Report of Investigations 7691

Low-Temperature Heat Capacities and High-Temperature Enthalpies of Sodium Chromate

By M. J. Ferrante, J. M. Stuve, and M. P. Krug Albany Metallurgy Research Center, Albany, Oreg.

UNITED STATES DEPARTMENT OF THE INTERIOR Rogers C. B. Morton, Secretary

BUREAU OF MINES
Elburt F. Osborn, Director

-11-

The work upon which this report is based was done under an agreement between the Bureau of Mines, U.S. Department of the Interior, and the U.S. Atomic Energy Commission.

This publication has been cataloged as follows:

Ferrante, Michael J

Low-temperature heat capacities and high-temperature enthalpies of sodium chromate, by M. J. Ferrante, J. M. Stuve, and M. P. Krug. [Washington] U.S. Dept. of the Interior, Bureau of Mines [1972]

12 p. illus., tables. (U.S. Bureau of Mines. Report of investigations 7691)

Includes bibliography.

Based on work done in cooperation with the U.S. Atomic Energy Commission.

1. Sodium chromate. I. Stuve, John M., jt. auth. II. Krug, Marion P., jt. auth. III. Title. (Series)

TN23.U7 no. 7691 622.06173

U.S. Dept. of the Int. Library

CONTENTS

	Page
Abstract. Introduction. Materials. Experimental work and discussion of results. Low-temperature heat capacities. High-temperature enthalpies. X-ray diffraction studies. Enthalpies and free energies of formation. Summary. References.	1 2 2 2 7 9 10
ILLUSTRATIONS	
 Low-temperature heat capacity High-temperature enthalpy function 	
TABLES	
 Experimental heat capacities of Na₂CrO₄ (c)	5 7 8
radiation λ = 1.54178 A	9

LOW-TEMPERATURE HEAT CAPACITIES AND HIGH-TEMPERATURE ENTHALPIES OF SODIUM CHROMATE

by

M. J. Ferrante, J. M. Stuve, and M. P. Krug²

ABSTRACT

Low-temperature heat capacities and high-temperature enthalpies were determined calorimetrically for $\mathrm{Na_2CrO_4}$. A reversible transition was found at 700° K with an isothermal heat of transition of 2,263 cal/mole. High-temperature X-ray diffraction analysis showed that the transition was a crystal change from the low-temperature orthorhombic form to the high-temperature hexagonal form. At 795° K the hexagonal form had the parameters a = 5.691 and $c_o = 7.478$ A. Powder diffraction data for the high-temperature form are given and possible structures discussed. The melting point was determined to be 1,065° K with a heat of fusion of 5,810 cal/mole. Enthalpy and entropy increments from this investigation were combined with other data from the literature to calculate enthalpies of formation, free energies of formation, and equilibrium constants of formation from 298° to 1,400° K. Equations that represent enthalpies above 298° K are given.

INTRODUCTION

This Bureau of Mines investigation was made to determine thermodynamic properties for $\mathrm{Na_2CrO_4}$ over an extended temperature range. The research was done in cooperation with the Atomic Energy Commission, as a part of the fast-breeder reactor program, to provide thermochemical data for a portion of the Na-Cr-O system.

The experimental work involved two areas of calorimetric investigation: Low-temperature heat capacities were determined with an adiabatic calorimeter over the temperature range of 5.5° to 308.5° K, and high-temperature enthalpy increments were determined with a drop calorimeter between 298° and $1,192^{\circ}$ K. No similar data have appeared previously in the literature.

The high-temperature investigation of Na $_{2}$ CrO $_{4}$ showed a reversible transition at 700° K. Flach $(4)^3$ reported this temperature to be 686° K. X-ray

¹ Research chemist.

²Research physicist.

³Underlined numbers in parentheses refer to items in the list of references at the end of this report.

diffraction studies showed this transition to be a reversible crystal change and provided data for the crystal form above the transition temperature. The melting point was determined to be 1,065° K, in confirmation of the temperature reported by Flach (4) and Hartford (6).

The present results were combined with an enthalpy of formation at 298.15° K, given by Nelson, Moss, and Hepler ($\underline{12}$), to provide a table that lists the principal thermodynamic properties for both the crystal and liquid states.

MATERIALS

Anhydrous $\mathrm{Na_2CrO_4}$ was prepared by heating reagent-grade $\mathrm{Na_2CrO_4} \cdot 4\mathrm{H_2O}$. The tetrahydrate was first heated at 110° C for about 4 days with occasional grinding and stirring. The temperature was then increased to 480° C, where it was maintained for 3 hr. The X-ray diffraction pattern of the product matched that given in the ASTM Catalog of X-ray Powder Data for anhydrous, orthorhombic $\mathrm{Na_2CrO_4}$. Wet chemical analysis gave 32.11 pct chromium as compared with the theoretical chromium content of 32.10 pct. Optical emission spectroscopy showed that the sample contained between 10 to 100 ppm silicon as the only detected impurity.

EXPERIMENTAL WORK AND DISCUSSION OF RESULTS

The results of calorimetric determinations are expressed in defined calories (1 cal = 4.1840 j). Molecular weights were calculated from the 1969 Table of Atomic Weights (9). Temperatures from 5° to 20° K were based on the National Bureau of Standards P2-20 (1965) Provisional Scale; from 20° to 90° K, on the National Bureau of Standards 1955 Scale; and from 90° to 1,200° K, on the International Practical Temperature Scale of 1968 (IPTS-68).

Low-Temperature Heat Capacities

Heat-capacity determinations were made with an adiabatic calorimeter. Only a brief description of this newly constructed apparatus will be given here since a detailed report on the construction and operation of the calorimeter will be published in the near future. This apparatus consists of a liquid nitrogen-liquid helium cryostat capable of cooling a 90-ml sample to 5° K. Sample temperatures are measured with a germanium resistance thermometer between 5° and 15° K, and a platinum resistance thermometer from 15° to 310° K. Both thermometers were calibrated by the National Bureau of Temperatures were determined potentiometrically with a double, six-dial microvolt potentiometer. Adiabatic control of the shielding system is operated automatically by electronic circuitry capable of discriminating temperature differences as small as 0.0005° K. Electrical energy input to the sample is supplied by a precision regulated constant current source and measured by a high-impedance integrating digital voltmeter. A small amount of helium gas (~10⁻⁵ mole) is usually introduced into the sample container prior to determinations to facilitate heat exchange. The heat capacity of the empty calorimeter is about 0.01 cal/deg at 6° K and 9 cal/deg at 300° K.

Experimental heat capacities, determined with a 125.15-g sample of ${\rm Na_2CrO_4}$, are listed in table 1 and shown graphically in figure 1. No anomalous behavior or transitions were found. The estimated error is the larger of either ± 0.0005 cal/deg or 0.1 pct of the measured heat capacity for the range of 9° to 300° K.

TABLE 1. - Experimental heat capacities of Na₂CrO₄(c)

T, ° K	C _p ,	T, ° K	C _p ,
-,	cal/deg mole		cal/deg mole
5.515	0.0166	63.626	11.577
5.872	.0208	67.782	12.429
6.206	.0260	72.041	13.257
6.594	.0331	76.384	14.093
7.088	.0438	80.637	14.913
7 ((5	.0593	77.675	14.331
7.665	.0393	79.936	14.769
8.322 9.028	.1098	84.217	15.577
	.1471	89.071	16.436
9.771	.1954	94.820	17.345
10.564	.1954	94.020	17.343
11.466	.2612	102.216	18.458
12.421	.3430	111.115	19.739
13.330	.4332	120.763	21.028
14.247	.5369	130.960	22.309
15.275	.6479	141.37 7	23.451
44 40-	7006	150 0/ 7	0/ 5/7
16.287	.7896	152.047	24.547
17.456	.9675	163.101	25.568 26.563
18.748	1.184	174.634 186.520	27.478
20.009	1.406	198.564	28.348
21.383	1.675	190.304	20.340
23.369	2.081	210.657	29.319
26.014	2.664	222.751	30.037
29.521	3.498	234.928	30.743
33.940	4.570	247.061	31.439
39.135	5.862	259.169	32.087
// 700	7 0/6	271 101	32.679
44.799	7.246	271.101	32.679
48.017	8.015	283.161	33.312
50.182	8.548	295.158	
52.837	9.154	306.839 308.466	34.381 34.457
55.979	9.847	300.400	34.43/
59.592	10.692		

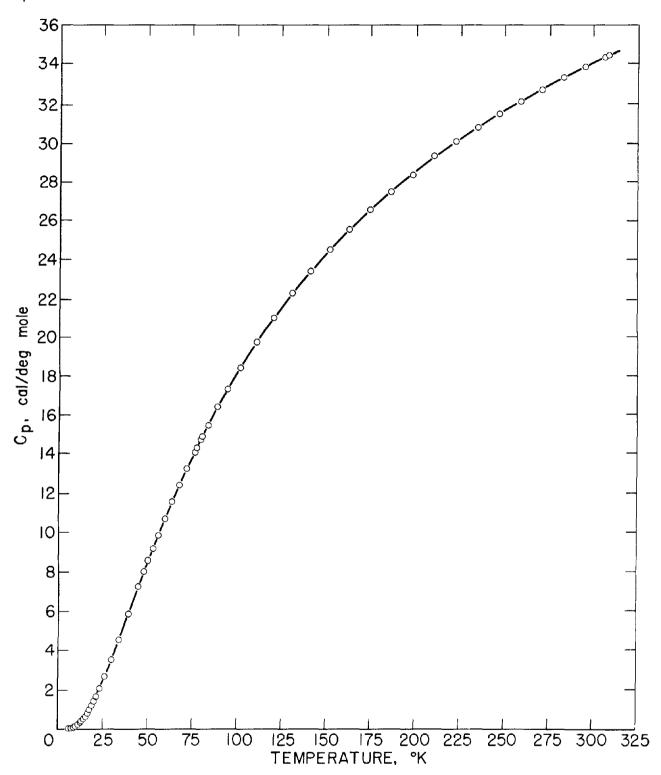


FIGURE 1. - Low-Temperature Heat Capacity.

Table 2 lists the smoothed heat capacity values at regular temperature intervals. These values were obtained from polynomial functions (5, 10), which

were fitted to the experimental data with the aid of a computer. Table 2 also shows the derived thermodynamic quantities S° , $-(G^{\circ}-H_{\odot}^{\circ})/T$, and $H^{\circ}-H_{\odot}^{\circ}$.

TABLE 2. - Low-temperature thermodynamic properties of Na₂CrO₄(c)¹

T, ° K	C _p	S°	-(G°-H _O)/T	H°-H°,
		cal/deg mol	le	cal/mole
5	(0.012)	(0.003)	(0.001)	(0.013)
10	.160	.043	.009	.337
15	.620	.184	.040	2.159
25	2.435	.884	.219	16.627
30	3.610	1.430	.374	31.698
40	6.073	2.808	.804	80.19
50	8.460	4.421	1.363	152.90
60	10.747	6.168	2.017	249.05
70	12.868	7.986	2.739	367.28
80	14.804	9.833	3.510	505.8
90	16.559	11.679	4.315	662.7
100	18.150	13.508	5.143	836.4
110	19.599	15.307	5.986	1,025.3
120	20.927	17.070	6.836	1,228.0
130	22.149	18.794	7.690	1,443.5
140	22.278	20.477	8.543	1,670.7
150	24.324	22.119	9.394	1,098.7
16 0	25.293	23.720	10.240	2,156.9
170	26.190	25.281	11.079	2,414.4
180	27.021	26.802	11.910	2,680.5
190	27.793	28.283	12.733	2,954.6
200	28.513	29.728	13.547	3,236.1
210	29,190	31,135	14.351	3,524.7
220	29.831	32.508	15.145	3,819.8
230	30.445	33.848	15.929	4,121.2
240	31.036	35.156	16.703	4,428.6
250	31.605	36.435	17.467	4,741.9
260	32.149	37.685	18.221	5,061
270	32.665	38.908	18.964	5,385
280	33.148	40.105	19.698	5,714
290	33.603	41.276	20.422	6,048
298.15	33.968	42.212	21.005	6,323
300	34.052	42,423	21.136	6,386

¹Values in parentheses are extrapolations.

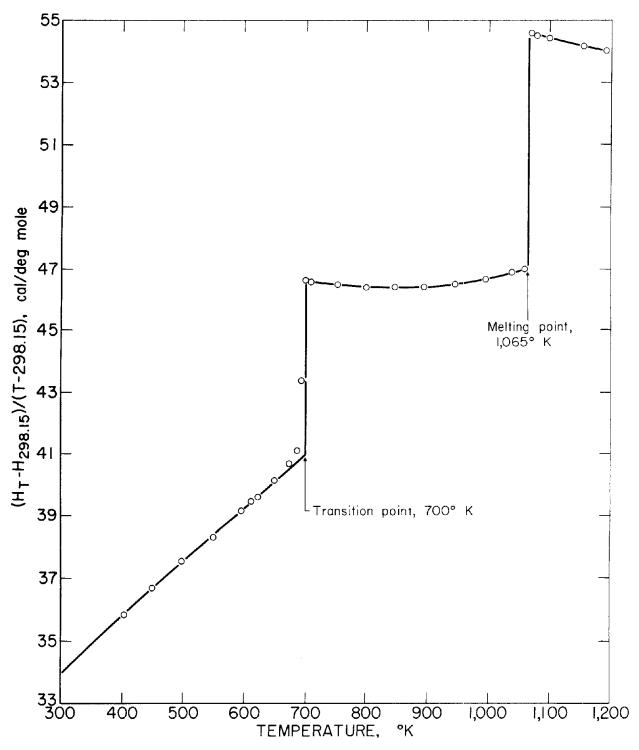


FIGURE 2. - High-Temperature Enthalpy Function.

High-Temperature Enthalpies

Enthalpy determinations above 298.15° K were made with the copper-block drop calorimeter described by Douglas and King $(\underline{1})$. This apparatus was modified by the use of a six-dial microvolt potentiometer in conjunction with a precision electronic null detector.

Platinum-rhodium alloy capsules served as sample containers. Enthalpies of the empty capsules were determined in separate experiments. Two capsules were filled with $\mathrm{Na_2CrO_4}$ samples of 8.3145 and 8.5485 g. The second capsule filling was to establish the curve of the enthalpy function in the liquid state after the first capsule had developed a leak.

Experimental enthalpy values relative to 298.15° K are listed in table 3 and plotted in figure 2 as the function $(H^{\circ}-H^{\circ}_{298.15})/(T-298.15)$ against temperature. The standard error is 0.07 pct for the determinations, and the absolute uncertainty of enthalpy is estimated to be ± 0.3 pct.

		······································	
T, ° K	H°-H° 298.15, cal/mole	т, ° к	H°-H° 298.15, cal/mole
403.1	3,759	753.4	21,161
449.5	5,557	799.1	23,243
498.0	7,503	847.1	25,470
547.2	9,544	893.9	27,653
596.4	11,676	945.3	30,088
611.6	12,366	994.9	32,508
622.7	12,850	1,039.1	34,740
649.9	14,120	1,059.8	35,790
673.4	15,267	1,069.9	42,120
686.8	15,970	1,078.7	42,540
693.8	17,159	1,098.3	43,557
700.2	18,751	1,155.2	46,420
709.8	19,167	1,191.6	48,258

TABLE 3. - Experimental enthalpies above 298.15° K of Na₂CrO₄(c,1)

Results of the enthalpy determinations showed a rapidly reversible transition at 700° K with an isothermal heat of transition of 2,263 cal/mole. No previous value was found in the literature for the heat of transition. Flach (4) reported the temperature of transition to be 686° K. X-ray diffraction studies below and above the transition point were conducted. Discussion of these X-ray studies is presented in the next section.

The temperature and heat of fusion were also determined by the enthalpy experiments. No previous value was found in the literature for the heat of fusion, which is 5,810 cal/mole. The melting point of 1,065° K agrees with the temperature reported by Flach (4) and Hartford (6). The temperature range required for complete melting was less than 10°. This behavior indicated that the $\mathrm{Na_{5}Cr0_{4}}$ crystals were unusually free of structural defects. X-ray

diffraction analysis showed that a melted sample reverted completely to the roomtemperature orthorhombic form after quenching in the calorimeter.

Polynomial functions (5, 10) were fitted to the experimental enthalpy values with the aid of a computer. During this procedure, the high-temperature enthalpy data were found to merge smoothly with the low-temperature heat-capacity data given in table 2. The resulting polynomial functions were used to calculate enthalpies above 298° K at 100° intervals (table 4). Heat capacities, entropies, and free energy functions also are given in table 4, in which all of the low- and high-temperature experimental results have been combined. Constancy of the heat capacity for the liquid state permitted confident extrapolation of data to 1,400° K.

TABLE 4. - Thermodynamic properties of Na₂CrO₄(c,1)¹

т, ° к	C _p	S°	-(G°-H°298.15)/T	H°-H°	-∆Hf°	-∆Gf°	Log Kf
		cal/deg	mole		kcal/mole		
0	0	0	œ	-6.323	-	-	-
100	18.150	13,508	68.378	-5.487	-	-	-
200	28.513	29.728	45.163	-3.087		_	-
298.15	33.968	42.212	42.212	0	318.600	293.039	214.803
300	34.052	42.423	42.213	.063	318.597	292.881	213.364
_							
² 371	36.63	49.920	42.987	2.572	318.506	286.806	168.952
371	36.63	49.920	42.987	2.572	319.748	286.806	168.952
400	37.62	52.714	43.591	3.649	319.700	284.231	155.297
500	40.95	61.467	46.311	7.578	319.335	275.396	120.376
600	44.41	69.235	49.495	11.844	318.679	266.664	97.132
³ 700(α)	48.14	76.357	52.831	16.468	317.710	258.068	80.572
700 (β)	45.54	79.589	52.831	18.731	315.447	258.068	80.572
800	45.84	85.678	56.564	23.291	314.585	249.931	68.278
900	47.20	91.145	60.107	27.934	313,678	241.900	58.741
1,000	49.63	96.235	63.468	32.767	312.629	233.982	51.137
⁴ 1,065(β)	51.78	99.425	65.565	36.061	311.831	228.897	46.972
1,065(1)	50.44	104.881	65.565	41.871	306.021	228.897	46.972
1,100	50.44	106.512	66.842	43.637	305.611	226.369	44.975
1,200	50.44	110.901	70.333	48.681	304.493	219.210	39.924
1,300	(50.44)	(114.938)	(73.611)	(53.725)	(303.472)	(212.157)	(35.667)
1,400	(50.44)	(118.676)	(76.699)	(58.768)	(302.542)	(205.175)	(32.029)

¹ Values in parentheses are extrapolations.

The following standard-form equations were derived by Kelley's method $(\underline{11})$ to represent the smoothed enthalpies given in table 4. To conform to general usage, the equations express enthalpies as calories per mole. It should be noted that enthalpy values calculated from the simplified standard-form equations are only approximations and should not be considered as precise as the values given in

²Melting point of Na.

³Transition point of Na₂CrO₄.

⁴Melting point of Na₂CrÕ₄.

table 4. Both the percent average deviations of these equations from the smoothed data and temperature ranges of validity are given in parentheses.

The alpha, beta, and liquid forms of the equation are as follows:

$$\alpha$$
: $H^{\circ}-H^{\circ}_{298.15} = 24.40T + 16.81 \times 10^{-3}T^{2} + 0.41 \times 10^{5}T^{-1} - 8,907$ (<0.1 pct; $298^{\circ}-700^{\circ}$ K),

β:
$$H^{\circ}-H^{\circ}_{298.15} = 1.03T + 20.35 \times 10^{-3}T^{2} - 78.51 \times 10^{5}T^{-1} + 19,254$$
(<0.1 pct; 700°-1,065° K), and

1:
$$H^{\circ}-H^{\circ}_{298.15} = 50.44T - 11,848$$
 (<0.05 pct; 1,065°-1,400° K).

X-Ray Diffraction Studies

To better characterize the transition at 700° K, powder X-ray diffraction data were taken at temperatures above and below this temperature. No previous high-temperature X-ray data could be found in the literature. The X-ray sample of $\text{Na}_{2}\text{CrO}_{4}$ was deposited by evaporation from a benzene slurry onto a a platinum strip heater that was mounted on the lower unit of a special high-temperature diffractometer attachment. Because of the unreactive nature of the sample, the vacuum cover assembly was not required. The study was made on a horizontal diffractometer with copper K-alpha radiation. Temperature was determined by means of a thermocouple attached by spot welding to the back of the strip heater.

 ${\rm Na_2CrO_4}$ was found to transform from the room-temperature orthorhombic structure to a high-temperature hexagonal structure. At 795° K the hexagonal structure has the parameters $a_0=5.691$, and $c_0=7.478$ A (c/a = 1.314). The data are presented in table 5. The transition was found to be rapid and completely reversible; a pattern made at 525° K immediately after rapidly cooling from 795° K showed only the room-temperature form. The transition was accompanied by a reversible change in the visual appearance of the sample from bright yellow at room temperature to reddish brown at 795° K.

TABLE 5. - X-ray powder data for Na_2CrO_4 at 795° K with copper K-alpha radiation λ = 1.54178 A

d(obs), A	d(calc), A	I(obs)	hk1	d(obs), A	d(calc), A	I(obs)	hkl
4.955	4.929	20	100	2.2251	2.2244	5	103
4.133	4.115	80	101	2.0561	2.0576	28	202
3.740	3.739	12	002	1 0675	[1.8695]) [5004
2.980	2.979	40	102	1.8675	1.8628)	210
2.853	2.846	100	1 1 0	1.8095	1.8076	8	211
2.468	2.464	15	200	1.6681	1.6674	8	212
2.2653	2.2644	8	112	1.6429	1.6429	8	300

Several sulfates and a few mixed salts have been reported to have unit cells of approximately the aforementioned dimensions. Wyckoff (13) gives three closely related hexagonal structures for compounds with this formula type: (1) The LiKSO₄ structure type with space group P6₃ (No. 173); (2) the A1₂BaO₄ structure type with space group P6₃22 (No. 182); and (3) the aphthitalite or glaserite structure type,KNaSO₄ to K₃Na(SO₄)₂, with space group P3ml (No. 164). More recently, Fischmeister (3) has described a similar structure with the space group P6₃/mmc (No. 194) for a high-temperature form of Na₂SO₄ (type I). This structure differs from the others in that the anions are centered on the special positions \pm (2/3, 1/3, 1/4), but anions in adjacent unit cells are rotated by 60° with respect to each other in a more or less random fashion.

In the high-temperature $\mathrm{Na_2CrO_4}$ pattern, hhl and 001 reflections were not observed for odd values of 1. One cannot be certain from powder data, but, if these are actual extinctions, No. 194 is the only one of the aforementioned space groups that would fit the high-temperature form of $\mathrm{Na_2CrO_4}$. There is some similarity between the intensities in the powder patterns of $\mathrm{Na_2CrO_4}$ and $\mathrm{Na_2SO_4}$, but there is too much difference in scattering powder of chromium and sulfur ions for such a comparison to be conclusive. Thus, it seems likely that $\mathrm{Na_2CrO_4}$ at high temperatures has the structure of $\mathrm{Na_2SO_4}$ (type I).

ENTHALPIES AND FREE ENERGIES OF FORMATION

Enthalpies of formation, free energies of formation, and equilibrium constants of formation were calculated from 298° to 1,400° K by combining the enthalpies and entropies determined in this investigation with supplementary data. The enthalpy of formation at 298° K was taken from Nelson, Moss, and Hepler (12). Enthalpy and entropy data for sodium were obtained from Hultgren, Orr, Anderson, and Kelley (8). Similar information for chromium metal was taken from Hultgren (7), and for gaseous oxygen, from JANAF tables (2). Where necessary, the auxiliary data were corrected to IPTS-68. The results of these calculations are listed in table 4 as $-\Delta Hf^{\circ}$, $-\Delta Gf^{\circ}$, and Log Kf.

SUMMARY

This investigation provides new low-temperature heat-capacity data and high-temperature enthalpy data for $\mathrm{Na_2CrO_4}$. A reversible transition at 700° K was shown to be a crystal transformation from orthorhombic to hexagonal. X-ray powder diffraction data of the hexagonal form are presented. The determination of the melting point at 1,065° K is in agreement with the one reported by Flach (4) and Hartford (6).

REFERENCES4

- 1. Douglas, T. B., and E. G. King. High-Temperature Drop Calorimetry. Ch. 8 in Experimental Thermodynamics, v. 1, Calorimetry of Non-Reacting Systems, ed. by J. P. McCullough and D. W. Scott. Butterworths, London, 1968, pp. 293-331.
- 2. Dow Chemical Company, Thermal Research Laboratory. JANAF Thermochemical Tables. Supp. 370-1, National Technical Information Service, Springfield, Va., August 1966.
- 3. Fischmeister, H. F. Röntagenkristallographische Ausdehnungsmessungen an einigen Alkalisulfaten. Ein Beitrag zur Kenntnis der Anionenfehlordung im Na₂SO₄ I-Typ (X-ray Crystallographic Dimensional Measurements of Some Alkali Sulfates. Anionic Disorder in Na₂SO₄ Type I). Monatsh. Chem., v. 93, 1962, pp. 420-434.
- 4. Flach, E. Kaliumchromat und Natriumchromat, ihr Fähigkeit zur Mischkristall- und Doppelsalzbildung und ihre Beziehungen zu den entsprechenden Sulfaten (Potassium and Sodium Chromates; Mixed Crystals and Double Salt; Relation to the Corresponding Sulphates). Inaugural Dissertation, Univ. of Leipzig, 1912. Abstract available for examination at the Albany Metallurgy Research Center, Bureau of Mines, Albany, Oreg.
- 5. Forsythe, G. E. Generation and Use of Orthogonal Polynomials for Data-Fitting With Digital Computer. J. Soc. Ind. and Appl. Math., v. 5, 1957, pp. 74-88.
- 6. Hartford, W. H. Properties of Technically Important Hexavalent Chromium Compounds. Ind. and Eng. Chem., v. 41, 1949, pp. 1993-1997.
- 7. Hultgren, R. Private communication, July 1970. Available for examination at the Albany Metallurgy Research Center, Bureau of Mines, Albany, Oreg.
- 8. Hultgren, R., R. L. Orr, P. D. Anderson, and K. K. Kelley. Selected Values of Thermodynamic Properties of Metals and Alloys. John Wiley & Sons, Inc., New York, 1963, 963 pp.
- 9. International Union of Pure and Applied Chemistry, Division of Inorganic Chemistry, Commission on Atomic Weights. Atomic Weights of the Elements (1969). Pure and Appl. Chem., v. 21, 1970, pp. 91-108.
- 10. Justice, Bruce H. Thermal Data Fitting With Orthogonal Functions and Combined Table Generation. The FITAB Program. Univ. of Michigan, Ann Arbor, Mich. COO-1149-143, 1969, 49 pp.

⁴Titles enclosed in parentheses are translations from the language in which the item was originally published.

- 11. Kelley, K. K. Contributions to the Data on Theoretical Metallurgy. XIII. High-Temperature Heat-Content, Heat-Capacity, and Entropy Data for the Elements and Inorganic Compounds. BuMines Bull. 584, 1960, 232 pp.
- 12. Nelson, T., C. Moss, and L. G. Hepler. Thermochemistry of Potassium Permanganate, Potassium Molybdate, Potassium Chlorate, Sodium Chromate, and Sodium Dichromate. J. Phys. Chem., v. 64, 1960, pp. 376-377.
- 13. Wyckoff, R. W. G. Crystal Structures. Interscience Publishers, New York, v. 3, 1965, pp. 112-116.

U.S. GOVERNMENT PRINTING OFFICE: 1972-708-894:535

S. Report Date November 1	Low-Temperature Heat Capacities and Historics M. J. Ferrante, J. M. Stuve, and M. P. rforming Organization Name and Address Albany Metallurgy Research Center Bureau of Mines, USDI P.O. Box 70 Albany, OR 97321	5. Report Date November 1972 6. Performing Organizatio
Enthalpies of Sodium Chromate Author(s) M. J. Ferrante, J. M. Stuve, and M. P. Krug Performing Organization Name and Address Albany Metallurgy Research Center Bureau of Mines, USDI P.O. Box 70 Albany, OR 97321 Sponsoring Agency Name and Address Division of Metallurgy Bureau of Mines U.S. Department of the Interior Washington, DC 20240 Abstracts Low-temperature heat capacities and high-temperature enthalpies wen mined calorimetrically for NA2CRO4. A reversible trnasition was found at with an isothermal heat of transition of 2,263 cal/mole. High-temperatur diffraction analysis showed that the transition was a crystal change from temperature orthorhombic form to the high-temperature hexagonal form. At the hexagonal form had the parameters ao = 5.691 and co = 7.478 A. Powdetion data for the high-temperature form are given and possible structures. The melting point was determined to be 1,065 deg K with a heat of fusion cal/mole. Enthalpy and entropy increments from this investigation were controlled to the second of the se	Enthalpies of Sodium Chromate whor(s) M. J. Ferrante, J. M. Stuve, and M. P. rforming Organization Name and Address Albany Metallurgy Research Center Bureau of Mines, USDI P.O. Box 70 Albany, OR 97321	6. Performing Organizatio 8. Performing Organizatio No.
Enthalpies of Sodium Chromate Author(s) M. J. Ferrante, J. M. Stuve, and M. P. Krug Performing Organization Name and Address Albany Metallurgy Research Center Bureau of Mines, USDI P.O. Box 70 Albany, OR 97321 Sponsoring Agency Name and Address Division of Metallurgy Bureau of Mines U.S. Department of the Interior Washington, DC 20240 Abstracts Low-temperature heat capacities and high-temperature enthalpies wen mined calorimetrically for NA2CRO4. A reversible trnasition was found at with an isothermal heat of transition of 2,263 cal/mole. High-temperatur diffraction analysis showed that the transition was a crystal change from temperature orthorhombic form to the high-temperature hexagonal form. At the hexagonal form had the parameters ao = 5.691 and co = 7.478 A. Powdetion data for the high-temperature form are given and possible structures. The melting point was determined to be 1,065 deg K with a heat of fusion cal/mole. Enthalpy and entropy increments from this investigation were controlled to the second of the se	Enthalpies of Sodium Chromate whor(s) M. J. Ferrante, J. M. Stuve, and M. P. rforming Organization Name and Address Albany Metallurgy Research Center Bureau of Mines, USDI P.O. Box 70 Albany, OR 97321	6. Performing Organizatio 8. Performing Organizatio No.
M. J. Ferrante, J. M. Stuve, and M. P. Krug Performing Organization Name and Address Albany Metallurgy Research Center Bureau of Mines, USDI P.O. Box 70 Albany, OR 97321 Sponsoring Agency Name and Address Division of Metallurgy Bureau of Mines U.S. Department of the Interior Washington, DC 20240 Abstracts Low-temperature heat capacities and high-temperature enthalpies were mined calorimetrically for NA2CR04. A reversible trnasition was found at with an isothermal heat of transition of 2,263 cal/mole. High-temperature diffraction analysis showed that the transition was a crystal change from temperature orthorhombic form to the high-temperature hexagonal form. At the hexagonal form had the parameters ao = 5.691 and co = 7.478 A. Powded tion data for the high-temperature form are given and possible structures. The melting point was determined to be 1,065 deg K with a heat of fusion cal/mole. Enthalpy and entropy increments from this investigation were considered by the structure of the data from the literature to calculate enthalpies of formation, energies of formation, and equilibrium constants of formation from 298 to K. Equations representing enthalpies above 298 deg K are given. Key Words and Document Analysis. 17a. Descriptors Thermodynamic properties Heat capacity	M. J. Ferrante, J. M. Stuve, and M. P. rforming Organization Name and Address Albany Metallurgy Research Center Bureau of Mines, USDI P.O. Box 70 Albany, OR 97321	. Krug
M. J. Ferrante, J. M. Stuve, and M. P. Krug Performing Organization Name and Address Albany Metallurgy Research Center Bureau of Mines, USDI P.O. Box 70 Albany, OR 97321 Sponsoring Agency Name and Address Division of Metallurgy Bureau of Mines U.S. Department of the Interior Washington, DC 20240 Abstracts Low-temperature heat capacities and high-temperature enthalpies were mined calorimetrically for NA2CR04. A reversible trnasition was found at with an isothermal heat of transition of 2,263 cal/mole. High-temperature diffraction analysis showed that the transition was a crystal change from temperature orthorhombic form to the high-temperature hexagonal form. At the hexagonal form had the parameters ao = 5.691 and co = 7.478 A. Powded tion data for the high-temperature form are given and possible structures. The melting point was determined to be 1,065 deg K with a heat of fusion cal/mole. Enthalpy and entropy increments from this investigation were considered by the structure of the data from the literature to calculate enthalpies of formation, energies of formation, and equilibrium constants of formation from 298 to K. Equations representing enthalpies above 298 deg K are given. Key Words and Document Analysis. 17a. Descriptors Thermodynamic properties Heat capacity	M. J. Ferrante, J. M. Stuve, and M. P. rforming Organization Name and Address Albany Metallurgy Research Center Bureau of Mines, USDI P.O. Box 70 Albany, OR 97321	. Krug
Performing Organization Name and Address Albany Metallurgy Research Center Bureau of Mines, USDI P.O. Box 70 Albany, OR 97321 Sponsoring Agency Name and Address Division of Metallurgy Bureau of Mines U.S. Department of the Interior Washington, DC 20240 Supplementary Notes Abstracts Low-temperature heat capacities and high-temperature enthalpies were mined calorimetrically for NA2CRO4. A reversible transition was found at with an isothermal heat of transition of 2,263 cal/mole. High-temperature diffraction analysis showed that the transition was a crystal change from temperature orthorhombic form to the high-temperature hexagonal form. At the hexagonal form had the parameters ao = 5.691 and co = 7.478 A. Powde tion data for the high-temperature form are given and possible structures. The melting point was determined to be 1,065 deg K with a heat of fusion cal/mole. Enthalpy and entropy increments from this investigation were with other data from the literature to calculate enthalpies of formation, energies of formation, and equilibrium constants of formation from 298 to K. Equations representing enthalpies above 298 deg K are given. Key Words and Document Analysis. 17a. Descriptors Thermodynamic properties Heat capacity	rforming Organization Name and Address Albany Metallurgy Research Center Bureau of Mines, USDI P.O. Box 70 Albany, OR 97321	
Bureau of Mines, USDI P.O. Box 70 Albany, OR 97321 Sponsoring Agency Name and Address Division of Metallurgy Bureau of Mines U.S. Department of the Interior Washington, DC 20240 Abstracts Low-temperature heat capacities and high-temperature enthalpies were mined calorimetrically for NA2CRO4. A reversible trnasition was found at with an isothermal heat of transition of 2,263 cal/mole. High-temperature diffraction analysis showed that the transition was a crystal change from temperature orthorhombic form to the high-temperature hexagonal form. At the hexagonal form had the parameters ao = 5.691 and co = 7.478 A. Powdetion data for the high-temperature form are given and possible structures. The melting point was determined to be 1,065 deg K with a heat of fusion cal/mole. Enthalpy and entropy increments from this investigation were owith other data from the literature to calculate enthalpies of formation, energies of formation, and equilibrium constants of formation from 298 to K. Equations representing enthalpies above 298 deg K are given. Key Words and Document Analysis. 17a. Descriptors Thermodynamic properties Heat capacity	Bureau of Mines, USDI P.O. Box 70 Albany, OR 97321	,
P.O. Box 70 Albany, OR 97321 Sponsoring Agency Name and Address Division of Metallurgy Bureau of Mines U.S. Department of the Interior Washington, DC 20240 Supplementary Notes Abstracts Low-temperature heat capacities and high-temperature enthalpies were mined calorimetrically for NA2CRO4. A reversible transition was found at with an isothermal heat of transition of 2,263 cal/mole. High-temperature diffraction analysis showed that the transition was a crystal change from temperature orthorhombic form to the high-temperature hexagonal form. At the hexagonal form had the parameters ao = 5.691 and co = 7.478 A. Powdetion data for the high-temperature form are given and possible structures. The melting point was determined to be 1,065 deg K with a heat of fusion cal/mole. Enthalpy and entropy increments from this investigation were owith other data from the literature to calculate enthalpies of formation, energies of formation, and equilibrium constants of formation from 298 to K. Equations representing enthalpies above 298 deg K are given. Key Words and Document Analysis. 17c. Descriptors Thermodynamic properties Heat capacity	P.O. Box 70 Albany, OR 97321	i i
Albany, OR 97321 Sponsoring Agency Name and Address Division of Metallurgy Bureau of Mines U.S. Department of the Interior Washington, DC 20240 Supplementary Notes Abstracts Low-temperature heat capacities and high-temperature enthalpies were mined calorimetrically for NA2CR04. A reversible transition was found at with an isothermal heat of transition of 2,263 cal/mole. High-temperature diffraction analysis showed that the transition was a crystal change from temperature orthorhombic form to the high-temperature hexagonal form. At the hexagonal form had the parameters ao = 5.691 and co = 7.478 A. Powded tion data for the high-temperature form are given and possible structures. The melting point was determined to be 1,065 deg K with a heat of fusion cal/mole. Enthalpy and entropy increments from this investigation were of with other data from the literature to calculate enthalpies of formation, energies of formation, and equilibrium constants of formation from 298 to K. Equations representing enthalpies above 298 deg K are given. Key Words and Document Analysis. 17a. Descriptors Thermodynamic properties Heat capacity	Albany, OR 97321	11. Contract/Grant No.
Sponsoring Agency Name and Address Division of Metallurgy Bureau of Mines U.S. Department of the Interior Washington, DC 20240 Supplementary Notes Abstracts Low-temperature heat capacities and high-temperature enthalpies were mined calorimetrically for NA2CR04. A reversible transition was found at with an isothermal heat of transition of 2,263 cal/mole. High-temperature diffraction analysis showed that the transition was a crystal change from temperature orthorhombic form to the high-temperature hexagonal form. At the hexagonal form had the parameters ao = 5.691 and co = 7.478 A. Powded tion data for the high-temperature form are given and possible structures. The melting point was determined to be 1,065 deg K with a heat of fusion cal/mole. Enthalpy and entropy increments from this investigation were with other data from the literature to calculate enthalpies of formation, energies of formation, and equilibrium constants of formation from 298 to K. Equations representing enthalpies above 298 deg K are given. Key Words and Document Analysis. 17a. Descriptors Thermodynamic properties Heat capacity		
Division of Metallurgy Bureau of Mines U.S. Department of the Interior Washington, DC 20240 Supplementary Notes Abstracts Low-temperature heat capacities and high-temperature enthalpies were mined calorimetrically for NA2CRO4. A reversible transition was found at with an isothermal heat of transition of 2,263 cal/mole. High-temperature diffraction analysis showed that the transition was a crystal change from temperature orthorhombic form to the high-temperature hexagonal form. At the hexagonal form had the parameters ao = 5.691 and co = 7.478 A. Powded tion data for the high-temperature form are given and possible structures. The melting point was determined to be 1,065 deg K with a heat of fusion cal/mole. Enthalpy and entropy increments from this investigation were with other data from the literature to calculate enthalpies of formation, energies of formation, and equilibrium constants of formation from 298 to K. Equations representing enthalpies above 298 deg K are given. Key Words and Document Analysis. 17a. Descriptors Thermodynamic properties Heat capacity		
Bureau of Mines U.S. Department of the Interior Washington, DC 20240 Supplementary Notes Abstracts Low-temperature heat capacities and high-temperature enthalpies were mined calorimetrically for NA2CRO4. A reversible trnasition was found at with an isothermal heat of transition of 2,263 cal/mole. High-temperature diffraction analysis showed that the transition was a crystal change from temperature orthorhombic form to the high-temperature hexagonal form. At the hexagonal form had the parameters ao = 5.691 and co = 7.478 A. Powdetion data for the high-temperature form are given and possible structures. The melting point was determined to be 1,065 deg K with a heat of fusion cal/mole. Enthalpy and entropy increments from this investigation were with other data from the literature to calculate enthalpies of formation, energies of formation, and equilibrium constants of formation from 298 to K. Equations representing enthalpies above 298 deg K are given. Key Words and Document Analysis. 17a. Descriptors Thermodynamic properties Heat capacity	ponsoring Agency Name and Address	13. Type of Report & Peri
U.S. Department of the Interior Washington, DC 20240 Supplementary Notes Abstracts Low-temperature heat capacities and high-temperature enthalpies were mined calorimetrically for NA2CRO4. A reversible transition was found at with an isothermal heat of transition of 2,263 cal/mole. High-temperature diffraction analysis showed that the transition was a crystal change from temperature orthorhombic form to the high-temperature hexagonal form. At the hexagonal form had the parameters ao = 5.691 and co = 7.478 A. Powded tion data for the high-temperature form are given and possible structures. The melting point was determined to be 1,065 deg K with a heat of fusion cal/mole. Enthalpy and entropy increments from this investigation were of with other data from the literature to calculate enthalpies of formation, energies of formation, and equilibrium constants of formation from 298 to K. Equations representing enthalpies above 298 deg K are given. Key Words and Document Analysis. 17a. Descriptors Thermodynamic properties Heat capacity		
Washington, DC 20240 Supplementary Notes Abstracts Low-temperature heat capacities and high-temperature enthalpies were mined calorimetrically for NA2CRO4. A reversible transition was found at with an isothermal heat of transition of 2,263 cal/mole. High-temperature diffraction analysis showed that the transition was a crystal change from temperature orthorhombic form to the high-temperature hexagonal form. At the hexagonal form had the parameters ao = 5.691 and co = 7.478 A. Powdetion data for the high-temperature form are given and possible structures. The melting point was determined to be 1,065 deg K with a heat of fusion cal/mole. Enthalpy and entropy increments from this investigation were with other data from the literature to calculate enthalpies of formation, energies of formation, and equilibrium constants of formation from 298 to K. Equations representing enthalpies above 298 deg K are given. Key Words and Document Analysis. 17a. Descriptors Thermodynamic properties Heat capacity		
Abstracts Low-temperature heat capacities and high-temperature enthalpies were mined calorimetrically for NA2CRO4. A reversible transition was found at with an isothermal heat of transition of 2,263 cal/mole. High-temperature diffraction analysis showed that the transition was a crystal change from temperature orthorhombic form to the high-temperature hexagonal form. At the hexagonal form had the parameters ao = 5.691 and co = 7.478 A. Powde tion data for the high-temperature form are given and possible structures. The melting point was determined to be 1,065 deg K with a heat of fusion cal/mole. Enthalpy and entropy increments from this investigation were with other data from the literature to calculate enthalpies of formation, energies of formation, and equilibrium constants of formation from 298 to K. Equations representing enthalpies above 298 deg K are given. Key Words and Document Analysis. 17a. Descriptors Thermodynamic properties Heat capacity		14. Sponsoring Agency Co
Abstracts Low-temperature heat capacities and high-temperature enthalpies were mined calorimetrically for NA2CRO4. A reversible trnasition was found at with an isothermal heat of transition of 2,263 cal/mole. High-temperature diffraction analysis showed that the transition was a crystal change from temperature orthorhombic form to the high-temperature hexagonal form. At the hexagonal form had the parameters ao = 5.691 and co = 7.478 A. Powde tion data for the high-temperature form are given and possible structures. The melting point was determined to be 1,065 deg K with a heat of fusion cal/mole. Enthalpy and entropy increments from this investigation were with other data from the literature to calculate enthalpies of formation, energies of formation, and equilibrium constants of formation from 298 to K. Equations representing enthalpies above 298 deg K are given. Key Words and Document Analysis. 17c. Descriptors Thermodynamic properties Heat capacity		
mined calorimetrically for NA2CRO4. A reversible trnasition was found at with an isothermal heat of transition of 2,263 cal/mole. High-temperature diffraction analysis showed that the transition was a crystal change from temperature orthorhombic form to the high-temperature hexagonal form. At the hexagonal form had the parameters ao = 5.691 and co = 7.478 A. Powdetion data for the high-temperature form are given and possible structures. The melting point was determined to be 1,065 deg K with a heat of fusion cal/mole. Enthalpy and entropy increments from this investigation were with other data from the literature to calculate enthalpies of formation, energies of formation, and equilibrium constants of formation from 298 to K. Equations representing enthalpies above 298 deg K are given. Key Words and Document Analysis. 17a. Descriptors Thermodynamic properties Heat capacity	applementary Notes	
mined calorimetrically for NA2CRO4. A reversible trnasition was found at with an isothermal heat of transition of 2,263 cal/mole. High-temperature diffraction analysis showed that the transition was a crystal change from temperature orthorhombic form to the high-temperature hexagonal form. At the hexagonal form had the parameters ao = 5.691 and co = 7.478 A. Powdetion data for the high-temperature form are given and possible structures. The melting point was determined to be 1,065 deg K with a heat of fusion cal/mole. Enthalpy and entropy increments from this investigation were with other data from the literature to calculate enthalpies of formation, energies of formation, and equilibrium constants of formation from 298 to K. Equations representing enthalpies above 298 deg K are given. Key Words and Document Analysis. 17a. Descriptors Thermodynamic properties Heat capacity		
mined calorimetrically for NA2CRO4. A reversible trnasition was found at with an isothermal heat of transition of 2,263 cal/mole. High-temperature diffraction analysis showed that the transition was a crystal change from temperature orthorhombic form to the high-temperature hexagonal form. At the hexagonal form had the parameters ao = 5.691 and co = 7.478 A. Powdetion data for the high-temperature form are given and possible structures. The melting point was determined to be 1,065 deg K with a heat of fusion cal/mole. Enthalpy and entropy increments from this investigation were with other data from the literature to calculate enthalpies of formation, energies of formation, and equilibrium constants of formation from 298 to K. Equations representing enthalpies above 298 deg K are given. Key Words and Document Analysis. 17a. Descriptors Thermodynamic properties Heat capacity	bstracts Low-temperature heat canacities	and high-temperature enthalmies were de
with an isothermal heat of transition of 2,263 cal/mole. High-temperature diffraction analysis showed that the transition was a crystal change from temperature orthorhombic form to the high-temperature hexagonal form. At the hexagonal form had the parameters ao = 5.691 and co = 7.478 A. Powde tion data for the high-temperature form are given and possible structures. The melting point was determined to be 1,065 deg K with a heat of fusion cal/mole. Enthalpy and entropy increments from this investigation were with other data from the literature to calculate enthalpies of formation, energies of formation, and equilibrium constants of formation from 298 to K. Equations representing enthalpies above 298 deg K are given. Key Words and Document Analysis. 17a. Descriptors Thermodynamic properties Heat capacity		
diffraction analysis showed that the transition was a crystal change from temperature orthorhombic form to the high-temperature hexagonal form. At the hexagonal form had the parameters ao = 5.691 and co = 7.478 A. Powde tion data for the high-temperature form are given and possible structures. The melting point was determined to be 1,065 deg K with a heat of fusion cal/mole. Enthalpy and entropy increments from this investigation were owith other data from the literature to calculate enthalpies of formation, energies of formation, and equilibrium constants of formation from 298 to K. Equations representing enthalpies above 298 deg K are given. Key Words and Document Analysis. 17a. Descriptors Thermodynamic properties Heat capacity		
temperature orthorhombic form to the high-temperature hexagonal form. At the hexagonal form had the parameters ao = 5.691 and co = 7.478 A. Powde tion data for the high-temperature form are given and possible structures. The melting point was determined to be 1,065 deg K with a heat of fusion cal/mole. Enthalpy and entropy increments from this investigation were with other data from the literature to calculate enthalpies of formation, energies of formation, and equilibrium constants of formation from 298 to K. Equations representing enthalpies above 298 deg K are given. Key Words and Document Analysis. 17a. Descriptors Thermodynamic properties Heat capacity		
the hexagonal form had the parameters ao = 5.691 and co = 7.478 A. Powder tion data for the high-temperature form are given and possible structures. The melting point was determined to be 1,065 deg K with a heat of fusion cal/mole. Enthalpy and entropy increments from this investigation were of with other data from the literature to calculate enthalpies of formation, energies of formation, and equilibrium constants of formation from 298 to K. Equations representing enthalpies above 298 deg K are given. Key Words and Document Analysis. 17a. Descriptors Thermodynamic properties Heat capacity		
tion data for the high-temperature form are given and possible structures. The melting point was determined to be 1,065 deg K with a heat of fusion cal/mole. Enthalpy and entropy increments from this investigation were of with other data from the literature to calculate enthalpies of formation, energies of formation, and equilibrium constants of formation from 298 to K. Equations representing enthalpies above 298 deg K are given. Key Words and Document Analysis. 17a. Descriptors Thermodynamic properties Heat capacity		
The melting point was determined to be 1,065 deg K with a heat of fusion cal/mole. Enthalpy and entropy increments from this investigation were of with other data from the literature to calculate enthalpies of formation, energies of formation, and equilibrium constants of formation from 298 to K. Equations representing enthalpies above 298 deg K are given. Key Words and Document Analysis. 17a. Descriptors Thermodynamic properties Heat capacity		
cal/mole. Enthalpy and entropy increments from this investigation were of with other data from the literature to calculate enthalpies of formation, energies of formation, and equilibrium constants of formation from 298 to K. Equations representing enthalpies above 298 deg K are given. Key Words and Document Analysis. 17c. Descriptors Thermodynamic properties Heat capacity		
with other data from the literature to calculate enthalpies of formation, energies of formation, and equilibrium constants of formation from 298 to K. Equations representing enthalpies above 298 deg K are given. Key Words and Document Analysis. 17c. Descriptors Thermodynamic properties Heat capacity		
energies of formation, and equilibrium constants of formation from 298 to K. Equations representing enthalpies above 298 deg K are given. Key Words and Document Analysis. 17c. Descriptors Thermodynamic properties Heat capacity		
K. Equations representing enthalpies above 298 deg K are given. Key Words and Document Analysis. 17c. Descriptors Thermodynamic properties Heat capacity		
Thermodynamic properties Heat capacity	K. Equations representing enthalpies	above 298 deg K are given.
Thermodynamic properties Heat capacity		
Heat capacity	ey Words and Document Analysis. 17a. Descriptors	
Heat capacity	· · · · · · · · · · · · · · · · · · ·	
	Entropy	
Enthalpy		
X-ray diffraction	X-ray diffraction	
dentifiers/Open-Ended Terms		
	ldentifiers/Open-Ended Terms	
	ldentifiers/Open-Ended Terms	
	Identifiers/Open-Ended Terms	
•		
COSATI Field/Group 07D		
Distribution Statement 19. Security Class (This 21.	COSATI Field/Group 07D - -	
Distribution Statement 19. Security Class (This Report) 21.	COSATI Field/Group 07D	Report)
Distribution Statement Release unlimited by NTIS. 19. Security Class (This Report) UNCLASSIFIED 20. Security Class (This 22.	COSATI Field/Group 07D	Report) UNCLASSIFIED 20. Security Class (This 22. Price
Distribution Statement Release 1. UNCLASSIFIED	COSATI Field/Group 07D	Report) UNCLASSIFIED 20. Security Class (This 22. Price)