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important cell death signals [12,15], their systematic 

analysis in PD-relevant samples may be particularly 

important. However, reliable identifi cation and quantita-

tion of these products even using sensitive contemporary 

liquid chromatography/mass spectrometry (LC/MS) 

protocols is challenging due to the inherent instability, fast 

metabolic conversions, as well as high diversifi cation of 

oxidized species resulting in their low steady-state con-

centrations [16]. We have developed several advanced 

techniques of oxidative lipidomics that allowed physi-

cal separation of oxidized and non-oxidized phospho-

lipids as well as accurate identifi cation and quantitative 

analysis of oxygenated molecular species of phospho-

lipids using LC or high-performance thin-layer chroma-

tography (HPTLC) protocols [17 – 19] along with 

diff erent versions of MS combined with enzymatic 

hydrolysis of fatty acid residues from modifi ed phos-

pholipids [20]. Here, using a rat rotenone model of PD 

[21] and oxidative lipidomics approach we were able, 

for the fi rst time, to identify and quantitatively charac-

terize oxygenated molecular species of CL formed in 

dysfunctional mitochondria in SN as well as in CL in 

plasma.   
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  Abstract 
 Exposure to rotenone  in vivo  results in selective degeneration of dopaminergic neurons and development of neuropathologic features of 

Parkinson ’ s disease (PD). As rotenone acts as an inhibitor of mitochondrial respiratory complex I, we employed oxidative lipidomics 

to assess oxidative metabolism of a mitochondria-specifi c phospholipid, cardiolipin (CL), in substantia nigra (SN) of exposed animals. 

We found a signifi cant reduction in oxidizable polyunsaturated fatty acid (PUFA)-containing CL molecular species. We further revealed 

increased contents of mono-oxygenated CL species at late stages of the exposure. Notably, linoleic acid in  sn -1 position was the major 

oxidation substrate yielding its mono-hydroxy- and epoxy-derivatives whereas more readily  “ oxidizable ”  fatty acid residues (arachidonic 

and docosahexaenoic acids) remained non-oxidized. Elevated levels of PUFA CLs were detected in plasma of rats exposed to rotenone. 

Characterization of oxidatively modifi ed CL molecular species in SN and detection of PUFA-containing CL species in plasma may 

contribute to better understanding of the PD pathogenesis and lead to the development of new biomarkers of mitochondrial dysfunction 

associated with this disease.  

  Keywords:   Parkinson   ’ s disease  ,   cardiolipin  ,   oxygenated cardiolipin species  ,   oxygenated linoleic acid   

  Introduction 

 Parkinson ’ s disease (PD) is a neurodegenerative disorder 

in the elderly characterized by the loss of dopaminergic 

neurons in substantia nigra (SN) [1]. Mitochondrial dys-

function and oxidative stress are believed to be important 

contributors to the neuronal loss and the pathogenesis of 

PD [2 – 6]. Decreased activity of mitochondrial complex I 

[7], reduced amounts of glutathione [8], protein modifi ca-

tion [9], DNA damage [10] and lipid oxidation [11] have 

been documented in the SN compacta of patients with PD 

in many studies. While polyunsaturated phospholipids are 

the major substrates for oxidative modifi cations [12], eval-

uation of lipid peroxidation products has been restricted 

to detection of secondary oxidation products such as 4-hy-

droxy-2-nonenal [13,14] and essential information on 

molecular targets, particularly specifi c polyunsaturated 

molecular species of phospholipids undergoing oxidation 

and leading to mitochondrial dysfunction and their asso-

ciation with PD, is lacking. 

 Given that oxidation products formed from polyun-

saturated molecular species of a mitochondria-specifi c 

phospholipid, cardiolipin (CL) have been identifi ed as 
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 Methods  

 Rat rotenone model 

 The Institutional Animal Care and Use Committee of the 

University of Pittsburgh approved all experiments utiliz-

ing animals. Male Lewis rats (7 – 9 months old, Charles 

River) were injected intraperitoneally with vehicle or 

3.0 mg/kg/day of rotenone (Sigma-Aldrich) either once, 

for fi ve daily injections or treated to parkinsonian end-

point. We chose to evaluate one and fi ve daily injection 

paradigms because we have previously detected mitochon-

drial DNA damage in the SN and peripheral tissues fol-

lowing rotenone treatment at these time points [22,23]. 

Animals treated with rotenone to parkinsonian endpoint 

recapitulate many of the key pathological features of PD 

[24,25]. Animals treated with rotenone to parkinsonian 

endpoint (10 – 14 days) were sacrifi ced when animals dis-

played behavioral features including bradykinesia, pos-

tural instability/gait disturbances, and rigidity. Rat brains 

were fi rst removed from the skull and rinsed in cold 1X 

phosphate-buff ered saline to remove any surface blood. 

Brains were placed on a cold Petri dish and cut in half into 

the right and left hemisphere. Using a blade and forceps 

precise micro-dissection of the ventral midbrain was per-

formed and the tissue was fl ash frozen in liquid nitrogen 

and stored at    �    80 ° C.   

 Extraction of lipids 

 Lipids were extracted from SN and plasma using the Folch 

and Bligh – Dyer procedures, respectively [26,27]. Lipid 

phosphorus was determined by a micro-method [28].   

 Analysis of esterifi ed fatty acids 

 To release esterifi ed fatty acids, total lipids were treated 

with either phospholipase A 
1
  (PLA 

1
 ) from  Thermomyces 

lanuginosus  (10  μ l/ μ mol of phospholipids) (Sigma-Al-

drich, St. Louis, MO, USA) or phospholipase A 
2
  (PLA 

2
 ) 

from porcine pancreas (10 U/ μ mol of phospholipids) (Sig-

ma-Aldrich, St. Louis, MO, USA) in 0.5 M borate buff er, 

pH: 9.0 containing 20 mM cholic acid, 2 mM CaCl 
2
  and 

100  μ M diethylenetriaminepentaacetic acid (DTPA) for 

60 min at 37 ° C. Under these conditions, almost 99% of 

phospholipids were hydrolyzed. Liberated oxygenated and 

non-oxygenated fatty acids were separated from lipids and 

lysolipids by solid-phase extraction using phospholipid 

removal plates (Phenomenex, Torrance, CA, USA) and 

analyzed by LC/MS as described [29]. Briefl y, LC/MS in 

negative mode was performed using a Dionex Ultimate   ™    

3000 high-performance liquid chromatography (HPLC) 

coupled online to a Q-Exactive hybrid quadrupole-orbit-

rap mass spectrometer (Thermo Fisher Scientifi c, San 

Jose, CA, USA) .  Fatty acids were separated on a reverse-

phase column (C 
18

  Luna, 3  μ m, 150    �    2 mm, Phenome-

nex, Torrance, CA, USA) with fl ow rate 0.2 mL/min using 

gradient solvents containing 5 mM ammonium acetate [A: 

tetrahydrofuran/methanol/water/CH 
3
 COOH, 25:30:50:0.1 

(v/v/v/v) and B: methanol/water 90:10 (v/v)]. The column 

was eluted for the fi rst 3 min isocratically at 50% B, from 

3 to 23 min with a linear gradient from 50% solvent B to 

98% solvent B, then 23 – 40 min isocratically using 98% 

solvent B, 40 – 42 min with a linear gradient from 98% 

solvent B to 50% solvent B, and 42 – 60 min isocratically 

using 50% solvent B for equilibration of the column. 

Standards of oxygenated fatty acids were purchased from 

Cayman Chemical Co. (Ann Arbor, MI, USA).   

 Analysis of CL 

 LC/MS was performed as previously described [29]. 

Briefl y, LC/MS in negative mode was performed using a 

Dionex UltiMate   ™    3000 HPLC coupled online to a linear 

ion-trap mass spectrometer (LXQ, Thermo Fisher Scien-

tifi c, San Jose, CA, USA) .  Thus, m/z values for CL molec-

ular species were presented to 1 decimal place. Total 

lipids were separated on a normal-phase column [Silica 

Luna 3  μ m, 100A, 150    �    2 mm, (Phenomenex, Torrance 

CA)] with fl ow rate of 0.2 mL/min using gradient solvents 

containing 5 mM CH 
3
 COONH 

4
  [A — n-hexane:2-

propanol:water, 43:57:1 (v/v/v) and B — n-hexane:2-

propanol:water, 43:57:10 (v/v/v)]. Tetra-myristoyl CL 

(TMCL) (Avanti polar lipids, Alabaster, AL, USA) was 

used as an internal MS standard.   

 Analysis of oxygenated CL 

 CL was separated by two-dimensional (2D) HPTLC [30], 

and CL and oxygenated CL were analyzed by LC/MS as 

described [18]. To prevent lipid oxidation during separa-

tion, chromatography was performed under N 
2
  conditions 

on DTPA-treated silica plates (5    �    5 cm, Whatman). LC/

MS in negative mode was performed using a Dionex Ulti-

Mate   ™    3000 RSLCnano System coupled online with Q-Ex-

active hybrid quadrupole-orbitrap mass spectrometer 

(Thermo Fisher Scientifi c, San Jose, CA, USA) using a C 
8
  

column (Luna 3  μ m, 100  Å , 150    �    2 mm, Phenomenex, 

Torrance, CA, USA) with fl ow rate of 0.15 mL/min using 

an isocratic solvent system consisting of 2-propanol:water:

triethylamine:acetic acid, 45:5:0.25:0.25, v/v. The resolu-

tion was set up at 140000 which corresponds to 5 ppm in 

m/z measurement error. Thus, m/z values for CLs and their 

oxidation species were presented to 4 decimal places. 

TMCL (Avanti polar lipids, Alabaster, AL, USA) was used 

as an internal MS standard. TMCL molecular species is not 

usually present in the brain (and other tissues) and does not 

interfere with the endogenous CLs and widely used as an 

internal standard [31]. The ionization effi  ciencies of indi-

vidual molecular species of CLs, particularly of those with 

diff ering fatty acid chains, may be diff erent. To minimize 

the potential inaccuracies, the tuning of mass spectrometers 

was performed using Tetra-linoleoyl-cardiolipin (TLCL), 

(C18:2)4-CL. In addition, TLCL was also utilized as a ref-

erence standard to build calibration curves employed for 

quantitative assessments of CLs in the brain. Finally, we 

were able to compare the total amounts of CLs in SN sam-

ples based on LC/MS analysis and summation of individual 
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  LC/MS analysis of cardiolipins     683

molecular species with that obtained from the direct deter-

minations after 2D-HPTLC separation of total phospholipid 

extracts. These comparisons showed good coincidence of 

the CL amounts determined in two independent ways.   

 Statistics 

 The results are presented as mean  �  standard deviation 

(SD) values from at least three experiments, and statistical 

analyses were performed by either paired/unpaired 

Student’s t-test or one-way analysis of variance. The sta-

tistical signifi cance of diff erences was set at  p     �    0.05.    

 Results 

 Rotenone is a highly lipophilic compound that can cross 

the blood – brain barrier [32,33]. Its toxicity mechanisms 

are mostly associated with the binding to and inhibiting 

electron transport at the level of complex I and generation 

of superoxide radicals [15,34,35]. These mitochondria-

related eff ects lead to selective degeneration of dopamin-

ergic neurons and produce neuropathologic features of PD 

[21]. Therefore, our oxidative lipidomic eff orts to detect 

mitochondria-specifi c modifi cation of lipids were focused 

on the analysis of CLs in SN of rats exposed to rotenone. 

The fl ow chart representing our analytical approach is 

shown in Figure 1. 

 Because of high diversifi cation of oxidatively modifi ed 

phospholipids with potentially low content of each of 

them, we chose to simplify the analytical task by reducing 

the number of oxygenated molecular species. To this end, 

we treated the total lipid extracts with either PLA 
1
  or 

PLA 
2
  to release fatty acid residues from  sn- 1 and  sn- 2 

positions of phospholipids, respectively. This allowed the 

detection of oxidation products in a limited number of 

molecular species of oxidizable polyunsaturated fatty 

acids (PUFAs). PUFAs were mainly represented by lino-

leic (C 
18:2

 ), arachidonic (C 
20:4

 ), and docosahexaenoic 

(C 
22:6

 ) acids and predominantly localized in  sn -2 position 

(Figure 2). Surprisingly, while the content of PUFA in 

 sn -1 position was signifi cantly lower than that in  sn -2, 

oxygenated fatty acid species were released almost exclu-

sively upon PLA 
1
  treatment (Figure 3). Furthermore, 

among the PUFAs released, linoleic acid (C 
18:2,

  with 

2 double bonds) underwent oxidative modifi cation to 

mono-hydroxy (HODE) and epoxy (EpOME) derivatives 

(Figure 3), whereas more polyunsaturated, hence more 

readily  “ oxidizable ”  fatty acid residues such as C 
20:4

 , and 

C 
22:6

 , remained non-oxidized. A substantial increase in 

epoxy-molecular species of C 
18:2

  was detected at day 5 and 

  Figure 1.     Flowchart representing analytical approach to assess CL 

and its oxygenated species in plasma and SN.  

  Figure 2.     Profi le of fatty acids liberated from total phospholipids 

extracted from SN by either PLA 
1
  (A,  sn -1 position) or PLA 

2
  

(B,  sn -2 position). SFA: saturated fatty acids, MUFA: monounsaturated 

fatty acid, PUFA: polyunsaturated fatty acid; C 
18:2

 : octadecadienoic 

acid (linoleic acid); C 
18:3

 : octadecatrienoic acid, C 
20:2

 : eicosadienoic 

acid, C 
20:3

 : eicosatrienoic acid, C 
20:4

 : eicosatetraenoic acid (arachidonic 

acid), C 
20:5

 : eicosapentaenoic acid, C 
22:5

 : docosapentaenoic acid, 

C 
22:6

 : docosahexaenoic acid.  
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parkinsonian endpoint (Figure 3); however, the changes in 

the content of hydroxy species of C 
18:2

  were signifi cant 

only at parkinsonian endpoint. No accumulation of 

oxygenated C 
18:2

  was observed at day 1 of exposure 

(Figure 3). No oxygenated PUFAs were detected in sam-

ples obtained from rats exposed to rotenone and treated 

with PLA 
2
  (data not shown). In major classes of phospho-

lipids including phosphatidylcholine, phosphatidyletha-

nolamine, and phosphatidylserine, oxidizable PUFAs 

(C 
18:2

 , C 
20:4

  and C 
22:6

 ) occupy predominantly the  sn -2 posi-

tion whereas in CL they can be equally distributed between 

 sn -1 and  sn -2 positions [18]. This suggests that oxygenated 

esterifi ed C 
18:2

  detected in SN of rotenone-treated rats 

likely originated from the  sn -1 position of CL. 

 Therefore, we further specifi cally focused on the analy-

sis of CLs in SN. Using normal-phase LC followed by full 

MS and MS 2  analysis, we identifi ed oxidizable CL molec-

ular species containing fatty acids with 2 – 6 double bonds 

(Table I, Figure 4A, B). Quantitative assessments revealed 

a substantial reduction of these species in SN of rotenone-

exposed rats at all time points studied compared with con-

trol animals (Figure 4C). Notably, all these polyunsaturated 

CL species contained at least one C 
18:2

  residue. No changes 

in the CL content from cortex of the same rats were 

detected (data not shown). Therefore, we suggested that 

decrease in the content of oxidizable CL was linked to 

rotenone-induced damage of mitochondria in SN. 

 Assuming that lipid peroxidation can contribute to 

the depletion of oxidizable CL we further characterized 

oxygenated CL species in SN. CLs were pre-separated 

by HPTLC and subjected to reverse-phase LC to resolve 

non-oxidized versus oxidized CL species after which high 

mass accuracy MS was employed to identify CL oxygen-

ated species (Figure 5). We detected signifi cantly increased 

content of mono-oxygenated CL species at parkinsonian 

endpoint (Figure 6). Quantitative analysis revealed accu-

mulation of several mono-oxygenated CL species (m/z: 

1443.9903, 1446.0038, 1472.0189, 1491.9891, 1494.0033, 

1515.9889, and 1518.0026) (Figure 6) which originated 

from oxidizable CL species (m/z: 1427.9966, 1430.0077, 

1456.0260, 1475.9943, 1478.0067, 1499.9929, and 

1502.0061). Notably, all of these species were reduced by 

rotenone exposure and contained at least one C 
18:2

  residue 

(Table I, Figure 3). No accumulation of oxygenated CL in 

SN on day 1 was detected (data not shown). 

 Assuming that mitochondria with their CLs and oxi-

dized CLs can be released from damaged cells into extra-

cellular environments and act as damage-associated 

  Figure 3.     Quantitative assessment of oxygenated C 
18:2

  (octadecadienoic acid) liberated by PLA 
1
  from SN total phospholipids. HODE: 

hydroxy species of C 
18:2

 , EpOME: epoxy species of C 
18:2

 . Released oxygenated fatty acids were analyzed by reverse-phase LC/MS after 

solid-phase extraction. Data are normalized (A) per nmol of total phospholipids (PLs) and (B) per nmol of CL.  
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molecular patterns [36], we performed analysis of CL in 

plasma of rats at two time points (day 1 and day 5) after 

the exposure to rotenone. MS analysis revealed the increase 

of relative intensity for CL molecular species with m/z: 

1425.9832, 1427.9962, 1430.0088, 1454.0051, 1456.0249, 

1475.9922, and 1478.0150 (Figure 7). Relative intensities 

for several individual CL molecular species as well as 

their total content were signifi cantly higher on days 1 and 

5 compared with those for the corresponding controls 

(Figure 7B, C). All CLs in plasma were represented by 

non-oxygenated molecular species. The sensitivity of LC/

MS assay for oxygenated CL is approximately 10 nM. 

Given that the observed levels of oxygenated CL in rote-

none-treated rats constituted only 0.2% of its total content 

in the brain, the expected increased levels in plasma would 

be on the order of 0.3 nM. Assuming that metabolic con-

versions of oxygenated CL (e.g., by lipoprotein-associated 

Lp-PLA 
2
  [18]) would result in its hydrolysis, the contents 

of oxygenated CL would be even lower.   

 Discussion 

 Oxidatively modifi ed phospholipids have been recognized 

as important signals in acute injury and chronic diseases 

[37 – 39]. CL is a negatively charged phospholipid with 

four fatty acid residues [40]. In normal conditions, CL is 

found exclusively in the inner-mitochondrial membrane 

where it accounts for 25% of all phospholipids [41] and 

essential for normal functions of many proteins, including 

the activity of respiratory complexes [42 – 45]. Accumula-

tion of oxygenated CL molecular species and their hydro-

lysis products has been demonstrated for acute brain injury 

caused by trauma and cardiac arrest [46,47], hyperoxic- 

and nanoparticle-induced lung injury [48,49], as well as 

acute irradiation syndrome [18,29,50]. Polyunsaturated 

CLs in the brain have been considered not only as oxida-

tion substrates [12] but also as a source of oxygenated 

lipid mediators [18,46,51]. 

 Rotenone — a known inhibitor of complex I in mito-

chondria — has been used to mimic clinical features of PD 

[1]. The rotenone model is characterized by slow and pro-

gressive loss of dopaminergic neurons and formation of 

Lewy bodies in SN [1]. Degeneration of dopaminergic 

neurons in SN has been long associated with mitochon-

drial dysfunction. Given that disrupted electron transport 

may be linked to the enhanced reactive oxygen species 

production in mitochondria [52], we sought to test whether 

this would result in oxidative modifi cations of a suscep-

tible phospholipid target, CL, that is highly concentrated 

in close proximity to complex I in the inner mitochondrial 

membrane [53,54]. Using the rat rotenone model of PD, 

here, we demonstrate, for the fi rst time, the accumulation 

of CL oxygenated species in SN. 

 Two major pathways triggered in dysfunctional mito-

chondria — mitophagy and apoptosis — may be involved 

  Table I. Major CL and CL oxidized species detected in SN and plasma from rats exposed to rotenone.  

 m/z  CN:DB  CL molecular species 

 Mono-oxygenated CL 

species in SN (m/z) 

 CL species detected 

in plasma (m/z) 

1425.9771 70:5 16:1/18:1/18:1/ 18:2 

  16:0/ 18:2 /18:1/ 18:2 

1441.9735 1425.9832

1427.9966 70:4 16:0/18:1/18:1/ 18:2 

  16:1/18:1/18:1/18:1

  16:0/ 18:2 /18:1/18:1

1443.9903 1427.9962

1430.0077 70:3 16:0/ 18:2 /18:1/18:0

  16:0/18:1/18:1/18:1

  16:1/18:1/18:1/18:0

1446.0038 1430.0088

1454.0059 72:5 18:1/18:1/18:1/ 18:2 1470.0074 1454.0051

1456.0260 72:4 18:1/18:1/18:0/ 18:2 1472.0189 1456.0249

1475.9943 74:8 18:1/18:1/ 18:2 /20:4

  18:0/ 18:2 / 18:2 /20:4

1491.9891 1475.9922

1478.0067 74:7 18:0/18:1/ 18:2 /20:4

  18;1/18:1/18:1/20:4

  18:1/ 18:2 /18:0/20:4

  16:0/18:1/ 18:2 /22:4

  16:1/18:0/ 18:2 /22:4

  16:0/18:1/18:0/22:6

  16:1/18:0/18:0/22:6

1494.0033 1478.0150

1499.9929 76:10 18:1/20:4/18:1/20:4

   18:2 /18:0/ 18:2 /22:6

  18:1/18:1/ 18:2 /22:6

1515.9889 ND

1502.0061 76:9 18:1/ 18:2 /18:0/22:6

  18:0 /18:2 /18:1/22:6

  18:1/18:1/18:1/22:6

  18:1/20:2/18:0/20:4

   18:2 /20:3/18:0/20:4

  18:1/20:3/18:1/20:4

1518.0026 ND

    CL, cardiolipin; CN and DB refer to the total carbon atoms in the fatty acid chains and total number of double bonds, 

respectively; ND, not detected   
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in responses of dopaminergic neurons to rotenone in SN 

[55 – 57]. For both pathways CLs have been recognized 

as signaling molecules [16,58]. In the case of pro-sur-

vival mitophagy CL is externalized to the outer leafl et 

of the outer mitochondrial membrane but does not 

undergo oxidation [58]. The externalized CL acts as a 

signal recognized by LC3 to facilitate the elimination of 

damaged mitochondria and rescue the cell [58]. In con-

trast, accumulation of oxygenated CL species has been 

identifi ed as an early event in the execution of apoptotic 

program [15] resulting in the release of cytochrome c 

into the cytosol and activation of caspases and cell death 

[15]. Our oxidative lipidomic protocols revealed 

the early loss of oxidizable linoleic-acid-containing CL 

species (on days 1 and 5 after exposure to rotenone) and 

accumulation of CL oxidation products in the same 

molecular species in SN on the parkinsonian endpoint. 

Of note, in this model animals received rotenone daily, 

thus the total dose of rotenone was increasing during the 

exposure. This is compatible with our previous observa-

tions  in vitro  demonstrating that small doses of rotenone 

stimulated mitophagy in primary cortical neurons with-

out CL oxidation [58]. However, at higher doses, rote-

none caused CL oxidation and activation of the apoptotic 

cell death pathway. It is tempting to speculate that at the 

early time point, the mitophageal pathway was activated 

in SN neurons as a rescue mechanism which transitioned 

to triggering the apoptotic death as the damage was 

enhanced by increasing doses of rotenone at later 

time points. 

  Figure 4.     Assessment of CL in SN by normal-phase LC/MS. (A) Typical normal-phase LC/MS chromatogram of phospholipids and full 

mass spectrum of CL (insert) extracted from SN obtained from control rats. Data were acquired in negative mode. CL: cardiolipin, PA: 

phosphatidic acid, PC: phosphatidylcholine, PE: phosphatidylethanolamine, PG: phosphatidylglycerol, PI: phosphatidylinositol, PS: 

phosphatidylserine, SM: sphingomyelin. (B) MS 2  fragmentation of CL molecular ions with m/z 1427.9 (upper panel) and m/z 1502.0 (lower 

panel). (C) Quantitative assessments of CL in SN of rotenone-exposed rats. The data are presented as rotenone-induced decreases in the 

amounts of oxidizable CL molecular species.  
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 Analysis of CL oxidation products in SN revealed 

unusual features of rotenone-associated oxidation: (i) 

exclusive accumulation of oxygenated C 
18:2

  in  sn- 1 rather 

than  sn -2 position and (ii) selective generation of mono-

oxygenated CL species. In line with this, our previous stud-

ies identifi ed C 
18:2

 , located in  sn -1 position of CL, as the 

major oxidation substrate in rotenone-treated lymphocytes 

[20]. Notably, mono-oxygenated CL species were the major 

products detected in rotenone-exposed lymphocytes [20]. 

While the mechanisms of this unusual specifi city toward 

C 
18:2

  species of CLs remain to be elucidated, they are 

indicative of enzymatic rather than random stochastic free 

radical oxidation pathways. One of the candidate catalysts 

in oxidation of CL is cytochrome c with its established 

role during apoptosis [15]. Oxidizing equivalents (O 
2
  • - 

 –  �    H 
2
 O 

2
 ) formed in mitochondria during apoptosis feed 

  Figure 5.     Detection and identifi cation of CL oxygenated species in rat SN. Typical HPTLC of total lipids, LC/MS profi le, and mass spectra 

of CL and its oxygenated species obtained from SN of rat exposed to rotenone (parkinsonian endpoint). CL was isolated by 2D-HPTLC. 

The CL fraction was then subjected to reverse-phase LC/MS analysis using a C8 column (4.6 mm    �    15 cm). CL and oxygenated CL were 

separated using an isocratic solvent system (see  “ Methods ”  section). Under these conditions, oxygenated CL eluted prior to CL. Molecular 

species of oxygenated CL were identifi ed as mono-oxygenated species based on exact m/z ratios. CL: cardiolipin, FFA: free fatty acids, NL: 

neutral lipids, PA: phosphatidic acid, PC: phosphatidylcholine, PE: phosphatidylethanolamine, PG: phosphatidylglycerol, PI: 

phosphatidylinositol, PS: phosphatidylserine, SM: sphingomyelin.  
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the peroxidase activity of cytochrome c / CL complexes 

resulting in the  selective  depletion of oxidizable CL species 

in mitochondria and the accumulation of oxygenated CLs 

[15]. Alternatively, 12/15-lipoxygenase driven mechanisms 

may be enacted in damaged mitochondria to cause CL oxi-

dation [59]. In the latter case, however, the selectivity to 

phospholipid substrates (CLs) should be less pronounced. 

Following oxidation, the hydrolysis reactions — possibly 

catalyzed by phospholipase A 
2
  — can be involved in deple-

tion of oxidizable CL species in SN of rotenone-treated 

rats. Recently, we discovered a new biosynthetic pathway 

for lipid mediators activated  in vivo  after acute tissue injury 

realized by oxidation and hydrolysis of oxygenated CL spe-

cies by mitochondrial Ca 2 �  -independent iPLA 
2
  γ  [18]. Sev-

eral reports indicate that iPLA 
2
 -VI, a calcium-independent 

PLA 
2
 , may be implicated in the pathogenesis of PD [60 –

 62]. Mutation of PLA2G6, encoding calcium-independent 

PLA 
2
 , is characteristic of PD and results in the suppression 

of the enzymatic activity [60]. There are only few publica-

tions on the eff ect of rotenone on iPLA 
2
  activity in mito-

chondria. In studies on isolated lung and liver mitochondria, 

rotenone treatment caused the release of PUFA which was 

partially sensitive to 6E-(bromoethylene)tetrahydro-3R-

(1-naphthalenyl)-2H-pyran-2-one, (R)-bromoenol lactone 

((R)-BEL) [63,64]. Our in vivo studies, however, did not 

document higher levels of free fatty acids or oxygenated 

free fatty acids in SN of rotenone-treated rats versus control 

rats. Accordingly, with the exception of lysophosphatidyl-

choline, no accumulation of other lysophospholipids have 

been observed. 

 While apoptosis-driven CL oxidation may be accountable 

for the observed accumulation of oxidized CL, it is likely 

that non-apoptotic cell death pathways are also triggered in 

rotenone-treated animals resulting in the release of damaged 

mitochondria. This may explain the detected higher levels 

of PUFA CL species in plasma. Indeed, execution of necrop-

  Figure 6.     Quantitative assessment of total (A) and individual oxygenated molecular species of CL (B) in SN of control and rotenone-treated 

rats. V-vehicle; R-rotenone. Molecular species with m/z 1443.9903, 1446.0038, 1472.0189, 1491.9891, 1494.0033, 1515.9889, and 1518.0026 

originated from molecular species with m/z 1427.9966, 1430.0077, 1456.0260, 1475.9943, 1478.0067, 1499.9929, and 1502.0061, 

respectively, after addition of one oxygen. Data are mean  �  SD,  n     �    4 – 5.  *  p     �    0.05 versus respective control (vehicle).  
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totic program has been shown to trigger release of mitochon-

dria into extracellular compartments [65]. 

 In conclusion, we demonstrated that exposure of rats to 

rotenone causes depletion of PUFA CL and accumulation 

of mono-oxygenated CL species in SN and the emergence 

of elevated levels of CL in plasma. These metabolic CL 

changes could refl ect rotenone-induced mitochondrial 

dysfunction including mitophageal response at the early 

time points and enzymatic CL oxidation during execution 

of programmed cell death pathways (apoptosis and necrop-

tosis) at the later stages after the exposure. Characteriza-

tion of oxidatively modifi ed CL molecular species in SN 

and detection of PUFA-containing CL species in plasma 

may contribute to better understanding of the PD patho-

genesis and lead to the development of new biomarkers of 

mitochondrial dysfunction associated with this disease.                   
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  Figure 7.     Detection, identifi cation, and quantifi cation of CL in rat plasma. Plasma lipids were separated by normal-phase LC and detected 

using orbitrap Q-Exactive. A. Typical mass spectra of CL obtained from control rats and rats exposed to rotenone. Quantitative assessment 

of CL (B) and its individual molecular species (C) in rat plasma. V-vehicle; R-rotenone. Data are mean  �  SD,  n     �    3 – 5.  *  p     �    0.05 versus 

respective control (vehicle). Mass spectra of CL were acquired using a Q-Exactive orbitrap mass spectrometer. Thus, m/z values for CL 

species were presented to 4 decimal places. Arrows indicate the CL species that accumulated in plasma.  
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