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COMPUTATION OF THE INITIALLY
UNKNOWN BOUNDARIES OF FLOW
FIELDS GENERATED BY LOCAL
Exuaust HoobDs*

Mazen Y. Anastas

National Institute for Occupational Safety and Health, 4676 Columbia Parkway,
Cincinnati, OH 45226

contaminants are generated and phase (gas, liquid, or solid).

Local exhaust hoods are important in controlling contami- Prior knowledge of airflow patterns is very important in predict-
nants in the workplace. To predict hood effectiveness, it is ing an exhaust hood’s ability to capture contaminants. Heinsohn
important to have knowledge of the airflow field that it gen- and Choi” demonstrated the usefulness of airflow patterns in
erates. Currently, there are theoretical models adequate for predicting capture characteristics of exhaust hoods for flanged
predicting the flow fields of hoods with flanged openings. and unflanged slots with respect to particulate matter. Slots are
These models are solutions of Laplace’s equation in terms of rectangular openings of aspect ratio (AR) approaching zero (AR
the velocity potential. Comparison of experimental and theo- is the ratio of width to length of a rectangle).

retical values of air velocities show good agreement. With the Early research by Dalla Valle® and by Silverman,®* aimed
exception of the plain slot, no such models are available for at predicting the airflow patterns produced by local exhaust
plain hoods or other hoods with complex geometries. This hoods, involved the development of empirical centerline veloc-
paper explores the feasibility of approximating the equal air ity models for flanged and plain basic openings (circle and
velocity contours for any local exhaust hood by assuming that rectangle). These empirical models are reported in the American
these contours are also equipotential contours. A slot configu- Conference of Governmental Industrial Hygienists” Industrial
ration, for which an analytical model is available, was used Ventilation—A Manual of Recommended Practice.® More re-
to evaluate the accuracy of the assumption. Starting with a cently, Anastas and Hughes® used potential flow theory toderive
good approximation for the 15% velocity contour, three other centerline velocity models for flanged hoods. They found excel-
boundaries were generated. The procedure used in generating lent agreement between theoretical and experimental centerline
boundaries after the initial one involved solution of Laplace’s data. They also found that the theoretical model for rectangular
equation, assuming constant potential along the boundary and hoods provided identical centerline velocities to those provided
adjustment of boundary location on the basis of differences by a model for slots (AR = 0) at AR = 0.01 or less.

between the calculated value of the normal derivative of the Centerline models can predict the capture characteristics of
velocity potential at a point on the boundary and the specified a hood along the centerline only. Of course, this is not sufficient
value (15%). The next-to-last boundary generated by the pro- to define the capture characteristics of a hood in the space in
cedure exhibited an oscillation in the values of the normal which it is located. The first airflow modeling effort for hoods

derivative, which was detrimental to the desired solution.
Possible causes for this oscillation and possible refinements
in the procedure are discussed.

that generate three-dimensional (3-D) equal velocity contours
was performed by Tyaglo and Shepelev” for infinitely flanged
rectangles. They derived equations for the components of air
velocity that were related to the average velocity through the face
and the values of the coordinates at a point in space, and these
L ocal exhaust devices are commonly used to capture equations applied to the full range of AR (0 to 1). The model was

contaminants generated by many industrial processes derived by assuming that the face of the hood is divided into

before these contaminants become dispersed in the many area sinks, each of which contributes to the level of the
workplace and cause employee overexposures. The geometries velocity potential at a point in space. The validity of the model
and suction rates of these devices are dictated by many factors, was verified experimentaily by using a rectangular hood of
including process geometry and contaminant generation charac- AR = 0.1. The authors reported “agreement” between experi-
teristics. The latter would include the rate and velocity at which mental and theoretical centerline velocities.

Drkal® used techniques similar to those employed in deriv-
i 1e to develop a model for

*Disclaimer: Mention of company names or products does not Ing th,e mOde.l for the ﬂange,d rectang tOCd .P lociti
constitute endorsement by the National Institute for Occupa- the airflow into flanged circular hoods. eme_rl.me ve Oc.mCS
tional Safety and Health (NIOSH). generated by the model were compared to empirically derived
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data from a variety of sources, including data generated by Dalla
Valle,® as a means of testing model validity. Agreement between
the theoretical and empirical data varied depending on which
data were used but was generally good.

Garrison® used a conformal transformation, normally used
to obtain the values of the velocity potential for the infinitely
long rectangle (AR = 0), to obtain velocity contours for flanged
and unflanged circular openings. His solution included the use
of Dalla Valle’s centerline velocity® to calculate some of the
parameters in the equation for the velocity potential. Because of
the assumptions used in developing the model, it would be
considered semi-empirical.

Flynn and Ellenbecker!'” obtained an analytical solution
of Laplace’s equation in cylindrical coordinates for a flanged
circular opening. The solution was not adequate in the vicinity
of the hood face. To circumvent this difficulty, Flynn assumed
a shape (half oblate ellipsoids) for the equal velocity surfaces
based on Dalla Valle’s empirical velocities. As will be ex-
plained later, the shape and location of the boundary of the
flow for most exhaust hood geometries is not known ahead of
time. Such an assumption could lead to inaccuracies in the
prediction of air velocities.

Esmen et al."" applied potential flow theory to derive equa-
tions that predict the value of the air velocity at a point in space
for single flanged rectangular hoods and for flanged hoods made
up of more than one rectangular opening. Their analytical solu-
tions resulted in very cumbersome equations that became more
so as boundary surfaces (or baffles) were added to the space
under the influence of the hood(s). They did report very good
agreement between theoretical and experimental results.

Garrison and Wang®? used a two-dimensional (2-D) finite
element method to solve for the flow into exhaust inlets. They
assumed constant velocity at a “distant” flow boundary and a
circular shape for that boundary. In comparing the resulting
velocity contours to experimental data, they found that the
theoretically derived contours overestimate values from the em-
pirically derived data. In a later publication, Garrison and Park"?
compared the experimental velocity contours for plain circular
and rectangular exhaust hoods with those generated by the finite
element method. The latter tended to overestimate experimental
contours also.

Conroy et al.* developed a model for a flanged rectangular
hood of AR = 0.2 utilizing an existing analytical solution for
Laplace’s equation for an elliptical aperture with constant poten-
tial across the face. The face of the rectangular hood was approxi-
mated by both an inscribed ellipse and an ellipse of area equal
to that of the face of the rectangle. The analytical solution was
found to be limited in describing actual velocity fields. The
model was modified by assuming a shape (ellipsoid) for the
equal velocity surfaces and assuming that these coincided with
the equipotential surfaces. The modified model that used the
inscribed ellipse was found to be more accurate in predicting
experimental velocity components in the x-direction; the model
that used the equal area ellipse was found to be most accurate in
predicting z- component velocities. After empirically correcting
the former model for z-component velocities, it became an accurate
predictor in both directions. In view of the assumptions and

adjustments that had to be made, this model may also be consid-
ered semi-empirical.

Flynn and Miller"® used a boundary integral method to solve
for the airflow into a flanged rectangular hood of AR = 0.33.
They assumed a uniform velocity potential of zero over an
imaginary box that constituted the flow boundary and enclosed
the hood face. The dimensions of the box were altered until close
agreement with the model developed by Tyaglo and Shepelev®”
was achieved. When the authors compared the theoretical and
experimental data for the equal velocity contours, good agree-
ment was observed. This would be expected because the model
in Reference 7 was used to “calibrate” the model resulting from
the boundary integral method. Validation of the boundary inte-
gral method should include an independent solution of the prob-
lem without using a separate model to determine the shape and
location of the boundary.

Anastas and Hughes"® demonstrated the use of finite differ-
ence methods for predicting velocity contours by using a slot
configuration with AR = 0.01 or less. This configuration gener-
ates essentially 2-D contours. An analytical model was pre-
viously derived for the flow field generated by this configuration
with conformal mapping techniques. The air velocity contours
that were derived by using the numerical method were in excel-
lent agreement with those obtained by using the analytical solu-
tion. Experimental centerline and contour data were also in good
agreement with theoretically derived air velocities.

A PROPOSED GENERAL APPROACH
FOR COMPUTING AIRFLOW FIELDS GENERATED
BY EXHAUST HOODS

The previous research discussed above has shown that the assump-
tion of ideal flow leads to accurate prediction of the airflow fields
generated by local exhaust hoods of simple geometries. It also has
been demonstrated that accurate theoretical prediction of air veloci-
ties is possible for flanged hoods of simple geometries because it is
possible to accurately calculate the velocity potential at a point in
space for these configurations. That is, for flanged hoods it is
possible to solve the boundary-value problem by using Laplace’s
equation because the boundary conditions are known.

For the general case involving plain hoods, configurations
with multiple exhaust openings, and other more complex con-
figurations, the boundary conditions are not known a priori. This
is the inverse problem of fluid mechanics, in which the bound-
ary’s shape and location are obtained as part of the solution. In
solving such a problem, one needs to know the governing differ-
ential equations and two boundary conditions. The first bound-
ary condition is used to solve the differential equation; the
second is used to make appropriate corrections for the location
of the boundary. This is the approach taken in solving free-
surface flow problems. Allen” used this approach in solving for
the profile of the free liquid surface for water percolating through
a dam wall. The governing differential equation was Laplace’s
equation in terms of the water pressure, and the two boundary
conditions at the free surface were (1) the pressure is zero
because it is exposed to the atmosphere and (2) the normal
derivative of the pressure is zero because no flow occurs across
the boundary surface. A complete solution of the problem
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required the use of a third boundary condition, which is derived
from the first; namely, that the first derivative of the pressure
along the surface is zero. Allen, however, did not provide any
quantitative techniques for adjusting the location of the assumed
boundary. He only used qualitative criteria related to the direc-
tion in which adjustments should be made.

Of interest to designers of local exhaust devices is the ability to
predict the air velocities induced at any point in the space under the
influence of the device. Air velocity data for exhaust hoods is
sometimes presented in the form of a series of equal air velocity
surfaces for which the value of the velocity is reported as a percent-
age of the average velocity across the face of the hood. These
surfaces are similar in shape to equipotential surfaces, at least for
some configurations. If they were known for the configuration of
interest, the flow problem would be considered solved. However,
in attempting to solve the flow problem for an arbitrary configura-
tion, one finds that not only are the shapes and locations of the equal
velocity surfaces not known, but also the distributions of the veloc-
ity potentials along them. That is, the second boundary condition
necessary for problem solution is also not known.

It is well known from potential flow theory that for some
configurations (such as a point source of suction), the velocity
vectors are perpendicular to equipotential surfaces. When this
assumption is applied to the general case, the implication is that
equipotential surfaces are also equal velocity surfaces. This is
true in the general case, provided that the shape of the equipo-
tential surfaces does not change over infinitesimal distances in
the direction of the normal to the surfaces. This, however, is not
strictly true based on the analysis of data from the model for the
plain slot."® However, this assumption will be made in what
follows in order to explore its usefulness in approximating the
flow fields of exhaust hoods in general. A solution utilizing the
assumption will consist of the following steps.

1. Specify the value of the constant air velocity contour of
interest as a percentage of the average face velocity. Also,
assume a constant veloc-

4. Calculate the values of the normal derivative along the
assumed boundary.

5. Correct the locations of the points along the boundary
according to the differences between the specified value
of the normal derivative of the potential and those that are
calculated.

GOVERNING DIFFERENTIAL EQUATION
AND BOUNDARY CONDITIONS

The applicability of the potential flow assumption for flow into
local exhaust hoods implies that the flow is incompressible,
inviscid, and irrotational. This also means that Laplace’s equa-
tion, in terms of the velocity potential, ¢, applies in the space
influenced by the local exhaust opening as follows:

2 0/9x2+ ¢/0y*+2*¢/32*=0 1)

where X, y, and z are cartesian coordinates.

A slot configuration, which generates a 2-D airflow field,
will be used to test the ideas that were advanced in the last
section. An analytical model for that configuration may be
obtained by conformal transformation. This was explained in the
paper by Anastas and Hughes."'® The relationships between the
dimensionless velocity potential, ®, the stream function, ‘¥, and
the coordinates X and Y are as follows:

X=1+®+exp(P)cos¥
Y=¥+exp(®)sin¥

(2a)
(2b)
where the above dimensionless variables are defined as
O=¢n/Vb¥=yn/Vp, X=xn/bY=yn/b
For these dimensionless variables, the width of the slot is 2b
and the term 7 arises naturally as a result of the transformation.

V, is the total flow through the hood face divided by the area of
the face (or average face velocity) and y is the stream function.
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Techniques for computing equal velocity contours by using
Equations 2a and 2b for the configuration were presented by
Anastas and Hughes."® Laplace’s equation, in terms of the
dimensionless variables, becomes

FD/9X? +°D/9Y? =0 3)

'The boundary-value problem for which Equation 3 applies may
be solved if either @ or its normal derivative are specified along the
boundary. For the numerical solution of the problem, only one-half
of it needs to be solved because of symmetry. The boundary-value
problem is shown in Figure 1. A smooth boundary (ABCD) repre-
senting the equal velocity contour of interest is laid out on a square
grid of size h. The curved boundary is approximated by linear
segments, the lengths of which are small multiples of h. Along this
boundary, P is assumed to be constant and can assume any value
because only its derivatives along the boundary are of interest. For
a given boundary, the same values of the normal derivatives are
obtained along it, no matter what constant value of ® is assumed.
Along the centerline, GOA (Figure 1), the normal derivative,
o®d/dY, is zero because of symmetry. It is also zero along DE, and
FE, because there is no flow across the wall of the hood. Well inside
the channel part of the flow, the normal derivative along a cross-
section (FG) is unity.

SOLUTION OF THE BOUNDARY-VALUE PROBLEM

A finite difference approximation of Equation 3 is the five-point
formula that can be used to calculate the potential at an interior
Point P, shown in Figure 1, in terms of adjacent points as
follows'®:

@, = (Py + O + Bg + Dy)/4 @)

where N, E, S, and W refer to north, east, south, and west and &
is dimensionless as before. Equation 4 holds for interior points
in the domain GOABCDE,F shown in Figure 1.

For points along DE,, but not including Points D and E,, and
for points along GOA but not including A or G, Equation 4
becomes

D, and Pg, = (20 + g + Dy, )/4 5)

because the normal derivative d®/dY is zero. For points along
E,F but not including E, or F

Dy = QD + Py + By)/4 6)

The equation for point E, is given by

(DEZ = (2(DE + q)wl + q)wz)/4 (7)

where @y, and @y, are the potentials at points west of E, along
E,D and E,F, respectively.
Along FG, but not including F and G, Equation 4 becomes

DOp; = (Dy + 205 — 24X + Bg)/4 @)

because the normal derivative is unity along that line. AX is equal
to the mesh size h in the X direction. A mesh size of &/20 was
found adequate for problem solution.

At Point G:

g = 2Dy + 2D — 2AX)/4 ®)

A similar equation may be written for Point F.

For irregular mesh points, such as Point I in Figure 1, finite
difference approximations of the second derivatives of Equa-
tion 3 may be developed by using a Taylor series expansion,
through the second-order term, about Point 1.'7 In the X-
direction this gives

2
¢=¢l+[§l (X-X,)+%(§JI(X—XI)2+. - 0)

With the aid of Figure 2, it can be seen that substitution of X
=X,—hand X =X+ hf| in Equation 10 will yield two equations
that give the values of the velocity potentials at Points 3 and 1,
respectively. Figure 2 shows that f| is a fraction of the grid size

I

2 boundar
T A undary
ht,
4 3 -

I 1\

L
4
le
I
h hf 4

l. ol
I 1

FIGURE 2. Approximation of the velocity potential at an
irregular mesh point

h. Elimination of (d®/dX), between the two equations for Points
1 and 3 and solving for (3°®/0X?), gives
o

" [ExT] =20/f (L+£) = 20/F,+205/(1+6) ()
I

A similar expression may be developed for h? (0*®/0Y?), in
terms of f,. Combining these two terms by using Equation 3 gives

20, 20, 2.2 _
(1+f,)+(1+f2)_[ * }q)“o (12)

fi

20, 20,
f—l(1+fl)+Tz(l+f2)+ 1,

Equation 12 also may be obtained by integrating Equation
3 and by using the mean value theorem for integrals to facili-
tate the solution as shown by Anderson et al."” For irregular
mesh points where either f; or f, are equal to one, the correct
expression for @, is obtained by substitution of one into
Equation 12 for these quantities. When both are equal to one,
Equation 12 reduces to Equation 4, which is applicable to
regular mesh points.

Equations 4 through 9 and Equation 12 may be used to write
finite difference equations for each point where the velocity
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potential is not known. This yields as many simultaneous linear
equations as there are unknowns.

Solution of the system of equations was performed by using
the Gauss-Seidel method, which utilizes updated values for
adjacent points as soon as they are available.”® Successive
over-relaxation (SOR) was used to speed up solution of the
system of equations as described by Anastas and Hughes."®
Convergence was achieved when the sum of the absolute values
of the differences between velocity potentials calculated at each
mesh point, for two successive iterations, was no greater than
1/100 000.

COMPUTATION OF THE NORMAL DERIVATIVE
AT THE BOUNDARY

Once the boundary-value problem has been solved and all values
of the velocity potential are known, it is possible to compute the
normal derivatives at all irregular mesh points along the bound-
ary. A finite difference expression for the derivative in any
direction may be developed by using the Taylor expansion
employed in the development of Equation 12. With the aid of
Figure 3, it can be seen that the derivative with respect to X at
any point may be computed by substituting X, — hf, for Point 2

-

ht |

h 1

FIGURE 3. Computation of the first derivative at an

irregular mesh point

and X, — (1 + f)h for Point 3 in Equation 10 and solving the
resultant two equations for it after elimination of the two terms
involving the second derivative. This gives

h(@®/9X), = (1+2f)D,/[f,(1+£))] — (14 )P,/ + £;@5/(14f;)  (13)

Figure 4 shows that Equation 13 also could be used to
compute the normal derivative, d®/dn, at Point 1 given the
values of the velocity potential at Points 2 and 3 (obtained by
interpolation of neighboring points on the grid) and the distances
between Points 1 and 2 and Points 2 and 3. The coordinate system
(s, n) appearing in Figure 4 consists of the tangent and normal to
the boundary at the point.

Because the normal derivative at a point represents the air

velocity there, then the surface integral along the boundary is
q=[(d®/an)ds (14)

which gives the total flow (q) through it. Equation 14 is an
important tool in assessing the accuracy of the numerical method

boundary

e

FIGURE 4. Computation of the normal derivative at
the boundary

used to solve the boundary-value problem. By performing the
integration on a cross-section well inside the channel to the left
of the face of the hood, the total flow in the upper half plane is
determined to be equal to 7. The integral was very close (within
1%) to this value for all boundaries.

ADJUSTMENT OF THE LOCATIONS
OF BOUNDARY POINTS

Because the objective of the procedure is the ultimate reduc-
tion of the differences between the specified value of the
normal derivative and the local values to zero, a suitable
numerical technique is required. For this purpose, the Method
of False Position was adapted.®” It is normally used to find
the zeros of nonlinear equations involving one variable. Ad-
aptation of the method involved calculation of differences at
two locations (Points 1 and 3 in Figure 4) along the normal
passing through a point on the boundary. The new location,
ns, is calculated as

ns = [ny(AD); — ny(ADP)3)/ [(ADy), — (ADy);) (15)

where (A®,), is the difference between the specified value of
the normal derivative and the local value at Point 1 and (A®,);
is the difference at Point 3. An important test for the accuracy
for this boundary translation procedure is whether the length
of the new boundary equals the length of the old boundary.
After all the boundary points have been translated according
to Equation 15, the new boundary is smoothed manually by
using a french curve. The smoothing can also be performed
automatically by using signal processing techniques. The
criterion for accepting the numerical procedure should be
such that, at all locations in the flow field, the differences
between the air velocities calculated from the analytical and
numerical models be no more than 1%.

RESULTS AND DISCUSSION

The procedure that was proposed for computing the airflow
field generated by the plain slot was applied for the determi-
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nation of the 15% velocity con-

tour of that configuration. The 12 ¢
initial boundary (Boundary 1 in
Figure 5) consisted of two quar- 10}

ter circles, one in each quad-
rant, with a total length equal to
20.94 units as determined by
conservation of mass and from
the properties of the flow; 6t
namely, that half the width of
the slot is equal to 3.1416 and

Boundary 1

Boundary 4 X

15% Contour

A L ¥ - L d

that the normal derivative is 41

equal to 1.0 well inside the

channel."® As may be noted in 27t

Figure 5, the position of the in-

itial boundary is remarkably o ) )
close to the 15% contour. This -8 -6 -4

boundary was used to generate
Boundary 2, shown in Figure 6.

The process of generating
the boundary produced high-
frequency noise, which is typical for such problems, as reported
by Haussling and Coleman.?" The amplitude of the noise was
higher for points where the local difference between the speci-
fied and calculated normal derivatives was higher.

Equation 15 displaced the initial boundary in the right direc-
tion because most values of the normal derivative in the first
quadrant were higher than 15% although most of those in the
second quadrant were lower. As a result, the boundary points in
the first quadrant were displaced in a “northeasterly” direction,
along the normal, and those in the second quadrant in a “south-
easterly” direction. When compared with the 15% velocity con-
tour, Boundary 2 overshot the “correct” boundary in both
quadrants. This, however, does not happen when the Method of
False Position is used to solve nonlinear equations in one vari-
able. If the local difference in normal derivatives is negative, it
would stay negative until con-

FIGURE 5. Initial and final boundaries for the flow into a slot
. " "

o 2 4 6 8 10

version of Boundary 3 nearly coincided with the 15% contour in
the second quadrant but was slightly farther out for its first half in
the first quadrant and too far in for the second half of it in that
quadrant. Calculation of the normal derivatives along Boundary 3
revealed the occurrence of alternating high and low values in its
levels along the boundary’s entire length. Selected values are re-
ported in Table 1. This seemed to indicate a numerical difficulty in
solving the differential equation that appears to be related to the
shape of Boundary 3. Adjustment of boundary locations by using
the data for Boundary 3 led to Boundary 4, shown in Figure 5.
Boundary 4 is a worse approximation of the 15% contour than any
of the preceding ones.

The Method of False Position usually converges in three or
four iterations with every iteration resulting in values closer to
the answer. It became clear after inspection of Boundary 4 that

vergence (and vice versa) ap-
proaching a zero difference with-
out changing sign. Calculation of
the normal derivative for Bound-
ary 2 resulted in values mostly 10 |
below the specified value in the
first quadrant and above that 8}
value in the second quadrant,
which is exactly the opposite
situation for Boundary 1. 6r

Despite this, the procedure for
computing the airflow field was 4 L
continued to see if it does eventu-

12 ¢

15% Contour

Boundary 2
(smoothed)

Boundary 2

ally lead to the desired shape and 2
location with the calculated nor-
mal derivatives no different from
the specified value by more than

n n ' n i

1%. After smoothing Boundary 2, 8 6 4
the procedure generated Boundary
3 (Figure 7). When compared to
the 15% contour, the smoothed

FIGURE 6. Boundary 2 compared to 15% contour

- |
o 2 4 6 8 10
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the smoothed version would not
12 ¢ y provide values of the normal de-
rivative that were within 1% of
10 X the specified value. Repetitions
Boundary 3 of the procedure were, as aresult,
15% Contour concluded with Boundary 4.
st
Boundary 3 CONCLUSIONS AND
RECOMMENDATIONS
smooth

6 (smoothed) FOR FURTHER WORK
The general problem of comput-
4t ing the flow field generated by
local exhaust hoods can be consid-
ered a boundary-value problem in
2r which the location and shape of the
boundary are not known initially
0 but are obtained as part of the so-
. . 4 . lution. In terms of the velocity
-8 -6 -4 -2 0 2 4 6 8 10 potential, the flow boundary can
FIGURE 7. Boundary 3 compared to 15% contour :e?tﬂmggizuiiﬁ'cgﬁ:;
tion (the normal derivative), which
is needed to complete solution of
the problem, is not available. In order to obtain a solution of the
problem in terms of the velocity potential only, it was assumed that
TABLE I Selected Values of the Normal an equipotential line is also an equal air velocity contour. Starting
Derivatives along Boundary 3 with a reasonable initial guess, two other boundaries were gener-
X Y o®on ated, and they remained close to the solution. The third boundary,

575543 015708 013088 however, mverged from the desired solupon. This was,‘ perhaps,

because of (1) inaccuracy of the assumption that an equipotential

8.70847 0.62832 0.14246 . . . .

surface is also an equal velocity surface, (2) an insufficiently

8.65313 1.09956 0.14419 . , .

accurate solution of Laplace’s equation for Boundary 3, and (3) a

8.59217 1.57080 0.13768 . . .

boundary translation algorithm that overcorrects. The theoretical

8.50815 2.04204 0.12821 T . .

model for the configuration studied (Equations 2a and 2b) suggests
8.38037 2.51328 0.13712 . . . . . .
that steep gradients in the velocity potential exist at locations of

8.25487 2.98452 0.12787 . . . .

8.02208 3.61284 011113 practical significance as is the case for the 15% contour. This renders

7'7 5391 4' 08408 0' 11496 the solution very sensitive to boundary location.

7' 38276 4' 56272 0’ 09456 Three refinements of the above procedure will be proposed. The

6.75 144 5'0029 " 0'1 4791 first involves solving the problem in terms of both the velocity

5' 06004 5' 50728 0'1 6577 potential and the stream function and performing a correction by

4' 86048 5‘99 150 0'1 9795 using a general relationship between them. The second would

3' 20868 6' 50544 0'2 4186 involve solving Laplace’s equation for these two variables by using

1 41372 6.99074 0.29628 the boundary-fitted technique.?'?? The third would employ a better

0.54753 7 53984 0.18397 algorithm fqr adjusting the location of the. boEmdary.

0.16556 8.01108 0.08435 A solution for the problem may exist in terms of both the
—0.47124 8.07835 0.06170 velocity potepnal, @, and the stream function, \V'. In terms of the
-1.57080 8.00565 0.09479 latter, Equation 3 becomes
—2.70953 7.53984 0.08407 *W/9X2 + PW¥/9Y =0
-3.29868 7.02391 0.0842 N
_3.61284 6.57235 0.09640 With the aid of Figure 1, the boundary conditions for the
_3'9 1731 5'9690 4 0.10696 above differential equation are as follows. Along GOA, ¥ =0.

' ' ’ The normal derivative, 3'¥/adn, is equal to zero along ABCD and
—4.09378 5.49780 0.11704 .
FG. Along both DE, and FE,, ¥ = . Adjustment of the boundary
—4.24116 4.99803 0.12321 . . ! .
433541 4.55532 0.13100 location would depend on the relationship 0'F//ds = d®/dn, which
_4' 43458 3'92700 0.13641 may be derived from the integral in Equation 14.
_4:51331 3:29868 0.12494 In general, it is inadvisable to solve boundary-value prob-

lems involving very highly curved surfaces in their physical
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domains, as was done in this work for the sake of expediency.
For such boundaries and those that are not smooth, numerical
problems may arise that could prevent the attainment of a
solution. To circumvent these difficulties and to obviate the
need for dealing with irregular mesh points (Point I in Figure
1), the boundary-fitted method was developed. Haussling and
Coleman®” used the method to solve for the water wave shape
induced by a submerged body moving in shallow water which,
again, is a problem in which the boundary is not known
initially. More basic details on the method were developed by
Thompson et al.*? In using the technique, the physical do-
main (Figure 1) is transformed into a rectangle or series of
interconnected rectangles by a Laplace equation—type trans-
formation process similar to but more general than the con-
formal transformation that produced Equations 2a and 2b.
This would be called the computational domain, which is used
to compute the boundary-fitted coordinates in the physical
domain. Finite difference methods are used in generating the
grid. Once this is achieved, solution of the differential equa-
tion describing the flow is obtained in the computational
domain with the appropriate boundary conditions, also trans-
formed, from the physical domain. The desired flow parame-
ters are then mapped onto the physical domain by
point-to-point correspondence of the two domains, taking into
account the geometry of the boundary in the physical domain.

Finding a substitute for the Method of False Position to
translate the boundary locations is difficult because it requires
two points to perform a translation and only one is available. In
the past, these translations were performed in a qualitative man-
ner by trial-and-error knowing only the direction in which the
boundary should be moved."'” This is feasible provided that a
computer is programmed to perform the task. The boundary
poinis could be moved on the screen of a video monitor by using
a device similar to a mouse. The software would be capable of
reading the new boundary location.

This paper addressed the problem of solving for the air
velocities generated by a suction device drawing air from a
quiescent medium. This is rarely the case in industrial applica-
tions of local exhaust ventilation. Crossdrafts are present there,
and they will distort the airflow field calculated for the case
where they are absent. A potentially useful method for handling
this problem is to impose a velocity field on the one calculated
for the quiescent case. The problem then becomes one of velocity
vector addition at each point in the space under the influence of
the hood. Experimental validation of this approach is necessary
because it does not take into consideration air deflected by
flanges and other surfaces. This approach was discussed by Dalla
Valle,® but he offered no experimental validation of the idea. A
similar approach would involve the addition of the velocity
potentials of both the hood and the crossdraft at a given location
and computing the air velocities, in the usual manner, for the
resultant flow. This is possible because the velocity potential is
a scalar quantity.
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