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Aveiro, Portugal, °Department of Chemistry, QOPNA, University of Aveiro, Aveiro, Portugal, and " Department of Medical Biophysics,
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Abstract

Exposure to rotenone in vivo results in selective degeneration of dopaminergic neurons and development of neuropathologic features of
Parkinson’s disease (PD). As rotenone acts as an inhibitor of mitochondrial respiratory complex I, we employed oxidative lipidomics
to assess oxidative metabolism of a mitochondria-specific phospholipid, cardiolipin (CL), in substantia nigra (SN) of exposed animals.
We found a significant reduction in oxidizable polyunsaturated fatty acid (PUFA)-containing CL molecular species. We further revealed
increased contents of mono-oxygenated CL species at late stages of the exposure. Notably, linoleic acid in sn-1 position was the major
oxidation substrate yielding its mono-hydroxy- and epoxy-derivatives whereas more readily “oxidizable” fatty acid residues (arachidonic
and docosahexaenoic acids) remained non-oxidized. Elevated levels of PUFA CLs were detected in plasma of rats exposed to rotenone.
Characterization of oxidatively modified CL molecular species in SN and detection of PUFA-containing CL species in plasma may
contribute to better understanding of the PD pathogenesis and lead to the development of new biomarkers of mitochondrial dysfunction

associated with this disease.
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Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder
in the elderly characterized by the loss of dopaminergic
neurons in substantia nigra (SN) [1]. Mitochondrial dys-
function and oxidative stress are believed to be important
contributors to the neuronal loss and the pathogenesis of
PD [2-6]. Decreased activity of mitochondrial complex I
[7], reduced amounts of glutathione [8], protein modifica-
tion [9], DNA damage [10] and lipid oxidation [11] have
been documented in the SN compacta of patients with PD
in many studies. While polyunsaturated phospholipids are
the major substrates for oxidative modifications [12], eval-
uation of lipid peroxidation products has been restricted
to detection of secondary oxidation products such as 4-hy-
droxy-2-nonenal [13,14] and essential information on
molecular targets, particularly specific polyunsaturated
molecular species of phospholipids undergoing oxidation
and leading to mitochondrial dysfunction and their asso-
ciation with PD, is lacking.

Given that oxidation products formed from polyun-
saturated molecular species of a mitochondria-specific
phospholipid, cardiolipin (CL) have been identified as

important cell death signals [12,15], their systematic
analysis in PD-relevant samples may be particularly
important. However, reliable identification and quantita-
tion of these products even using sensitive contemporary
liquid chromatography/mass spectrometry (LC/MS)
protocols is challenging due to the inherent instability, fast
metabolic conversions, as well as high diversification of
oxidized species resulting in their low steady-state con-
centrations [16]. We have developed several advanced
techniques of oxidative lipidomics that allowed physi-
cal separation of oxidized and non-oxidized phospho-
lipids as well as accurate identification and quantitative
analysis of oxygenated molecular species of phospho-
lipids using L.C or high-performance thin-layer chroma-
tography (HPTLC) protocols [17-19] along with
different versions of MS combined with enzymatic
hydrolysis of fatty acid residues from modified phos-
pholipids [20]. Here, using a rat rotenone model of PD
[21] and oxidative lipidomics approach we were able,
for the first time, to identify and quantitatively charac-
terize oxygenated molecular species of CL formed in
dysfunctional mitochondria in SN as well as in CL in
plasma.
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Methods
Rat rotenone model

The Institutional Animal Care and Use Committee of the
University of Pittsburgh approved all experiments utiliz-
ing animals. Male Lewis rats (7-9 months old, Charles
River) were injected intraperitoneally with vehicle or
3.0 mg/kg/day of rotenone (Sigma-Aldrich) either once,
for five daily injections or treated to parkinsonian end-
point. We chose to evaluate one and five daily injection
paradigms because we have previously detected mitochon-
drial DNA damage in the SN and peripheral tissues fol-
lowing rotenone treatment at these time points [22,23].
Animals treated with rotenone to parkinsonian endpoint
recapitulate many of the key pathological features of PD
[24,25]. Animals treated with rotenone to parkinsonian
endpoint (10-14 days) were sacrificed when animals dis-
played behavioral features including bradykinesia, pos-
tural instability/gait disturbances, and rigidity. Rat brains
were first removed from the skull and rinsed in cold 1X
phosphate-buffered saline to remove any surface blood.
Brains were placed on a cold Petri dish and cut in half into
the right and left hemisphere. Using a blade and forceps
precise micro-dissection of the ventral midbrain was per-
formed and the tissue was flash frozen in liquid nitrogen
and stored at — 80°C.

Extraction of lipids

Lipids were extracted from SN and plasma using the Folch
and Bligh—Dyer procedures, respectively [26,27]. Lipid
phosphorus was determined by a micro-method [28].

Analysis of esterified fatty acids

To release esterified fatty acids, total lipids were treated
with either phospholipase A (PLA) from Thermomyces
lanuginosus (10 pl/umol of phospholipids) (Sigma-Al-
drich, St. Louis, MO, USA) or phospholipase A, (PLA,)
from porcine pancreas (10 U/umol of phospholipids) (Sig-
ma-Aldrich, St. Louis, MO, USA) in 0.5 M borate buftfer,
pH: 9.0 containing 20 mM cholic acid, 2 mM CaCl, and
100 uM diethylenetriaminepentaacetic acid (DTPA) for
60 min at 37°C. Under these conditions, almost 99% of
phospholipids were hydrolyzed. Liberated oxygenated and
non-oxygenated fatty acids were separated from lipids and
lysolipids by solid-phase extraction using phospholipid
removal plates (Phenomenex, Torrance, CA, USA) and
analyzed by LC/MS as described [29]. Briefly, LC/MS in
negative mode was performed using a Dionex Ultimate™
3000 high-performance liquid chromatography (HPLC)
coupled online to a Q-Exactive hybrid quadrupole-orbit-
rap mass spectrometer (Thermo Fisher Scientific, San
Jose, CA, USA). Fatty acids were separated on a reverse-
phase column (C18 Luna, 3 um, 150 X2 mm, Phenome-
nex, Torrance, CA, USA) with flow rate 0.2 mL/min using
gradient solvents containing 5 mM ammonium acetate [A:
tetrahydrofuran/methanol/water/CH3COOH, 25:30:50:0.1

(v/v/vlv) and B: methanol/water 90:10 (v/v)]. The column
was eluted for the first 3 min isocratically at 50% B, from
3 to 23 min with a linear gradient from 50% solvent B to
98% solvent B, then 23-40 min isocratically using 98%
solvent B, 40—42 min with a linear gradient from 98%
solvent B to 50% solvent B, and 42—-60 min isocratically
using 50% solvent B for equilibration of the column.
Standards of oxygenated fatty acids were purchased from
Cayman Chemical Co. (Ann Arbor, MI, USA).

Analysis of CL

LC/MS was performed as previously described [29].
Briefly, LC/MS in negative mode was performed using a
Dionex UltiMate™ 3000 HPLC coupled online to a linear
ion-trap mass spectrometer (LXQ, Thermo Fisher Scien-
tific, San Jose, CA, USA). Thus, m/z values for CL molec-
ular species were presented to 1 decimal place. Total
lipids were separated on a normal-phase column [Silica
Luna 3 um, 100A, 150 X 2 mm, (Phenomenex, Torrance
CA)] with flow rate of 0.2 mL/min using gradient solvents
containing 5 mM CH,COONH, [A—n-hexane:2-
propanol:water, 43:57:1 (v/v/v) and B-—n-hexane:2-
propanol:water, 43:57:10 (v/v/v)]. Tetra-myristoyl CL
(TMCL) (Avanti polar lipids, Alabaster, AL, USA) was
used as an internal MS standard.

Analysis of oxygenated CL

CL was separated by two-dimensional (2D) HPTLC [30],
and CL and oxygenated CL were analyzed by LC/MS as
described [18]. To prevent lipid oxidation during separa-
tion, chromatography was performed under N, conditions
on DTPA-treated silica plates (5 X5 cm, Whatman). LC/
MS in negative mode was performed using a Dionex Ulti-
Mate™ 3000 RSLCnano System coupled online with Q-Ex-
active hybrid quadrupole-orbitrap mass spectrometer
(Thermo Fisher Scientific, Soan Jose, CA, USA) using a C,
column (Luna 3 um, 100 A, 150 X2 mm, Phenomenex,
Torrance, CA, USA) with flow rate of 0.15 mL/min using
an isocratic solvent system consisting of 2-propanol:water:
triethylamine:acetic acid, 45:5:0.25:0.25, v/v. The resolu-
tion was set up at 140000 which corresponds to 5 ppm in
m/z measurement error. Thus, m/z values for CLs and their
oxidation species were presented to 4 decimal places.
TMCL (Avanti polar lipids, Alabaster, AL, USA) was used
as an internal MS standard. TMCL molecular species is not
usually present in the brain (and other tissues) and does not
interfere with the endogenous CLs and widely used as an
internal standard [31]. The ionization efficiencies of indi-
vidual molecular species of CLs, particularly of those with
differing fatty acid chains, may be different. To minimize
the potential inaccuracies, the tuning of mass spectrometers
was performed using Tetra-linoleoyl-cardiolipin (TLCL),
(C18:2)4-CL. In addition, TLCL was also utilized as a ref-
erence standard to build calibration curves employed for
quantitative assessments of CLs in the brain. Finally, we
were able to compare the total amounts of CLs in SN sam-
ples based on LC/MS analysis and summation of individual
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molecular species with that obtained from the direct deter-
minations after 2D-HPTLC separation of total phospholipid
extracts. These comparisons showed good coincidence of
the CL amounts determined in two independent ways.

Statistics

The results are presented as mean * standard deviation
(SD) values from at least three experiments, and statistical
analyses were performed by either paired/unpaired
Student’s t-test or one-way analysis of variance. The sta-
tistical significance of differences was set at p <0.05.

Results

Rotenone is a highly lipophilic compound that can cross
the blood-brain barrier [32,33]. Its toxicity mechanisms
are mostly associated with the binding to and inhibiting
electron transport at the level of complex I and generation
of superoxide radicals [15,34,35]. These mitochondria-
related effects lead to selective degeneration of dopamin-
ergic neurons and produce neuropathologic features of PD
[21]. Therefore, our oxidative lipidomic efforts to detect
mitochondria-specific modification of lipids were focused
on the analysis of CLs in SN of rats exposed to rotenone.
The flow chart representing our analytical approach is
shown in Figure 1.

Rotenone (3 mg/kg)

Y

1st Day l | 5th Day I | Parkinsonian endpoint (10-14) |

Plasma SUBSTANTIA NIGRA

Y

EXTRACTION OF TOTAL LIPIDS

I I |
Identification of Analysis of free Separation of CL.
oxidizable CL fatty acids. 2D-HPLC
molecular species. Reverse Phase LC/MS
Normal Phase " I
LC/MS analysis Analysis of —-
oxygenated fatty Identification and

acids in sn-1 and sn-
2 position enzymatic

quantitative
assessment of

hydrolysis of PLs oxidized CLs.
(PLA, and PLA,). Reverse Phase
Reverse Phase LC/MS LC/MS

B

IDENTIFICATION OF
OXYGENATED CARDIOLIPIN
MOLECULAR SPECIES

IDENTIFICATION OF
CARDIOLIPIN
MOLECULAR SPECIES

Figure 1. Flowchart representing analytical approach to assess CL
and its oxygenated species in plasma and SN.
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Because of high diversification of oxidatively modified
phospholipids with potentially low content of each of
them, we chose to simplify the analytical task by reducing
the number of oxygenated molecular species. To this end,
we treated the total lipid extracts with either PLA, or
PLA, to release fatty acid residues from sn-1 and sn-2
positions of phospholipids, respectively. This allowed the
detection of oxidation products in a limited number of
molecular species of oxidizable polyunsaturated fatty
acids (PUFAs). PUFAs were mainly represented by lino-
leic (C,4.,), arachidonic (C,),), and docosahexaenoic
(C,,.¢) acids and predominantly localized in sn-2 position
(Figure 2). Surprisingly, while the content of PUFA in
sn-1 position was significantly lower than that in sn-2,
oxygenated fatty acid species were released almost exclu-
sively upon PLA, treatment (Figure 3). Furthermore,
among the PUFAs released, linoleic acid (C18:2, with
2 double bonds) underwent oxidative modification to
mono-hydroxy (HODE) and epoxy (EpOME) derivatives
(Figure 3), whereas more polyunsaturated, hence more
readily “oxidizable” fatty acid residues such as C,,, and

C,,.,» remained non-oxidized. A substantial increase in

epoxy-molecular species of C, ¢ , was detected at day 5 and

C22:6

(A) .,

C20:4
— C1a2
" §
( )
C18:3 c20:2 C20:3 c20:5 C22:5

sn-1

(B) sra

c18:3 c20:2 c20:3 c20:5 c22:5

sn-2

Figure 2. Profile of fatty acids liberated from total phospholipids
extracted from SN by either PLA, (A, sn-1 position) or PLA,
(B, sn-2position). SFA: saturated fatty acids, MUFA: monounsaturated
fatty acid, PUFA: polyunsaturated fatty acid; C,,,: octadecadienoic
acid (linoleic acid); C,4 4: octadecatrienoic acid, C,,: eicosadienoic
acid,C,, 4 eicosatrienoic acid, Cz(): 4 €icosatetraenoic acid (arachidonic
acid), C,,5: eicosapentaenoic acid, C,,,: docosapentaenoic acid,

C,,.¢: docosahexaenoic acid.
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Figure 3. Quantitative assessment of oxygenated C,, (octadecadienoic acid) liberated by PLA, from SN total phospholipids. HODE:

hydroxy species of C,, ,, EJOME: epoxy species of Cg.,.

Released oxygenated fatty acids were analyzed by reverse-phase LC/MS after

solid-phase extraction. Data are normalized (A) per nmol of total phospholipids (PLs) and (B) per nmol of CL.

parkinsonian endpoint (Figure 3); however, the changes in
the content of hydroxy species of C ¢, were significant
only at parkinsonian endpoint. No accumulation of
oxygenated C,,, was observed at day 1 of exposure
(Figure 3). No oxygenated PUFAs were detected in sam-
ples obtained from rats exposed to rotenone and treated
with PLA, (data not shown). In major classes of phospho-
lipids including phosphatidylcholine, phosphatidyletha-
nolamine, and phosphatidylserine, oxidizable PUFAs
(Cig.00 Cypq and C,, ) occupy predominantly the sn-2 posi-
tion whereas in CL they can be equally distributed between
sn-1 and sn-2 positions [18]. This suggests that oxygenated
esterified C,;, detected in SN of rotenone-treated rats
likely originated from the sn-1 position of CL.

Therefore, we further specifically focused on the analy-
sis of CLs in SN. Using normal-phase LC followed by full
MS and MS? analysis, we identified oxidizable CL molec-
ular species containing fatty acids with 2—-6 double bonds
(Table I, Figure 4A, B). Quantitative assessments revealed
a substantial reduction of these species in SN of rotenone-
exposed rats at all time points studied compared with con-
trol animals (Figure 4C). Notably, all these polyunsaturated
CL species contained at least one C  , residue. No changes
in the CL content from cortex of the same rats were

detected (data not shown). Therefore, we suggested that
decrease in the content of oxidizable CL was linked to
rotenone-induced damage of mitochondria in SN.

Assuming that lipid peroxidation can contribute to
the depletion of oxidizable CL. we further characterized
oxygenated CL species in SN. CLs were pre-separated
by HPTLC and subjected to reverse-phase LC to resolve
non-oxidized versus oxidized CL species after which high
mass accuracy MS was employed to identify CL oxygen-
ated species (Figure 5). We detected significantly increased
content of mono-oxygenated CL species at parkinsonian
endpoint (Figure 6). Quantitative analysis revealed accu-
mulation of several mono-oxygenated CL species (m/z:
1443.9903, 1446.0038,1472.0189,1491.9891,1494.0033,
1515.9889, and 1518.0026) (Figure 6) which originated
from oxidizable CL species (m/z: 1427.9966, 1430.0077,
1456.0260, 1475.9943, 1478.0067, 1499.9929, and
1502.0061). Notably, all of these species were reduced by
rotenone exposure and contained at least one C , residue
(Table I, Figure 3). No accumulation of oxygenated CL in
SN on day 1 was detected (data not shown).

Assuming that mitochondria with their CLs and oxi-
dized CLs can be released from damaged cells into extra-
cellular environments and act as damage-associated
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Table I. Major CL and CL oxidized species detected in SN and plasma from rats exposed to rotenone.

m/z CN:DB CL molecular species

Mono-oxygenated CL
species in SN (m/z)

CL species detected
in plasma (m/z)

1425.9771 70:5 16:1/18:1/18:1/18:2
16:0/18:2/18:1/18:2
16:0/18:1/18:1/18:2
16:1/18:1/18:1/18:1
16:0/18:2/18:1/18:1
16:0/18:2/18:1/18:0
16:0/18:1/18:1/18:1
16:1/18:1/18:1/18:0
18:1/18:1/18:1/18:2
18:1/18:1/18:0/18:2
18:1/18:1/18:2/20:4
18:0/18:2/18:2/20:4
18:0/18:1/18:2/20:4
18;1/18:1/18:1/20:4
18:1/18:2/18:0/20:4
16:0/18:1/18:2/22:4
16:1/18:0/18:2/22:4
16:0/18:1/18:0/22:6
16:1/18:0/18:0/22:6
18:1/20:4/18:1/20:4
18:2/18:0/18:2/22:6
18:1/18:1/18:2/22:6
18:1/18:2/18:0/22:6
18:0/18:2/18:1/22:6
18:1/18:1/18:1/22:6
18:1/20:2/18:0/20:4
18:2/20:3/18:0/20:4
18:1/20:3/18:1/20:4

1427.9966 70:4

1430.0077 70:3

1454.0059 72:5
1456.0260 72:4
1475.9943 74:8

1478.0067 74:7

1499.9929 76:10

1502.0061 76:9

1441.9735 1425.9832
1443.9903 1427.9962
1446.0038 1430.0088
1470.0074 1454.0051
1472.0189 1456.0249
1491.9891 1475.9922
1494.0033 1478.0150
1515.9889 ND

1518.0026 ND

CL, cardiolipin; CN and DB refer to the total carbon atoms in the fatty acid chains and total number of double bonds,

respectively; ND, not detected

molecular patterns [36], we performed analysis of CL in
plasma of rats at two time points (day 1 and day 5) after
the exposure to rotenone. MS analysis revealed the increase
of relative intensity for CL molecular species with m/z:
1425.9832,1427.9962, 1430.0088, 1454.0051, 1456.0249,
1475.9922, and 1478.0150 (Figure 7). Relative intensities
for several individual CL molecular species as well as
their total content were significantly higher on days 1 and
5 compared with those for the corresponding controls
(Figure 7B, C). All CLs in plasma were represented by
non-oxygenated molecular species. The sensitivity of LC/
MS assay for oxygenated CL is approximately 10 nM.
Given that the observed levels of oxygenated CL in rote-
none-treated rats constituted only 0.2% of its total content
in the brain, the expected increased levels in plasma would
be on the order of 0.3 nM. Assuming that metabolic con-
versions of oxygenated CL (e.g., by lipoprotein-associated
Lp-PLA, [18]) would result in its hydrolysis, the contents
of oxygenated CL would be even lower.

Discussion

Oxidatively modified phospholipids have been recognized
as important signals in acute injury and chronic diseases
[37-39]. CL is a negatively charged phospholipid with
four fatty acid residues [40]. In normal conditions, CL is
found exclusively in the inner-mitochondrial membrane

where it accounts for 25% of all phospholipids [41] and
essential for normal functions of many proteins, including
the activity of respiratory complexes [42-45]. Accumula-
tion of oxygenated CL molecular species and their hydro-
lysis products has been demonstrated for acute brain injury
caused by trauma and cardiac arrest [46,47], hyperoxic-
and nanoparticle-induced lung injury [48,49], as well as
acute irradiation syndrome [18,29,50]. Polyunsaturated
CLs in the brain have been considered not only as oxida-
tion substrates [12] but also as a source of oxygenated
lipid mediators [18,46,51].

Rotenone—a known inhibitor of complex I in mito-
chondria—has been used to mimic clinical features of PD
[1]. The rotenone model is characterized by slow and pro-
gressive loss of dopaminergic neurons and formation of
Lewy bodies in SN [1]. Degeneration of dopaminergic
neurons in SN has been long associated with mitochon-
drial dysfunction. Given that disrupted electron transport
may be linked to the enhanced reactive oxygen species
production in mitochondria [52], we sought to test whether
this would result in oxidative modifications of a suscep-
tible phospholipid target, CL, that is highly concentrated
in close proximity to complex I in the inner mitochondrial
membrane [53,54]. Using the rat rotenone model of PD,
here, we demonstrate, for the first time, the accumulation
of CL oxygenated species in SN.

Two major pathways triggered in dysfunctional mito-
chondria—mitophagy and apoptosis—may be involved
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phosphatidic acid, PC: phosphatidylcholine, PE: phosphatidylethanolamine, PG: phosphatidylglycerol, PI: phosphatidylinositol, PS:
phosphatidylserine, SM: sphingomyelin. (B) MS? fragmentation of CL molecular ions with m/z 1427.9 (upper panel) and m/z 1502.0 (lower
panel). (C) Quantitative assessments of CL in SN of rotenone-exposed rats. The data are presented as rotenone-induced decreases in the

amounts of oxidizable CL molecular species.

in responses of dopaminergic neurons to rotenone in SN
[55-57]. For both pathways CLs have been recognized
as signaling molecules [16,58]. In the case of pro-sur-
vival mitophagy CL is externalized to the outer leaflet
of the outer mitochondrial membrane but does not
undergo oxidation [58]. The externalized CL acts as a
signal recognized by LC3 to facilitate the elimination of
damaged mitochondria and rescue the cell [58]. In con-
trast, accumulation of oxygenated CL species has been
identified as an early event in the execution of apoptotic
program [15] resulting in the release of cytochrome c
into the cytosol and activation of caspases and cell death
[15]. Our oxidative lipidomic protocols revealed
the early loss of oxidizable linoleic-acid-containing CL
species (on days 1 and 5 after exposure to rotenone) and

accumulation of CL oxidation products in the same
molecular species in SN on the parkinsonian endpoint.
Of note, in this model animals received rotenone daily,
thus the total dose of rotenone was increasing during the
exposure. This is compatible with our previous observa-
tions in vitro demonstrating that small doses of rotenone
stimulated mitophagy in primary cortical neurons with-
out CL oxidation [58]. However, at higher doses, rote-
none caused CL oxidation and activation of the apoptotic
cell death pathway. It is tempting to speculate that at the
early time point, the mitophageal pathway was activated
in SN neurons as a rescue mechanism which transitioned
to triggering the apoptotic death as the damage was
enhanced by increasing doses of rotenone at later
time points.
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Figure 5. Detection and identification of CL oxygenated species in rat SN. Typical HPTLC of total lipids, LC/MS profile, and mass spectra
of CL and its oxygenated species obtained from SN of rat exposed to rotenone (parkinsonian endpoint). CL was isolated by 2D-HPTLC.
The CL fraction was then subjected to reverse-phase LC/MS analysis using a C8 column (4.6 mm X 15 cm). CL and oxygenated CL were
separated using an isocratic solvent system (see “Methods” section). Under these conditions, oxygenated CL eluted prior to CL. Molecular
species of oxygenated CL were identified as mono-oxygenated species based on exact m/z ratios. CL: cardiolipin, FFA: free fatty acids, NL:
neutral lipids, PA: phosphatidic acid, PC: phosphatidylcholine, PE: phosphatidylethanolamine, PG: phosphatidylglycerol, PI:

phosphatidylinositol, PS: phosphatidylserine, SM: sphingomyelin.

Analysis of CL oxidation products in SN revealed
unusual features of rotenone-associated oxidation: (i)
exclusive accumulation of oxygenated C,g, in sn-1 rather
than sn-2 position and (ii) selective generation of mono-
oxygenated CL species. In line with this, our previous stud-
ies identified C13;2’ located in sn-1 position of CL, as the
major oxidation substrate in rotenone-treated lymphocytes
[20]. Notably, mono-oxygenated CL species were the major

products detected in rotenone-exposed lymphocytes [20].
While the mechanisms of this unusual specificity toward
Cg.» species of CLs remain to be elucidated, they are
indicative of enzymatic rather than random stochastic free
radical oxidation pathways. One of the candidate catalysts
in oxidation of CL is cytochrome c with its established
role during apoptosis [15]. Oxidizing equivalents (O,e-
->H,0,) formed in mitochondria during apoptosis feed
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Figure 6. Quantitative assessment of total (A) and individual oxygenated molecular species of CL (B) in SN of control and rotenone-treated
rats. V-vehicle; R-rotenone. Molecular species with m/z 1443.9903, 1446.0038, 1472.0189, 1491.9891, 1494.0033, 1515.9889, and 1518.0026
originated from molecular species with m/z 1427.9966, 1430.0077, 1456.0260, 1475.9943, 1478.0067, 1499.9929, and 1502.0061,
respectively, after addition of one oxygen. Data are mean * SD, n=4-5. *p <0.05 versus respective control (vehicle).

the peroxidase activity of cytochrome c¢/CL complexes
resulting in the selective depletion of oxidizable CL species
in mitochondria and the accumulation of oxygenated CLs
[15]. Alternatively, 12/15-lipoxygenase driven mechanisms
may be enacted in damaged mitochondria to cause CL oxi-
dation [59]. In the latter case, however, the selectivity to
phospholipid substrates (CLs) should be less pronounced.
Following oxidation, the hydrolysis reactions—possibly
catalyzed by phospholipase A,—can be involved in deple-
tion of oxidizable CL species in SN of rotenone-treated
rats. Recently, we discovered a new biosynthetic pathway
for lipid mediators activated in vivo after acute tissue injury
realized by oxidation and hydrolysis of oxygenated CL spe-
cies by mitochondrial Ca®*-independent iPLA )y [18]. Sev-
eral reports indicate that iPLA,-VI, a calcium-independent
PLA,, may be implicated in the pathogenesis of PD [60—
62]. Mutation of PLA2G6, encoding calcium-independent
PLA,,, is characteristic of PD and results in the suppression

of the enzymatic activity [60]. There are only few publica-
tions on the effect of rotenone on iPLA, activity in mito-
chondria. In studies on isolated lung and liver mitochondria,
rotenone treatment caused the release of PUFA which was
partially sensitive to 6E-(bromoethylene)tetrahydro-3R-
(1-naphthalenyl)-2H-pyran-2-one, (R)-bromoenol lactone
((R)-BEL) [63,64]. Our in vivo studies, however, did not
document higher levels of free fatty acids or oxygenated
free fatty acids in SN of rotenone-treated rats versus control
rats. Accordingly, with the exception of lysophosphatidyl-
choline, no accumulation of other lysophospholipids have
been observed.

While apoptosis-driven CL oxidation may be accountable
for the observed accumulation of oxidized CL, it is likely
that non-apoptotic cell death pathways are also triggered in
rotenone-treated animals resulting in the release of damaged
mitochondria. This may explain the detected higher levels
of PUFA CL species in plasma. Indeed, execution of necrop-
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Figure 7. Detection, identification, and quantification of CL in rat plasma. Plasma lipids were separated by normal-phase LC and detected
using orbitrap Q-Exactive. A. Typical mass spectra of CL obtained from control rats and rats exposed to rotenone. Quantitative assessment
of CL (B) and its individual molecular species (C) in rat plasma. V-vehicle; R-rotenone. Data are mean *= SD, n=3-5. *p <0.05 versus
respective control (vehicle). Mass spectra of CL were acquired using a Q-Exactive orbitrap mass spectrometer. Thus, m/z values for CL
species were presented to 4 decimal places. Arrows indicate the CL species that accumulated in plasma.

totic program has been shown to trigger release of mitochon-
dria into extracellular compartments [65].

In conclusion, we demonstrated that exposure of rats to
rotenone causes depletion of PUFA CL and accumulation
of mono-oxygenated CL species in SN and the emergence
of elevated levels of CL in plasma. These metabolic CL
changes could reflect rotenone-induced mitochondrial
dysfunction including mitophageal response at the early
time points and enzymatic CL. oxidation during execution
of programmed cell death pathways (apoptosis and necrop-
tosis) at the later stages after the exposure. Characteriza-

tion of oxidatively modified CLL molecular species in SN
and detection of PUFA-containing CL species in plasma
may contribute to better understanding of the PD patho-
genesis and lead to the development of new biomarkers of
mitochondrial dysfunction associated with this disease.
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