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Finite Difference Methods for Computation of Flow
into Local Exhaust Hoods

MAZEN Y. ANASTAS and ROBERT T. HUGHES
National Institute for Occupational Safety and Health, 4676 Columbia Parkway, Cincinnati, OH 45226

Local exhaust hoods play an important role in controlling exposures. Airflow into these hoods may be approximated by Laplace’s equation.
Previous experimental work by other authors along with other data tend to support this assumption. Currently, theoretical models are
available for computing the flow into plain and flanged slots and flanged rectangles and circles. These models are analytical solutions of
Laplace’s equation and are possible because the velocity potentials at a given point in space can be calculated. As the geometry of
configurations under study becomes more complex, closed-form solutions to Laplace’s equation become more difficult to find. In such
situations numerical methods of solution are called for. A finite difference method for computing the airflow is presented and was developed
using the plain and flanged slot configurations. The method generally is useful for solving problems in which the location and shape of the
flow boundary and the values of the velocity potential or its normal derivative are known. The analytical models for the slot were used to
determine the accuracy of the numerical methods by comparison of the equal velocity contours generated by the various models. Good
general agreement between the numerical solutions and analytical models was observed.

Introduction

Local exhaust ventilation plays an important role in the
control of emissions and in the prevention of harmful expo-
sures to workers in many industrial processes. Designers of
these systems have used centerline models for the design of
relatively simple configurations and relied on prior expe-
rience for the more complex ones. Empirical centerline
velocity models for the flanged and plain basic openings
(circle and rectangle) were developed by Dalla Valle” and by
Silverman.*® These models are reported in the American
Conference of Governmental Industrial Hygienists’(ACGIH)
industrial ventilation manual.” The centerline models can
predict the capture characteristics of a simple hood along the
centerline only. This is not sufficient to define the capture
characteristics of a hood.

The availability of accurate and detailed models for the
airflow into any given local exhaust hood enables the
designer to qualitatively or quantitatively determine the cap-
ture characteristics thereof. This was demonstrated by
Heinsohn® when he studied the capture characteristics of
flanged and unflanged slots with respect to particulate mat-
ter. He used theoretical flow models, based in potential flow
theory, as a first step in determining the capture efficiency.
For these reasons there is heightened interest in predicting
the air velocities induced by the various openings as a first
step toward predicting their control effectiveness.

The first airflow modeling effort was performed by Tyaglo
and Shepelev® for infinitely flanged rectangles. They derived
equations for the three components of air velocity and these
were related to the average velocity through the face and the
values of the coordinates at a point in space. The validity of
the model was verified experimentally using a rectangular
hood of aspect ratio (AR) equal to 0.1. Aspect ratio is
defined as the ratio of width to length of a rectangle. Good

agreement between experimental and theoretical centerline
velocities was found.

A potential flow model for an infinitely flanged circular
hood was derived by Drkal” and published about the same
time as Tyaglo and Shepelev’s model for the rectangle. Cen-
terline velocities generated by the model were compared to
empirically based data from a variety of sources, including
data generated by Dalla Valle," as a means of testing model
validity. Agreement between the theoretical and empirical
data varied depending on-which data were used but was
generally good.

Garrison® used a conformal transformation (normally
used to obtain the values of the velocity potential for the
infinitely long rectangle [slot]) to obtain velocity contours
for flanged and unflanged circular openings. His solution
included the use of Dalla Valies centerline velocity” to
calculate some of the parameters in the equation for the
potential. The transformation used is strictly valid for the
plain slot (two-dimensional flow) only. Circular openings
produce three-dimensional contours. As such, these models
would be considered semiempirical.

Flynn and Ellenbecker® obtained an analytical solution
of Laplace’s Equation in cylindrical coordinates for a flanged
circular opening. The solution was not adequate in the vicin-
ity of the suction opening. To circumvent this difficulty,
Flynn assumed a shape (half-oblate ellipsoids) for the equal
velocity surfaces based on Dalla Valle’s empirical velocity
data. This assumption by Flynn is not necessary because
Drkal’s work'” shows that the velocity potential, and hence,
the velocity can be calculated at any point.

Esmen et al."” more recently applied potential flow the-
ory to derive equations that predict the value of the air
velocity at a point in space for single flanged rectangular
hoods and for flanged hoods made up of more than one
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rectangular opening. The analytical solutions result in very
cumbersome equations which become more so as boundary
surfaces (or baffles) are added to the space under the influ-
ence of the hood(s). Esmen et al."” reported very good
agreement between theoretical and experimental results.

In summary, past workers have used potential flow theory
to derive models for the air velocities induced by infinitely
flanged hoods. No purely theoretical models are available
for plain hoods (except for the slot) and no general methods
are available for complex hoods that are encountered in
practice. Past workers also have found that potential flow
theory adequately describes the flow into exhaust hoods in
general. Good agreement between experimental and theoret-
ical air velocities was observed consistently.

As the geometry of configurations under study becomes
more complex, closed-form solutions to Laplace’s equation
become more difficult to find. In such situations numerical
methods of solution are called for. A finite difference
method for computing the airflow is presented in this article
and was developed using the plain and flanged slot configu-
rations. The method generally is useful for solving problems

in which the location and shape of the flow boundary (an
equal velocity contour, for example) and the values of the

velocity potential or its normal derivative are known there.
The method also is useful in solving flow problems in which
it is possible to calculate the velocity potential in space from
all line or point sinks of which the hood(s) are comprised.
The availability of analytical models for the slot facilitates
comparison with numerical results.

All computations involving the models presented in this
paper were performed onan IBM PC/ AT, and the programs
were written in Professional Fortran.

A Theoretical Definition of a Slot

Slots are an important class of exhaust openings. They can
be thought of as rectangles with a very small AR. In the
ACGIH manual,"” specific applications of the slot configu-
ration have been recommended. These applications include
laboratory hoods, welding benches, dip tanks, and degreas-
ers in metal plating operations, ec.

The earliest experimental study of a slot was conducted by
Silverman.”’ He measured the centerline velocities of flanged
slots with AR between 0.017 and 0.2 and plain slots with AR
between 0.025 and 0.2. Recent experimental and theoretical
work by the authors on centerline models for flanged open-
ings has shown that rectangular hoods behave as slots (cen-
terline velocities equal at a given distance from the face) at
AR equal to 0.01 or less."" Based on these models,
Silverman’s models overestimate the velocity at a given dis-
tance from the face by as much as 35%. Fletcher’s"® center-
line velocity model for the slot is based on data for rectangles
with AR 0f 0.0625 and higher. His model also gives velocities
which are higher than those predicted by theory.

Analytical Model for the Plain Slot

The applicability of the potential flow assumption for flow
into local exhaust openings implies that the flow is incom-
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pressible, inviscid, and irrotational. This also means that
Laplace's equation in terms of the velocity potential, ¢ (a
complete list of nomenclature and symbols and their defini-
tions is included at the end of this article), applies in the
space influenced by the local exhaust opening as follows:

p/ox’ + p/ay’ = 0 m

Derivation of a model for the slot starts with finding a
conformal transformation which maps the strip (-7 <Im w
< ) in the w plane into the plain slot of width 2b in the z
plane as shown in Figure 1. Im w is the imaginary part of the
complex variable w. Such a transformation previously has
been derived and involves two successive transformations
which are the Shwarz-Christoffel and the exponential trans-
formations."®'* The equation relating the variables in the
two planes is

z=b/m(e" +w+1) (2)
A uniform flow in the strip (w plane) should be equal to
the flow in the image plane (z plane). For these flows to be

equal, the average velocities in the channel part of the flow
must be related as follows:

Vaw = (b/m) Ve, (3)

where Va; and V., are the average fluid velocities in the
channel part of the flow in the z and w planes, respectively.
The complex potential, Cp, in the w plane is given by Equa-
tion 4:

Cp= Vaw W (4)

It also is given by Equation 5:

Co=o+iy (5)
W PLANE iy
C B A
NN SANSNNNS NN NSNS
in
A
TTTTEIXEIEETEETTTTTTT TN
G -iw|F E
4
Z PLANE
A 5 P(X,,Yp)
c S S N NS 8\ S 8N ib
S(0,Y.
( 1Y 1) x
G F

Ex—x—\—\—\—v\—\ﬂT -ib

Figure 1—Transformation of a strip into a plain slot
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Substituting Equations 3 and 4 into Equation 2 gives
z= b/ [exp (Com/ Vazb) + Cpm/ Vazb + 1] (6)

Substituting Equation 5 into Equation 6 and defining the
dimensionless variables @, = ¢m/ Vazb; ¥ = Y/ Vasb; X, =
xm/b; Yp = ym/b; Z, = zm/b, one obtains a dimensionless
form of the transformation.

Zy=exp (Pp+i¥p) + Py +i¥, + | (7)

which, after separation of the real and imaginary compo-
nents, results in

Xp= 1+ dy+exp (Pp) cos ¥p (8a)
and
Yy = ¥y + exp (Pp) sin ¥p (8b)

Equations 8a and b state that for every point (X;, Yp)
under the influence of the flow into the slot, there is a unique
pair of values of ®, and ¥,. When these are defined for the
entire field, the velocity components in the x and y directions
at a point are given by

up = 3P,/ 9Xp = 1/ Vag (366/0X) (9a)
and
Vp = 3P,/ 3Yp = 1/ Vaz (86/ y) (9b)

and the absolute value of the velocity is given by
VI = V(ug + v§) (10)

Velocity contour curves for the plain slot were developed
using Equations 8 through 10. A fine grid in the area in front
and behind the face was set up. A mesh size of /20 gavea
density of points that was sufficient to define the individual
curves. At each point in the grid, values of ¢, and ¥, were
calculated using Equations 8a and 8b by adapting Newton’s
iterative method."”

The equations used in the iteration were as follows:

@}t = @ - (fgs - gfs)/J (11a)
¥yl = W - (gfp - fgp)/J (11b)

where i refers to the iteration number and f and g are
obtained by transforming Equation 8 such that

f=1-Xp+exp (Pp)cos ¥+ Py (12a)
g=¥,- Y +exp (Pp)sin ¥, (12b)

fs and gs are the partial derivatives of f and g with respect to
W, while f; and g, are the partial derivatives with respect to
®,. The Jacobian, J, is given by

J=foga-gfs (13)

Implementation of the algorithm involved writing a Fortran
program in which approximate values of &, and ¥, were
calculated at an arbitrary starting point. The approximate
values of these were computed by scanning the full range of
these two variables (-2.7 to 5.0 and 0 to 3.1416) in the upper
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Figure 2—Velocity contours for upper half of plain slot by
analytical and numerical solutions

half-plane until a combination predicted the starting point
within one distance unit. The ranges were determined from
plots of constant ¥, and &, using Equations 8a and b.
Newton’s iteration then was applied to the approximate
values until convergence was obtained. From then on the
values of these variables at one location became the approx-
imate values for the adjacent location on the grid. Point Bin
Figure 1 is a singular point where the value of the potential is
uncertain. Precautions were taken not to use it as a basis for
computing points adjacent to it.

Figure 2 shows the velocity contours that were calculated
for the plain slot in the upper half plane. As expected, the
curves are perpendicular to both the centerline and the wall,
and the airflow across each contour equals the airflow across
the face. Therefore, the length of the 10% contour, for
example, would be equal to 10 times the length of the face.
This is the case for the contours of Figure 2.

Finite Difference Method for Plain Slot

A finite difference approximation of the nondimensional-
ized form of Equation 1 is the five-point formula which can
be used to calculate the potential ata point P ina rectangular
grid, shown schematically in Figure 3, in terms of adjacent

points as follows"®:

dp=(by+ Pp + ds + Pw)/4 (14)

where N, E, S, and W refer to North, South, ezc.,and the ®’s
are dimensionless as before.

Equation 14 holds for interior points in the domain
GOABCDEF shown in Figure 3. For points along DEz, but
not including points D and Ez, and for points along GOA
but not including A or G, the normal derivative dd®p/dYp is
zero (no flow across the wall or the centerline) and Equation
14 becomes

$pE, and Pga = (2PN + P + Pw)/4 (15)

For points along EzF but not including Ez or F

Ppyr = (2Ps + Pp + Pw)/4 (16)

Am. Ind. Hyg. Assoc. J. (50) October, 1989
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The equation for point E; is given by
bg, = (2P + w1 + Pwy)/4 (17)

where $w; and Pw: are the potentials at points west of Ez
along EzD and E;F, respectively.

Along FG, but not including the points Fand G, the normal
derivative 0®p/dXp = 1.0, which is the mathematical equiv-
alent of saying that along that line the velocity is 100% of
the face velocity. This gives

bpg = (PN + 2P - 2AXp + dg)/4 (18)

where AX, is the mesh size in the x direction. It should be
mentioned at this point that carrying the solution well into
the channel, as opposed to assuming a unit normal deriva-
tive at the face, gives a more accurate solution. The normal
derivative is unity only in the well developed flow in the
channel. A mesh size of /20 was found adequate for veloc-
ity contour definitions.

At Point G,
b= 2PN + 20 - 2AXp)/ 4 (19)

A similar equation may be written for Point F. The poten-
tial at points along DC, CB, and BA was calculated using
Equations 8a and b.

Equations 14 through 19 may be used to write finite
difference equations for each point where the potential is not
known. This yields as many simultaneous linear equations as
there are unknowns.

Solution of the system of equations was performed using
the Gauss-Seidel method which utilizes updated values for
adjacent points as soon as these values are available."® Suc-
cessive overrelaxation (SOR) was used to speed up solution
of the system of equations. The relaxation factor, w, was
estimated as follows."”

w=2/(1++/(1-p)) (20)
where p is the spectral radius defined as

p= LimZAd'/3A¢! (21)
where

) i-1 i i-1 i i-1
ZAD = [Py - Py| + [Pp- Dol + ..+ Dy Dol (22)

Yt $=g(x.Y)
c B

- fxn 8d/6X=0 N

& wfe | oRO0MD
P
SOANNN AN 8

) E
2 _.Slot Face

[:_ SPpX-1 =

[} o - - -

mo

Centerline ) —
6¢/6x=0 X

Figure 3—Boundary conditions for numerical solution for
upper haif of a plain slot
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where 3A® is the sum of the absolute value of the differ-
ences and the superscript i refers to the iteration number with
summation carried out over all points in the domain. An w
value of 1.95 was used in the calculation.

Using SOR, a representative equation for an interior
point, P, may be written as follows:

i1 i+l i+l i

$,=0250 (Pn+ P+ Ps+ Pw) - (w- 1) Py (23)

where i refers to iteration number. Scanning of the grid was
from right to left and starting with the mesh point imme-
diately below B in Figure 3. Convergence of the solution was
achieved when no significant change in the potential at Point
G occurred between iterations.

Velocity contours were developed using Equations 9 and
10. The components of velocity were calculated using central
differences such that up = d®,/9X, = (Pe - Pw)/2 AX,. The
contours obtained in this manner were identical to those
obtained using the analytical model described earlier and
shown in Figure 2.

Comparison of Experimental and Theoretical Data

for Plain Slot

Following Tyaglo and Shepelev,” who used centerline
velocity measurements as a check on their model for the
rectangle, measurements of centerline velocities (as fraction
of face velocity), Veup, were made. Data also were taken to
compare theoretical and experimental values of the velocity
contour which corresponds to 10% of the average velocity in
the channel (face velocity). This corresponds to the curve
with parameter of 0.1 in Figure 2.

Experimental centerline velocity data (Vcrp) were obtained
for a rectangular opening of AR = 0.01 with dimensions of
1.22 ¢m by 121.92 cm (0.48 in. by 48 in.). A hot wire
anemometer (TSI Model 1051-2, TSI, Inc., St. Paul, Minn.),
interfaced to an Apple lle microcomputer through an Al13
analog-to-digital converter, was used. The anemometer was
calibrated ina wind tunnel (Series 400 air velocity calibration
system, Kurz Instruments, Inc., Carmel Valley, Calif.). A
laser beam was used to align the anemometer probe with the
centerline of the opening. The average face velocity was
determined by pitot-tube traverses of the 8 in. circular duct
through which air exhausted from the slot passed. Velocity
data were taken at distances between 0.5 in. and 7 in. from
the hood face. The theoretical and experimental values are
compared in Table I. The data are reported as a fraction of
the average velocity in the channel. A plot of the data appears
in Figure 4. A statistical t-test was applied to each pair of
theoretical and experimental values to determine whether
the differences between them were significantly different
from zero." The test showed no significant difference at the
5% level of significance. This indicates good agreement be-
tween the theoretical model and experimental centerline data.

6.

Comparison of experimental and theoretical values for
the 109% contour was performed by taking four values of
velocity at four different x locations which bracket the 10%
value, for each y level studied. The data are presented in
Table 11. The x coordinate for each y value where the veloc-
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TABLE |
Theoretical and Experimental Centerline
Velocities for the Plain Slot

Distance Centerline Velocity, Ve "

X

(in) X, Theoretical ExperimentalB % Difference
0.50 6.54 0.1948 0.2065 - 57
0.75 9.82 0.1267 0.1348 - 6.0
1.00 13.09 0.0925 0.0970 - 46
1.50 19.63 0.0593 0.0659 -10.0
2.00 26.18 0.0433 0.0438 - 11
3.00 39.27 0.0280 0.0248 12.9

Avelocity as fraction of face velocity in the channel
BFace velocity was 3212 fpm.

ity was exactly 10% of the face velocity then was computed
by inverse interpolation from the four values of velocity.™?
The experimental and theoretical values of the coordinates
for the 109% contour are plotted in Figure 5. The agreement
generally was good. Some points departed slightly from the
theoretical line, however, because the velocity measuring
probe used was highly directional and because the range of
distances was small.

Analytical Model for Flanged Slot

An analytical model for the flow into a flanged slot may be
derived using the same method presented earlier for the plain
slot (Equations 8a and b). Such a model has been in existence
for some time, and Heinsohn® used it when he studied the
capture characteristics of this configuration. In what fol-
lows, however, an analytical model will be developed which
utilizes the principle that for infinitely flanged openings, in
general, it is possible to compute the velocity potential at a
point in space. This implies that the normal derivative at the
face of the hood is one. While this is strictly not true, the
assumption causes no problems in computing the air veloc-

ity at locations of practical significance, ie., those away
from the face. The derivation to follow is a general extension
of a method used by the authors to derive expressions for
centerline velocities.""

A flanged slot would be obtained by erecting a boundary
surface along the y axis of the plain slot in Figure 1. The face
of the slot may be thought of as consisting of many line sinks,
such as the one passing through Point S. Assuming an even
distribution of line sinks across the face an expression for the
velocity potential at the field Point P may be derived as
follows.

A line sink at S for the flanged slot generates a semicylin-
drical equipotential surface. The velocity Vg at Point P,
therefore, is

Vg = q/mLr (24)

where q is the suction flow through the line sink, r is the
distance between Pand S, and Lis the length of the sink (ina
direction perpendicular to the x-y plane). The velocity Vris
the derivative of the velocity potential with respect to r
(d¢rp/dr)and g = Qdyi/2b where Q is the total suction flow
through the slot and dy; is the width of the line sink.

Before proceeding any further, it would be useful to intro-
duce the dimensionless variables R = r/b; Y1 = yi/b; Xz =
x2/b; Y2= ya/b;and ®rp= ¢rpA/bQ. Ais the area of the slot
and ®rpis the velocity potential at Point P for the flanged slot.
Equation 24 then becomes

ddrp/dR = 1/(Q/A) d¢rp/dr=dY/mR (25)
Therefore the velocity potential at Point P, because of all
line sinks forming the slot, becomes

|
dpp = l/nf InR dY: (26)
1l

Since R = v/[(Yz - Y1)? + X3] and the components of ve-
locity, as fractions of face velocity, in the X and Y direc-
tions are given by urp = d®rp/ 90Xz and vrp = dPrp/ Y3, the

theoretical
0.2
exp. data (0]
a
-l
%)
S
0.1
o Il '] L 'l
10 20 30 40

Centerline Distance ,X

[

Figure 4—Centerline velocity versus distance for the plain slot
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TABLE ll
Air Velocity, as Fraction of Face Velocity,
at Various Locations for Plain Slot

X
(in.) {in.) (underlined)

0000 x;= 0750 x2= 1.000 xa= 1.250 x,= 1.500

0.1315 0.0967 0.0759 0.0636

0250 x;= 0750 xz= 1.000 x3= 1250 x4= 1.500

0.1140 0.0878 0.0710 0.0594

0500 x;= 0750 xz= 1.000 xa= 1250 x,= 1.500

0.1092 0.0856 0.0702 0.0584

0750 x;= 0500 x2= 0.750 x3= 1.000 xs= 1.250

0.1062 0.0874 0.0738 0.0691

0.750 x;=-0.125 x2=-0.260 x3=-0.375 x4=-0.500

0.1413 0.1257 0.1068 0.0918

following expression for the components may be obtained after
partial differentiation of InR with respect to Xz and Yo, re-
spectively, and completing the integration with respect to Y.

upp = 1/m [tan™ (1 - Y2)/ Xz + tan™ (1 + Y2)/ X2]  (27a)

vrp = 12w In[(Yz + 1) + X3)/[(Yz - 1)* + X3] (27b)

Finite Difference Method for Flanged Slot

The numerical solution for this configuration paraliels that
of the plain slot. Equation 14 applies to interior Points P as
shown in Figure 6.

For points along CD, but not including Points C and D,
the normal derivative d®Prp/d Xz is zero (no flow across the
flange), and Equation 14 becomes

$ep = (P + 20 + Pg)/ 4 (28)

Along DO, but not including the D and O, the normal
derivative d®pp/dX2 may be assumed to be unity without
too much loss of accuracy at points away from the face. This
gives

®po = (PN + 2Pk - 24X, + Bs)/4 (29)

where AXs is the mesh size in the x direction. A mesh size of
0.1 was found adequate for velocity contour definitions. At
Point D the normal derivative changes abruptly from0to 1,
resulting in a singularity. Accuracy of the entire solution will
depend upon how the singularity is handled. The best solu-
tion was obtained when the normal derivative at Point D
was assumed to be 0.5—the average of the value at points
below and above. The coefficient of AX2 in Equation 29,
therefore, will be | instead of 2.

At point O, the intersection between the slot face and the
centerline,

Am. ind. Hyg. Assoc. J. (50) October, 1989

do = (2PN + 2¢E - 24X7)/ 4 (30)

Along the centerline OA, but not including A, the normal
derivative d®rp/dY2 is zero (because of no flow across the
centerline), yielding

doa = 2PN + Pe + Pw)/4 (31)

Along the free boundary of the rectangular grid (ABC),
the potential is calculated using Equation 25 which, when
the integrals are set up, may be written as

Roax f£1
Papc = |/Trf de dYi/R (32)
a -1

where Rmax represents the distance from the line sink to the
point at which the potential is calculated and ais an arbitrary
constant with R and Y, as before. In the actual calculations,
the value of a used was 0.5; however, because only a relative
value of the potential is of interest, a could be any number
greater or smaller than 0.5.

Solution of the system of equations was performed as
before for the plain slot. SOR was implemented as given in
Equations 20 and 23.

Scanning of the grid was from right to left and started with
the mesh point immediately below Bin Figure 6. Covergence
of the solution was achieved when no significant change in
the potential at Point O occurred between iterations.

The velocity at each point was calculated as was done for
the plain slot. Contour plots generated using the analytical
solution (Equation 27) and the numerical solution are shown
in Figure 7. 1t may be seen that contours from both methods
diverge slightly, but in all cases the same shapes are generated.

Comparison of Experimental and Theoretical Velocity
Data for Flanged Slot

The applicability of the assumption of potential flow into
infinitely flanged rectangular hoods was tested experimen-

—8=Theoretical

©® Experimental

12

Slot Wall

NANNNANNN

Centerline \\

-8 -6 -4 -2 0o 2 4 6 8 10 12

X

Figure 5—Plot of theoretical and experimental data for 10%
velocity contour for plain siot
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Figure 6—Boundary conditions for numerical solution for
upper half of a flanged slot

tally by other workers.® " Esmen et al."” presented a plot in
which the theoretical and experimental values of air velocity
were correlated for flanged rectangles. Agreement between
these values was within 15%. The location of the points,
however, was not reported. It should be stated here that
experimental validation of the flow into one configuration
implies applicability of the assumption of potential flow for
other configurations since the same principles are used in
model derivation. In what follows, a comparison between
theoretical and experimental centerline velocities will be
provided for the flanged slot.

An analytical model for the centerline velocities (as frac-
tion of face velocity), Vcur, was derived from Equation 27a
by setting Y2 = 0. Then

Veur = (2/m) tan”™ (1) X2) (33)

Experimental data on centerline velocities were obtained
in a similar manner as for the plain slot. A Kurz model 1440
anemometer was used to obtain the data, however. The
experimental centerline data and the corresponding theoret-
ical values calculated using Equation 33 are given in Table
1l and plotted in Figure 8. A statistical t-test showed no
significant difference between the paired data (theoretical
and experimental values at each point) at the 1% level of
significance."® This indicates good agreement between ana-
lytical and experimental centerline data. A few centerline
values, predicted by the numerical method, also are plotted
in Figure 8. Good agreement with previously discussed data
was observed.

Conclusions

Experimental work by the authors and by others has shown
that the assumption of potential flow closely approximates
actual conditions of airflow into local exhaust hoods. This
implies the applicability of Laplace’s equation in terms of the
velocity potential. Closed-form solutions to Laplace’s equa-
tion exist for plain slots and for infinitely flanged siots,
rectangles, and circles. These are some of the situations in
which it is possible to calculate the velocity potential at a
point in space.
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Closed-form analytical solutions are available for rela-
tively few exhaust hood configurations. Numerical methods
of solving for the flow are indicated for the general case in
which the location and shape of the flow boundary and the
boundary conditions are known. A finite difference method
is presented in this article and was applied successfully to
computing the flow into plain and flanged slots. The availa-
bility of analytical solutions for these configurations permit-
ted comparison with the numerical solutions.

The numerical solution for the plain slot was found to be
identical to the analytical one. For the flanged slot, the
numerical solution slightly overestimated the analytical, but
agreement generally was good.
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Nomenclature

A Area of slot (2bL)

AR Aspect ratio—ratio of width to length of a rectangle
b Half of slot width

(O The complex potential in z plane for the plain slot

f, f,, f Function of ® and ¥ and its derivatives with respect
to & (f,) and ¥ (fs) used in Newton’s method for
plain slot

g, 8p, & Function of ® and ¥ and its derivatives with respect

to & (gp) and ¥ (g,) used in Newton’s method for

plain slot

Jacobian

Length of slot

Flow through a line sink at the face of a flanged slot

Flow into slot

Distance from origin to point x, y in space for

flanged slot

- 0L - “

R Dimensionless r (r/b)

Rmax Distance from the line sink to the point (x, y) at which
the potential is calculated for flanged slot

Numerical
""""" Analytical - —-—-=
flange

Y,

siot wall

Figure 7—Upper half of contours for flanged slot by numerical
and analytical methods
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TABLE il

Comparison of Experimental and Theoretical

Centerline Velocities for Flanged Slot

Distance  Centerline Velocities, Vcir*

X

(in.) X: Analytical® Experimental® % Difference
05 208 0285 0.264 - 8.0
1.0 417  0.153 0.148 - 34
1.5 625  0.101 0.097 - 4.1
20 833 0076 0.071 - 7.0
25 1042  0.061 0.055 -10.9
3.0 1250  0.051 0.049 - 4.1
40 16.67  0.038 0.035 - 86
50 20.83  0.030 0.028 - 57
6.0 2500  0.025 0.025 0.0

AAs fraction of face velocity
BEquation 27
®Face velocity 3212 fpm

Up. Ugp

VEIW’ VBZ

Vp, Vip

VcLr,
Verp

Vr

[V]

Am. Ind. Hyg. Assoc. J. (50)

Velocity component in x direction as fraction of
average velocity in the channel for plain and flanged
slots, respectively

Average fluid velocity in the channel in the wand z
planes, respectively

Velocity component in y direction as fraction of
average velocity in the channel for plain and flanged
slots, respectively

Centerline velocities as fraction of average velocity
in the channel for flanged and plain slots, respectively

Velocity at a point in space for flanged slot
Magnitude of velocity at a point

0.3 (

0.2

Veur

0.1F

X2
Xp, X2

yi

Y:
Yp, YZ

z
Z,

Complex number in the w plane with coordinates »
and u

Distance in the x direction from hood face to a point
in space for flanged slot

Dimensionless distances in the x direction for plain
slot (x7r/b) and for flanged slot (xz/ b), respectively

Distance from origin to some point y on face of
flanged slot

Dimensionless distance (y1/b)

Dimensionless distance in y direction for plain slot
(ym/b) and for flanged slot (y2/b), respectively
Complex number in the z plane with coordinates x, y
Dimensionless complex number in the z plane (z7/ b)

Greek Symbols

¥
v

¢
‘I’p, ‘I’F’P

Py, P,

Ps,
bw

AX,

AXe

Analytical Model

Numerical Model

Experimental

Stream function at a point in space for plain slot

Dimensionless stream function for plain slot
(Y] Vazb)

Velocity potential at a point in space

Dimensionless velocity potential for plain slot
(¢m/ Vo b) and flanged slot (¢prpA/ bQ) respectively
Dimensionless velocity potentials used in finite dif-
ference solution of Laplace’s equation (subscripts
refer to points north, east, south, and west of point
on the computational grid)

Overrelaxation factor

Spectral radius of the numerical solution by succes-
sive overrelaxation

Differential x distance for numerical solution of plain
slot

Differential x distance for numerical solution of
flanged slot

)

©

20 25

Figure 8—Plot of experimental and theoretical centerline velocities for flanged slot
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