

Association Between Cardiovascular Disease Risk Factors and Rotator Cuff Tendinopathy

A Cross-Sectional Study

Kara Arnold Applegate, BS, Matthew S. Thiese, PhD, MSPH, Andrew S. Merryweather, PhD, Jay Kapellusch, PhD, David L. Drury, MD, MPH, Eric Wood, MD, MPH, Richard Kendall, DO, James Foster, MD, MPH, Arun Garg, PhD, and Kurt T. Hegmann, MD, MPH

Objective: Recent evidence has found potential associations between cardiovascular disease (CVD) risk factors and common musculoskeletal disorders. We evaluated possible associations between risk factors and both glenohumeral joint pain and rotator cuff tendinopathy. **Methods:** Data from WISTAH hand study participants ($n = 1226$) were assessed for associations between Framingham Heart Study CVD risk factors and both health outcomes. **Results:** A strong association was observed between CVD risk scores and both glenohumeral joint pain and rotator cuff tendinopathy. Peak odds ratios (ORs) of the adjusted models were 4.55 [95% confidence interval (95% CI) 1.97 to 10.31] and 5.97 (95% CI 2.12 to 16.83), respectively. The results show a dose-response trend of increasing risk. **Conclusions:** Individual risk factors were associated with both outcomes. Combined, CVD risk factors demonstrated a strong correlation with glenohumeral joint pain and an even stronger correlation with rotator cuff tendinopathy. Results suggest a potentially modifiable disease mechanism.

Musculoskeletal disorders are a common reason patients seek medical treatment, with the third most common complaint being shoulder dysfunction and/or pain.^{1–5} Treatment of shoulder disorders is a substantial contributor to health care costs, totaling \$7 billion in 2000.^{6–10} The 1-month period prevalence of shoulder pain ranges from 19% to 31% and the cumulative lifetime prevalence ranges from 7% to 67%.¹¹ Musculoskeletal shoulder disorders are known to frequently recur and are often related to a perceived or actual overall decline in health.^{12–17}

The pathophysiology of rotator cuff tendinopathy is somewhat unclear. There are two main competing theories. In the 1920s, a biomechanical theory described by Meyer^{18,19} and later advanced by Neer,^{20,21} stated that tendinopathy was based on the impact of age-related degenerative processes and impingement of the tendon.^{20,22–25} The other competing theory is based on reduced

Learning Objectives

- Discuss recent evidence linking cardiovascular disease (CVD) risk to common musculoskeletal disorders.
- Summarize the new findings on the association between CVD risk and specific shoulder-related musculoskeletal problems.
- Identify possible mechanisms of the observed associations, including potentially modifiable mechanisms.

vascular supply to the rotator cuff tendons and includes the rubric of vascular compromise by atherosclerotic-related disease processes.^{17,26} It is highly possible that a combination of the factors proffered by these two theories is the disease mechanism for tendinopathy. More recently, multiple individual atherosclerosis risk factors have been found to affect tendinopathies, including obesity,^{11,27–29} smoking,^{16,30–33} hypercholesterolemia,³⁴ and diabetes mellitus (DM).^{17,35–37} Despite these potential pathophysiological patterns, to our knowledge, a risk-stratified combination of cardiovascular disease (CVD) risk factors has not yet been reported.

In addition to the above biological factors, psychosocial and work-related factors have also been found to be associated with shoulder pain, rotator cuff tendinopathy, and/or related disorders. Some of these risks include job dissatisfaction,^{38,39} low social support,^{39–41} and symptoms of depression.⁴² Job physical strain has also been associated with shoulder disorders and tendinopathy.^{43–45}

The purpose of this large study of 1226 workers from diverse work environments was to evaluate the possible relationships between CVD risk factors and (i) glenohumeral joint pain and (ii) rotator cuff tendinopathy. We hypothesize that a risk-stratified combination of CVD risk factors, using a well-validated model for CVD,⁴⁶ is associated with rotator cuff tendinopathy.

METHODS

This study was approved by the Institutional Review Boards of the University of Utah and University of Wisconsin-Milwaukee. The baseline data used in this cross-sectional study were from the WISTAH hand study.⁴⁷ Detailed publications of the WISTAH study methods were previously published,^{47,48} therefore, a summary follows.

In the WISTAH hand study, workers were recruited from 17 diverse production facilities of 15 employers, including food processing, manufacturing, assembly lines, and office jobs from 2001 through 2007. The 17 facilities were located in Wisconsin, Utah, and Illinois. Participants provided informed consent, and no incentives were paid for participation. Participants were enrolled from worksites as convenience samples based on a pre-calculated sample size that targeted workers based on the physical demands of the job: one-third from low, one-third from medium, and one-third from highly physically demanding jobs. The presence or absence of any

From the Rocky Mountain Center for Occupational and Environmental Health (RMCOEH) (Ms Applegate, Drs Thiese, Wood, Hegmann), Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah (Dr Merryweather), Center for Ergonomics, University of Wisconsin-Milwaukee (Drs Kapellusch, Foster, Garg), Veterans Administration Medical Center, Milwaukee, Wisconsin (Dr Drury), and Division of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, Utah (Mr Kendall).

This study was funded, in part, by a grant from the National Institute for Occupational Safety and Health (NIOSH/CDC) 1R01OH010474-01. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Authors Hegmann, Applegate, Thiese, Merryweather, Kapellusch, Drury, Wood, Kendall, Foster, and Garg have no relationships/conditions/circumstances that present potential conflict of interest.

The JOEM editorial board and planners have no financial interest related to this research.

Address correspondence to: Kurt T. Hegmann, MD, MPH, Professor and Center Director, Rocky Mtn. Center for Occupational & Environmental Health, University of Utah, 391 Chipeta Way, Suite C, Salt Lake City, UT 84108 (Kurt.hegmann@hsc.utah.edu).

Copyright © 2016 American College of Occupational and Environmental Medicine

DOI: 10.1097/JOM.0000000000000929

symptoms was not an inclusion or exclusion criterion. A few workers were excluded for severe hand deformities, severe arthritis, or pending retirement.

The Health Outcomes Assessment Team was responsible for collecting baseline health data through questionnaires and structured interviews. The computerized questionnaire consisted of 266 items, including demographics, hobbies, physical activity, job satisfaction, hyperlipidemia, hypertension (HTN), DM, and depression. During the subsequent structured interview, 483 questions were reviewed with a body diagram to help localize symptoms. A standardized musculoskeletal physical examination was performed by a physician, including inspection, palpation, range of motion, and special maneuvers. Body mass indices (BMIs) were calculated from measured heights and weights. Blood pressure (BP) was measured with an automated cuff after participants had been seated for at least 5 minutes. Each participant completed the questionnaire and physical examination regardless of symptoms.

The data were used to define the following health outcomes: (i) glenohumeral joint pain, defined as any pain in the past month (1-month period prevalence) in the right, left, or bilateral glenohumeral areas, and (ii) rotator cuff tendinopathy, defined as glenohumeral joint pain in addition to a positive supraspinatus test against resistance (Empty Can test).

Each worker's job was measured and videotaped by the Job Exposure Assessment Team. Job measurements were used to calculate job physical strain, including from six primary factors that included force, repetition rate, posture, speed of work, duration of exertion, and duration of task per day. After measurement of each

worker's job, a composite measure of physical job strain, a Strain Index score, was calculated.^{47,49,50}

For this study, each worker's CVD risk score was calculated. CVD variables were scaled in accordance with a modified Framingham Heart Study's risk assessment (Table 1).⁴⁶ A CVD risk score was calculated for every participant on the basis of gender, age, history of high cholesterol (>200 mg/dL), BP (previous diagnosis of HTN and current systolic BP reading), a diagnosis of DM, and a history of smoking or tobacco use. Individualized CVD risk scores could theoretically range from 0 to 29. However, in a working-age population, the upper end of the spectrum was anticipated to have little statistical power and an *a priori* decision was made to collapse high end scores into one group of at least 18 points.

Statistical Analyses

Analyses were run using SAS 9.4 software, Cary NC. Two participants with missing shoulder data were removed from the analyses. Logistic regression was performed to assess the risk between CVD risk factors and (i) glenohumeral joint pain and (ii) rotator cuff tendinopathy. Each level of CVD risk from 0 to 18+ was analyzed, and statistical significance was set at a *P* value less than 0.05. Univariate analyses were performed with each variable to evaluate its association with each health outcome. Those demonstrating associations were then added to a multivariate logistic regression model to assess independence and influence of confounders. Potential confounding variables with meaningful evidence of association with glenohumeral joint pain (*P* < 0.20) were considered for addition to the multivariate models. The

TABLE 1. Modified Framingham CVD Risk Scores

Score	Age, Years	High Cholesterol Diagnosis	Systolic BP + No High BP Diagnosis	Systolic BP + Yes High BP Diagnosis	Tobacco Use	Diabetes Mellitus
(A) For women						
0	≤34.9	No	<130	<120	No	No
1			130–139			
2	35–39.9		140–149	120–129		
3		Yes		130–139	Yes	
4	40–40.9		150–159			
5	45–49.9		≥160	140–149		Yes
6				150–159		
7	50–54.9			≥160		
8	55–59.9					
9	60–64.9					
10	65–69.9					
11	70–74.9					
12	≥75					
(B) For men						
0	≥34.9	No	<130	<120	No	No
1			130–139			
2	35–39.9	Yes	140–159	120–129		
3			≥160	130–139		Yes
4				140–159		
5	40–40.9			≥160	Yes	
6	45–49.9					
7						
8	50–54.9					
9						
10	55–59.9					
11	60–64.9					
12	65–69.9					
13						
14	70–74.9					
15	≥75					

Points allotted based on the Framingham Heart Study CVD risk tables.⁴⁶

BP, blood pressure; CVD, cardiovascular disease; mm Hg; high cholesterol defined as a laboratory test result >200 mg/dL.

TABLE 2. Population Demographics Stratified Separately for Shoulder Pain and Rotator Cuff Tendinopathy

CVD Risk Factors* Variable (N = 1,226)	Shoulder Pain (n = 386, 31.5%)	No Shoulder Pain (n = 840, 68.5%)	RCT (n = 156, 12.7%)	No RCT (n = 1,070, 87.3%)
Age, years	44.8 (10.6)	40.9 (11.6)	45.6 (10.7)	41.6 (11.4)
Gender				
Female	275 (71.2%)	530 (63.1%)	112 (71.8%)	693 (64.8%)
Male	111 (28.8%)	310 (36.9%)	44 (28.2%)	377 (35.2%)
Diabetes mellitus†				
Yes	29 (7.5%)	37 (4.4%)	13 (8.3%)	53 (4.9%)
No	357 (92.5%)	803 (95.6%)	143 (91.7%)	1,017 (95.1%)
Hypercholesterolemia‡,‡				
Yes	84 (21.8%)	135 (16.1%)	34 (21.8%)	185 (17.3%)
No	302 (78.2%)	705 (83.9%)	122 (78.2%)	885 (82.7%)
Hypertension†				
Yes	87 (22.5%)	117 (13.9%)	40 (25.6%)	164 (15.3%)
No	299 (77.5%)	723 (86.1%)	116 (74.4%)	906 (84.7%)
Average systolic BP, mm Hg	129.3 (17.4)	126.9 (16.8)	130.8 (18.3)	127.2 (16.8)
Tobacco use				
Never	184 (47.7%)	404 (48.1%)	78 (50.0%)	510 (47.7%)
Current	109 (28.2%)	230 (27.4%)	44 (28.2%)	295 (27.6%)
Former	93 (24.1%)	206 (24.5%)	34 (21.8%)	265 (24.8%)
CVD risk score	8.4 (4.8)	6.9 (4.7)	8.9 (5.0)	7.2 (4.7)
BMI, kg/m ²	30.2 (6.9)	29.2 (6.6)	29.7 (6.4)	29.5 (6.8)
Physical activity, min/day	25.8 (37.4)	28.1 (39.7)	27.1 (43.8)	27.5 (38.3)
Job satisfaction				
Very satisfied	61 (15.8%)	226 (26.9%)	22 (14.1%)	265 (24.8%)
Satisfied	196 (50.8%)	439 (52.3%)	77 (49.4%)	558 (52.2%)
Neither	90 (23.3%)	130 (15.5%)	41 (26.3%)	179 (16.7%)
Dissatisfied	33 (8.6%)	40 (4.8%)	15 (9.6%)	58 (5.4%)
Very Dissatisfied	6 (1.6%)	5 (0.6%)	1 (0.6%)	10 (0.9%)
Depression				
Never	80 (20.7%)	228 (27.1%)	29 (18.6%)	279 (26.1%)
Seldom	222 (57.5%)	462 (55.0%)	88 (56.4%)	596 (55.7%)
Often	76 (19.7%)	135 (16.1%)	35 (22.4%)	176 (16.5%)
Always	8 (2.1%)	15 (1.8%)	4 (2.6%)	19 (1.8%)
Family problems				
Never	50 (13.0%)	186 (22.1%)	19 (12.2%)	217 (20.3%)
Seldom	232 (60.1%)	474 (56.4%)	88 (56.4%)	618 (57.8%)
Often	80 (20.7%)	133 (16.8%)	40 (25.6%)	173 (16.2%)
Always	24 (6.2%)	47 (5.6%)	9 (5.8%)	62 (5.8%)
Strain Index (per unit)	7.7 (8.3)	7.8 (9.8)	8.2 (9.2)	7.7 (9.4)

Percentages reported as a total of those with or without glenohumeral shoulder pain or rotator cuff tendinopathy. BMI was calculated from measured heights and weights; Diabetes mellitus, hypercholesterolemia, and hypertension were yes/no based on self-reported previous physician diagnosis. BP was measured.

BP, blood pressure; CVD, cardiovascular disease risk index score based on the Framingham Heart Study; RCT, rotator cuff tendinopathy.

*Data reported as averages n (%) or mean \pm standard deviation.

†Average "Yes" responses to reported physician diagnoses.

‡Hypercholesterolemia defined as a laboratory test result >200 mg/dL.

confounders assessed were gender, BMI, physical activity, job satisfaction, depression, family problems, and job physical strain (Strain Index for the typical job task on the right hand). Logistic regression was performed to assess the adjusted model for associations between CVD risk factors and both glenohumeral joint pain and rotator cuff tendinopathy. See Table 1 for modified Framingham CVD risk score by gender.

RESULTS

There were 1226 workers analyzed in this study (Table 2). The average age was 42.1 (± 11.4) years. A majority of the participants were female (n = 805, 65.7%). There were 66 (5.4%) participants with previously diagnosed DM, 219 (17.8%) with hypercholesterolemia, and 204 (16.6%) with HTN. Tobacco use either formerly or currently was common, being reported by 638 (52.0%) participants. Of the total population, 386 (31.5%) reported glenohumeral joint pain in the prior month in the right side, left side, or bilaterally. The point prevalence for rotator cuff tendinopathy, a

diagnosis of both glenohumeral joint pain in the prior month and a positive supraspinatus test, was 156 (12.7%).

The age of those with rotator cuff tendinopathy was greater at 45.6 (± 10.7) than at 41.6 (± 11.4) in those without rotator cuff tendinopathy. The average systolic BP among those with rotator cuff tendinopathy was higher, 130.8 (± 18.3) mm Hg, than in those without, 127.2 (± 16.8) mm Hg. There was a little difference in BMI between the two groups, 29.7 (± 6.4) kg/m² in those with rotator cuff tendinopathy and 29.5 (± 6.8) kg/m² in those without. The average CVD risk scores were higher in the group with rotator cuff tendinopathy 8.9 (± 5.0) than among those without tendinopathy 7.2 (± 4.7).

Each CVD risk factor was analyzed separately to assess associations with (i) glenohumeral joint pain and (ii) rotator cuff tendinopathy (Table 3). Statistically, the older participants were more likely to report glenohumeral joint pain and to be diagnosed with rotator cuff tendinopathy. Females were at an increased risk of glenohumeral joint pain. Gender was not associated with rotator cuff

TABLE 3. Associations Between Individual Variables and Health Outcomes

CVD Risk Factors	Glenohumeral Joint Pain			Rotator Cuff Tendinopathy			
	Variable (N = 1,226)	Cases/Total	OR	95% CI	Cases/Total	OR	95% CI
Age		386/1,226	1.03	1.02–1.04	156/1,226	1.03	1.02–1.05
Gender: Female versus male		275/805 F	1.45	1.11–1.88	112/805 F	1.39	0.96–2.01
		111/421 M			44/421 M		
Diabetes mellitus		29/66	1.76	1.07–2.91	13/66	1.74	0.93–3.28
Hypercholesterolemia		84/219	1.45	1.07–1.96	34/219	1.33	0.88–2.01
Hypertension		87/204	1.81	1.33–2.47	40/204	1.91	1.28–2.83
Systolic blood pressure		386/1,226	1.01	1.00–1.02	156/1,226	1.01	1.00–1.02
Tobacco use							
Never		184/588	(Ref)	—	78/588	(Ref)	—
Current		109/339	1.04	0.78–1.39	44/339	0.98	0.66–1.45
Former		93/299	0.99	0.73–1.34	34/299	0.84	0.55–1.29
BMI, kg/m ²		386/1,226	1.02	1.00–1.04	156/1,226	1.00	0.98–1.03
Physical activity, min/day		386/1,226	1.00	0.99–1.00	156/1,226	1.00	0.99–1.00
Job satisfaction							
Very satisfied		61/287	(Ref)	—	22/287	(Ref)	—
Satisfied		196/635	1.66	1.19–2.30	77/635	1.66	1.01–2.73
Neither		90/220	2.59	1.75–3.82	41/220	2.76	1.59–4.79
Dissatisfied		33/73	3.14	1.82–5.40	15/73	3.11	1.52–6.37
Very dissatisfied		6/11	4.45	1.31–15.06	1/11	1.21	0.15–9.85
Depression							
Never		80/308	(Ref)	—	29/308	(Ref)	—
Seldom		222/684	1.37	1.02–1.85	88/684	1.42	0.91–2.21
Often		76/231	1.62	1.11–2.36	55/231	1.91	1.13–3.24
Always		8/23	1.52	0.62–3.72	4/23	2.03	0.65–6.36
Family problems							
Never		50/236	(Ref)	—	19/236	(Ref)	—
Seldom		232/706	1.82	1.28–2.57	88/706	1.63	0.97–2.73
Often		80/213	2.23	1.47–3.38	40/213	2.64	1.48–4.72
Always		24/71	1.89	1.06–3.84	9/71	1.66	0.71–3.85
Strain Index (per unit)		172/598	1.00	0.98–1.02	71/598	1.01	0.98–1.03

All bold values are $P < 0.05$.

Physical activity defined as the >90 minutes per week between 14 activities with opportunities to add other activities.

Job satisfaction: Responses to the question, (All in all, how satisfied are you with your job?).

Depression: Responses to the question, (How often during the past year have you felt "down", blue or depressed?).

Family problems: Responses to the question, (How often do you have family problems that irritate or bother you?).⁴⁷

BMI, body mass index; CI, confidence interval; CVD, cardiovascular disease; OR, odds ratio.

tendinopathy. Both DM and hypercholesterolemia were statistically associated with glenohumeral joint pain, but not rotator cuff tendinopathy. However, the point estimates were nearly identical, suggesting underpowering for rotator cuff tendinopathy. A diagnosis of HTN was associated with an increased risk of glenohumeral joint pain and rotator cuff tendinopathy. A current or former history of tobacco use was not significantly associated with either health outcome.

Potential confounders were analyzed separately in order to build two multivariate models (Table 3). Increased BMI was associated with an increased risk of glenohumeral joint pain, but not rotator cuff tendinopathy. Physical activity, defined as minutes per day of physical fitness outside of work, was not significantly associated with either health outcome. Depression was modestly associated with glenohumeral joint pain and rotator cuff tendinopathy. Job satisfaction and family problems were significantly associated with glenohumeral joint pain and modestly associated with rotator cuff tendinopathy. The Strain Index scores were not statistically significant with regard to either glenohumeral joint pain or rotator cuff tendinopathy.

Unadjusted analyses were performed to assess associations between each CVD risk score and the risk of having (i) glenohumeral joint pain and (ii) rotator cuff tendinopathy (reported glenohumeral joint pain and a positive supraspinatus test) (Table 4). Statistical significance was present at multiple CVD risk scores for both health outcomes. The data showed a significant trend between CVD risk

scores and glenohumeral joint pain ($P = 0.003$) with a peak OR of 3.75 (95% CI 1.70 to 8.29). The data also showed a significant trend between CVD risk scores and rotator cuff tendinopathy ($P = 0.02$) and a higher peak OR of 4.49 (95% CI 1.66 to 12.2).

Two multivariate models were adjusted for potential confounders from the univariate analyses. These confounders were gender, BMI, job satisfaction, and family problems. The results were largely comparable to the unadjusted rates, although the odds ratios tended to be stronger in the multivariate models (Table 5). There was statistical significance at multiple CVD risk scores for both glenohumeral joint pain and rotator cuff tendinopathy. For glenohumeral joint pain, the trend was stronger ($P < 0.001$) than the unadjusted model and peaked at the highest CVD risk score of 18+ with an OR of 4.55 (95% CI 1.99 to 10.40). For rotator cuff tendinopathy, the trend was also more significant ($P = 0.008$) than the unadjusted model and again peaked at the highest CVD risk score of 18+ with an OR of 5.97 (95% CI 2.12 to 16.83) (Fig. 1).

DISCUSSION

CVD risk factors combined into a modified Framingham CVD risk score demonstrated a strong correlation with both glenohumeral joint pain and rotator cuff tendinopathy. This association remained strong after adjusting for potential confounders of gender, BMI, job satisfaction, and family problems. These results, analyzing baseline data from a large working population in

TABLE 4. Crude OR and 95% CI for Associations Between CVD Risk Scores and Glenohumeral Joint Pain and Rotator Cuff Tendinopathy

CVD Risk Score	Glenohumeral Joint Pain			Rotator Cuff Tendinopathy		
	Cases/Total	OR	95% CI	Cases/Total	OR	95% CI
Ref = 0	24/144	1.0	—	9/114	1.0	—
1	4/21	0.88	0.27–2.87	2/21	1.23	0.25–6.13
2	15/57	1.34	0.64–2.81	6/57	1.37	0.46–4.07
3	19/89	1.02	0.52–2.01	10/89	1.48	0.57–3.81
4	23/106	1.04	0.55–1.98	8/106	0.95	0.35–2.57
5	33/103	1.77	0.96–3.26	11/103	1.40	0.55–3.52
6	17/56	1.64	0.79–3.38	6/56	1.40	0.47–4.15
7	31/108	1.51	0.82–2.79	11/108	1.32	0.53–3.33
8	42/116	2.13	1.18–3.83	13/116	1.47	0.60–3.59
9	13/39	1.88	0.84–4.19	2/39	0.63	0.13–3.05
10	39/91	2.81	1.52–5.19	19/91	3.08	1.32–7.19
11	29/73	2.47	1.29–4.73	16/73	3.28	1.36–7.88
12	20/55	2.14	1.05–4.36	6/55	1.43	0.48–4.24
13	13/49	1.35	0.62–2.95	5/49	1.33	0.42–4.18
14	17/40	2.78	1.28–6.00	6/40	2.06	0.68–6.20
15	11/33	1.88	0.80–4.40	7/33	3.14	1.07–9.22
16	12/24	3.75	1.50–9.39	6/24	3.89	1.23–12.3
17	6/16	2.25	0.74–6.81	3/16	2.69	0.65–11.2
18+	18/36	3.75	1.70–8.29	10/36	4.49	1.66–12.2

All bold values are $P < 0.05$.Glenohumeral joint pain ($P = 0.003$).Rotator cuff tendinopathy ($P = 0.021$).

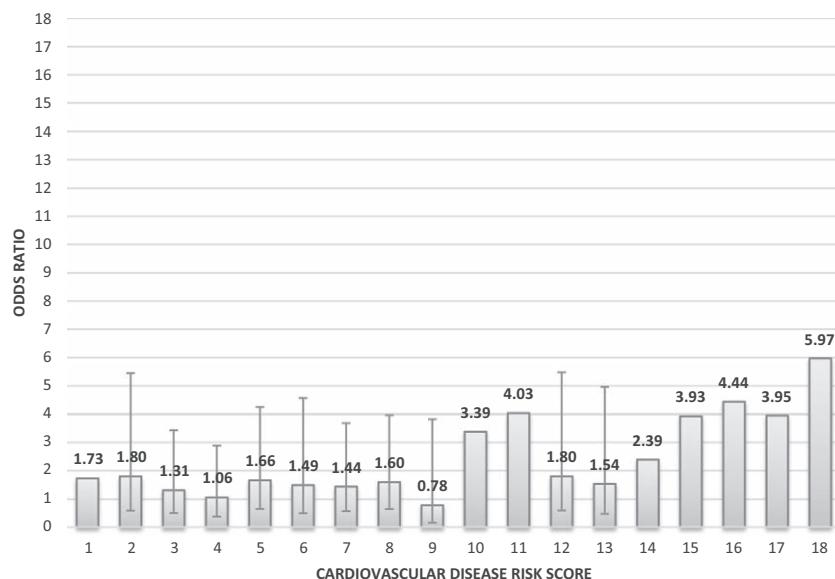
CI, confidence interval; CVD, cardiovascular disease; OR, odds ratio.

multiple industries across three states, suggest that the pathophysiology of rotator cuff tendinopathy is multifactorial and CVD risk factors appear to contribute meaningfully to an underlying disease mechanism. This study adds to a growing body of research that common musculoskeletal disorders are associated with CVD risk

factors, including Achilles tendinopathy, carpal tunnel syndrome, and lateral epicondylitis.^{17,51–53}

Previous evidence has found individual CVD risk factors to be associated with rotator cuff tendinopathy. Multiple studies have reported DM to be associated with rotator cuff tendinopathy and

TABLE 5. Multivariate Adjusted OR and 95% CI for Associations Between CVD Risk Scores and Glenohumeral Joint Pain and Rotator Cuff Tendinopathy


CVD Risk Score	Glenohumeral Joint Pain*			Rotator Cuff Tendinopathy*		
	Cases/Total	OR	95% CI	Cases/Total	OR	95% CI
Ref = 0	24/144	1.0	—	9/114	1.0	—
1	4/21	1.17	0.35–3.98	2/21	1.73	0.33–8.96
2	15/57	1.60	0.74–3.45	6/57	1.80	0.59–5.46
3	19/89	0.86	0.43–1.74	10/89	1.31	0.50–3.13
4	23/106	1.15	0.59–2.22	8/106	1.06	0.39–2.89
5	33/103	2.06	1.09–3.87	11/103	1.66	0.65–4.25
6	17/56	1.84	0.86–3.95	6/56	1.49	0.49–4.57
7	31/108	1.59	0.84–3.00	11/108	1.44	0.56–3.68
8	42/116	2.34	1.27–4.31	13/116	1.60	0.64–3.96
9	13/39	2.28	0.99–5.25	2/39	1.78	0.16–3.82
10	39/91	3.15	1.66–5.95	19/91	3.39	1.42–8.07
11	29/73	2.83	1.44–5.55	16/73	4.03	1.64–9.95
12	20/55	2.57	1.23–5.38	6/55	1.80	0.59–5.47
13	13/49	1.50	0.67–3.34	5/49	1.54	0.48–4.96
14	17/40	3.01	1.34–6.73	6/40	2.39	0.77–7.41
15	11/33	2.20	0.90–5.37	7/33	3.93	1.29–11.99
16	12/24	3.86	1.48–9.86	6/24	4.44	1.37–14.39
17	6/16	2.77	0.85–8.78	3/16	3.95	0.90–17.37
18+	18/36	4.55	1.97–10.31	10/36	5.97	2.12–16.83

All bold values are $P < 0.05$.

CI, confidence interval; CVD, cardiovascular disease; OR, odds ratio.

Glenohumeral joint pain ($P < 0.001$).Rotator cuff tendinopathy ($P = 0.008$).

*Adjusted for gender, BMI, job satisfaction, and family problems.

FIGURE 1. Adjusted odds ratios for rotator cuff tendinopathy by CVD risk score ($P \leq 0.001$).

shoulder disorders.^{17,35,37,54} Obesity has been identified as a risk factor for rotator cuff tendinopathy.^{29,55} Hyperlipidemia (total cholesterol greater than 240 mg/dL) has been shown to be a risk factor for rotator cuff tears.³⁴ Many other studies have also found associations between tobacco use and rotator cuff disease.^{28,30,31,41,56,57}

This study meaningfully contributes to the body of evidence. Univariate analyses of nearly all Framingham CVD risk factors, namely age, gender, BP, cholesterol, and DM, were significantly associated with rotator cuff tendinopathy. Current or former tobacco use was not statistically associated with either health outcome. The association between combined CVD risk factors and rotator cuff tendinopathy using the multivariate model was statistically significant with a stronger correlation than the univariate analyses. This suggests an interaction between the risk factors, which has been well documented in CVD research, and proposes a valid impact on the development of shoulder disorders, including rotator cuff tendinopathy.^{58,59}

Strengths and Limitations

Strengths of this study include a large, multistate, multi-employer study population with systematic evaluation of disease status through structured interviews and standardized physical examinations. Data gathering from a variety of occupations, work-sites, and states, likely improves generalizability. Systematic measurement of each worker's BP and measured height and weight to obtain a calculated BMI are added strengths. Although not found to be a significant confounder, the ability to adjust for measured job physical factors is a unique study feature. Although there is no validated ergonomic model for the shoulder, this study used the Strain Index for adjusting ergonomic risks. The Strain Index includes a measurement of force, an important putative ergonomic shoulder risk factor,^{28,60,61} along with a potentially unimportant hand/wrist posture component.

Limitations of this study include the cross-sectional design that prevents assessment of temporality. Still, only the unlikely presence of an uncontrolled powerful confounder that has a dose-response impact across the range of CVD risk factors would invalidate this study's findings. Also, the study population is largely in manufacturing, which could theoretically limit generalizability. Nevertheless, the relationships with CVD risk factors seem unlikely to be substantially dissimilar to the general population. The CVD data required modest modifications to fit the Framingham Heart Study risk model, although this would likely have biased toward the

null, as exact cholesterol measurements would likely make the association stronger.

CONCLUSIONS

This cross-sectional study's data demonstrate a strong correlation between CVD risk factors and rotator cuff tendinopathy. The results show a dose-response trend of increasing risk is consistent with prior research linking individual risk factors to rotator cuff tendinopathy, and are biologically plausible. Although these results present a potentially modifiable disease mechanism, prospective studies are needed to confirm this mechanism and test whether modification of CVD risk factors changes the clinical course, or prevents rotator cuff tendinopathy.

REFERENCES

- Bongers PM. The cost of shoulder pain at work. *BMJ (Clinical research ed)*. 2001;322:64–65.
- Chard MD, Hazleman R, Hazleman BL, King RH, Reiss BB. Shoulder disorders in the elderly: a community survey. *Arthritis Rheum*. 1991;34:766–769.
- Dinnes J, Loveman E, McIntyre L, Waugh N. The effectiveness of diagnostic tests for the assessment of shoulder pain due to soft tissue disorders: a systematic review. *Health Technol Assess*. 2003;7:iii, 1–166.
- Speed CA. Corticosteroid injections in tendon lesions. *BMJ (Clinical research ed)*. 2001;323:382–386.
- Urwin M, Symmons D, Allison T, et al. Estimating the burden of musculoskeletal disorders in the community: the comparative prevalence of symptoms at different anatomical sites, and the relation to social deprivation. *Ann Rheum Dis*. 1998;57:649–655.
- Meislin RJ, Sperling JW, Stitik TP. Persistent shoulder pain: epidemiology, pathophysiology, and diagnosis. *Am J Orthop*. 2005;34(12 suppl):5–9.
- Punnett L. The costs of work-related musculoskeletal disorders in automotive manufacturing. *New Solut*. 1999;9:403–426.
- Silverstein B, Viikari-Juntura E, Kalat J. Use of a prevention index to identify industries at high risk for work-related musculoskeletal disorders of the neck, back, and upper extremity in Washington state, 1990–1998. *Am J Ind Med*. 2002;41:149–169.
- Silverstein B, Welp E, Nelson N, Kalat J. Claims incidence of work-related disorders of the upper extremities: Washington state, 1987 through 1995. *Am J Public Health*. 1998;88:1827–1833.
- Waehler G, Leigh JP, Miller TR. Costs of occupational injury and illness within the health services sector. *Int J Health Serv*. 2005;35:343–359.
- Luime JJKB, Hendriksen IJ, Burdorf A, Verhagen AP, Miedema HS, Verhaar JA. Prevalence and incidence of shoulder pain in the general population: a systematic review. *Scand J Rheumatol*. 2004;33:73–81.

12. Gartsman GM, Brinker MR, Khan M, Karahan M. Self-assessment of general health status in patients with five common shoulder conditions. *J Shoulder Elbow Surg.* 1998;7:228–237.
13. Green S, Buchbinder R, Glazier R, Forbes A. Systematic review of randomised controlled trials of interventions for painful shoulder: selection criteria, outcome assessment, and efficacy. *BMJ (Clinical research ed.)*. 1998; 316:354–360.
14. Harryman 2nd DT, Hettrich CM, Smith KL, Campbell B, Sidles JA, Matsen 3rd FA. A prospective multipractice investigation of patients with full-thickness rotator cuff tears: the importance of comorbidities, practice, and other covariates on self-assessed shoulder function and health status. *J Bone Joint Surg Am.* 2003;85-a:690–696.
15. Largacha M, Parsons 4th IM, Campbell B, Titelman RM, Smith KL, Matsen 3rd F. Deficits in shoulder function and general health associated with sixteen common shoulder diagnoses: a study of 2674 patients. *J Shoulder Elbow Surg.* 2006;15:30–39.
16. Silverstein BA, Viikari-Juntura E, Fan ZJ, Bonauto DK, Bao S, Smith C. Natural course of nontraumatic rotator cuff tendinitis and shoulder symptoms in a working population. *Scand J Work Environ Health.* 2006;32:99–108.
17. Viikari-Juntura E, Shiri R, Solovieva S, et al. Risk factors of atherosclerosis and shoulder pain—is there an association? A systematic review. *Eur J Pain (London England).* 2008;12:412–426.
18. Meyer A. Unrecognized occupational destruction of the tendon of the long head of the biceps brachii. *Arch Surg.* 1921;2:130–144.
19. Meyer AW. Further evidences of attrition in the human body. *Am J Anat.* 1924;34:241–267.
20. Neer CS2nd. Anterior acromioplasty for the chronic impingement syndrome in the shoulder: a preliminary report. *J Bone Joint Surg Am.* 1972;54:41–50.
21. Neer CS2nd, Kirby RM. Revision of humeral head and total shoulder arthroplasties. *Clin Orthop Relat Res.* 1982;189–195.
22. Bigliani LU, Ticker JB, Flatow EL, Soslowsky LJ, Mow VC. The relationship of acromial architecture to rotator cuff disease. *Clin Sports Med.* 1991;10:823–838.
23. Bonsell S, Pearsall AWT, Heitman RJ, Helms CA, Major NM, Speer KP. The relationship of age, gender, and degenerative changes observed on radiographs of the shoulder in asymptomatic individuals. *J Bone Joint Surg Brit.* 2000;82:1135–1139.
24. Milgrom C, Schaffler M, Gilbert S, van Holsbeek M. Rotator-cuff changes in asymptomatic adults. The effect of age, hand dominance and gender. *J Bone Joint Surg Brit.* 1995;77:296–298.
25. Worland RL, Lee D, Orozco CG, SozaRex F, Keenan J. Correlation of age, acromial morphology, and rotator cuff tear pathology diagnosed by ultrasound in asymptomatic patients. *J South Orthop Assoc.* 2003;12:23–26.
26. Hegmann K. Common neuromusculoskeletal disorder. In: King PM, editor. *Sourcebook of Occupational Rehabilitation.* New York: Plenum Press; 1998.
27. Miranda H, Viikari-Juntura E, Martikainen R, Takala E-P, Riihimäki H. A prospective study of work related factors and physical exercise as predictors of shoulder pain. *Occup Environ Med.* 2001;58:528–534.
28. Silverstein BA, Bao SS, Fan ZJ, et al. Rotator cuff syndrome: personal, work-related psychosocial and physical load factors. *J Occup Environ Med.* 2008;50:1062–1076.
29. Wendelboe AM, Hegmann KT, Gren LH, Alder SC, White Jr GL, Lyon JL. Associations between body-mass index and surgery for rotator cuff tendinitis. *J Bone Joint Surg Am.* 2004;86-a:743–747.
30. Kane SM, Dave A, Haque A, Langston K. The incidence of rotator cuff disease in smoking and non-smoking patients: a cadaveric study. *Orthopedics.* 2006;29:363–366.
31. Skov T, Borg V, Orhede E. Psychosocial and physical risk factors for musculoskeletal disorders of the neck, shoulders, and lower back in salespeople. *Occup Environ Med.* 1996;53:351–356.
32. Stenlund B, Goldie I, Hagberg M, Hogstedt C. Shoulder tendinitis and its relation to heavy manual work and exposure to vibration. *Scand J Work Environ Health.* 1993;19:43–49.
33. Lundgreen K, Lian OB, Scott A, Nassab P, Fearon A, Engebretsen L. Rotator cuff tear degeneration and cell apoptosis in smokers versus nonsmokers. *Arthroscopy.* 2014;30:936–941.
34. Abboud JA, Kim JS. The effect of hypercholesterolemia on rotator cuff disease. *Clin Orthop Relat Res.* 2010;468:1493–1497.
35. Cole A, Gill TK, Shanahan EM, Phillips P, Taylor AW, Hill CL. Is diabetes associated with shoulder pain or stiffness? Results from a population based study. *J Rheumatol.* 2009;36:371–377.
36. Gaida JE, Ashe MC, Bass SL, Cook JL. Is adiposity an under-recognized risk factor for tendinopathy? A systematic review. *Arthritis Rheum.* 2009; 61:840–849.
37. Roquelaure Y. Risk factors for upper-extremity musculoskeletal disorders in the working population. *Arthritis Rheum.* 2009;61:1425–1434.
38. Andersen JH, Haahr JP, Frost P. Risk factors for more severe regional musculoskeletal symptoms: a two-year prospective study of a general working population. *Arthritis Rheum.* 2007;56:1355–1364.
39. Harkness EF, Macfarlane GJ, Nahit E, Silman AJ, McBeth J. Mechanical injury and psychosocial factors in the work place predict the onset of widespread body pain: a two-year prospective study among cohorts of newly employed workers. *Arthritis Rheum.* 2004;50:1655–1664.
40. Andersen J, Kaergaard A, Mikkelsen S, et al. Risk factors in the onset of neck/shoulder pain in a prospective study of workers in industrial and service companies. *Occup Environ Med.* 2003;60:649–654.
41. Kaergaard A, Andersen JH. Musculoskeletal disorders of the neck and shoulders in female sewing machine operators: prevalence, incidence, and prognosis. *Occup Environ Med.* 2000;57:528–534.
42. Mantyselka P, Lupsakko T, Kautiainen H, Vanhala M. Neck-shoulder pain and depressive symptoms: a cohort study with a 7-year follow-up. *Eur J Pain (London England).* 2010;14:189–193.
43. Grooten WJA, Mulder M, Josephson M, Alfredsson L, Wiktorin C. The influence of work-related exposures on the prognosis of neck/shoulder pain. *Eur Spine J.* 2007;16:2083–2091.
44. Ostergren PO, Hanson BS, Balogh I, et al. Incidence of shoulder and neck pain in a working population: effect modification between mechanical and psychosocial exposures at work? Results from a one year follow up of the Malmö shoulder and neck study cohort. *J Epidemiol Commun Health.* 2005;59:721–728.
45. Tornqvist EW, Hagberg M, Hagman M, Risberg EH, Toomingas A. The influence of working conditions and individual factors on the incidence of neck and upper limb symptoms among professional computer users. *Int Archiv Occup Environ Health.* 2009;82:689–702.
46. D'Agostino Sr RB, Vasan RS, Pencina MJ, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. *Circulation.* 2008;117:743–753.
47. Garg A, Hegmann KT, Wertsch JJ, et al. The WISTAH hand study: a prospective cohort study of distal upper extremity musculoskeletal disorders. *BMC Musculoskelet Disord.* 2012;13:90.
48. Silverstein BA, Fan ZJ, Bonauto DK, et al. The natural course of carpal tunnel syndrome in a working population. *Scand J Work Environ Health.* 2010;36:384–393.
49. Garg A, Kapellusch J, Hegmann K, et al. The strain index (SI) and threshold limit value (TLV) for hand activity level (HAL): risk of carpal tunnel syndrome (CTS) in a prospective cohort. *Ergonomics.* 2012;55:396–414.
50. Moore JS, Garg A. The strain index: a proposed method to analyze jobs for risk of distal upper extremity disorders. *Am Ind Hyg Assoc J.* 1995;56:443–458.
51. Font YM, Castro-Santana LE, Nieves-Plaza M, Maldonado M, Mayor AM, Vila LM. Factors associated with regional rheumatic pain disorders in a population of Puerto Ricans with diabetes mellitus. *Clin Rheumatol.* 2014;33:995–1000.
52. Gaida JE, Alfredson L, Kiss ZS, Wilson AM, Alfredson H, Cook JL. Dyslipidemia in Achilles tendinopathy is characteristic of insulin resistance. *Med Sci Sports Exerc.* 2009;41:1194–1197.
53. Hegmann KT, Thiese MS, Kapellusch J, et al. Association between cardiovascular risk factors and carpal tunnel syndrome in pooled occupational cohorts. *J Occup Environ Med.* 2016;58:87–93.
54. Miranda H, Viikari-Juntura E, Heistaro S, Heliovaara M, Riihimäki H. A population study on differences in the determinants of a specific shoulder disorder versus nonspecific shoulder pain without clinical findings. *Am J Epidemiol.* 2005;161:847–855.
55. Rechardt M, Shiri R, Karppinen J, Jula A, Heliovaara M, Viikari-Juntura E. Lifestyle and metabolic factors in relation to shoulder pain and rotator cuff tendinitis: a population-based study. *BMC Musculoskelet Disord.* 2010;11:165.
56. Baumgartner KM, Gerlach D, Galatz LM, et al. Cigarette smoking increases the risk for rotator cuff tears. *Clin Orthop Relat Res.* 2010;468:1534–1541.
57. Leino-Arjas P. Smoking and musculoskeletal disorders in the metal industry: a prospective study. *Occup Environ Med.* 1998;55:828–833.
58. Leander K, Hallqvist J, Reuterwall C, Ahlbom A, de Faire U. Family history of coronary heart disease, a strong risk factor for myocardial infarction interacting with other cardiovascular risk factors: results from the Stockholm Heart Epidemiology Program (SHEEP). *Epidemiology.* 2001;12:215–221.
59. Wolf PA, D'Agostino RB, Belanger AJ, Kannel WB. Probability of stroke: a risk profile from the Framingham Study. *Stroke.* 1991;22:312–318.
60. Garg A, Hegmann K, Kapellusch J. Maximum one-handed shoulder strength for overhead work as a function of shoulder posture in females. *Occup Ergon.* 2005;5:131–140.
61. Garg A, Hegmann K, Kapellusch J. Short-cycle overhead work and shoulder girdle muscle fatigue. *Int J Ind Ergon.* 2006;36:581–597.