Journal of Aerosol Science 99 (2016) 157-162

Contents lists available at ScienceDirect

Journal of Aerosol Science

journal homepage: www.elsevier.com/locate/jaerosci

Bridging the gap between exposure assessment and inhalation @CmssMark
toxicology: Some insights from the carbon
nanotube experience

Aaron Erdely **, Matthew M. Dahm ”, Mary K. Schubauer-Berigan °,
Bean T. Chen*, James M. Antonini®, Mark D. Hoover ©

2 Health Effects Laboratory Division, NIOSH/HELD/PPRB, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505, USA
b Division of Surveillance, Hazard Evaluations, and Field Studies, National Institute for Occupational Safety and Health,
Cincinnati, OH 45226, USA

€ Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA

ARTICLE INFO ABSTRACT

Available online 26 April 2016 The early incorporation of exposure assessment can be invaluable to help design, prior-
Keywords: itize, and interpret toxicological studies or outcomes. The sum total of the exposure
Exposure assessment assessment findings combined with preliminary toxicology results allows for exposure-
Inhalation informed toxicological study design and the findings can then be integrated, together with
Carbon nanotube available epidemiologic data, to provide health effect relevance. With regard to engi-
Toxicology neered nanomaterial inhalation toxicology in particular, a single type of material (e.g.
Nanomaterial carbon nanotube, graphene) can have a vast array of physicochemical characteristics
Epidemiology resulting in the potential for varying toxicities. To compound the matter, the methodol-

ogies necessary to establish a material adequate for in vivo exposure testing raises
questions on the applicability of the outcomes. From insights gained from evaluating
carbon nanotubes, we recommend the following integrated approach involving exposure-
informed hazard assessment and hazard-informed exposure assessment especially for
materials as diverse as engineered nanomaterials: 1) market-informed identification of
potential hazards and potentially exposed populations, 2) initial toxicity screening to drive
prioritized assessments of exposure, 3) development of exposure assessment-informed
chronic and sub-chronic in vivo studies, and 4) conduct of exposure- and hazard-informed
epidemiological studies.

Published by Elsevier Ltd.

1. Introduction

As formulated in the National Academy of Sciences/National Research Council for risk assessment/risk management
(NRC, 1983, 2009), risk assessment itself has four integral parts including hazard identification, dose-response assessment,
and exposure assessment that lead to risk characterization. In schematic representations of the paradigm, the dose-response
and exposure assessments contribute to the risk characterization but are oftentimes treated independently. For well-defined
xenobiotics this would seem adequate, but with regard to the complexity of the physicochemical characteristics of
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Fig. 1. View of the influence of knowledge-of-exposure and knowledge-of-hazard on the relevance and reliability of risk assessments. Adapted from the
approach previously described (Hoover et al., 2014, 2015).

engineered nanomaterials, an integration between exposure and toxicological assessments is a necessity. An early review of
nanotoxicology as an emerging discipline indicated that exposure assessment could be informative for dose-response
assessments (Oberdorster, Oberdorster, & Oberdorster, 2005).

2. Risk and exposure assessments
2.1. Knowledge-of-exposure and knowledge-of-hazard influence the relevance and reliability of risk assessments

Risk, in reference to particle toxicology, is an evaluation of the relative hazard of a material taking into account the
exposure, or more specifically, the delivered dose. If little to no knowledge exists for the hazard and exposure then the risk
will be poorly understood. Having only thorough knowledge of the hazard without any exposure data will also limit the
interpretation of the findings. Conversely, knowing all facets of the exposure with little hazard information provides no
indication of the risk. Once both detailed exposure assessments are performed in association with properly designed and
executed toxicological evaluations using relevant exposure metrics then assessments of risk are likely to be valid (Fig. 1). An
additional need is for an understanding of the factors involved in transferring risk observed from animal toxicology studies
to human exposures and health effects (NIOSH, 2013). Ideally, epidemiologic studies would be available as a source of
hazard identification or dose-response information, or to corroborate risk projections from toxicology and exposure
assessment studies and to serve, potentially, as an additional data source for risk assessment (Vermeulen et al., 2014).

2.2. A framework to integrate exposure and toxicity assessments for engineered nanomaterials

In the adaptive risk assessment paradigm, risk characterization arises from hazard identification and subsequent dose-
response assessments as well as exposure assessments. With regard to engineered nanomaterial inhalation toxicology, a
single type of material (e.g. carbon nanotube, graphene) can have a vast array of physicochemical characteristics resulting in
the potential for varying toxicities. To compound the matter, the methodologies necessary to establish a material adequate
for in vivo exposure testing raises questions on the applicability of the outcomes. The early incorporation of exposure
assessment can be invaluable to help design, prioritize, and interpret toxicological studies or outcomes (Fig. 2). Initially
there needs to be an identification and prioritization of hazards and exposed populations (Schubauer-Berigan, Dahm, &
Yencken, 2011). The decision should be market-informed with a reasonable anticipation of potential toxicity. Toxicity
screening then drives prioritized assessments of exposure. The exposure assessments provide information about routes of
exposure, levels of exposure, and material characteristics. When feasible, there should be congruence among exposure
metrics being used, or reasonable extrapolations from the workplace to toxicology studies may be unreliable. While surface
area of particles has significant relevance when considering toxicological outcomes, particularly for engineered nanoma-
terials, there is no reliable way to measure this metric in the workplace for materials such as carbon nanotubes (Dahm,
Evans, Schubauer-Berigan, Birch, & Deddens, 2013). In addition, a recent study of various graphite nanoplates showed an
inverse relationship between surface area and toxicity.

To make informed interpretations between toxicological and exposure assessments the evaluation of the tox-
icant should be categorically representative. This is important for engineered nanomaterials that may have varying
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Fig. 2. A framework for integrating exposure assessment and toxicity testing to design, prioritize, and interpret exposure- and hazard-informed epide-
miological studies. PBZ=personal breathing zone.

levels of toxicity within a single class of material. For example, a particular multi-walled carbon nanotube
(MWCNT), Mitsui-7 or MWCNT-7, has a count mean width of 49 nm for individual fibers (Porter et al., 2010) and
during inhalation exposures has a count median width of 100.3 nm and a count median length of 3.04 um during
inhalation exposure (Chen et al., 2012). MWCNT-7 causes fibrosis, promotes lung tumorigenesis, and translocates
to the pleural cavity and extrathoracic organs following an inhalation exposure designed to administer a nearly
100% respirable fraction (Chen et al., 2012; Grosse et al., 2014; Mercer, Scabilloni, Hubbs, Battelli et al., 2013;
Mercer, Scabilloni, Hubbs, Wang, et al., 2013; Sargent et al., 2014). Conversely, exposure assessment studies have
indicated that MWCNT used in U.S. facilities are more often smaller in diameter, resulting in significantly more
nanotube agglomeration, which should decrease the likelihood of extrathoracic translocation (Dahm, Evans,
Schubauer-Berigan, Birch, & Fernback, 2012; Dahm et al., 2015). These factors may create different outcomes than
described for MWCNT-7 and perhaps alter the risk characterization.

There is no clear answer on the exposure assessment side for how many evaluations would be representative of a
single industry but caution should be used when designing toxicological studies or interpreting findings to human
health relevance based on one or two observations. For example, personal breathing zone measurements for a facility
manufacturing carbon nanofibers (CNF) had exposures of 45 and 80 ug/m? of elemental carbon in the respirable size
range (Birch, Ku, Evans, & Ruda-Eberenz, 2011). However, in a recently published study by Dahm et al. (2015) the
authors found inhalable CNF personal breathing zone exposures of 4.2 and 7.5 ug/m> of elemental carbon at a down-
stream manufacturing facility. Exposures at the respirable size fraction were not collected in this instance, but it can be
assumed that respirable portion would only comprise a small percentage of the exposure based on transmission
electron microscopy (TEM) and dustiness data (Dahm et al., 2015; Erdely et al., 2013; Evans, Turkevich, Roettgers, Deye,
& Baron, 2013). Since these are the only two CNF facilities where mass based measurements of elemental carbon has
been collected, it is still relatively unclear whether these measurements are representative of the industry or just these
particular facilities. Much more information is becoming available about exposure levels for single-walled (SW) CNT
and MWCNT, with a conclusion being reached that exposures are generally low outside of powder-handling tasks
(Dahm et al., 2015).

The sum total of the exposure assessment findings combined with preliminary toxicology results allows for exposure-
informed toxicological study design and the findings can then be integrated, together with available epidemiologic data, to
provide health effect relevance. While the reality of toxicological science for engineered nanomaterials may have in vivo and
in vitro studies proceeding without any exposure assessment guidance, every effort should be made to push for detailed
exposure assessment to provide timely context to the toxicology studies.
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3. Insights from the carbon nanotube experience
3.1. Initial market projections and toxicity studies

Unprecedented global investment in innovative nanoscale science and engineering has led to the production and uti-
lization of novel materials in expanding fields of electronics, medicine, and composites. However, health and environmental
implications of these new critical nanomaterials have raised serious issues. Engineered nanomaterials, such as carbon
nanotubes (CNT), have caused toxicity in experimental models. Generally, limited data exists for human exposures (Liou,
Tsai, Pelclova, Schubauer-Berigan, & Schulte, 2015), the physicochemical properties most prevalent in exposure scenarios,
and health outcomes. These deficiencies make interpretation of experimental findings to human relevance difficult.

Early projections had CNT production becoming a multi-billion dollar industry suggesting the potential for exposure risk.
The projections implied the workforce handling CNT would rapidly expand and the CNT market would reach the everyday
consumer in the very near future. This expected growth led increased in vivo and in vitro toxicology assessment of CNT
world-wide. The initial in vivo studies evaluating the toxicity of SWCNT clearly showed pulmonary toxicity that included
inflammation and rapid onset fibrosis following exposure (Lam, James, McCluskey, & Hunter, 2004; Mangum et al., 2006;
Shvedova et al., 2005; Warheit et al., 2004). Additional studies on the more market prevalent MWCNT found similar results
(Ma-Hock et al., 2009; Pauluhn, 2010). These findings were consistent with the mode of action for biopersistent fibrous
shaped particles. Additional studies provide evidence of adverse extrathoracic effects following pulmonary exposure,
including cardiovascular and immunological responses as well as translocation (Erdely et al., 2009; Li et al., 2007; Mercer ,
Scabilloni, Hubbs, Wang, et al., 2013; Mitchell, Lauer, Burchiel, & McDonald, 2009). While early CNT studies clearly illu-
strated a hazard, there was incomplete extrapolation to relevant human health effects. Furthermore, materials prominently
tested in early studies (e.g.,, MWCNT-7) were of unknown relevance to actual market use. This was not a fault of these
studies but an illustration of the lack of data from detailed workplace exposure assessments. To date, thousands of articles
have been published concerning CNT (includes toxicology and application), but very few examine human exposure sce-
narios and health effects.

3.2. Field assessments

The adverse outcomes of the initial toxicology studies combined with market projections created the need to assess
exposures and the feasibility of human health effect studies (Schubauer-Berigan et al., 2011). Initial exposure assessment
studies relied on gravimetric area measurements, extrapolations from catalyst, and short duration worst case scenario
measurements (Erdely et al., 2013). These early exposure assessment studies on CNT provided some useful insight while also
highlighting needs for future more detailed studies. More recent workplace exposure assessments, such as the work by
Dahm et al. (2012, 2015), provided significant impact for toxicological assessments. Five critical areas of exposure assess-
ment became apparent when extrapolating relevance to experimental studies of CNT toxicity: 1) What is the level of
exposure with health relevant size fractions? 2) What are the physicochemical characteristics of the material with the
potential for exposure (e.g. CNT are mostly agglomerated in human exposure settings)? 3) What are the most common
brands and types of CNT being utilized in industry, including secondary manipulations of CNT such as surface coatings or
functionalization? 4) What is the area of future interest with potential large scale applications and other downstream uses?
and 5) How long is the average cumulative exposure of the workforce handling CNT? Recent elucidation of these critical
areas greatly contributes to the overall interpretation of already published toxicology studies, while contributing to future
toxicological and epidemiological study design and predictions of human health risks.

3.3. Bridging the gap between exposure assessment and inhalation toxicology

Evaluation of background-corrected elemental carbon from all personal breathing zone (PBZ) collections from 8 MWCNT
facilities found an average inhalable concentration of 10.6 pg/m> (arithmetic mean). The field measurements also con-
tributed to an estimated mass median aerodynamic diameter derived from the respirable to inhalable ratio that was used to
predict an alveolar deposition fraction. These measures allowed for a prediction of toxicological effects with regard to
average exposures seen in the workplace. Following MWCNT inhalation, general effects were evident up to 28 days post-
exposure at a deposition with estimated human equivalence of 7.6 years at 10.6 ug/m? (Erdely et al., 2013). The utility of our
extrapolations were supported by a recent study exploring human health effects from a single facility in Korea (Lee et al.,
2015). Lee et al. (2015) indicated increased markers of oxidative stress from exhaled breath condensate from workers with
an average personal sampling of elemental carbon at 8.34 ng/m?® and an average of 4 years of exposure. These results were in
very close agreement with our extrapolations (Erdely et al., 2013) and showed the immense utility of combining detailed
exposure assessment with ongoing in vivo toxicology studies, together with available epidemiologic data, to make a rea-
sonable conclusion concerning human relevance.

Our extrapolations (Erdely et al., 2013) and supporting confirmation in a single facility human study (Lee et al., 2015)
provided a dosing regimen for screening similar manufacturing-relevant carbon-based nanomaterials. A screening process
representing facility-relevant exposures (4 pug deposition) and a high dose which confers pathology (40 pg deposition), have
been utilized by ongoing nanomaterial studies (e.g. CNT, CNF, graphite nanoplates) to evaluate relative potency between and
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within classes. The premise is very similar to that proposed by Landsiedel et al. for using short term inhalation studies
(5 day) as an early tier screen for nanomaterial potency (Landsiedel et al., 2014). In many cases inhalation is simply not
feasible and instillation studies may be necessary, but the overall premise of screening materials with standardized out-
comes is an extremely valuable first step.

Exposure assessment studies (Dahm et al., 2012, 2015) and accompanying human health effects studies (Lee et al., 2015;
Schubauer-Berigan et al., 2011) provided insight into types of CNT utilized by industry as well as the downstream appli-
cations and products containing these materials. These studies provided data on specific preference of materials, level of
exposure, years handling a given material, and future direction of the market. Material selection for new toxicity testing is
facilitated by this life cycle knowledge of particles with regard to surface coating or functionalization followed by product
incorporation.

Exposure assessments with personal breathing zone measures also provided representation of the morphology of the
CNT exposure. Recent studies show the majority of the CNT exposure is in the inhalable or thoracic size range (i.e., aero-
dynamic diameter less than about 100 pum) rather than the respirable size range (i.e., aerodynamic diameter less than about
10 pm). This was shown for both elemental carbon mass and by TEM (Dahm et al., 2012, 2015; Erdely et al., 2013). These field
findings can guide in vivo exposures so that a generated aerosol or instillate reflects workforce or consumer exposures. This
is crucial for intratracheal instillation or oropharyngeal aspiration studies. Altering the physicochemical characteristics of
nanomaterials often influences toxicity, complicating data interpretation. This may be further confounded when deter-
mining potency for similar classes of materials that respond differently to the same dispersion method or a single material
with varying toxicity depending on the dispersion method (Baisch et al., 2014; Sager et al., 2015). In ongoing studies, TEM
images from personal breathing zone collections of CNT or CNF exposed workers (Dahm et al., 2012, 2015) were compared
to TEM images of the same material dispersed for ongoing in vivo studies to ensure relevance of the in vivo exposures. While
the differences in size of the rodent and human respiratory tract must be considered, the goal should be to expose rodents to
particles with characteristics relevant to human exposures. Therefore, extraordinary measures to disperse particles may not
produce toxicological findings relevant to humans. Establishing similarities between laboratory and field exposures provides
some evidence that the in vivo studies are representative of human health outcomes.

4. Conclusion

Toxicity assessments and estimates of risk to develop exposure limits can generally proceed without exposure assess-
ment. However risk characterization is more informed when exposure assessment is available. For engineered nanoma-
terials specifically, detailed exposure assessment fills a large void in relating toxicity findings to human health relevance
from a dosimetry perspective. In conclusion, we recommend the following integrated approach between exposure
assessment and toxicity testing especially for materials as diverse as engineered nanomaterials:

Market-informed identification of potential hazards and potentially exposed populations.
Initial toxicity screening to drive prioritized assessments of exposure.

Development of exposure assessment-informed chronic and sub-chronic in vivo studies.
Conduct of exposure- and hazard-informed epidemiological studies.
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