.

Lewkowski, J.P.; Malanchuk, M.; Hastings, L.; Vinegar, A.; and Cooper, G.P. (1979). Effects of chronic exposure of rats to automobile exhaust, sulfuric acid, sulfur dioxide, aluminum sulfate, and carbon monoxide. In: *Assessing the Toxic Effects of Environmental Pollution*. Lee, S.D., and Mudd, J.B., editors. Ann Arbor, MI: Ann Arbor Science, pp. 187-217.

Litton (1977). Mutagenicity Evaluation of FDA7591: Aluminum Potassium Sulfate, Publication No. FDA/BF78/57. Prepared by Litton Bionetics, Kensington, MD, under Contract No. FDA233762104. USL Food and Drug Administration, Washington, DC. Available from: National Technical Information Service, Springfield, VA (NTIS-PB-278-461).

Lowenheim, F.A., and Moran, M.K. (1975). *Faith, Keyes, and Clark's Industrial Chemicals*, 4th ed. New York: John Wiley and Sons, Inc., pp. 72, 76-79.

MacZura, G.; Goodboy, K.P.; and Koenig, J.J. (1978). Aluminum compounds (aluminum oxide). In: *Kirk-Othmer Encyclopedia of Chemical Technology*, 3rd ed. Grayson, M., and Eckroth, D., editors. New York: John Wiley and Sons, Inc., Vol. 2, pp. 218, 225, 227, 230-234, 236-239.

Manna, G.K., and Das, R.K. (1972). Chromosome aberrations in mice induced by aluminum chloride. *Nucleus (Calcutta)* 15:180-186.

Marstiller, C.M. (1978). Aluminum compounds (AlX_3 , $Al(NO_3)_3$). In: *Kirk-Othmer Encyclopedia of Chemical Technology*, 3rd ed. Grayson, M., and Eckroth, D., editors. New York: John Wiley and Sons, Inc., Vol. 2, pp. 209-217.

Martin, J.J.; Rubino, A.M.; Jones, J.L.; and Lawrence, J.A. (1966). A new aerosol antiperspirant. *Drug Cosmet. Ind.* 99:54.

MCA (Manufacturing Chemists Association) (1975). Statistical Summary 1975. Washington, DC: MCA, p. 24.

McCormack, K.; Ottosen, L.; Sanger, V.; Sprague, S.; Mayor, G.; and Hook, J. (1979). Effect of prenatal administration of aluminum and parathyroid hormone on fetal development in the rat. Proc. Soc. Exp. Biol. Med. 161:74-77.

McLaughlin, A.; Kazantis, G.; King, E.; Teare, D.; Porter, R.; and Owen, R. (1962). Pulmonary fibrosis and encephalopathy associated with the inhalation of aluminum dust. Brit. J. Ind. Med. 18:21-23.

Mecca, S.B. (1970). Uric acid. In: Kirk-Othmer Encyclopedia of Chemical Technology, 2nd ed. Standen, A., editor. New York: John Wiley and Sons, Inc., Vol. 21, p. 113.

The Merck Index: An Encyclopedia of Chemicals and Drugs, 8th ed. (1968). Stecher, P.G.; Windholz, M.; and Leahy, D.S., editors. Rahway, NJ: Merck and Co., Inc., p. 43.

The Merck Index: An Encyclopedia of Chemicals and Drugs, 9th ed. (1976). Windholz, M., editor. Rahway, NJ: Merck and Co., pp. 44-50, 345, 366.

Milham, S. (1979). Mortality in aluminum reduction plant workers. J. Occup. Med. 21:475-480.

Milvy, P., and Kay, K. (1978). Mutagenicity of 19 major graphic arts and printing dyes. J. Toxicol. Environ. Health 4:31-36.

Mitchell, J.; Manning, B.; Molyneux, M.; and Lane, R. (1961). Pulmonary fibrosis in workers exposed to finely powdered aluminum. Brit. J. Ind. Med. 18:10-20.

Moser, F.H. (1968). Phthalocyanine compounds. In: Kirk-Othmer Encyclopedia of Chemical Technology, 2nd ed. Standen, A., editor. New York: John Wiley and Sons, Inc., Vol. 15, p. 490.

Nashed, N. (1975). Preparation of peritoneal cell metaphases of rats, mice, and Chinese hamsters after mitogenic stimulation with magnesium sulfate and/or aluminum hydroxide. Mutat. Res. 30:407-416.

Neimeier, R. (1980). Co-Carcinogenicity of Foundry Particulates. National Institute for Occupational Safety and Health, Division of Biomedical and Behavioral Science, Cincinnati, OH. Grant No. V00C24289. Taken from: Smithsonian Science Information Exchange (1980). SSIE Current Research. The Lockheed Dialog Retrieval Service, File 65.

Nekipelov, M.I. (1966). Hygienic standard for aluminum nitrate in water basins. Hyg. Sanit. 31:204-208.

Newberne, P.M., and Wilson, R.B. (1970). Renal damage associated with silicon compounds in dogs. Proc. Nat. Acad. Sci. 65:872-875.

1980-81 OPD Chemical Buyers Directory, 68th ed. (1980). New York: Schnell Publishing Co., Inc., pp. 54-65, 334, 901, 1031, 1038, 1041, 1042.

NIOSH (National Institute for Occupational Safety and Health) (1975). Criteria for a Recommended Standard: Occupational Exposure to Inorganic Fluorides, DHEW (NIOSH) Publication No. 76-103. Cincinnati, OH: U.S. Dept. of Health, Education, and Welfare, Public Health Service, Center for Disease Control, NIOSH.

Norseth, T. (1979). Aluminum. In: Handbook on the Toxicology of Metals. Friberg, L. et al., editors. New York: Elsevier/North-Holland Biomedical Press, pp. 275-281.

NTP (National Toxicology Program) (1980). Chemicals on Standard Protocol. Bethesda, MD: NTPu Carcinogenesis Testing Program. Available from: Technical Information Resources Branch, Carcinogenesis Testing Program, NTP, Landow Bldg., Rm. A306, Bethesda, MD 20014.

Nishioka, H. (1975). Mutagenic activities of metal compounds in bacteria. Mutat. Res. 31:185-189.

Ondreicka, R.; Ginter, E.; and Kortus, J. (1966). Chronic toxicity of aluminum in rats and mice and its effects on phosphorous metabolism. Brit. J. Ind. Med. 23:305.

Papée, D., and Tertian, R. (1963). Aluminum compounds (aluminum oxides). In: Kirk-Othmer Encyclopedia of Chemical Technology, 2nd ed. Standen, A., editor. New York: John Wiley and Sons, Inc., Vol. 2, p. 50.

Parsons, T. (1977). Industrial Process Profiles for Environmental Use. Chapter 25. Primary Aluminum Industry. Prepared by Radian Corp. Austin, TX, under Contract No. 68021319. U.S. Environmental Protection Agency, Cincinnati, OH, pp. 5, 12, 25.

PEDCo Environmental, Inc. (1978). Environmental Assessment of the Domestic Primary Aluminum Industry (Prepublication copy). Prepared by PEDCo Environmental, Inc., Cincinnati, OH, under Contract No. 68032537, Work Directive No. 1. U.S. Environmental Protection Agency, Cincinnati, OH, pp. 78.

Prior, J.T., and Cronk, G.A. (1959). Pathological changes associated with aluminum and zirconium compounds. An experimental study of skin pathology following the application of aluminum chlorohydroxide, aluminum sulfate, sodium aluminum lactate, and zirconium tetrakisopropoxide. Amer. Med. Assoc. Arch. Dermatol. 80:105/477-112/454.

Ridgway, L., and Karnofsky, D. (1952). The effects of metals on the chick embryo: Toxicity and production of abnormalities in development. Ann. N.Y. Acad. Sci. 55:203-15.

Ringk, W., and Theimer, E.T. (1978). Benzyl alcohol and beta-phenethyl alcohol. In: Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed. Grayson, M., and Eckroth, D., editors. New York: John Wiley and Sons, Inc., Vol. 3, p. 800.

Ryznar, J.W., and Thompson, A.C. (1963). Aluminum compounds. In: Kirk-Othmer Encyclopedia of Chemical Technology, 2nd ed. Standen, A., editor. New York: John Wiley and Sons, Inc., Vol. 2, pp. 9-10.

Saeman, W.C. (1963). Aluminum compounds. In: Kirk-Othmer Encyclopedia of Chemical Technology, 2nd ed. Standen, A., editor. New York: John Wiley and Sons, Inc., Vol. 2, p. 65.

Schliffer, W.H. (1947). Aluminum nitrate. In: Encyclopedia of Chemical Technology. Kirk, R.E., and Othmer, D.F., editors. New York: Interscience Encyclopedia, Inc., Vol. 1, p. 640.

Schroeder, H., and Mitchener, M. (1975a). Lifetime effects of mercury, methyl mercury, and nine other trace metals on mice. *J. Nutr.* 105:452-458.

Schroeder, H., and Mitchener, M. (1975b). Lifeterm studies in rats: Effects of aluminum, barium, beryllium, and tungsten. *J. Nutr.* 105:421-427.

Shaver, C., and Riddell, A. (1947). Lung changes associated with the manufacture of alumina abrasives. *J. Ind. Hyg. Toxicol.* 29:145-157.

Sirover, M.A., and Loeb, L.A. (1976). Infidelity of DNA synthesis *in vitro*: Screening for potential metal mutagens or carcinogens. *Science* 194:1434-1436.

Sittig, M. (1967). Organic Chemical Process Encyclopedia, 1967. Park Ridge, NJ: Noyes Development Corp., pp. 559, 65, 66.

Sorensen, J.; Campbell, I.; Tepper, L.; and Lingg, R. (1974). Aluminum in the environment and human health. *Environ. Health Perspect.* 8:3-95.

SRI International (1980). 1980 Directory of Chemical Producers: United States of America. Menlo Park, CA: SRI International, pp. 431-435, 674, 866.

Stacy, B.D.; King, E.J.; Harrison, C.V.; Nagelschmidt, G.; and Nelson, S. (1959). Tissue changes in rats' lungs caused by hydroxides, oxides, and phosphates of aluminum and iron. *J. Pathol. Bacteriol.* 77:417-426.

Stamper, J.W., and Kurtz, H.F. (1976). Aluminum. Mineral Facts and Problems, 1975 ed. Washington, DC: U.S. Dept. of the Interior, Bureau of Mines, pp. 53, 60, 62.

Stankus, R.P.; Schuyler, M.R.; D'Amato, R.A.; and Salvaggio, J.E. (1978). Bronchopulmonary cellular response to aluminum and zirconium salt. *Infection and Immunity* 20:847-852.

Stenback, F.; Rowland, J.; and Sellakumar, A. (1976). Carcinogenicity of benzo[a]pyrene and dusts in the hamster lung (instilled intratracheally) with titanium oxide, aluminum oxide, carbon, and ferric oxide. *Oncology* 33:29-34.

Stewart, A.E. (1963). Aluminum compounds. In: Kirk-Othmer Encyclopedia of Chemical Technology, 2nd ed. Standen, A., editor. New York: John Wiley and Sons, Inc., Vol. 2, pp. 11-12.

Sullivan, E.A., and Wade, R.C. (1980). Hydrides. In: Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed. Grayson, M., and Eckroth, D., editors. New York: John Wiley and Sons, Inc., Vol. 12, pp. 777, 788.

Thurston, H.; Gilmore, G.; and Swales, J. (1972). Aluminum retention and toxicity in chronic renal failure. *Lancet* 1:881-883.

Toubes, B. (1963). Aluminum compounds. In: Kirk-Othmer Encyclopedia of Chemical Technology, 2nd ed. Standen, A., editor. New York: John Wiley and Sons, Inc., Vol. 2, p. 16.

Treskon, D.J. (1976a). Alumina salient statistics. In: Chemical Economics Handbook. Menlo Park, CA: Stanford Research Institute, pp. 702.2000B-C.

Treskon, D.J. (1976b). Aluminum-salient statistics. In: Chemical Economics Handbook. Menlo Park, CA: Stanford Research Institute, p. 702.3000F.

Treskon, D.J. (1976c). Aluminum chloride salient statistics. In: Chemical Economics Handbook. Menlo Park, CA: Stanford Research Institute, pp. 702.4000B, D.

Treskon, D.J. (1976d). Aluminum sulfate (alum) salient statistics. In: Chemical Economics Handbook. Menlo Park, CA: Stanford Research Institute, pp. 702.5000G-H.

Tucker, H., and Horne, S.E., Jr. (1979). Elastomers, synthetic (polyisoprene). In: Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed. Grayson, M., and Eckroth, D., editors. New York: John Wiley and Sons, Inc., Vol. 8, p. 585.

Turk, J.L., and Parker, D. (1977). Granuloma formation in normal guinea pigs injected intradermally with aluminum and zirconium compounds. *J. Invst. Dermatol.* 68:336-340.

USDC (U.S. Dept. of Commerce) (1979). U.S. Exports Schedule E Commodity Groupings. Schedule E Commodity by Country, FT 410/December 1978. Washington, DC: U.S. Bureau of the Census, p. 113.

U.S. EPA (U.S. Environmental Protection Agency) (1980). Computer print-out of nonconfidential production data from TSCA Inventory. U.S. EPA, Office of Pesticides and Toxic Substances, Chemical Information Division, Washington, DC.

USITC (U.S. International Trade Commission) (1976). Synthetic Organic Chemicals: United States Production and Sales, 1974, USITC Publication 776. USITC, p. 200.

USITC (U.S. International Trade Commission) (1977a). Synthetic Organic Chemicals: United States Production and Sales, 1975, USITC Publication 804. USITC, p. 196.

USITC (U.S. International Trade Commission) (1977b). Synthetic Organic Chemicals: United States Production and Sales, 1976, USITC Publication 833. USITC, p. 300.

USITC (U.S. International Trade Commission) (1978). Synthetic Organic Chemicals: United States Production and Sales, 1977, USITC Publication 920. USITC, p. 358.

USITC (U.S. International Trade Commission) (1979). Synthetic Organic Chemicals: United States Production and Sales, 1978, USITC Publication 1001. USITC, pp. 310, 330.

Van Wazer, J.R. (1968). Phosphoric acid and phosphates. In: Kirk-Othmer Encyclopedia of Chemical Technology, 2nd ed. Standen, A., editor. New York: John Wiley and Sons, Inc., Vol. 15, p. 275.

Wagner, J.; Berry, G.; and Timbrell, V. (1973). Mesothelioma in rats after inoculation with asbestos and other materials. *Brit. J. Cancer* 28:173-185.

Waldbott, G.L. (1963). Acute fluoride intoxication. *Acta Med. Scand. (suppl.)* 400:5-42.

Waldron-Edward, D.; Chan, P.; and Skoryna, S. (1971). Increased prothrombin time and metabolic changes with high serum aluminum levels following long term exposure to Bayer-process alumina. *Can. Med. Assoc. J.* 105:1297.

Warner, G.H. (1978). Aluminum compounds (carboxylates). In: Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed. Grayson, M., and Eckroth, D., editors. New York: John Wiley and Sons, Inc., Vol. 2, pp. 202-207.

Webber, T.G. (1979). Colorants for plastics. In: Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed. Grayson, M., and Eckroth, D., editors. New York: John Wiley and Sons, Inc., Vol. 18, pp. 157-158.

Wentorf, R.H. (1978). Boron compounds (refractory). In: Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed. Grayson, M., and Eckroth, D., editors. New York: John Wiley and Sons, Inc., Vol. 4, p. 126.

Whitaker, G.C. (1965). Driers and metallic soaps. In: Kirk-Othmer Encyclopedia of Chemical Technology, 2nd ed. Standen, A., editor. New York: John Wiley and Sons, Inc., Vol. 7, p. 274.

Williamson, A.P.; Blattner, R.J.; and Lutz, H.R. (1963). Abnormalities in chick embryos following thalidomide and other insoluble compounds in the amniotic cavity. *Proc. Soc. Exp. Biol. Med.* 112:1022-1025.

Wills, J.H. (1969). Silicon compounds (silicates). In: Kirk-Othmer Encyclopedia of Chemical Technology, 2nd ed. Standen, A., editor. New York: John Wiley and Sons, Inc., Vol. 18, pp. 157-158.

P121
10