

Asthma Experience in an Occupational and Environmental Medicine Clinic

Low-Dose Reactive Airways Dysfunction Syndrome

Howard M. Kipen, MD, MPH

Richard Blume, MD, MPH

Douglas Hutt, MD

The etiology of adult-onset asthma is incompletely understood. High-intensity exposure to irritants is one accepted risk factor and such cases are termed Reactive Airways Dysfunction Syndrome. The contribution to asthma of less intense and less acute exposure to irritants remains to be clarified. We report on 10 cases of nonsensitization adult-onset asthma in settings of exposure to noticeable but distinctly "tolerable" levels of inhalation irritants. This series of 10 cases represent 31% of verified asthma cases seen in our environmental and occupational medicine referral clinic over a 5-year period. We believe further exploration of this phenomenon of low dose Reactive Airways Dysfunction Syndrome is warranted.

Occupational asthma has long been recognized as an important cause of worker morbidity. The traditional definition of occupational asthma is asthma arising from workplace exposure to airway sensitizing agents, in a previously unsensitized person.¹ A large number of workplace sensitizers have been identified,² and the basis of the airway response to these allergens is antibody formation in the at-risk worker. A related mechanism for induction of the allergic response is direct interaction with airway mast cells, with resulting degranulation. Byssinosis is the best known example of this form of occupational asthma. The current Centers for Disease Control surveillance definition of occupational asthma, used in the Sentinel Event Notification System for Occupational Risks program, is broader and more clinical requiring only the demonstration of a relationship between symptoms and ongoing workplace exposures to causative agent(s), independent of sensitization or other specific mechanism.³

Recent studies support the concept of such a broader definition of occupational asthma.⁴⁻⁸ Specifically, this would include asthma that is related to exposure to airway irritants, for which a relationship with the workplace can often be identified, but for which specific immunologic tests are not useful. This approach should take into account the recent growth in recognition of bronchial hyperresponsiveness, either sensitizer or irritant induced, as an important manifestation of occupational asthma.⁹

In 1985, Brooks and associates⁴ re-

From the Environmental and Occupational Health Sciences Institute (Dr Kipen, Dr Blume), and the Pulmonary Division, Department of Medicine (Dr Hutt), UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey.

Address correspondence to: Howard M. Kipen, MD, MPH, Associate Professor and Medical Director, EOHSI, Occupational Health Division, 681 Frelinghuysen Road, P.O. Box 1179, Piscataway, NJ 08855-1179.

0096-1736/94/3610-1133\$03.00/0

Copyright © by American College of Occupational and Environmental Medicine

ported the development of persistent clinical asthma after one-time, high-level exposures to airway irritants. Since the publication of this case series, additional reports have corroborated their findings.^{5-8,12} The etiology, prevalence, and natural history of Reactive Airways Dysfunction Syndrome (RADS), as this syndrome is called, is presently not well understood. The magnitude of risk for RADS after a given exposure is not understood. Preexisting atopy is not believed to be a risk factor for development of this disorder, whereas a history of current cigarette smoking or other predispositions to airway irritation may contribute to its development.⁷ Bronchial hyperresponsiveness as demonstrated by nonspecific challenge testing is a hallmark of RADS.^{4,7}

A limiting requirement to the concept of RADS, as provided by Brooks and associates,⁴ is exposure to a *high* concentration of irritant, resulting in acute upper and/or lower respiratory symptoms ("within 24 hours"). Nevertheless, other investigators have suggested that RADS may follow repeated, low-dose exposures to airway irritants. Tarlo and Broder⁷ reported several such cases in their review of occupational asthma referrals, and at least one review has suggested the existence of such cases.¹⁶ Such a "low-dose" RADS phenomenon, if substantiated, may provide an etiologic explanation for some cases of adult-onset asthma, many of which cannot currently be ascribed to classical sensitization mechanisms or more narrowly defined RADS after acute high exposures.^{9,16} We report herein the results of a retrospective review of evaluations for asthma that we believe lends further support to the presence of such a phenomenon and suggests the need for prospective evaluation of the risk and risk factors for development of asthma in environments with modest concentrations of respiratory irritants.

Methods

To assess the potential significance of nonacute irritant exposure as an event leading to development of

asthma, we reviewed all of the asthma cases referred to our occupational and environmental medicine referral clinic over the 5-year period from July 1986 through July 1991. Evaluations consisted of a complete medical, occupational, and environmental history, physical examination, and, when indicated, diagnostic procedures to confirm the presence of reversible obstructive airway disease. These included assessment of bronchodilator response in the pulmonary function laboratory or response to nonspecific (methacholine) challenge testing. When clinically indicated, methacholine challenge was performed by administration of sequential doses of methacholine at a concentration of 25 mg/mL (maximum of four doses)¹⁴ until a 15% decrease in forced expiratory volume in 1 second, 10% decrease in forced vital capacity, 25% decrease in forced expiratory flow, midexpiratory phase, or 40% decrease in PEFR was observed.¹⁵ Airway constriction was then reversed with inhaled bronchodilator. Positive clinical response to bronchodilator therapy was also considered to be supportive of the diagnosis of asthma in cases where challenge testing was contraindicated or not feasible. Diagnostic confirmation of asthma required the presence of a suggestive clinical presentation and at least one of the following: documentation of reversible airway constriction by pre- and postbronchodilator spirometry, positive methacholine challenge test demonstrating reversible airway constriction, or positive clinical response to bronchodilator therapy. Documentation of the work-relatedness of asthmatic symptoms was attempted with serial peak flow measurements when the patient was still exposed and able to comply.¹⁷ In the absence of these data, an unambiguous historical association of symptoms with workplace exposures (either irritants or sensitizers) and a confirmed diagnosis of airway hyperreactivity was required for diagnosis of occupational asthma. Bronchial challenge testing with specific agents was not performed. Referral for skin testing was done as clinically indicated and was not performed in any

of the cases reported herein. Exposure characterizations including industrial hygiene sampling were available in some cases, and detailed exposure histories were obtained from all subjects. Asthma cases related to both occupational and environmental exposures were considered.

The results of each diagnostic assessment were reviewed to ascertain the proven or suspected cause for each case of occupational asthma. A case was categorized as presumed or suspected classic occupational asthma if exposure to one or more known sensitizing agents was possible, and the onset of asthmatic symptoms was consistent with sensitization (appropriate latency period and/or presence of other allergy symptoms). In the absence of known sensitizing exposures or appropriate latency, and in the event of a known acute exposure to a bronchial irritant preceding the onset of asthma within 24 hours, the case is categorized as RADS.⁴ In the absence of both sensitization criteria or RADS criteria, association of development of new-onset adult asthma with a history of repeated exposure to one or more bronchial irritants would place the case in a third and distinct category, low-dose irritant. In addition to this process, each case was specifically reviewed for history of prior presence or treatment for asthma, for presence of smoking and/or respiratory infection concurrent with the onset of asthma, and history of atopy (seasonal allergy, rhinitis, atopic skin disease, or positive immediate hypersensitivity skin test results). Presence of exposure-related symptoms of generalized mucosal irritation (eye, nose, throat) was also ascertained as evidence supportive of the irritant nature of the environment.

Results

Table 1 summarizes the results of this record review according to etiology of each case of asthma. A total of 200 patient records were reviewed. Common diagnoses were asbestos, silicosis, repetitive motion disorders, peripheral neuropathies, and chemical sensitivity syndrome. Thirty-two cases fulfilled the diagnostic criteria

TABLE 1
Asthmatic Patients Seen in
1986 to 1991

	n	%
Previous diagnosis of asthma	5	16
RADS	7	22
Possible sensitization	6	19
Infection	4	13
Low-dose irritant	10	31
Total	32	100%*

* Does not add up to 100% because of rounding off.

for asthma. Of these 32 cases, 5 had a history of asthma before the exposure of concern, and therefore 27 are considered strictly new adult-onset cases of airway hyperreactivity. Seven represented RADS involving acute exposures to one or more irritants, followed by onset of symptoms within 24 hours. Although in none of the remaining cases was sensitization believed to be the most likely etiology for the exposure-related asthma, for 6 cases, incomplete exposure information or clinical histories prevented satisfactory exclusion of sensitization-induced asthma, and these are conservatively categorized as possible sensitizations in our tables. Four of the patients had a lower respiratory infection concurrent with onset of asthmatic symptoms, and two of these patients were also cigarette smokers. Both smoking and lower respiratory infection may predispose to or initiate bronchial hyperresponsiveness,⁹ and therefore these cases are excluded from further consideration as predominantly irritant induced. Excluding these 22 cases from further consideration results in a final 10 cases, or 31% of asthma in our referral clinic population (37% of new onset), as fulfilling our criteria for low-dose, irritant-induced asthma. None were current smokers and only one had previously smoked (case 3) but had stopped smoking 24 years previously.

Two of the 10 cases who met our criteria for low-dose irritant induction of asthma were still exposed at the time of our evaluation. Both (cases 1 and 2) had a significant drop in PEFR at work compared with nonwork values. This was confirmed in both by

preshift to postshift decline in forced expiratory volume in 1 second. None of the other exposures were ongoing at the time of our evaluations, although all 8 patients had persistent asthmatic symptoms, triggered and/or exacerbated by multiple environmental irritants.

Cases 3, 4, 5, and 7 were all exposed to fumes from waste acid drums and other irritants at an abandoned fire retardant manufacture site. Case 3 was a fire inspector who developed increasing symptoms after each of a series of three visits ranging from 1 hour to half a day at the site. He had no history of respiratory symptoms or clinically apparent firefighting injury and had been an inspector for the previous 4 years. After blood-tinged sputum appeared 4 months after cessation of exposure, his personal physician performed bronchoscopy and reported only generalized mucosal inflammation. Treatment with inhaled and oral steroids did not significantly ameliorate his symptoms. Cases 4, 5, and 7 were federal employee hazardous waste remediation investigators and site planners who became involved in the same site many months later, but on a daily basis. All three had asthma symptoms within a week of arrival on site.

Case 6 involved exposure to cutting oils, and while there are conceivable sensitizers in these as well as in cases 8, 9 and 10, the clinical presentation was much more of reactivity to many irritants rather than to a specific agent, ie, symptoms were worst at work but significantly troublesome in many other settings.

Eleven of 27 (41%) adult-onset asthma patients met our criteria for a history of atopy preceding onset of asthma. This is similar to the 4 of the 10 (40%) cases that we categorize as having low-dose, irritant-induced asthma who met our criteria for atopy. The absence of a clinical course consistent with sensitization, the absence of exposure to known sensitizers, and the widespread triggers of their subsequent symptoms allowed us to eliminate satisfactorily the possibility of specific allergen-induced asthma in these patients. We could not identify

specific agents with which to reasonably attempt immediate hypersensitivity skin tests. All 6 low-dose exposure patients who underwent methacholine challenge had positive tests, consistent with the diagnosis of asthma, lending further support to the diagnosis of irritant-induced asthma in these patients.

Table 2 provides additional information on the patients in the low-dose irritant-exposed group. The information concerning diagnostic criteria for asthma indicates that 9 of the 10 cases had positive methacholine challenge and/or positive bronchodilator response on spirometry. The remaining case had an excellent clinical response to bronchodilators.

Discussion

This review of asthma referrals to our occupational and environmental medicine clinic suggests a divergence between the classical approach to occupational asthma and the reality of current occupational medicine practice. Although much has been written about sensitization-induced asthma, it is only relatively recently that irritant-induced asthma has been recognized formally. The results of this case review indicate that in addition to the RADS phenomenon, where asthma follows acute exposure to respiratory irritants, there may exist a form of occupational asthma wherein symptoms follow repetitive, low-dose exposures to respiratory irritants. The diagnosis of irritant-induced asthma in these 10 patients is supported by the presence of nonspecific bronchial hyperresponsiveness in all cases, and the presence of exposure-associated generalized mucosal irritation symptoms in most cases. If the asthma experience of our clinic is similar to that of other occupational practices, then the prevalence of this form of exposure-related asthma may indeed be significant. Tarlo and Broder⁷ observed a similar nonacute RADS phenomenon in their case series. In contrast to their study, we did not confirm the presence of sensitization-induced asthma in any of our patients, although one patient did have sensitization-induced hypersensitivity pneu-

TABLE 2
Low-Dose Irritant Exposure Group

Case	Age at Onset, y	Sex	BHR Criteria*	Irritant	Exposure Frequency	Symptoms of Mucosal Irritation	Exposure Duration	Still Exposed?
1	47	M	PFT†‡ w/ BD	Bisulfite and SO ₂	Daily	Yes	3 y	Yes
2	59	F	MCT†‡	Chemistry teaching laboratory	Daily	Yes	4 y	Yes
3	52	M	MCT	Acid mist	Few	Yes	4 mo	No
4	53	M	MCT	Acid mist	Daily	No	4 mo	No
5	34	F	MCT	Acid mist	Daily	Yes	4 mo	No
6	44	M	MCT	Cutting oil	Daily	Yes	7 y	No
7	33	F	MCT	Acid mist	Daily	Yes	4 mo	No
8	28	F	BD clin	Cleaning agents	Daily	Yes	2 y	No
9	37	F	PFT w/BD	Perfume agents in research laboratory	Daily	Yes	2 mo	No
10	23	F	PFT w/BD	New carpet installation	Daily	No	3 mo	No

Age at onset and sex are indicated, as is the specific diagnostic criterion for airway hyperreactivity in each case. Also provided is the nature of the irritant, exposure frequency, an entry concerning presence or absence of symptoms of generalized mucosal irritation, the duration of exposure before presentation, and an entry indicating whether there was continued exposure to the inciting irritant at the time of initial evaluation.

* BHR, bronchial hyperresponsiveness; PFT, pulmonary function test; BD, bronchodilator; BD clin, clinical response to bronchodilator; MCT, methacholine challenge test.

† Portable peak expiratory flows significantly lower when exposed than on control days.

‡ Pre- and postshift spirometry showed significant cross-shift drop.

monitis and we have subsequently seen such sensitization cases of asthma. We both observed a similar percentage of acute RADS phenomena among occupational asthma cases.

The etiology of irritant-induced asthma remains unknown. Although we have chosen to distinguish between acute and nonacute irritant-induced asthma based on exposure history, we do not know whether there is an underlying pathophysiologic difference between these two distinct clinical presentations. Positive methacholine challenge results appear to be a shared diagnostic finding for these two syndromes, suggesting that airway inflammation, with resulting nonspecific bronchial hyperresponsiveness, may be common to both. It has been proposed that respiratory irritants may act as potentiators of nonspecific bronchial hyperresponsiveness through induction of airway inflammation or by other mechanisms.^{9,10} Individual factors predisposing to the development of persistent bronchial hyperresponsiveness after exposure have not been identified but cigarette smoking has been suggested to play a role.¹³ Although atopy could be a risk factor, the comparable rates among

our low-dose cases and our asthma cases as a whole does not suggest that it is. Future studies should include a standardized assessment of allergic diathesis. Because bronchial hyperresponsiveness may result from respiratory infection,¹¹ we excluded patients with a recent history of a clinically apparent infection from our low-dose exposure category.

The results of this case review and the findings of other investigators suggest an association between recurrent low-dose irritant exposure and development of adult-onset asthma. Analytic, preferably prospective, studies are needed to examine the significance of this association for development of occupational asthma. Determination of the pathophysiologic mechanisms underlying this disorder may lead to identification of preventive measures and specific treatment modalities, enabling a reduction in the morbidity associated with this potentially significant form of adult-onset asthma.

Acknowledgments

Dr Kipen was supported by National Institute of Environmental Health Sciences (NIEHS) Academic Award 1K07ES00218-01A1 and NIEHS Center Grant ES05022. Dr Blume was supported by National Institute

for Occupational Safety and Health Training Grant T420H07125. We acknowledge the dedicated assistance of Patricia A. Hutton with manuscript preparation.

References

1. Chan-Yeung M, Lam S. Occupational asthma. *Am Rev Respir Dis.* 1986;133:686-703.
2. Merchant J, ed. *Occupational Respiratory Diseases*. National Institute for Occupational Safety and Health (NIOSH pub. no. 86-102); 1986.
3. Occupational disease surveillance: occupational asthma. *MMWR.* 1990;39:119-123.
4. Brooks S, Weiss MA, Bernstein IL. Reactive airways dysfunction syndrome (RADS). Persistent asthma syndrome after high level irritant exposures. *Chest.* 1985;88:376-384.
5. Boulet L. Increases in airway responsiveness following acute exposure to respiratory irritants. Reactive airway dysfunction syndrome or occupational asthma? *Chest.* 1988;94:476-481.
6. Lerman S, Kipen H. Reactive airways dysfunction syndrome. *Am Fam Physician.* 1988;38:135-138.
7. Tarlo S, Broder I. Irritant-induced occupational asthma. *Chest.* 1989;96:297-300.
8. Promisloff RA, Lenchner GS, Cichelli AV. Reactive airway dysfunction syndrome in three police officers following a roadside chemical spill. *Chest.* 1990;

- 98:928-929.
9. Nadel J, Pauwels R, Snashall P, eds. *Bronchial Hyperresponsiveness*. Oxford: Blackwell Scientific Publications; 1987.
 10. Sheppard D. Airway hyperresponsiveness. Mechanisms in experimental models. *Chest*. 1989;96:1165-1168.
 11. Empey D, Laiteren L, Jacobs L, Gold W, Nadel J. Mechanisms of bronchial hyperreactivity in normal subjects after upper respiratory tract infection. *Am Rev Respir Dis*. 1976;121:131-139.
 12. Kern DG. Outbreak of the reactive airways dysfunction syndrome after a spill of glacial acetic acid. *Am Rev Respir Dis*. 1991;144:1058-1064.
 13. Blanc PD, Galbo M, Hiatt P, Olson KR. Morbidity following acute irritant inhalation in a population-based study. *JAMA*. 1991;266:664-669.
 14. Corrao WM, Bruman SS, Irwin PS. Chronic cough as the sole presenting manifestation of bronchial asthma. *N Engl J Med*. 1979;300:633-637.
 15. Cropp GJA, Bernstein IL, Boushey Jr HA, Hyde RW, Rosenthal RR, Spector SL, Townley RG. Guidelines for bronchial inhalation challenges with phar-
 - macologic and antigenic agents. *Am Thorac Soc News*. 1980; Spring:11-19.
 16. Brooks SM, Bernstein IL. Reactive airways dysfunction syndrome or irritant-induced asthma. In: I. Leonard Bernstein, Moira Chan-Yeung, Jean-Luc Malo, and David I. Bernstein, eds, *Asthma in the Workplace*. New York: Marcel Dekker; 1993:533-549.
 17. Henneberger PK, Stanbury MJ, Trimble LS, Kipen HM. The use of portable peak flow meters in the surveillance of occupational asthma. *Chest*. 1991;100:1515-1521.

42,496 Secrets Are Bared

Ever wonder where in California is home to the greatest concentration of German Americans with a household income of \$45,000 or more? Well, you would if you were running the West Coast ad campaign for Lufthansa—and you'd probably be happy to pay for the arcane tidbit. That's the hope of the folks behind *Rezide*, an encyclopedia that profiles all 42,496 zip codes in the U.S.

Rezide, which is produced by Claritas, a computer-based market research firm in Alexandria, VA, has 122 statistics for each zip code, ranging from income to number of bedrooms. Says Claritas CEO Gary Hill, 54: "If you're trying to find a person with particular attributes, we can point you to his doorbell." . . .

Though *Rezide* is sold in book form, the real action comes from the CD-ROM or magnetic tape that allows you to do custom searches. Dom Pérignon salespersons might like to know the five zip codes with the highest median household incomes (see chart below). Surprise! Beverly Hills 90210 of TV show fame comes in 74th, with \$93,756. The winner, Techny, IL, and No. 4, Kenilworth, IL, are both neighbors of Chicago.

Claritas has more sophisticated products that cost hundreds of thousands of dollars, but *Rezide*, which is made for small businesses, sells for \$895 in book form or about \$10,000 on CD-ROM. Or you could ask Claritas to do a custom search for you, starting at \$75. Oh, and for the most German Americans per capita in a zip code, go to 95242, Lodi, located some 25 miles south of Sacramento.

Richest ZIP Codes

Income	Zip	Town, State	Households
\$226,829	60082	Techny, IL	119
142,217	94027	Menlo Park, CA	2,294
134,896	07046	Mountain Lakes, NJ	1,408
132,656	60043	Kenilworth, IL	843
132,593	10506	Bedford, NY	1,860

From "42,496 Secrets are Bared," by A. E. Serwer in *Fortune*, January 24, 1994, p 130.