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A MEASURE OF GOODNESS-OF-FIT
FOR THE LOGNORMAL MODEL APPLIED
TO OCCUPATIONAL EXPOSURES®

Martha A. Waters*
Steve Selvin
Stephen M. Rappaportt

Department of Biomedical and Environmental Health Sciences, 322 Warren Hall,
University of California, Berkeley, CA 94720

The lognormal distribution is often applied to occupational
exposures, yet the assumption of lognormality is rarely verified.
This lack of rigor in evaluating the appropriateness of the
lognormal model has resulted, in part, from the difficulty of
applying formal goodness-of-fit tests. When evaluation of model
fit has been attempted, occupational hygienists have relied upon
probability plotting of exposures rather than upon formal statis-
tical methods. The goal of this work was to develop for the
occupational hygienist a simple quantitative evaluation to sup-
plement the probability plot. A measure of goodness-of-fit to the
lognormal model based on the ratio of two estimators of the
mean of the distribution, the simple or direct estimate of the
mean and the maximum likelihood estimate of the mean of a
lognormal distribution, is described. This new measure, the ratio
metric, is a simple extension of calculations made routinely by
many occupational hygienists. Results from using the ratio
metric were compared to probability plotting and to two tradi-
tional measures of goodness-of-fit, the Lilliefors test and the W
test, for two occupational exposure data sets. The results of the
ratio and W tests are comparable for a variety of occupational
exposure data, but the Lilliefors test is overly conservative and
does not detect several cases of gross deviations from lognor-
mality. The ratio metric is an effective alternative to the Lilliefors
test and is easier to perform than the W test for the range of
data usually encountered by occupational hygienists. Occupa-
tional hygienists are encouraged to use the ratio metric in
conjunction with the probability plot in evaluating the lognor-
mal assumption.

*This research was supported in part by the Health Effects
Component of the University of California Toxic Substances
Research and Teaching Program and by the Atlantic Richfield
Corporation.

tAuthor to whom inquiries should be addressed. Current ad-
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he “lognormal” model is often applied to occupational
T exposures based on both empirical fits and theoretical

arguments. In theory, lognormal distributions arise from
multiplicative effects of random influences on exposure levels.
In the case of chemical exposures, these random influences
include the mobility of the worker, the generation rate of the
contaminant, and the rate of contaminant concentration dilution.

Although the lognormal distribution is widely used to describe
occupational exposures, the assumption of lognormality is rarely
verified.”” One reason for this is that data are seldom collected in
sufficient quantity to allow formal statistical tests of goodness-of-fit
to be applied. Even when sample sizes are large, however, occupa-
tional hygienists have usually relied upon probability plotting of
exposures rather than formal methods. Advantages of probability
plotting are simplicity of preparation and the quantity of information
that can be displayed in a compact form. The major disadvantage
of probability plotting is the subjectivity of the decision about how
well the model fits the data. The lack of rigor in evaluating the
lognormal assumption probably has resulted, in part, from the
difficulty of applying formal goodness-of-fit tests, which require
computer programs or special tables. Thus, the goal of this work is
to provide the occupational hygienist with a simple quantitative
evaluation to supplement the probability plot.

The authors suggest a measure of goodness-of-fit to the
lognormal model based on the ratio of two estimators of the mean
of the distribution, i.e., y/X,, where y is the simple or direct
estimate of the mean and X, is the maximum likelihood estimate
of the mean of a lognormal distribution. This measure, called the
“ratio metric,” derives directly from location and scale estimates
of the distribution and is simple to compute. The results of
probability plotting and two traditional measures of goodness-
of-fit, the Lilliefors test® and the W test,'” were compared with
the proposed ratio metric for two occupational exposure data
sets. The ratio metric is an effective alternative to the Lilliefors
test and is easier to perform than the W test for the range of data
usually encountered by occupational hygienists.

TESTING DISTRIBUTIONAL ASSUMPTIONS

Once a statistical model has been selected to represent physical
phenomena, the appropriateness of any distributional assump-
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tion can be examined in various ways. A common method
involves probability plotting where the sample order statistics
are plotted versus the expected values of the order statistics from
a standardized distribution (zero location and unit scale parame-
ter).* This method provides a visual representation of the “fit”
and allows qualitative evaluation of the adequacy of the assumed
model. When the data fit the postulated distribution well, this

Z value
o
i

In (air concentration of mercury) in ug/m®

FIGURE 4. MercuryWorker 12

[

plot yields a straight line. Departures from linearity indicate lack
of fit. The subjectivity of the probability plotting method for
evaluating goodness-of-fit lies in determining how well the data
fit a straight line.

Figures 1-5 show examples of log-probability plots of work-
ers” airborne exposures to inorganic mercury over a period of 40
workdays.© Each point on the plot represents a single 8-hr
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time-weighted average exposure. Logarithms of the 40 exposure
levels were ranked in each case and plotted on a linear scale
against the standard normal z variate corresponding to the rank.
The straight lines in the plots represent the best-fit lines from
linear regression of the logarithms of exposure levels on the
standard normal z variate. The relative linearity of the plots
shown in Figures 1 and 2 indicates the assumption of lognormal-
ity of exposures to be reasonable; conversely, the relative lack of
linearity shown in Figures 3-5 casts doubt on the lognormality
of the data.

A variety of probability plotting papers are available for
different distributions to facilitate the process of evaluating
various distributional models'” where one axis is incremented in
cumulative percent according to the standardized distribution
and the other axis may be linear, logarithmic, or any other
mathematical transformation. A good description of probability
plotting techniques can be found in Hahn and Shapiro.® Com-
puter programs such as STATGRAPHICS® (DOS)® and System
S (UNIX)!"” provide the ability to quickly prepare and view
probability plots for a number of distributions.

Formal statistical tests provide a rigorous basis for assess-
ing a model’s fit to the data. A variety of goodness-of-fit
tests have evolved for the normal distribution” that can be
applied to the lognormal distribution by working with the
logarithms of observed data values. Power comparisons of
specific tests have shown the Shapiro-Wilk W test® and its
extensions!'>'? to be a sensitive omnibus test and for many
skewed populations “clearly the most powerful.”” (Omnibus
tests evaluate the null hypothesis against all alternative hy-
potheses, as opposed to directional tests, which are intended
to detect specified alternative hypotheses.) The W test statistic
is the squared ratio of the best linear unbiased estimator for

scale to the standard deviation. A simple description of its use
can be found in Gilbert."¥ A disadvantage of the W test is the
requirement of tables for obtaining weights and significance
levels. Although Royston'® provided an approximate normai-
izing transformation suitable for computer programming, this
test is not easily used nor accessible to most occupational
hygienists.

The Lilliefors test for normality is an adaptation of the
Kolmogorov-Smimov test for cases where the mean and vari-
ance of the postulated normal distribution are estimated from the
sample.“'® This test employs the single largest discrepancy
between the empirical distribution function estimated from the
sample and the postulated distribution function as a measure of
goodness-of-fit. The Kolmogorov-Smirnov tests are sensitive to
outliers and are generally less powerful than tests that employ all
data values (e.g., the W test)."? However, use of the Lilliefors
test is simple; it has been recommended for applications to
occupational exposures"®; and it has been used by Hines and
Spear®” and by Rappaport™® to evaluate the lognormality of
occupational exposures.

THE RATIO METRIC

As mentioned above, the proposed ratio metric compares the
ratio of two estimators of the mean; i.e., the direct or simple
estimate of the mean (y) and the maximum likelihood estimate
of the mean of a lognormal distribution (x.). If (¥, ¥2, -, ¥2)
represent a set of random, independent exposures derived from
a lognormal distribution with mean . and variance o2, the
estimates of the mean and the variance of the distribution of y
are given by

M

<l
]
=R

-

Yi

i=1

and

s2=ﬁ2(yi—§)2 @

i=1
The estimate of the mean y is unbiased regardless of the
underlying distribution. If x; = In(y;), then (x,, x5, ..., X,)
represents a sample of log-transformed exposures with a nor-
mal distribution (mean p, and variance o). The estimated
mean and variance from this distribution are designated x; and
s2 where

- 1 i
="K @)
i=1

and

n

1 —
S Y, (—x)
i=1

st =

@)

The maximum likelihood estimate of the mean of a lognor-
mal distribution, X, is computed as

®)

ic=cxp[iL+%sf]
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This estimate depends strictly on
the validity of the lognormal as-
sumption. That is, X, is an appro-
priate estimate of the mean
exposure level only when the data
are sampled from a lognormal dis-
tribution."® (A maximum likeli-
hood estimate requires that all
component estimates be maximum
likelihood. The sample variance
st does not meet this requirement
completely as the denominator
contains n — 1 rather than n.)

The ratio, y/ X_, is easily com-
puted directly from simple de-
scriptive statistics available in all
statistical software and on many
calculators. The ratio is close to 1
when the distribution is lognormal
and deviates from 1 when the dis-
tribution deviates from lognormal-
ity. The expected value of the ratio
is slightly biased from 1."® The
amount of bias depends on both
the sample size and the parameters
of the distribution.

The behavior of the ratio
y/X. was examined by com-
puter simulation. Simulations
were performed by using System
S software'” on a Sun 3/50 work
station (Sun Microsystems, Fre-
mont, Calif.). One thousand sam-
ples of size n =5 to n = 50 were
drawn randomly from lognor-
mal distributions with specified
means and variances and foreach
sample the ratio y/ X, was com-
puted. Thus, the sample esti-
mates of the mean and variance
of 1000 values of the ratio were
obtained for each sample size.

Table I shows values of the
mean of the ratio y/x, for the
simulated lognormal distribu-
tions. The columns reflect differ-
ent values of the coefficient of
variation o, /|, where |1, and G,
are the true mean and standard
deviation of the lognormal distri-
bution. The geometric standard
deviations [0, = exp(cy)] corre-
sponding to the coefficients of
variation are also shown for G,
ranging from 1.7 to 5.4. The re-
lation between ¢, and 6/l is

TABLE [. Mean of the Ratio y/x,

ovA=05 ov, =1 ov, =2 cv, =3 cv, =4
Sample Size 02=17 0g=2.3 0g=36 0g=4.6 0g=54
n=>5 0.9753 0.9218 0.8073 0.7279 0.6692
n=10 0.9874 0.9546 0.8912 0.8158 0.7670
n=20 0.9938 0.9751 0.9434 0.9010 0.8649

n =230 0.9958 0.9844 0.9543 0.9275 0.8921

n =50 0.9976 0.9914 0.9843 0.9679 0.9308

Acv, = coefficient of variation = og/ue.

Bog = geometric standard deviation.

TABLE Il. Variance of the Ratio y/x,

v =05 ov, =1 ov =2 o, =3 oV, =4

Sample Size 02=17 0,=2.3 0,=3.6 0y =4.6 0y=54

n=25 0.00050 0.00540 0.02799 0.04457 0.06029
n=10 0.00017 0.00307 0.02502 0.04920 0.06664
n=20 0.00008 0.00199 0.02794 0.06530 0.07138
n =30 0.00005 0.00147 0.02278 0.06406 0.07988
n =50 0.00004 0.00105 0.01793 0.05463 0.05671

Acv, = coefficient of variation = o¢/uc.

'30g = geometric standard deviation.

TABLE 1ll. Selected Percentiles of the Ratio y/x,

n oclue 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99
5 0.5 0.8898 0.9179 0.9300 0.9499 0.9943 0.9957 0.9968 0.9980
5 1 0.6618 0.7130 0.7665 0.8287 0.9877 0.9933 0.9964 1.0023
5 2 0.2483 0.3701 0.4658 0.5727 0.9745 0.9876 0.9967 1.0230
5 3 0.1609 0.2258 0.3082 0.4163 0.9597 0.9776 0.9899 1.0043
5 4 0.0796 0.1323 0.1981 0.3000 0.9571 0.9786 0.9905 0.9991

10 0.5 0.9419 0.9547 0.9635 0.9703 0.9992 1.0034 1.0069 1.0142

10 1 0.7974 0.8274 0.8544 0.8778 1.0048 1.0279 1.0496 1.0983

10 2 0.5358 0.5941 0.6511 0.7097 1.0317 1.1359 1.2187 1.3658

10 3 0.3002 0.3870 0.4650 0.5476 1.0294 1.1406 1.3286 1.4851

10 4 0.2517 0.2790 0.3569 0.4441 1.0353 1.1382 1.3260 1.5769

20 0.5 0.9697 0.9750 0.9793 0.9831 1.0029 1.0073 1.0110 1.0196

20 1 0.8672 0.8860 0.9049 0.9220 1.0209 1.0415 1.0667 1.0959

20 2 0.6322 0.6877 0.7499 0.7881 1.0880 1.1897 1.2711 1.5791

20 3 0.4752 0.5542 0.6091 0.6634 1.1217 1.2637 1.4604 1.8856

20 4 0.3946 0.4664 0.5298 0.5969 1.1635 1.3282 1.4844 1.8812

30 0.5 0.9773 0.9809 0.9839 0.9872 1.0039 1.0072 1.0111 1.0161

30 1 0.9058 0.9136 0.9269 0.9408 1.0314 1.0505 1.0691 1.1010

30 2 0.7217 0.7499 0.7771 0.8184 1.0980 1.1742 1.3001 1.5116

30 3 0.6013 0.6283 0.6735 0.7155 1.1403 1.2844 1.4897 1.9127

30 4 0.4612 0.5326 0.5792 0.6378 1.1547 1.3270 1.5585 2.1608

50 0.5 0.9839 0.9859 0.9877 0.9907 1.0047 1.0074 1.0102 1.0141

50 1 0.9309 0.9378 0.9448 0.9545 1.0302 1.0479 1.0656 1.0940

50 2 0.7960 0.8162 0.8367 0.8662 1.1214 1.2097 1.3251 1.5159

50 3 0.6598 0.7026 0.7503 0.7811 1.1656 1.3059 1.5113 1.7526

50 4 0.5899 0.6233 0.6633 0.7021 1.1876 1.3749 1.5887 1.8692
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The rows of Table I reflect different sample sizes used to
compute the two estimates of the mean and thus the ratio y/x,. It
is evident that the ratio is least biased from 1 when the sample size
is large and the variability is small. As variability of the distribution
increases and as sample size decreases, the ratio decreases.

In Table I the range of variances covers most exposure scenarios
encountered in practice. For situ-

o. /U, < 2), a sample size of 20 is adequate to determine
distributional fit with marginal improvements obtained by
larger sample sizes.

It is important to note that the ratio metric does not constitute
a rigorous statistical goodness-of-fit test because the theoretical
distribution function of the test statistic is unknown. The ratio
metric is best thought of as an ad hoc measure of goodness-of-fit
to the lognormal distribution, which has the advantage of being
an objective measure, unlike probability plotting.

ations where groups of individual

workers’ mean exposures have

been summarized by lognormal e« .

distributions, G, has usually been T -

less than 3. |5 - o ————— T ©
The variance of the 1000 val- s 4 ””””

ues of the ratio is shown in Table e

II. As in Table I, the columns 1.4 Z

reflect different values of the / e

coefficient of variation ranging 1.3 4 I

from 0.5 to 4 with corresponding
geometric standard deviations G,
of 1.7 to 5.4. The rows reflect the
impact of the sample size on the
estimated ratio y/ X.. It is evident
that as sample size decreases
and the coefficient of variation

increases, the variance increases.
Percentiles for the ratio met-
ric were also computed for vari-
ous sample sizes and ranges of
variances. Table III gives se-
lected percentiles ranging from
1% to 99%. For example, if n =
20 and G, /p, = 1, the ratio y/ X,
computed from a sample of log-
normally distributed data would
be expected to fall between 0.89
and 1.07 95% of the time. Amea-
sure of fit to the lognormal dis-
tribution, therefore, translates to
determining whether the ratio
computed for the group of expo-
sures is extreme as compared
with the percentiles in Table III.
Figure 6 displays the upper
97.5 and lower 2.5 percentiles
of the ratio metric for different
values of the coefficient of vari-

ation 6, /p... In the legend, 6, /)L,

0.9 1

><||*<|

Lg}

0.8 1

0.7 1

0.6 1

0.5 1

0.4 1

0.3 1

0.2 1

0.1

is abbreviated as cv.. The upper r T
and lower bounds represent a
95% confidence band about
the ratio. It is evident from this
plot that in cases where the geo-
metric standard deviation is
less than 3.6 (corresponding to

FIGURE 6. Upper 97.5% and lower 2.5% quantiles of the ratio y/ X,

—
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USING THE RATIO METRIC

The ratio metric is simple to apply to exposure data. After the
data have been collected, the two estimates of the mean y and
X, are calculated and their ratio computed. The estimated coeffi-
cient of variation s/y is also calculated. Table HI or Figure 7 can
then be used to evaluate the conjecture that the observed ratio
arose by chance under the condition that the sampled population
of exposures has a lognormal distribution. The estimated coeffi-
cient of variation and the sample size dictate which row in Table
III is used. Alternately, the appropriate upper and lower bounds
are selected in Figure 6 based on the coefficient of variation and
sample size. If the ratio is not extreme (lies within an expected
range), it is reasonable to conclude that the data are adequately
described by a lognormal distribution. If the ratio is extreme
(exceeds a prespecified percentile), then a conclusion of lognor-
mality may not be appropriate. A probability plot of the data may
yield information about how to proceed with the data analysis.
For example, the probability plot may indicate the presence of a
bimodal distribution or of one or more outliers.

THE DATA SETS

Two occupational data sets will be used for illustration. The first
consists of 592 full-shift (8-hr) exposures to inorganic mercury
measured daily for an 8-week period.® Between 26 and 40
measurements were obtained per worker. Random selection of
individuals and time periods for monitoring was unnecessary
because all workers were monitored for 40 consecutive work
periods. Cases with less than 40 measurements per worker reflect
either absenteeism or losses of samples.

The second data set consists of randomly collected samples
of benzene exposures.'® Full-shift (12-hr) benzene exposures of
57 refinery operators within six job groups were measured over
a 3-month period. (Some operators alternated working in two
job categories during this period and were monitored for both
groups.) Sampling was performed with 3M organic vapor moni-
tors (3M Company, St. Paul, Minn.) with analysis by capillary
gas chromatography with flame ionization detection (HP5790A,
Hewlett-Packard, Palo Alto, Calif.). Random selection of work-
ers within job groups was unnecessary because all workers in
each job group were monitored. Stratified random sampling was
used to select the periods for monitoring, such that shifts were
selected randomly for monitoring within each 7-day period.
Between 2 and 11 measurements were obtained per worker.

Benzene exposure values that were less than the analytical
detection limit (0.0098 ppm) were set at two-thirds of the detec-
tion limit (DL) for the purposes of this analysis. That is, all values
measured as <0.0098 ppm were treated as if they were measured
as 0.0065 ppm. The choice of 2/3 x DL is based on the assump-
tion of a proportional distribution for values below the DL. This
procedure was used because it results in a less biased estimate of
the worker’s mean exposure, ¥,, than elimination of the data or
other simple substitution methods in cases of moderate variabil-
ity (0, < 3) and moderate truncation (less than 30%)."” The
optimal approach for replacement of values below the DL is
based on maximum likelihood estimation®; however, this is not
a simple procedure, and adequate estimates of the mean may be

2 —~
1 —
<]
=
g 0 7
N
-1 —
-2 -~
T T T T T T T
5 4 -3 2 1 0 1
In (air concentration of benzene) in ppm
FIGURE 7. Benzene Group 2

obtained by substitution. For example, Hallez and Derouane®"
compared substitution of 1/2 x DL and 2/3 x DL with the true
value of the arithmetic mean of simulated lognormal distribu-
tions and determined that substitution of 2/3 x DL provided a
better estimate of the arithmetic mean for geometric standard
deviation up to 3 and censoring ranging from 0% to 50%.
Similarly, Hornung and Reed® compared substitution of 1/2 x
DL and 0.707 x DL with the maximum likelihood approach for
estimating the geometric mean and suggested the use of 0.707 x
DL in cases where the geometric standard deviation is less than
3. A separate investigation showed that substitution of 1/2 x DL
produces estimates of the geometric mean comparable to or
better than complicated replacement techniques when the geo-
metric standard deviation equals 2 for truncation up to 80%.%”

For the mercury data, goodness-of-fit tests were applied both
to the 16 individual (within-worker) distributions of exposures
and to the between-worker distribution (distribution of worker’s
mean exposures, values of y;). For the benzene data, goodness-
of-fit tests were applied to the between-worker distributions for
the six job categories.

Table IV displays the sample estimates of the mean and
standard deviation of the log-transformed air concentrations for
the mercury and benzene workers. Units for mercury air concen-
trations are micrograms per cubic meter (Lg/m®) and for benzene
are parts per million (ppm). The number of measurements or
workers is also given. Benzene Groups 3A, 4A, and 5A are
subsets of Groups 3, 4, and 5.

RESULTS

Table V lists the results of the Lilliefors test, the W test, and the
values of the ratio metric for the two data sets. For the two formal
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FIGURE 10. Benzene Group 3A
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FIGURE 9. Benzene Group 5
|

goodness-of-fit procedures, a 5% significance level was used.
For the ratio metric the 2.5 and 97.5 percentiles were used from
Table III. Interpolation was based upon observed values of s/y
and n. The columns display the calculated test statistic, the 5%
critical value or range, and the decision of whether to consider
the underlying distribution as lognormal for each of the three
procedures. Table V shows that for all cases except one, the same

2 —
1 -
Q
2
5 0
N
_1 -
-2 -
T T T T T T T
5 -4 3 -2 1 0 1

In (air concentration of benzene) in ppm

FIGURE 11. Benzene Group SA

decision regarding lognormality results from the W test and the
ratio metric. The exception (Worker 14) is a borderline case.
Log-probability plots of selected workers and groups are pre-
sented in Figures 1-5 and 7-11. Figures 1 and 2 indicate that the
plots for Mercury Workers 1 and 4 are approximately linear. Table
V indicates that for these workers each of the three goodness-of-fit
procedures suggests the underlying distribution to be lognormal.

499

AM. IND. HYG. ASSOC. J. (52) / November 1991



TABLE IV. Sample Estimates of Parameters of
the Distribution of Workers’ Exposures to
Mercury and Benzene

Worker/Group nA xB 5,.° 5,2
MercuryE

worker 1 40 3.19 0.437 1.5

2 40 3.12 0.576 1.8

3 30 2.84 0.439 1.6

4 39 3.60 0.504 1.7

5 40 2.69 0.509 1.7

6 38 3.00 0.321 1.4

7 38 3.04 0.559 1.7

8 40 2.83 0.460 1.6

9 26 3.12 0.430 1.5

10 40 2.97 0.403 1.5

11 38 2.96 0.748 21

12 40 2.54 0.483 1.6

13 40 2.74 0.541 1.7

14 34 3.02 0.514 1.7

15 39 2.81 0.605 1.8

16 30 3.1 0.589 1.8

Group 16 3.11 0.254 1.3
Benzene®

group 1 15 -4.511 0.587 1.8

2 14 -4.372 0.446 1.6

3 19 -3.045 1.516 4.6

4 17 -3.811 1.382 4.0

5 15 -3.785 1.178 3.2

6 5 -4.555 0.403 1.5

3A 15 -3.747 0.575 1.8

4A 10 -4.614 0.279 1.3

5A 14 -4.033 0.713 2.0

An = number of measurements or workers.
Bk, = mean of the logarithms of the air concentrations.

Cs, = standard deviation of the logarithms of the air
concentrations.
Ds9 = exp(s_) = geometric standard deviation.

EMercury concentrations in pg/m?3.
FBenzene concentrations in ppm.

Figure 3 illustrates that for Mercury Worker 11, the log-
probability plot is fairly linear in the lower region, but not for the
upper eight data points, which appear to come from a different
distribution. One plausible explanation for a mixture of two
distributions is that the worker performed different tasks on the
8 days that reflect higher exposures, e.g., one day each week
might have been spent on maintenance or cleaning tasks. Thus,
exposures on those days in which routine duties are performed
may constitute one distribution and exposures on workdays with
periodic or less routine tasks may constitute a second distribu-
tion. In the absence of task-activity descriptions, this explanation
remains a conjecture, but the existence of two govemning distri-
butions seems clear. As Table V indicates, all three goodness-of-
fit procedures lead to the same decision that the underlying
distribution should not be considered as lognormal.

The plots in Figures 4 and 5 are linear with the exception of
the highest one or two points, which appear to be outliers. For
Worker 12, Table V indicates that both the W test and the ratio

metric result in rejection of the hypothesis of lognormality at the
5% level; the less discriminating Lilliefors test results in accep-
tance of the null hypothesis. For Worker 14, the ratio metric
indicates that the data are not lognormal, and the Lilliefors and
W tests result in acceptance of lognomality. Comparison of the
W statistic with the critical value shows that the decision to
accept or reject lognormality is a borderline case.

Figure 7 presents the plot for Benzene Group 2. As stated
earlier, each point in this plot represents the estimated mean
exposure y; for an individual worker. This plot indicates that
these workers constitute a monomorphic group, i.e., a group of
workers whose mean exposures comprise a single lognormal
distribution.’” All three goodness-of-fit procedures result in ac-
ceptance of a decision of lognommality in this case.

The log-probability plot for Benzene Group 3 (Figure 8) reveals
that 4 workers have exposures that are significantly higher than the
other 15 members of the group. Thus, the first 15 workers appear to
comprise a monomorphic group but not the 4 individuals with the
highest exposures. The upper four workers are presumed tobe either
performing different tasks or the same tasks in a different manner
than the other members of the job group. The exposures of Benzene
Group 3 are not lognormally distributed as judged by either the W
test or the ratio metric. As with the case of Mercury Worker 12, the
Lilliefors test is not sufficiently discriminating to reject the hypothe-
sis of lognormality.

Figure 9 shows that the mean exposures for 14 of the 15
workers from Benzene Group 5 are approximately lognormally
distributed. The highest exposure appears to be an outlier. Again,
the W and ratio measures result in a decision that exposures of
the group as a whole are not lognormally distributed. The Lillie-
fors test does not reject the lognormal hypothesis.

The data for Benzene Groups 3 and 5 were reanalyzed after
removing the upper points from each group, which appear to be
from different distributions. Exposures of workers in the new
subgroups, designated as Groups 3A and 5A, are shown in
Figures 10 and 11. In both cases, the plots are approximately
linear and thus the subgroups appear to constitute monomorphic
groups. All three goodness-of-fit procedures lead to the same
conclusion that these subgroups can be considered as lognormal.

In designing the sampling strategy for the benzene workers,
task and activity patterns were used to initially classify workers
into observational groups based on job title, location, and type
of work. As shown above, data analysis can allow groups to be
reclassified and can identify individuals whose exposures re-
quire additional scrutiny and, possibly, control measures.

In summary, these results indicate that both the W test and
the ratio metric almost always yielded conclusions that were
consistent with the appearances of the probability plots. How-
ever, it is evident that the Lilliefors test was less discriminatory
than either the W test or ratio metric, and evenin cases of obvious
deviations from linearity in the log-probability plot (e.g., Ben-
zene Groups 3 and 5), the null hypothesis of lognormality was
sometimes not rejected.

It should be noted from Table V and the figures that, for these
two data sets, there is no evidence that the lognormal distribution
cannot be used to describe both the within- and between-worker
distribution.
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TABLE V. Comparison of Three Goodness-of-Fit Measures for Distributions of Workers’

Exposures to Mercury and Benzene

Lilliefors Test? W Test* Ratio Metric*
Worker/ Ll Crit. Accept w Crit. Accept Critical Range Accept
Group Stat. Value H,?8 Stat. Value H,?8 Ratio Lower Upper H, 78
Mercury
worker 1 0.063 0.140 yes 0.986 0.940 yes 0.995 0.980 1.007 yes
2 0.111 0.140 yes 0.965 0.940 yes 1.015 0.980 1.016 yes
3 0.061 0.162 yes 0.970 0.927 yes 0.998 0.984 1.007 yes
4 0.102 0.142 yes 0.957 0.939 yes 1.009 0.986 1.010 yes
5 0.098 0.140 yes 0.962 0.940 yes 0.997 0.986 1.010 yes
6 0.084 0.144 yes 0.971 0.938 yes 0.996 0.979 1.007 yes
7 0.144 0.144 yes 0.950 0.938 yes 0.983 0.979 1.016 yes
8 0.125 0.140 yes 0.927 0.940 no 1.014 0.980 1.007 no
9 0.096 0.173 yes 0.936 0.920 yes 1.006 0.982 1.007 yes
10 0.081 0.140 yes 0.944 0.940 yes 1.005 0.980 1.007 yes
11 0.187 0.144 no 0.841 0.938 no 1.084 0.979 1.037 no
12 0.082 0.140 yes 0.927 0.940 no 1.026 0.980 1.007 no
13 0.080 0.140 yes 0.962 0.940 yes 1.012 0.980 1.016 yes
14 0.089 0.151 yes 0.936 0.933 yes 1.029 0.985 1.011 no
15 0.149 0.142 no 0.940 0.939 yes 1.020 0.980 1.021 yes
16 0.105 0.162 yes 0.909 0.927 no 0.963 0.984 1.020 no
Group 0.087 0.221 yes 0.959 0.887 yes 0.999 0.973 1.006 yes
Benzene
group 1 0.226 0.229 yes 0.748 0.881 no 1.070 0.953 1.011 no
2 0.152 0.237 yes 0.906 0.874 yes 1.004 0.970 1.005 yes
3 0.188 0.203 yes 0.828 0.901 no 1.250 0.595 1.242 no
4 0.188 0.215 yes 0.769 0.892 no 1.897 0.628 1.192 no
5 0.144 0.229 yes 0.816 0.881 no 1.532 0.745 1.195 no
6 0.119 0.396 yes 0.987 0.762 yes 0.985 0.930 0.996 yes
3A 0.075 0.229 yes 0.970 0.881 yes 0.984 0.953 1.011 yes
4A 0.145 0.280 yes 0.933 0.842 yes 0.998 0.963 1.003 yes
5A 0.097 0.237 yes 0.845 0.803 yes 1.006 0.913 1.022 yes

AThe critical values for each test reflect 5% significance levels.
BH,: The data are a random sample from a lognormal distribution.

CONCLUSIONS

Occupational hygienists need to classify individuals into groups
in order to manage exposure monitoring for an occupational
cohort. One approach is to establish monomorphic groups, " that
is, workers whose individual mean exposures comprise discrete
lognormal distributions. In the past hygienists have relied on the
log-probability plot to evaluate distributional assumptions. One
reason for the failure to supplement this subjective method has
been the inconvenience of performing formal statistical tests. A
new method to help in the evaluation of the goodness-of-fit to
the lognormal model that is a simple extension of calculations
made routinely by many occupational hygienists has been de-
scribed. Occupational hygienists are encouraged to employ the
ratio metric in determining validity of the lognormal assumption.

It is important to note that all goodness-of-fit tests have
certain limitations. When a test fails to reject the null hypothesis
the conclusions are not always clear-cut. The null hypothesis can
be “accepted” for two reasons: either it is true or insufficient
evidence exists to disprove it. When the sample size is small, the
null hypothesis of model fit will almost always be accepted,

except in extreme cases. Thus, a goodness-of-fit test with small
sample sizes may not be very useful to determine whether a
specific distribution “fits” the data. Only when the test results
show that the lognormal model doesn’t fit the data are the results
unequivocal.

Goodness-of-fit tests also have problems when the sample size
is very large because it becomes very difficult to disprove the
alternative hypothesis. This failure to fit the distribution again can
be attributed to two possible reasons: either the data truly don’t fit
the model or the test has become so discriminating because of the
large sample size that very small quirks in the data cause rejection
of the null hypothesis. When this occurs, a probability plot can often
distinguish between these two alternatives.

In summary, the probability plot is an extremely useful tool
for visualizing data and identifying anomalies or trends, and the
authors do not propose abandoning this tool. Rather, occupa-
tional hygienists can easily improve on this approach by com-
puting the ratio of two means as a first step in determining
lognormality of exposures. Of course, the W test should be used
when a formal test of goodness-of-fit is required. However, in
the large majority of cases, computation of the ratio metric
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provides a useful measure of goodness-of-fit to a lognormal
model that is both simple and accurate.

10.

11.
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New Handbook Identifies Immunotoxic Substances

The potential for substances used in industry, transportation, and households to be simultaneously
beneficial and toxic to human life creates a legislative and regulatory dilemma. The challenge of
balancing a strong economy, one that delivers products that people need and desire, with the health
and safety of the populace seems to be a tremendous burden. To help achieve this balance, the
Office of Technology Assessment, Congress of the United States, has released Identifying and
Controlling Immunotoxic Substances. This 104-page book is available in paperback for $4.50
(stock number 052-003-01231-6) by sending prepayment to Superintendent of Documents, Washing-
ton, DC 20402-9325. To order with Visa or MasterCard, phone (202) 783-3238.
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