

Alumina Miniplant Operations— Overall Mass Balance for Clay-HCl Acid Leaching

**By Dwight L. Sawyer, Jr., Theodore L. Turner,
and Don B. Hunter**

UNITED STATES DEPARTMENT OF THE INTERIOR
James G. Watt, Secretary

BUREAU OF MINES
Robert C. Horton, Director

This publication has been cataloged as follows:

Sawyer, Dwight L., Jr.

Alumina miniplant operations—overall mass balance for clay-HCl acid leaching.

(Bureau of Mines report of investigations ; 8759)

Bibliography: p. 16-17.

Supt. of Docs. no.: I 28.23:8759.

1. Aluminum oxide. 2. Kaolin. 3. Leaching. 4. Hydrochloric acid.
I. Turner, Theodore L. II. Hunter, Don B. III. Title. IV. Series: Report of investigations (United States. Bureau of Mines) ; 8759.

TN23.U43 [TP245.A4] 622s [669'.722] 82-600003

CONTENTS

	<u>Page</u>
Abstract.....	1
Introduction.....	2
The Bureau of Mines alumina miniplant project.....	2
Cyclic process of the clay-HCl acid miniplant.....	3
Kaolin feed preparation.....	3
Calcination of kaolin.....	4
HCl acid leaching of calcined kaolin.....	4
Solids-liquid separation.....	6
Equipment and operation of the miniplant.....	9
Chemical reactors.....	9
Highlights of prior operations.....	9
Run 1.....	10
Run 2.....	11
Run 3.....	11
Run 4.....	11
Planning and conduct of run 5.....	12
Material balance.....	13
Summary and conclusions.....	14
References.....	16
Appendix.....	18

ILLUSTRATIONS

1. Unit operations of the clay-HCl acid process.....	4
2. Flowsheet and major equipment of the acid leaching and solids-liquid separation circuits.....	5
3. HCl acid leaching circuit.....	5
4. Vertical section of 50-gal, glass-lined reactor.....	6
5. Charging calcined kaolin to an Acrison weightometer feed conveyor.....	7
6. Rubber-lined thickeners with flocculant mixing and dispersing vessels...	8
7. Early miniplant equipment arrangement.....	10
8. Particle size distribution of minus 10-mesh calcined kaolin feeds compared with respective acid-leached residues as a function of reactor residence time.....	11
9. Particle size distribution of three calcined kaolin feeds processed in acid leaching reactors of the alumina miniplant.....	12
10. Material balance--acid leaching and solids-liquid separation circuits, run 5.....	15

TABLES

A-1. Run 5 calcined kaolin feed rates.....	18
A-2. Thickener circuit pulp retention data.....	18
A-3. Dry screen analyses of calcined kaolin feed materials to acid leaching reactors.....	18
A-4. Summary comparison of operating details of major miniplant runs.....	19
A-5. Extraction of acid-soluble alumina from minus 10-mesh calcined kaolin at different feed rates.....	19
A-6. Chemical analyses of minus 10-mesh calcined kaolin used in miniplant runs 3, 4, and 5.....	20
A-7. Physical properties of minus 10-mesh calcined kaolin.....	20

TABLES--Continued

	<u>Page</u>
A-8. Detailed calcined kaolin feed rate data, run 5.....	20
A-9. Chemical analyses of minus 10-mesh calcined kaolin used in run 5.....	21
A-10. Chemical analyses of 20 Bé HCl acid.....	22
A-11. Trace element analyses of 20 Bé HCl acid.....	22
A-12. Chemical analyses of process water.....	23
A-13. Chemical analyses of reactor 3 discharge slurry--solids fraction.....	23
A-14. Chemical analyses and physical data for reactor 3 discharge slurry-- liquid fraction.....	23
A-15. Chemical analyses of thickener 1 overflow liquor.....	24
A-16. Chemical analyses and physical data for washed and dried solids from classifier 1 overflow.....	25
A-17. Detailed chemical analyses of washed and dried classifier 1 overflow-- solids fraction.....	25
A-18. Chemical analyses and physical data for thickener 5 underflow--liquid fraction.....	26
A-19. Chemical analyses and physical data for classifier 4 overflow--liquid fraction.....	26
A-20. Chemical analyses of washed and dried classifier 4 sands--solids fraction.....	27
A-21. Chemical analyses of washed and dried classifier 4 sand screen fractions	28
A-22. Classifier 4 wet coarse sand discharge data.....	28
A-23. Washing water flows to solids-liquid separation circuit.....	29
A-24. Separan MGL solution flow to thickener circuit.....	29

UNIT OF MEASURE ABBREVIATIONS USED IN THIS REPORT

Bé	Baumé	lb/ft ³	pound per cubic foot
° C	degree Celsius	lb/hr	pound per hour
deg	degree	m ² /g	square meter per gram
ft	foot	mol pct	mole percent
ft ²	square foot	pct	percent
ft ³	cubic foot	ppm	part per million
gal	gallon	rpm	revolution per minute
g/mL	gram per milliliter	tpd	ton per day
gph	gallon per hour	vol-pct	volume-percent
hr	hour	wt-pct	weight-percent
in	inch	yr	year

ALUMINA MINIPLANT OPERATIONS—OVERALL MASS BALANCE FOR CLAY-HCl ACID LEACHING

By Dwight L. Sawyer, Jr.,¹ Theodore L. Turner,² and Don B. Hunter³

ABSTRACT

To provide technology that can help decrease the dependence of the U.S. aluminum industry on imported bauxite, the main ore of aluminum, the Bureau of Mines is investigating the extraction of aluminum from abundant domestic reserves of kaolinitic clay. Miniplant studies of the continuous leaching of calcined kaolin with boiling 25-pct HCl acid resulted in a 93- to 99-pct extraction of the acid-soluble alumina in the calcined kaolin feed.

Data are presented for an acid leaching study carried out in three or four continuously stirred tank reactors (CSTR) in series, feed rates of 100 to 250 lb/hr of calcined kaolin, and total nominal residence times of 0.7 to 2.3 hr. A material balance for a 176-lb/hr calcined kaolin feed rate in a circuit consisting of three reactors, four classifiers, and five thickeners is given. Data provide detailed compositional and physical information for calcined kaolin, process liquors, and acid-leached residue solids.

¹Supervisory chemical engineer.

²Research chemist.

³Metallurgist.

All authors are with the Boulder City Engineering Laboratory, Bureau of Mines, Boulder City, NV.

INTRODUCTION

The United States, the world's largest producer and consumer of aluminum, imports approximately 93 pct of the raw materials necessary to support its aluminum metal industry. Aluminum is presently produced from bauxite, of which the United States has limited reserves. To provide technology that might help lessen this dependency on foreign sources, the Bureau of Mines began an alumina mini-plant project in July 1973 to test and develop the most promising technologies for extracting alumina from domestic nonbauxitic resources. The aluminous materials selected as alternate sources of alumina were clay, anorthosite, alunite, dawsonite, and coal ash and coal shale. In July 1974, a cooperative Bureau of Mines-industry alumina mini-plant program was initiated to promote the development of technology for the extraction of alumina from these resources.

While the mini-plant project was in progress, Kaiser Engineers (1-2),⁴ under contract to the Bureau of Mines, evaluated six processes on the basis of available data. The clay-HCl acid process (clay-HCl process), incorporating HCl gas-induced crystallization of $\text{AlCl}_3 \cdot 6\text{H}_2\text{O}$, was found to have the lowest capital and operating costs. Technology of the clay-HCl process had been under investigation at the Bureau's Boulder City (NV) Engineering Laboratory on a mini-plant scale since 1975. The raw material used was kaolinitic clay, or kaolin, a material that has a high alumina content and occurs in large, relatively pure deposits in several eastern States.

The design, construction, and testing programs of the clay-HCl mini-plant occupied a 6-yr period, 1975 to 1980 inclusive, and was the major activity in the

Bureau of Mines alumina mini-plant project. This report provides process information about the HCl leaching of calcined kaolin and presents detailed compositional data and a material balance for various liquors and solids in the process flowsheet.

THE BUREAU OF MINES ALUMINA
MINIPLANT PROJECT

Bureau of Mines investigations on the extraction of alumina from domestic non-bauxitic resources began in the 1920's. A pilot plant for the extraction of alumina from anorthosite was operated in Wyoming after the end of World War II (24), and prior work had been done during the 1940's (4). During the period 1942 to 1945, investigation of a process to produce alumina by leaching clay with HCl acid was undertaken by the National Bureau of Standards (8). With the exception of solvent extraction, that flowsheet is similar to that of the mini-plant. In the early 1960's the Anaconda Copper Co. (6) operated a 6-tpd alumina pilot plant in Montana, using a patented process similar to that of the Bureau of Mines, except that the $\text{AlCl}_3 \cdot 6\text{H}_2\text{O}$ was crystallized by evaporation.

From 1962 to 1969, 20 cost evaluations of proposed alumina extraction processes were published (7-10, 18-23), and were revised and updated in 1974; a cost estimate of the conventional Bayer process was included for comparison (17). A study in 1970 by the National Materials Advisory Board, "Processes for Extracting Alumina From Nonbauxite Ores," recommended clay as the most promising ore, with extraction by either nitric or HCl acid (12). The alternative methods of extracting alumina from domestic resources received impetus from political unrest in countries which traditionally supplied bauxite ore for refining and smelting in this country. In early 1971, Guyana nationalized Alcan's bauxite

⁴Underlined numbers in parentheses refer to items in the list of references preceding the appendix.

mines. In 1974 the International Bauxite Association was formed and posed a threat similar to that of the Organization of Petroleum Exporting Countries. Jamaica, and subsequently other bauxite producers, drastically raised bauxite mining taxes. A continuation of these events would make an alternative domestic nonbauxitic source of alumina an attractive, secure option.

In July 1973, the Bureau of Mines began an alumina miniplant project based on past Bureau work (17) and on information in the literature. The initial plans were to construct and operate 25-lb/hr alumina miniplants using the following technologies:

1. Clay- HNO_3 leaching.
2. Clay-HCl leaching, with evaporative crystallization.
3. Clay-sulfurous acid leaching.
4. Anorthosite-lime sinter, caustic leaching.
5. Alunite-reduction roasting, caustic leaching.
6. Dawsonitic oil shale, retorting and dilute caustic leaching.

Subsequently, clay-HCl leaching, with HCl-gas induced crystallization was added as a result of a suggestion from one of the cooperating firms. Alunite investigations were sharply cut back when it was learned that a commercial pilot plant study of the process was underway. Dawsonite investigations were deferred pending completion of a Bureau of Mines experimental mine shaft, from which tonnage samples of representative material could be obtained.

Experience with the first clay- HNO_3 miniplant indicated that a calcined kaolin feed rate of at least 100 lb/hr was desirable, so that process data could

be more reliably translated to industrial design. The clay-HCl miniplant was designed for a feed rate of 60 to 250 lb/hr of calcined kaolin, and built with standard commercial equipment. The acid leaching, solids-liquid separation, and solvent extraction circuits were operated to test the equipment, install improvements and modifications, and produce a purified pregnant liquor for crystallization of $\text{AlCl}_3 \cdot 6\text{H}_2\text{O}$ and decomposition to alumina.

In mid-1976 investigations were begun at several of the Bureau's research centers to provide background chemical and physical data needed for the miniplant, but not available in the literature, in order that the process engineering studies in the miniplant might proceed in a timely manner.

CYCLIC PROCESS OF THE CLAY-HCl ACID MINIPLANT

Early emphasis in the clay-HCl miniplant was placed on demonstrating process feasibility on a substantial scale of operation, but the principal aim of the project was to furnish reliable process and design data for decisionmaking on possible scale-up. Process data resulting from the project provided a substantial part of the information used in designing a 25-tpd alumina-from-kaolin pilot plant (3). Technology of the cyclic extraction process has been divided into several unit operations (fig. 1). This report summarizes information relating to four of these operations.⁵

Kaolin Feed Preparation

A typical eastern Georgia kaolin suitable for the production of alumina was

⁵The sections describe alumina miniplant operations at the time of this work; improved feed preparation techniques and fluidized-bed calcination were developed during the project, and are the subject of separate reports.

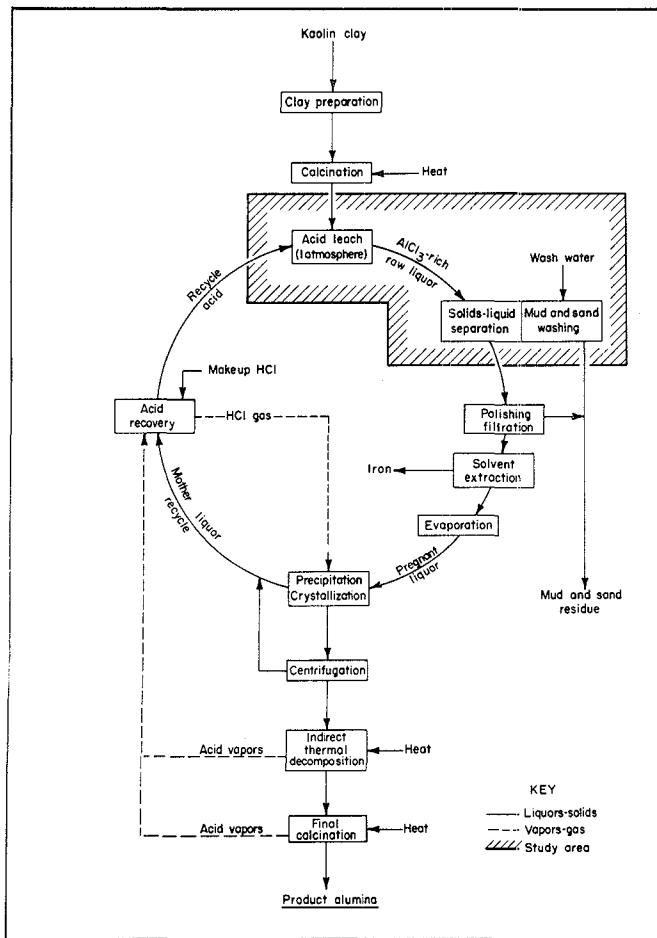


FIGURE 1. - Unit operations of the clay-HCl acid process.

obtained from the Thiele Kaolin Co., Sandersville, GA. In the miniplant, the raw kaolin was withdrawn from storage and crushed to approximately minus 0.5-in size; minus 20-mesh fines were screened out, pelletized, and partially air-dried. The crushed material was blended with pellets and stored in steel drums pending calcination.

Calcination of Kaolin

Kaolinite, $\text{Al}_2\text{O}_3 \cdot 2\text{SiO}_2 \cdot 2\text{H}_2\text{O}$, the major mineral in kaolin, is attacked slowly by mineral acids, but if it is heated to about 600° to 900° C, the combined water is driven off, and the resulting material, termed "metakaolin" ($2\text{Al}_2\text{O}_3 \cdot 4\text{SiO}_2$) (13), is readily attacked by hot

mineral acids. Kaolin was calcined as required in a 2.5- by 24-ft direct, gas-fired rotary kiln at 750° C. About 30,000 lb of kaolin was normally calcined during each campaign, to produce sufficient calcined kaolin for subsequent leaching operations.

HCl Acid Leaching of Calcined Kaolin

Calcined kaolin was crushed and screened to size as required, and leached at 112° C with a slight excess of boiling 25-pct HCl acid in three glass-lined, 50-gal, CSTR's arranged in cascade (fig. 2). The jacketed reactors were heated by a Therminol⁶ 66 hot oil heating system with individual throttling valves for additional control of each reactor, and were stirred by a glass-coated retreating curve impeller with three arms. Limited baffling, which later was recognized as inadequate, was provided by one H-baffle. Each reactor was equipped with a 4-in-diam (7.6 ft²) glass reflux condenser. An additional 6-in-diam reflux condenser (12.8 ft²) was installed on the first reactor to absorb the exothermic heat of the leaching reaction, the major part of which occurred in reactor 1.

Slurry discharged from each reactor through a 2-in-diam nozzle located in the sidewall of the reactor body. The free-board space above the slurry surface was needed to contain foam produced during the exothermic leaching reaction. Three-way valves were installed between reactors so that complete slurry stream samples could be taken (fig. 3). The nominal working volume of each reactor was approximately 23 gal (fig. 4).

Water and 20 Bé HCl were measured by diaphragm metering pumps and mixed to produce a nominal 25-pct HCl solution. Calcined kaolin stored in drums was

⁶Reference to specific brand names or manufacturers does not imply endorsement by the Bureau of Mines.

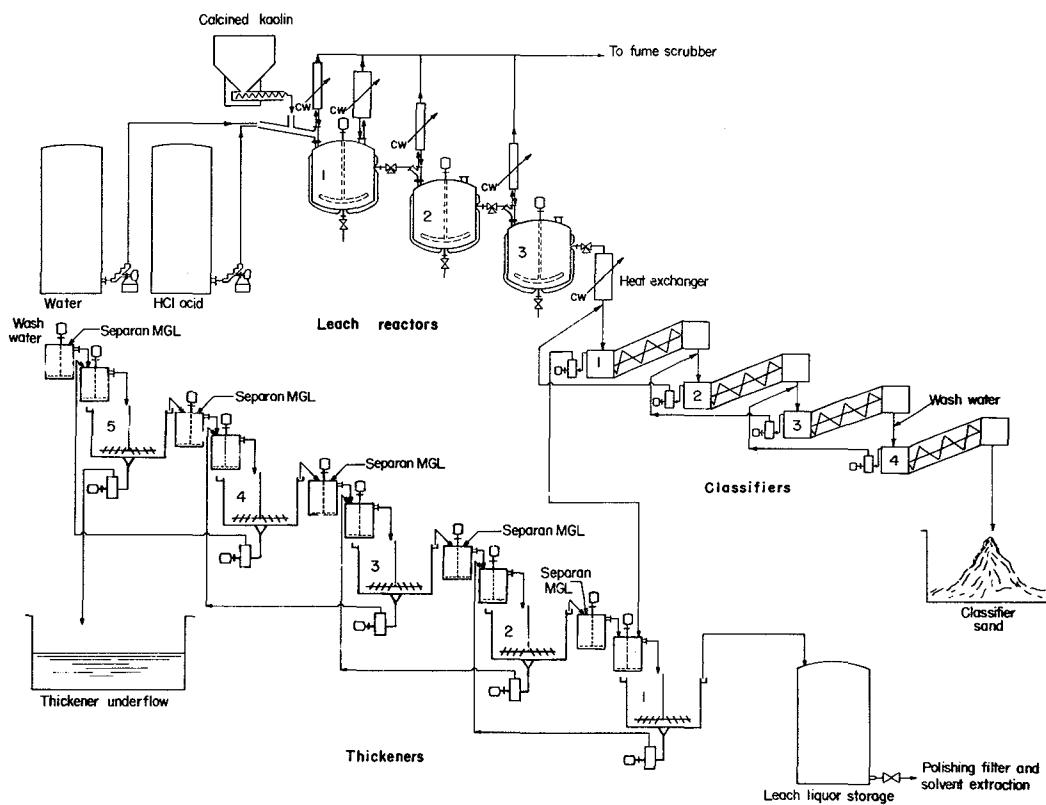


FIGURE 2. - Flowsheet and major equipment of the acid leaching and solids-liquid separation circuits.

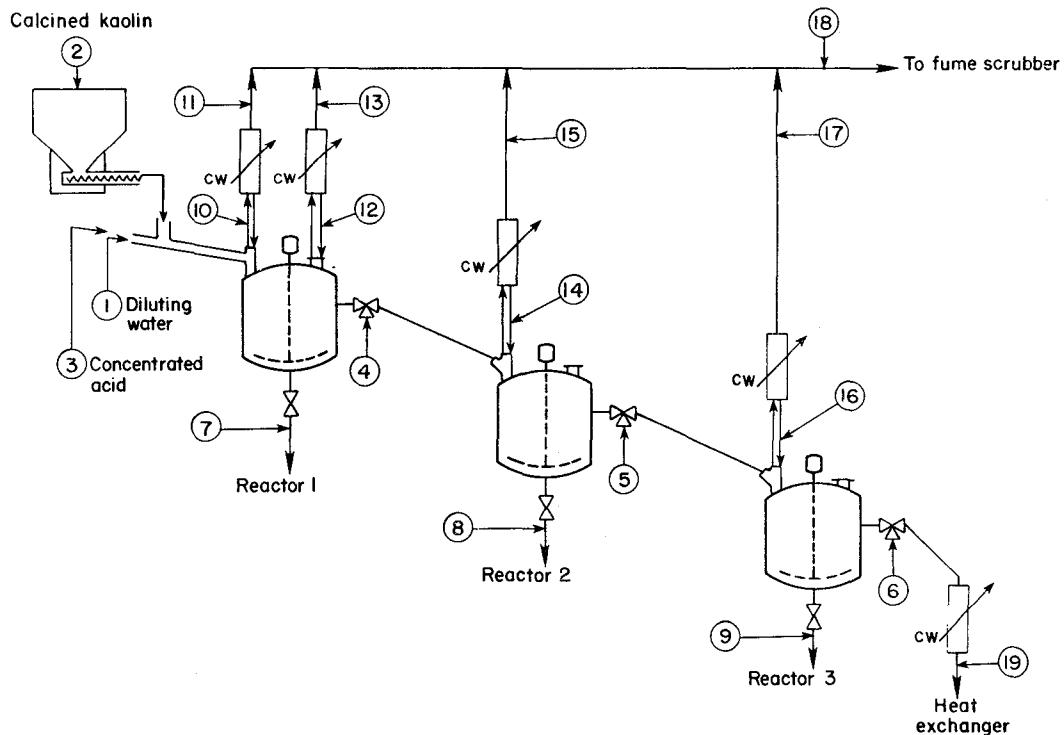


FIGURE 3. - HCl acid leaching circuit: flowsheet with sample points.

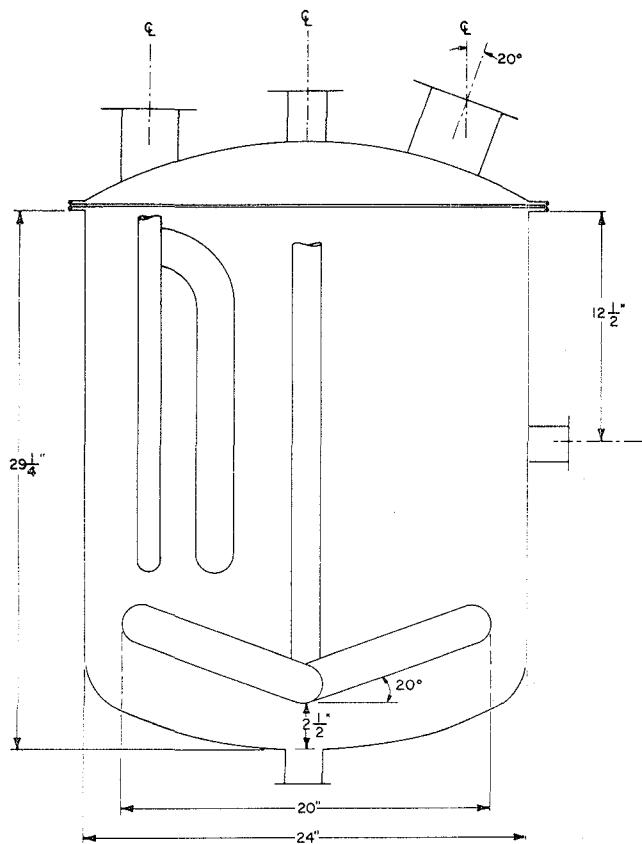


FIGURE 4. - Vertical section of 50-gal, glass-lined reactor showing side overflow nozzle, H-baffle, and retreating-curve impeller.

poured into the feed hopper of a belt conveyor (fig. 5) that automatically filled the bin of the Acrison feeder, which was equipped with a digital totalizer. Calcined kaolin from the hopper was discharged by means of a 1.9-in-diam screw feed tube and poured into reactor 1 via an inclined feed chute that was flushed with the water and acid feed streams.

HCl losses from the reactor condensers to the miniplant fume scrubber were calculated from Lear-Siegler isokinetic gas sample analyses. The isokinetic sampling technique was satisfactory because the heated sample probe ahead of the three Na_2CO_3 -solution absorbers prevented condensation of moisture. Sample volumes were 10 to 20 ft^3 at standard conditions. HCl collected in the absorber solutions was determined by Volhard titration.

Leaching dissolved most of the acid-soluble alumina and most of the soluble iron and other impurities present in the calcined kaolin. The SiO_2 and the TiO_2 were present in the porous inert residue.

Solids-Liquid Separation

Any significant change in the operation of the leaching section affected the operation of the solids-liquid separation section, and prolonged periods of operation were required before a steady-state condition was established. Flow measurement and sample data, from which the overall material balance for the leaching and solids-liquid separation sections was constructed, were selected from those taken during steady-state periods. Detailed mechanical performance descriptions and material flows within the separate circuits are not included in this report.

Acid leach slurry at a temperature of 112° C from reactor 3 was cooled in a heat exchanger to about 60° C, a temperature below the maximum service-rated temperature of the elastomeric linings used in the mild steel spiral classifiers and three of the five thickeners of the solids-liquid separation section.

Cooled slurry from the heat exchanger flowed by gravity to classifier 1. At the 175-1b/hr feed rate, the minus 100-plus 150-mesh particles (median size of 115 mesh) split equally between the classifier sands and the thickener feed. The overflow from classifier 1, consisting of diluted leach liquor and fine solids, was pumped into a small mixing tank on top of thickener 1. A 0.2-pct solution of Separan MGL, a nonionic polyacrylamide flocculant, diluted by the overflow liquor from thickener 2 was added to enhance settling and compaction of the fines, and the treated pulp flowed into the center feed well of thickener 1. Flocculant treatment of the thickener circuit was critical to the operation. The underflow pulp from thickener 1 was advanced to the

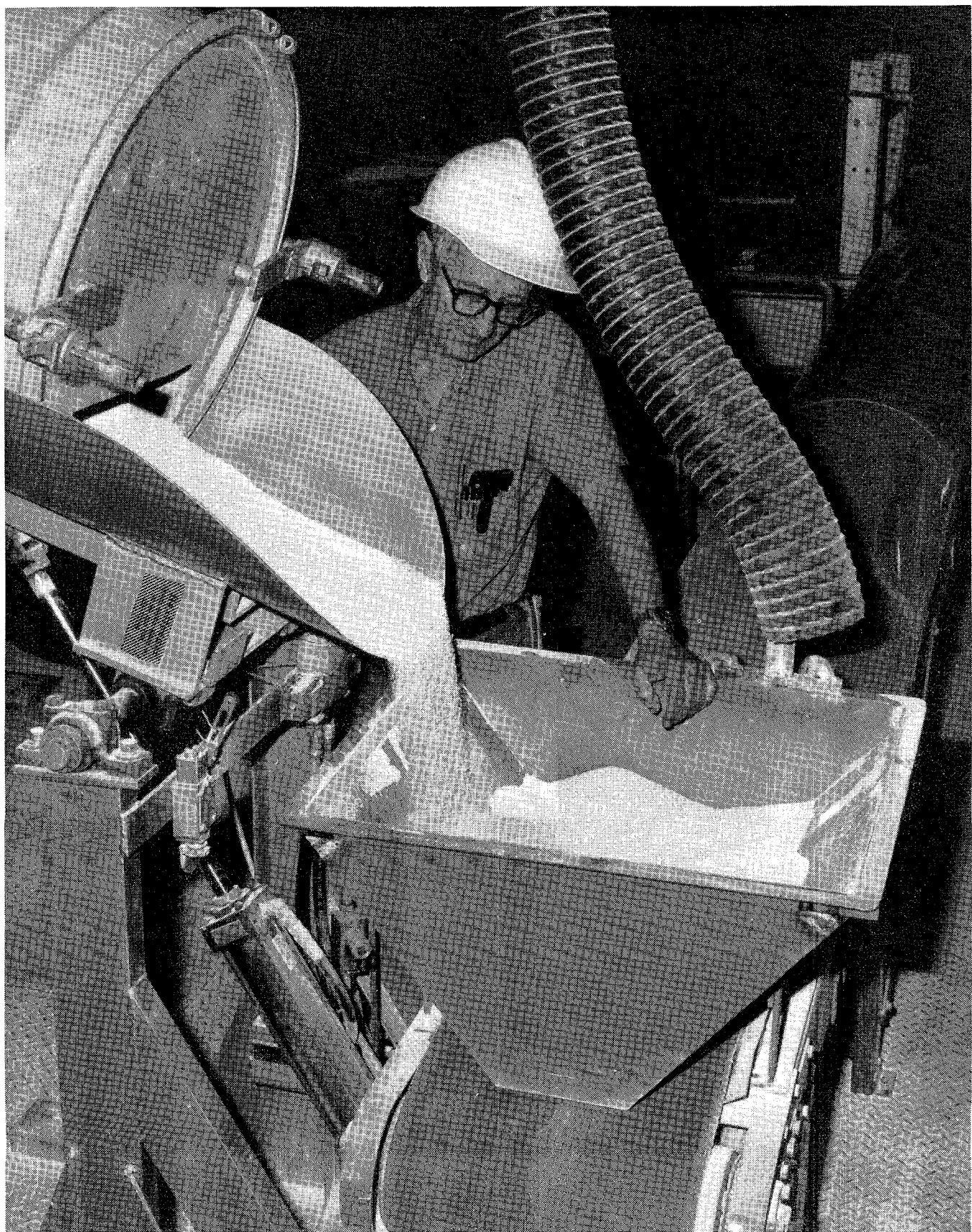


FIGURE 5. - Charging calcined kaolin to an Acrison weightometer feed conveyor.

thickener 2 feed mixing system, where it was dispersed in overflow from thickener 3 fortified with a dilute solution of Separan MGL to produce the feed pulp for thickener 2. This process was continued through the five-thickener circuit (fig. 6). At thickener 5 the underflow pulp contained about 25 pct solids, and was discharged as a slimes tailing. A timer-operated, diaphragm-suction pump was used to discharge the underflow pulp, resulting in irregular flow.

The estimated time of passage of the fine solids through the thickeners (114 hr) was based on a fine solids feed rate to thickener 1 of about 25 lb/hr. Because of the considerable time lag for the travel of fine solids through the five thickeners, it was decided to sample the slime solids contained in the thickener 1 feed stream (from classifier 1 overflow), and use these samples to construct the material balance, instead of thickener 5 underflow material. The

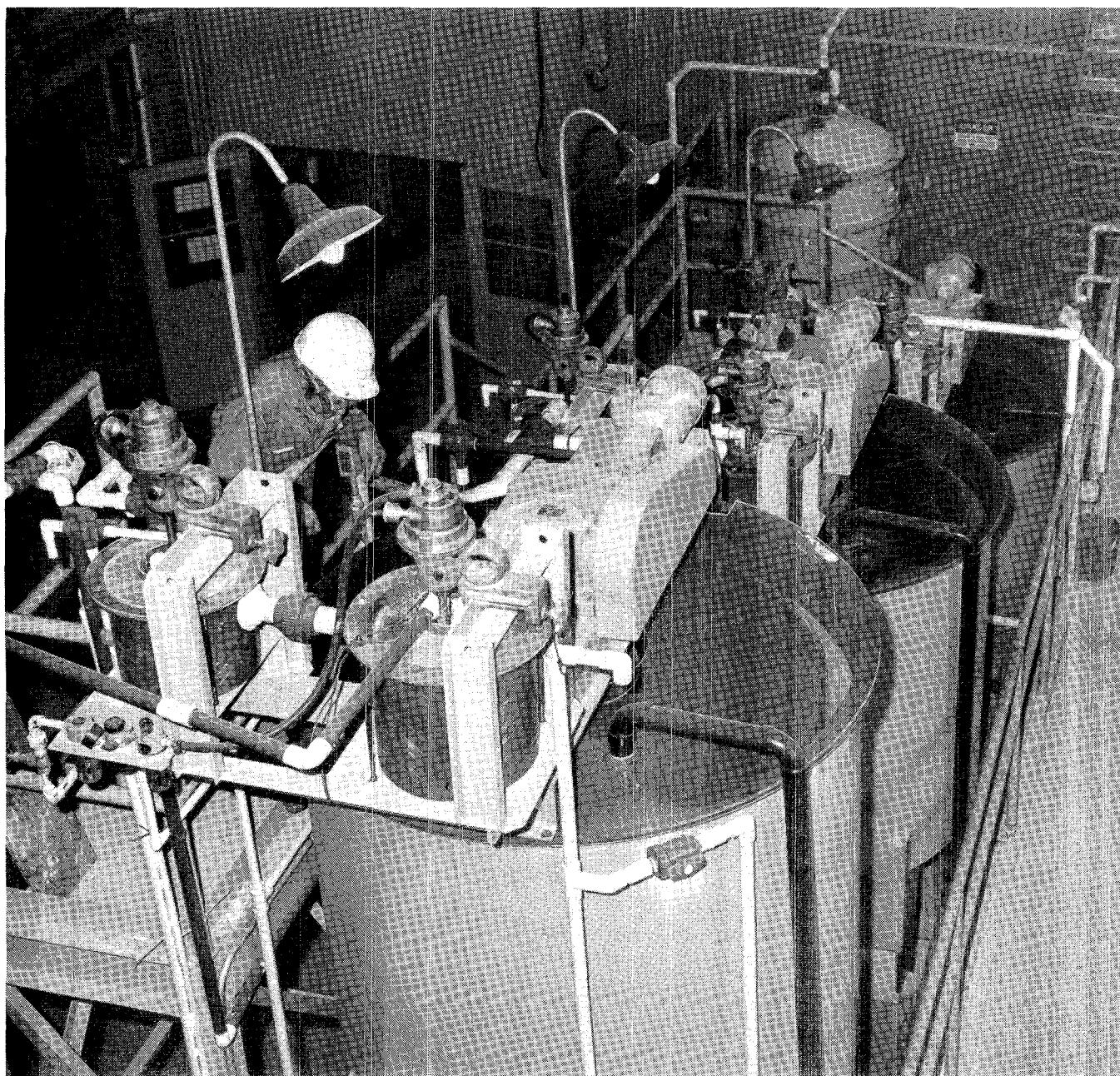


FIGURE 6. - Rubber-lined thickeners with flocculant mixing and dispersing vessels.

solids in the thickener 1 feed stream were assumed to be completely leached and at a temperature of 50° C, and were considered the equivalent of thickener 5 underflow solids for the material balance.

Thickener pulp data (table A-2) represent the averages of data obtained during steady-state conditions of runs 4 and 5. In run 5, thickener 5 underflows exceeded 28 pct solids at times and were viscous and difficult to handle with the small diaphragm-suction pumps. Therefore, the averaged pulp solids contents, though conservative, are considered satisfactory for preliminary process design.

The coarse sands from classifier 1 were transported on a conveyor belt to classifier 2, countercurrently washed, and flowed by gravity through classifiers 3 and 4. The washed sands, containing about 52 pct solids (table A-22), were discharged as waste from classifier 4.

Two sizes of washed residues, a coarse sand from the classifiers and an underflow pulp from thickener 5, were produced. Raw pregnant liquor containing AlCl_3 and dissolved impurities, mostly iron (table A-15), overflowed from thickener 1 to the raw pregnant liquor storage tank and was held for polish filtration before further processing.

EQUIPMENT AND OPERATION OF THE MINIPLANT

CHEMICAL REACTORS

Factors affecting the ability of the CSTR train to provide a process environment for the efficient extraction of acid-soluble alumina from calcined kaolin were (1) an adequate heat source to maintain vigorous boiling (oil-heated jackets), (2) sufficient acid to satisfy stoichiometry of the reactions, (3) effective agitation for solids suspension (solids-liquid contact), and (4) sufficient residence time (reaction rate requirement) (14-15).

Reactors were operated under conditions of vigorous boiling with full reflux of acid condensate from glass coil condensers (fig. 2). Temperatures increased slightly along the reactor train, indicating an increase in the concentration and boiling point of the aluminum chloride solution being produced. Under prevailing atmospheric pressures at the laboratory (elevation 2,500 ft), temperatures ranged from about 107° to 112° C. Temperatures were manually regulated to sustain boiling rates that produced visible condensate films on condenser coils covering about 40 pct of the total surface. Under these conditions, reserve condensing area was available and adequate freeboard above the boiling reactor contents was about 10 to 20 vol-pct. Although not serious, conditions of

unstable frothy boiling were most frequently noticed in reactor 1.

The mechanical operation of the 50-gal reactor train throughout major miniplant campaigns, with few exceptions, was uniform and trouble free. However, run 5 conclusively established that the reactors did not provide adequate suspension for the larger particles of a 10-mesh feed and were unsuitable for 8-mesh feed. Ineffective baffling coupled with a 100-pct suspension requirement for slurry overflow allowed a centrifugal classification and the accumulation of heavier particles against the sidewalls and in the lower regions of the reactors. Autogenous grinding took place within these regions and undesirable fines were produced. The problem was corrected during a later study.

HIGHLIGHTS OF PRIOR OPERATIONS

The clay-HCl miniplant acid leaching and solids-liquid separation circuits evolved as a result of experience with equipment and mode of operation during successive leaching campaigns. At the stage of development reported here, simultaneous operation of two circuits consisting of a three-reactor leaching train and a four-classifier, five-thickener solids-liquid separation system, produced a satisfactory raw pregnant

liquor. Continuous vacuum filtration of the acid leaching slurry was investigated later in the miniplant project. A brief summary of early operations (table A-4) will aid in understanding the major 10-day campaign from which the majority of data and the material balance of this report have been derived.

Run 1

Operation of a four-reactor leaching system began with a minus 20-mesh calcined kaolin feed and 20-pct HCl and continued for 51 hr. Steady-state conditions were attained shortly after startup and operation at the 60-lb/hr (minimum)

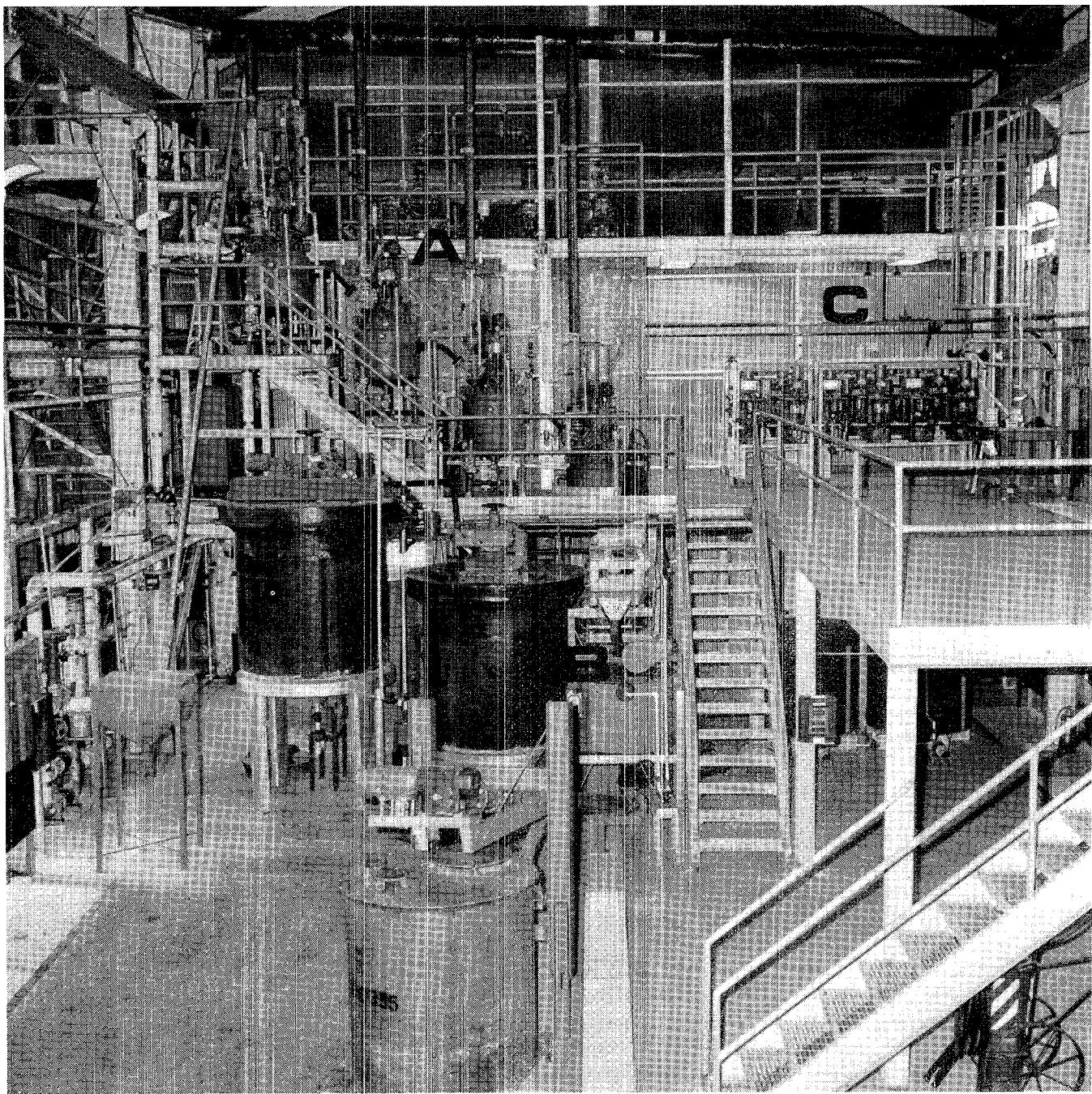


FIGURE 7. - Early miniplant equipment arrangement. The acid leaching reactors (A) are shown upper left; the two-classifier, two-thickener solids-liquid separation circuit (B) mid-center; and solvent extraction (C) mid-right.

design rate was continued for a period of 38 hr. The feed rate was doubled to 120 lb/hr and steady-state conditions were maintained until the calcined kaolin feed was exhausted 13 hr later. Limited heat and material balance data were obtained.

Run 2

The objective of integrating (fig. 7) acid leaching, solids-liquid separation (two screw classifiers and two thickeners), liquor filtration, and solvent extraction was accomplished. Feed rates of 100 and 150 lb/hr of minus 20-mesh calcined kaolin were attained and 67 hr of stable operation of the miniplant resulted. In both runs 1 and 2 excessive fines in the feed hindered classification of a sand product in classifier 1 (table A-3).

Run 3

Data and experience from run 2 were employed to improve operations. The high-precision Acrison weight-loss feeder was "locked-in" at a 100-lb/hr calcined kaolin feed rate, and the leaching section operated uniformly for 99 hr. During the operation, 44 hr of steady-state conditions in the solids-liquid separation system were achieved. Data and sample acquisition were extensive, and the distribution of important minor impurities in the process was investigated. Feed to the reactors was changed from minus 20- to minus 10-mesh size (table A-3) to improve the operation of the spiral classifiers and to facilitate crushing and screening of calcined kaolin. The production of minus 10-mesh feed entailed crushing and sizing a mixture of calcined minus 4- plus 20-mesh crushed kaolin and pellets. This feed material was structurally weak and consisted largely of irregularly shaped particles with sharp, jagged edges and rough surfaces, which were easily abraded during all phases of handling. Particles suffered severe degradation on passing through processing circuits and large quantities of undesirable fines were produced (fig. 8). The true significance of reactor design relative to this characteristic became apparent as extensive

data from run 4 were being analyzed and plans for run 5 were being made.

Run 4

A 10-day campaign was undertaken to operate and evaluate the leaching and solids-liquid separation circuit, which had been expanded from two classifiers and two thickeners to four classifiers and five thickeners. The minus 10-mesh calcined kaolin feed rate was 100 lb/hr. The thickener underflow pulps ranged from approximately 11 to 18 pct solids. Simultaneous bench-scale settling tests showed that the underflow pulp solids

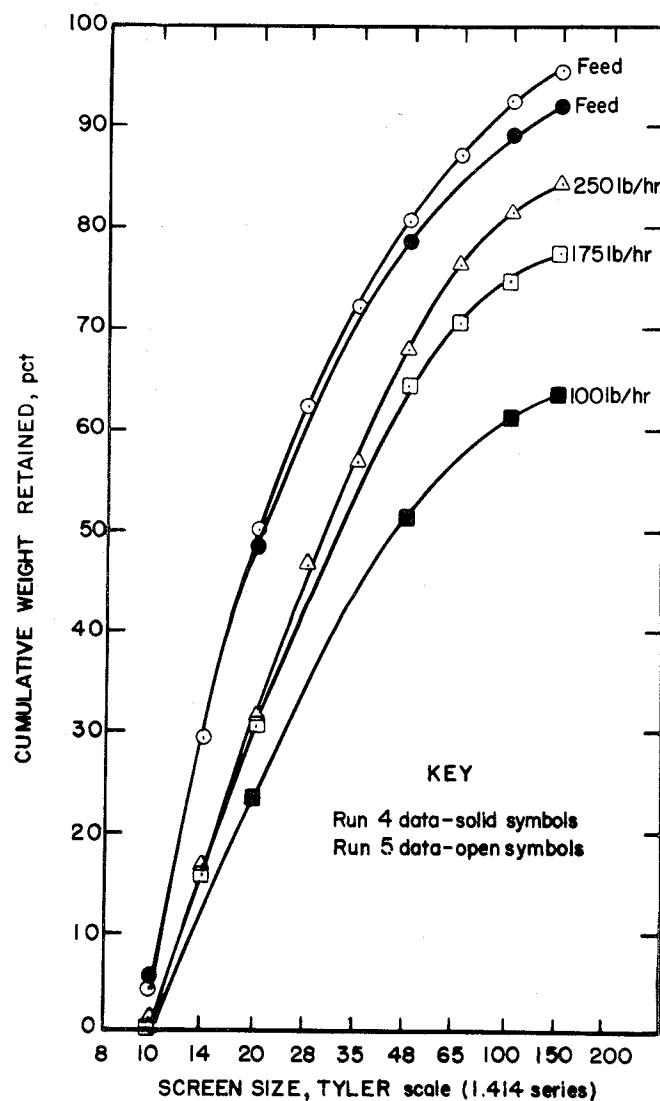


FIGURE 8. - Particle size distribution of minus 10-mesh calcined kaolin feeds compared with respective acid-leached residues as a function of reactor residence time (feed rate).

could be increased to 14 to 26 pct if adequate residence time was provided. One reactor failed because of corrosion and loss of the agitator and was removed from service. Test coupons for evaluating the corrosion resistance of different materials of construction were in place during this operation (5).

PLANNING AND CONDUCT OF RUN 5

Run 5 of the clay-HCl leaching and solids-liquid separation sections entailed running minus 10-mesh crushed calcined kaolin feed to the reactors at an initial rate of 175 lb/hr. Previous runs had not exceeded a 150-lb/hr rate. If no problems were encountered at the 175-lb/hr rate, minus 8-mesh feed would be used for the rest of the run to determine if coarser feed would decrease the fines load on the thickening circuit. Performance of the mechanical circuits as a function of calcined kaolin feed particle size was extensively studied, but details are not reported. It was planned to increase the feed rate to 250 lb/hr--the maximum rate of the Acrison weigh feeder--for the last 24 hr of the run in order to evaluate the three-reactor train and other equipment under conditions of high loading.

Reactor 1 was first filled with 25-pct HCl and heated to incipient boiling. Then calcined kaolin feed was started and sluiced into the reactor with cold 25-pct HCl. The exothermic reaction began rapidly, the boiling slurry overflowed into heated reactor 2 and, shortly thereafter, into reactor 3. This procedure was developed to avoid boilovers, or runaway reactions at startup.

Because the leaching and solids-liquid separation circuits operated smoothly, when the minus 10-mesh calcined kaolin supply was exhausted the minus 8-mesh feed was started. During the next 8 hr, reactor operation was plagued by a stable foam that rose into the reflux condensers. Foam was suppressed by the addition of an antifoaming agent and the use of minus 8-mesh feed was continued. As the run progressed, serious problems

developed in the solids-liquid separation circuit. With the minus 10-mesh feed, three-quarters of the leached solids reported to the classifiers, and only one-quarter to the thickeners. However, with minus 8-mesh feed, an increasing quantity of unclassified coarse solids were suspended in a thick viscous pulp that overflowed from the first classifier, until more than two-thirds of the leached solids were going to the thickeners. The autogenous grinding of settled coarse particles, mostly in reactor 1, generated fines, which stabilized foam in the reactors. The presence of a large quantity of fines in the reactor discharge slurry increased the effective viscosity and suspending property of the slurry, and prevented classification of the sands. For these reasons, and because previous operations using finer sized feed had been without foaming and classification problems, the remaining 8-mesh feed was ground to minus 10 mesh (fig. 9). Operations were resumed using the minus

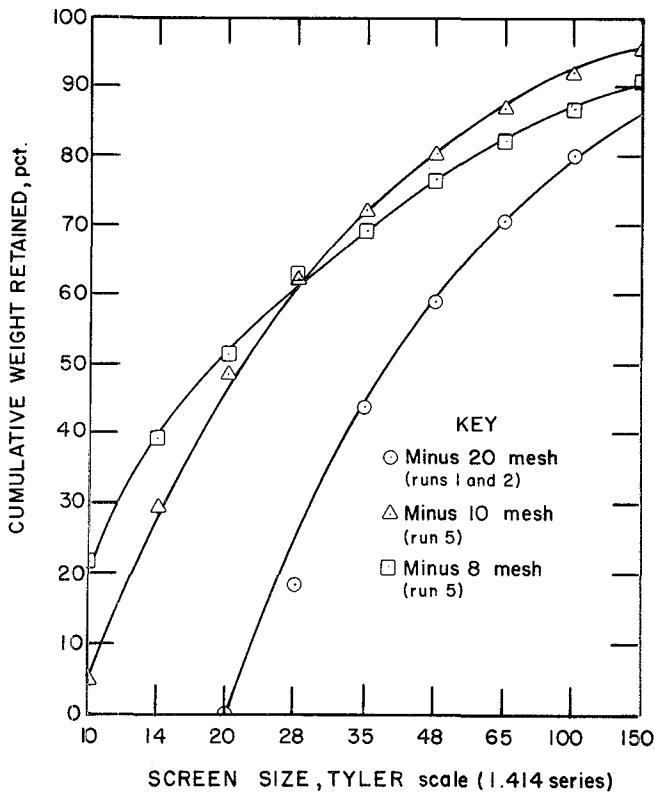


FIGURE 9. - Particle size distribution of three calcined kaolin feeds processed in acid leaching reactors of the alumina miniplant.

10-mesh calcined kaolin feed and addition of the antifoam agent was discontinued. Except for normal froth and bubbles above the surface of the boiling slurry in the reactors, foaming ceased and classifier operation returned to normal.

No further problems were encountered during the remainder of the run at the 175-lb/hr rate, and the leaching and solids-liquid separation sections were operated under steady-state conditions for 60 hr. On completion of the run, a 59-hr data collection period was selected to form the base for the material balance study.

The feed rate was increased to 225 lb/hr for slightly more than 5 hr. When no operating difficulties were experienced, feed was increased to 250 lb/hr for the

last 20 hr of the run (feed rate data are shown in table A-1). The objective of the higher feed rate was to determine how an increased processing rate would affect the leaching capabilities of the three 50-gal reactor circuit and operation of the four-classifier, five-thickener, solids-liquid separation circuit. At higher feed rates, particle residence time in the reactors was decreased, short circuiting was increased, and the larger feed particles were not fully leached. Incomplete leaching was detected as a decline in the dissolved alumina content of the reactor 3 discharge slurry. Leach liquor Al_2O_3 analyses at the 250-lb/hr rate averaged 9.55 pct, compared to 9.98 pct Al_2O_3 for the 175-lb/hr rate (table A-5). The Al_2O_3 content of the leached classifier sand solids increased from 5.2 to 6.99 pct.

MATERIAL BALANCE

The boundary for the material balance was arbitrarily constructed around the three acid leaching reactors, the four spiral classifiers, and the five thickeners because the process trains were operated, monitored, and sampled simultaneously as an interconnected unit. The combined operation produced a product, the raw pregnant liquor, that was feed for all subsequent process studies⁷ in the clay-HCl miniplant.

In order to construct the material balance, it was necessary to normalize the chemical analyses of major solids streams. This could have been done by factoring, but since silica was the major component of the solids and some problems had been associated with the reported analyses, the total corrections were made

on the silica analyses. Principal material balance controls were the weight and composition of the calcined kaolin feed, analyses of the classifier 1 overflow solids (thickener feed solids) and classifier 4 discharge solids, and the composition of the thickener 1 overflow liquor (raw pregnant liquor, table A-15).

The solids in the classifier 1 overflow stream (thickener 1 feed) were assumed to be compositionally equivalent to thickener 5 underflow solids. Since accurate measurement of the discharge of thickener 5 underflow pulp was difficult, the combined total TiO_2 and SiO_2 (adjusted value) content of the classifier 1 overflow feed solids was designated "insolubles" and served as a tracer to develop the weight of the thickener 5 underflow. The average weight rate of the classifier 4 sands and complete chemical analyses provided enough information to permit calculation of the weight of the thickener 5 underflow. Coupled with the chemical analyses and weight of the liquid fractions of these streams, an alumina accountability was obtained. In turn, the weight of the pregnant liquor was

⁷Subsequent operations conducted in the miniplant to test individual circuits, or to operate and evaluate unit operations, such as solvent extraction, evaporation, and crystallization of $AlCl_3 \cdot 6H_2O$, have followed major operating campaigns of the combined acid leaching and solids-liquid sections and are reported elsewhere (11, 25).

calculated. Balances of Al_2O_3 and $(\text{TiO}_2 + \text{SiO}_2)$ also were readily obtained.

Although the soluble Al_2O_3 - Fe_2O_3 ratios in the reactor 3 discharge slurry liquor fraction and in the other process liquors differed slightly, these data were used in the calculations. A process iron (Fe_2O_3) balance accounted for less iron than that contained in the calcined kaolin feed. Therefore Fe_2O_3 equal to the discrepancy was proportioned ("best fitted") to the solids fractions of the classifier 4 sands and the thickener 5 underflow pulp.

"Other solubles" contained in the process water, commercial HCl , calcined kaolin feed⁸ and process liquor streams were, for simplification, considered to be CaO , MgO , K_2O , Na_2O , and SO_4^{2-} . Other minor impurities were ignored as relatively unimportant, or assigned as trace elements to the acid-leached solid residues.

Detailed compositional and physical data for calcined kaolin, process liquors, and acid-leached residues are reported in tables A-8 to A-24. These data were used in the material balance calculations.

HCl requirements were determined from the acid-soluble Al_2O_3 and Fe_2O_3 analyses

and weight of the calcined kaolin feed. To insure effective leaching, compensate for reactor condenser losses, and maintain a 0.5 to 1.0 pct free HCl concentration in the pregnant liquor product, the stoichiometry was set at 105 pct. However, the material balance indicated that the attained stoichiometry was 98 pct and reflected a minor problem with the acid metering pumps, because measured HCl losses through the condensers were small (fig. 10). Acid requirements for other dissolved solubles were determined by calculation. No corrections were needed for SO_4^{2-} levels, and it was assumed that P_2O_5 levels were derived from the apatite $[\text{Ca}_5(\text{PO}_4)_3\text{F}]$ (16) presumed to be present in the original kaolin. HCl acid is reported either as HCl (free) or HCl (combined), meaning that quantity associated with dissolved oxides.

The material balance (fig. 10) shows that for a calcined kaolin feed rate of 176 lb/hr, 93 pct of the acid-soluble alumina fraction was extracted. Recovery of the soluble alumina contained in the acid leaching slurry fed to the four-classifier, five-thickener solids-liquid separation circuit was 95 pct. The overall recovery of acid-soluble alumina in the consolidated circuit was (93) (0.95) = 88 pct.

SUMMARY AND CONCLUSIONS

The integrated operation and testing of the acid leaching and solids-liquid separation sections in the clay- HCl miniplant resulted in the following information:

1. A 25-pct solution of HCl acid is effective in extracting 93 to 99 pct of the acid-soluble alumina⁹ contained in

calcined kaolin in a conventional reactor train over a wide range of operating conditions. Residence time, feed particle size, and reactor design were critical factors affecting leaching, operation of the solids-liquid separation circuit, and recovery of aluminum chloride in the raw pregnant liquor product.

2. A mean particle retention time of 1.5 hr in a three-stage CSTR acid-leaching circuit was required to obtain a 98-pct extraction of the acid-soluble alumina contained in minus 10-mesh calcined kaolin. A decrease of residence time (equivalent to an increased feed rate) will decrease the extraction of

⁸Compositional variation of different lots of calcined kaolin processed in the miniplant was relatively small except for the presence of a fine-grained silica sand noted in run 5 (table A-6). Physical properties of minus 10-mesh calcined kaolin were uniform (table A-7).

⁹See tables A-4 and A-5.

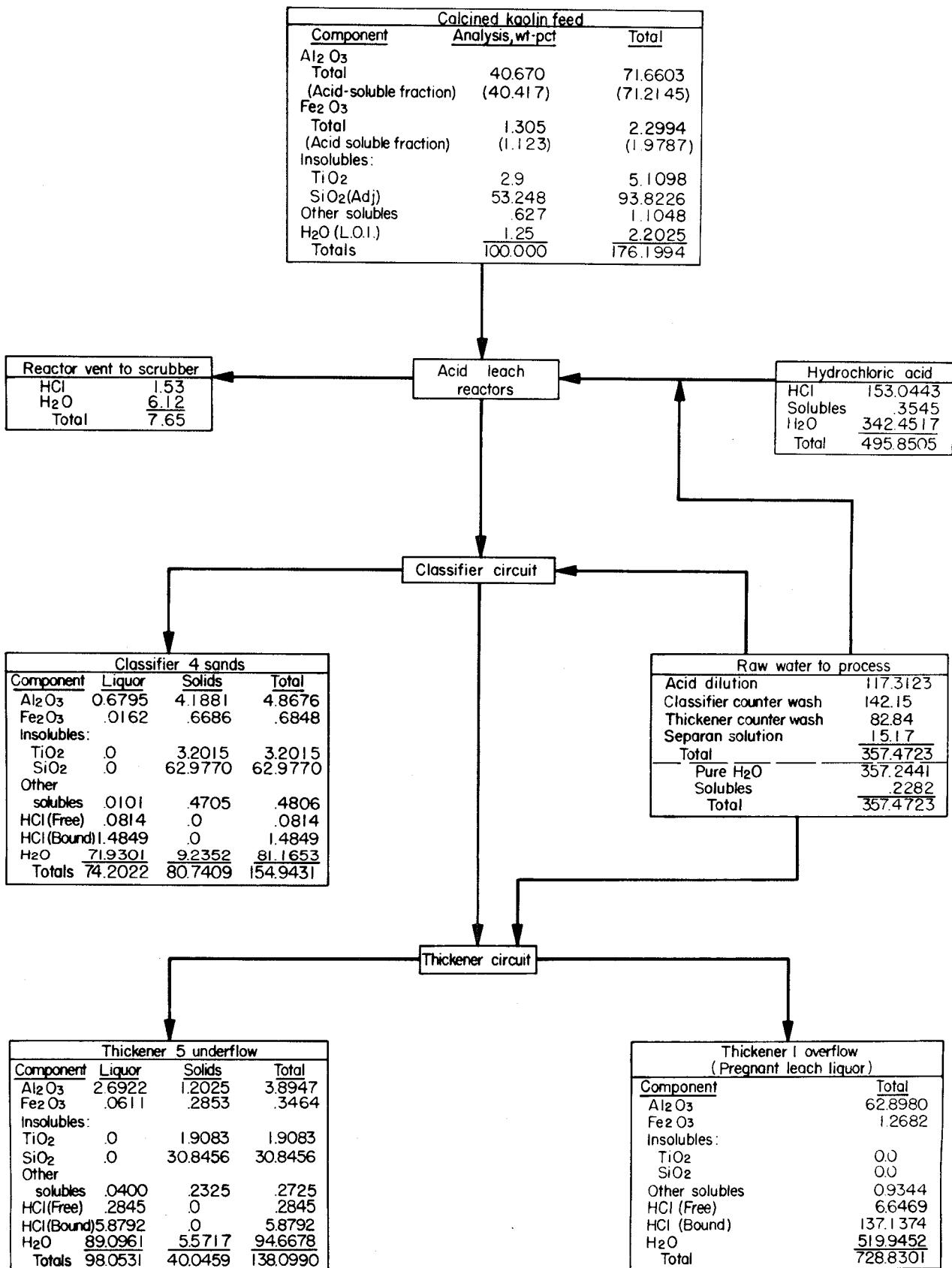


FIGURE 10. - Material balance—acid leaching and solids-liquid separation circuits, run 5. All values, except those in weight-percent, are in pounds per hour.

soluble alumina; e.g., at the 175-lb/hr feed rate, nominal particle residence time was 0.9 hr, and extraction was 93 pct.

3. A 95-pct recovery of acid-solubilized aluminum chloride can be attained in a countercurrent washing solids-liquid separation circuit consisting of four spiral classifiers and five thickeners, arranged in parallel.

Increased recovery may be realized by increasing the number of stages in the individual circuits.

4. The process design engineer and investigator is provided with extensive compositional information on solid and liquid products and an overall process material balance for the combined acid leaching and solids-liquid separation steps of the clay-HCl process.

REFERENCES

1. Bengtson, K. B., P. Chuberka, L. E. Malm, A. E. McLaughlin, R. F. Nunn, and D. L. Stein. Alumina Process Feasibility Study and Preliminary Pilot Plant Design. Task 1 Final Report: Comparison of Six Processes (Contract J0265048, Kaiser Eng.). BuMines OFR 18-78, 1977, 253 pp.; NTIS PB 286 638/AS.
2. _____ Alumina Process Feasibility Study and Preliminary Pilot Plant Design. Task 2 Report: Comparison of Two Processes (Contract J0265048, Kaiser Eng.). BuMines OFR 49-78, 1978, 159 pp.; NTIS PB 286 639/AS.
3. Bengtson, K. B., P. Chuberka, R. F. Nunn, A. V. San Jose, G. M. Manarolis, and L. E. Malm. Alumina Process Feasibility Study and Preliminary Pilot Plant Design. Task 3 Report: Preliminary Design of 25 Ton Per Day Pilot Plant. Volume I. Process Technology and Costs (Contract J0265048, Kaiser Eng.). BuMines OFR 122(1)-80, 1979, 232 pp.; NTIS PB 81-125031.
4. Brown, R. A., F. J. Cservesnyak, R. C. Anderberg, H. J. Kandiner, and F. J. Frattali. Recovery of Alumina From Wyoming Anorthosite by the Lime-Soda-Sinter Process. BuMines RI 4132, 1947, 127 pp.
5. Covino, B. S., Jr., M. Rosen, and W. D. Riley. Corrosion Resistance of Materials in the Aqueous Hydrochloric Acid Environments Associated With the
- Recovery of Aluminum From Kaolinitic Clays. BuMines RI 8565, 1981, 28 pp.
6. Deutsch, D. J., and G. Parkinson. Alumina Minerals--Still Overshadowed by Bauxite. Chem. Eng., Dec. 3, 1979, pp. 53-58.
7. Henn, J. J., P. W. Johnson, E. B. Amey III, and F. A. Peters. Methods for Producing Alumina From Clay. An Evaluation of Two Lime Sinter Processes. BuMines RI 7299, 1969, 43 pp.
8. Hoffman, J. I., R. T. Leslie, H. J. Caul, L. J. Clark, and J. D. Hoffman. Development of a Hydrochloric Acid Process for the Production of Alumina From Clay. Research Paper RP 1756, J. Res. NBS, v. 37, December 1946, pp. 409-428.
9. Johnson, P. W., and F. A. Peters. Methods for Producing Alumina From Anorthosite. An Evaluation of a Lime-Sinter Process. BuMines RI 7068, 1968, 42 pp.
10. Johnson, P. W., F. A. Peters, and R. C. Kirby. Methods for Producing Alumina From Clay. An Evaluation of a Nitric Acid Process. BuMines RI 6431, 1964, 25 pp.
11. Maysilles, J. H., D. E. Traut, and D. L. Sawyer. Aluminum Chloride Hexahydrate Crystallization by HCl Gas Sparging. BuMines RI 8590, 1982, 38 pp.

12. National Materials Advisory Board. Processes for Extracting Alumina From Nonbauxite Ores. Report NMAB-278, 1970, 103 pp.; NTIS PB 198 507.
13. Norton, F. H. Refractories. McGraw-Hill Book Co., Inc., New York, 4th ed., 1968, p. 168.
14. Olsen, R. S., S. J. Bullard, W. G. Gruzensky, R. V. Mrazek, and J. L. Henry. Leaching Rates for the HCl Extraction of Aluminum From Calcined Kaolinitic Clay. BuMines RI 8744, 1983, 11 pp.
15. Olsen, R. S., W. G. Gruzensky, S. J. Bullard, and J. L. Henry. Effects of Feed Preparation on HCl Leaching of Calcined Kaolinitic Clay To Recover Alumina. BuMines RI 8618, 1982, 24 pp.
16. Palache, C., H. Berman, and C. Frondel. The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892. John Wiley & Sons, Inc., New York, 1951, 7th ed., vol. II, p. 879.
17. Peters, F. A., and P. W. Johnson. Revised and Updated Cost Estimates for Producing Alumina From Domestic Raw Materials. BuMines IC 8648, 1974, 51 pp.
18. Peters, F. A., P. W. Johnson, J. J. Henn, and R. C. Kirby. Methods for Producing Alumina From Clay. An Evaluation of a Lime-Soda Sinter Process. BuMines RI 6927, 1967, 38 pp.
19. Peters, F. A., P. W. Johnson, and R. C. Kirby. Methods of Producing Alumina From Clay. An Evaluation of the Sulfurous Acid-Caustic Purification Process. BuMines RI 5997, 1962, 21 pp.
20. _____. Methods for Producing Alumina From Clay. An Evaluation of Five Hydrochloric Acid Processes. BuMines RI 6133, 1962, 68 pp.
21. _____. Methods for Producing Alumina From Clay. An Evaluation of Three Sulfuric Acid Processes. BuMines RI 6229, 1963, 57 pp.
22. _____. Methods for Producing Alumina From Clay. An Evaluation of a Potassium Alum Process. BuMines RI 6290, 1963, 27 pp.
23. _____. Methods for Producing Alumina From Clay. An Evaluation of Two Ammonium Alum Processes. BuMines RI 6573, 1965, 47 pp.
24. St. Clair, H. W., D. A. Elkins, B. K. Shibley, W. W. Mahan, R. C. Merritt, M. R. Howcroft, and M. Hayashi. Operation of Experimental Plant for Producing Alumina From Anorthosite. BuMines B 577, 1959, 127 pp.
25. Sorensen, R. T., E. B. Amey III, and D. L. Sawyer. The Removal of Iron From Aluminum Chloride Leach Liquor by Solvent Extraction. BuMines RI 8560, 1981, 28 pp.

APPENDIX

TABLE A-1. - Run 5 calcined kaolin feed rates

Calcined kaolin, nominal particle size, mesh	Feed time, hr	Nominal feed rate, lb/hr	Total feed, lb	
			Nominal	Actual
10.....	63.3	175	11,070	10,659
8.....	49.2	175	8,620	8,191
10.....	71.9	175	12,590	12,494
10.....	5.2	225	1,170	1,162
10.....	19.8	250	4,940	4,902
Total.....	209.4	NAp	38,390	37,408

NAp Not applicable.

TABLE A-2. - Thickener circuit pulp retention data

Pulp property	Thickening stage				
	1	2	3	4	5
Solids content.....pct ¹ ..	13.40	16.05	18.78	19.98	23.88
Height.....in..	27.47	32.82	14.57	23.22	31.16
Volume.....ft ³ ..	42.02	50.28	23.56	37.77	50.62
Solids.....lb/ft ³ ..	10.88	12.59	14.39	14.84	17.67
Total weight.....lb..	457.2	633.0	339.0	560.5	894.5
Retention time ²hr..	18.09	25.05	13.42	22.19	35.40

¹Values derived by averaging data from run 4 and run 5.²Total retention time, 114.15 hr (4.76 days).TABLE A-3. - Dry screen analyses¹ of calcined kaolin feed materials to acid leaching reactors

Screen size, mesh (Tyler standard sieve)	Cumulative weight retained, pct		
	Minus 20 mesh (runs 1 and 2)	Minus 10 mesh (run 5)	Minus 8 mesh (run 5)
Plus 10.....	ND	4.52	21.94
Plus 14.....	ND	29.22	39.12
Plus 20.....	0.0	48.95	51.71
Plus 28.....	18.6	62.31	62.42
Plus 35.....	44.0	72.23	69.73
Plus 48.....	59.6	80.66	76.86
Plus 65.....	70.9	87.34	82.36
Plus 100.....	80.3	92.51	87.35
Plus 150.....	ND	95.49	91.08
Plus 200.....	90.3	ND	ND
Pan.....	100.0	100.00	100.00

ND Not determined.

¹"Market-grade" screens, having a mesh opening slightly larger than Tyler standard sieves, were used in the sizing equipment.

TABLE A-4. - Summary comparison of operating details of major miniplant runs

Detail	1	2	3	4	5
Calcined kaolin feed:					
Nominal size.....mesh..	-20	-20	-10	-10	-10
Total feed.....lb..	3,500	10,100	9,900	21,900	37,400
Nominal feed rate, lb/hr:					
Low.....	60	100	100	100	175
High.....	120	150	¹ 100	¹ 100	250
Analysis, pct:					
Total Al ₂ O ₃	NA	43.1	43.0	43.2	40.7
Acid-soluble Al ₂ O ₃	40.3	40.8	41.8	42.7	40.4
HCl, 20 Bé.....lb..	10,600	30,300	29,600	69,300	106,500
Diluted concentration.....pct..	20	25.9	26.3	24.4	25.0
Stoichiometry.....mol pct ² ..	101	105	105	104	98
Operations:					
Running time.....hr..	51	69	98.5	219.5	209.4
Reactors.....	4	4	4	4 or 3	3
Agitator speed.....rpm..	120	120	120	120	120
Retention time, hr:					
Low.....	1.9	1.53	ND	ND	0.68
High.....	3.8	2.3	2.3	1.62	0.97
Classifiers.....	0	2	2	4	4
Thickeners.....	0	2	2	5	5
HCl lost as vapor.....lb/hr..	NA	NA	2.26	0.014	1.53
Wash water used.....lb/hr..	0	195	137	198	240
Pregnant liquor, pct: ³					
Al ₂ O ₃	(7.64)	(10.47)	8.55	8.31	8.63
Fe ₂ O ₃	NA	(0.27)	0.19	0.22	0.21
HCl (free).....	NA	(2.1)	0.53	1.48	0.78
Acid-soluble Al ₂ O ₃ extracted.....pct..	NA	99.1	99	98.1	93.1
Dissolved Al ₂ O ₃ recovered.....pct..	NA	ND	66.8	88.5	88.3

NA Not available. ND Not determined.

¹These feed rates were a constant 100 lb/hr.²Stoichiometry in mole percent for the HCl requirement is based on the molar ratio of HCl/(Al₂O₃ + Fe₂O₃).³Values in parentheses are for undiluted reactor discharge liquor.

TABLE A-5. - Extraction of acid-soluble alumina from minus 10-mesh calcined kaolin at different feed rates

Run	Feed rate, lb/hr	Total reactor train residence time, hr	Reactors in service	Acid-soluble alumina extraction, pct
3.....	100	2.1	4	99
4.....	100	1.45	3	98
5.....	175	.92	3	93
5.....	250	.64	3	90

TABLE A-6. - Chemical analyses of minus 10-mesh calcined kaolin used in miniplant runs 3, 4 and 5, percent

Component	Run 3	Run 4	Run 5	Component	Run 3	Run 4	Run 5
Al ₂ O ₃ :				CoO.....	<0.0013	<0.0017	0.010
Total.....	43.0	43.21	40.670	CuO.....	<.0025	<.005	.003
Acid-soluble fraction....	(41.8)	(42.7)	(40.417)	ZnO.....	.014	.012	.013
Fe ₂ O ₃ :				NiO.....	.005	.0079	.013
Total.....	1.32	1.26	1.305	Ga ₂ O ₃	ND	.0015	.008
Acid-soluble fraction....	(1.16)	(1.18)	(1.123)	HgO.....	ND	<.0002	<.00005
TiO ₂ :				SrO.....	<.0025	<.002	.005
Total.....	3.06	3.27	2.9	BaO.....	ND	ND	.009
Acid-soluble fraction....	(.11)	(.127)	(.077)	MoO ₃	<.0015	<.02	<.0045
P ₂ O ₅08	.087	.032	PbO.....	.011	ND	.012
CaO.....	.048	.034	.103	SO ₄117	.18	.095
MgO.....	.095	.087	.066	SnO ₂	<.0025	<.005	ND
K ₂ O.....	.110	.063	.118	As ₂ O ₃	ND	.0002	ND
Na ₂ O.....	.053	.032	.034	B ₂ O ₃	<.032	.005	.045
SiO ₂	51.4	51.8	55.9	V ₂ O ₅	<.011	ND	ND
F ⁻025	.025	.007	ZrO ₂014	ND	ND
Cl ⁻	ND	ND	.038	LOD at 125° C..	.12	.051	ND
Cr ₂ O ₃009	.014	.010	LOI:			
MnO.....	.006	.0037	.006	At 750° C....	.71	.645	ND
				At 1,000° C..	ND	ND	1.25
				Total ¹	100.25	100.83	100.66

LOD Loss on drying. LOI Loss on ignition. ND Not determined.

¹Values in parentheses not included in total.

TABLE A-7. - Physical properties of minus 10-mesh calcined kaolin

Property	Typical value
Density, lb/ft ³ :	
Absolute.....	163.4
Pour.....	57.2
Tap.....	63.8
Angle of repose.....deg..	37
Surface area (BET).....m ² /g..	21

TABLE A-8. - Detailed calcined kaolin feed rate data, run 5

Elapsed time, hr		Cumulative total feed, lb
175-lb/hr FEED RATE PERIOD (AV. 176.1994 lb/hr)		
0.00		0
7.45		1,320
24.30		4,104
31.12		5,480
46.67		8,401
55.00		9,698
58.99		10,394
250-lb/hr FEED RATE PERIOD (AV. 252.5937 lb/hr)		
0.00		0
2.26		581
9.43		2,273
19.47		4,918

TABLE A-9. - Chemical analyses of minus 10-mesh calcined kaolin used in run 5, percent¹

Sample.....	1	2	3	4	5	6	Average
Al ₂ O ₃ :							
Total.....	40.6	39.6	40.5	40.9	41.2	41.2	40.670
Acid-soluble fraction.....	(40.2)	(39.7)	(40.3)	(40.4)	(40.9)	(41.0)	(40.417)
Fe ₂ O ₃ :							
Total.....	1.30	1.30	1.29	1.32	1.32	1.30	1.305
Acid-soluble fraction.....	(1.14)	(1.10)	(1.12)	(1.12)	(1.13)	(1.13)	(1.123)
LOI at 1,000° C.....	1.0	.9	1.1	1.4	1.6	1.5	1.250
Total ²	42.90	41.80	42.89	43.62	44.12	44.00	43.225
Insolubles: ³							
SiO ₂	ND	57.0	56.9	54.9	55.3	55.6	55.9
TiO ₂ :							
Total.....	2.9	2.8	2.9	2.9	2.9	3.0	2.9
Acid-soluble fraction.....	(.09)	(.11)	(.08)	(.07)	(.07)	(.04)	(.077)
Total ²	NAP	59.8	59.8	57.8	58.2	58.6	58.8
Other solubles: ³							
P ₂ O ₅034	.032	.031	.030	.032	.030	.032
CaO.....	.057	.057	.060	.063	.11	.27	.103
MgO.....	.061	.061	.068	.070	.068	.068	.066
K ₂ O.....	.13	.13	.11	.12	.11	.11	.118
Na ₂ O.....	.027	.038	.036	.031	.032	.038	.034
F ⁻004	.013	.003	.008	.008	.008	.007
Cl ⁻08	ND	.04	.04	.01	.02	.038
Cr ₂ O ₃01	.01	.01	.01	.01	.01	.010
MnO.....	.0052	.0067	.0057	.0062	.0046	.0049	.006
CoO.....	.011	.0099	.010	.0095	.010	.011	.010
CuO.....	.0029	.0029	.0034	.0034	.0035	.0035	.003
ZnO.....	.011	.010	.015	.014	.013	.013	.013
NiO.....	.013	.012	.013	.013	.012	.013	.013
Ga ₂ O ₃009	.005	.009	.008	.007	.008	.008
SrO.....	.0048	.0050	.0052	.0051	.0053	.0060	.005
BaO.....	.009	.008	.009	.010	.008	.008	.009
B ₂ O ₃06	.03	.03	.06	.03	.06	.045
PbO.....	.012	.012	.013	.012	.012	.013	.012
SO ₄ ⁼08	.02	.05	.13	.17	.12	.095
Total.....	.6209	.4625	.5213	.6432	.6554	.8144	.627
Grand total.....	NAP	102.06	103.21	102.06	102.9	103.41	102.65

LOI Loss on ignition. NAP Not applicable. ND Not determined.

¹HgO <0.5 ppm, MoO₃ <45 ppm; As₂O₃, BeO, V₂O₅, SnO₂ less than detection limits.

²Values in parentheses are not included in totals.

³"Insolubles" and "other solubles" are arbitrary groupings of components used to simplify the material balance calculations.

TABLE A-10. - Chemical analyses of 20 Bé HCl acid, percent

Sample.....	1	2	3	4	Average
HCl.....	30.93	30.98	30.79	30.76	30.865
Minor elements:					
CaO.....	.0073	.0073	.0073	.0073	.0073
MgO.....	.0032	.0032	.0032	.0032	.0032
K ₂ O.....	.0092	.0092	.0092	.0092	.0092
Na ₂ O.....	.0094	.0094	.0094	.0094	.0094
SO ₄ =.....	.0414	.0425	.0435	.0420	.0424
Total.....	.0705	.0716	.0726	.0711	.0715

TABLE A-11. - Trace element analyses¹ of 20 Bé HCl acid, parts per million

Sample.....	5	6	7	Average
Al ₂ O ₃	0.12	0.2	0.4	0.2
Fe ₂ O ₃2	.2	.7	.4
TiO ₂	<.004	<.004	<.009	<.006
SiO ₂	1.4	2	2	2
Cr ₂ O ₃01	.01	ND	.01
MnO.....	.003	.003	.008	.005
CuO.....	<.003	.003	.13	.04
NiO.....	.001	.001	.001	.001
SrO.....	<.2	<.2	.6	.2
MoO ₃	<.003	<.003	<.008	<.005
B ₂ O ₃07	.07	<.16	.07
PbO.....	<.02	<.02	ND	<.02
Ag ₂ O.....	.005	<.003	.01	.006
Suspended solids.....	217	224	522	321

ND Not determined.

¹Elements not detected: Co, Sb, Ba, Be, Sn, W, Zn, Au, Hf, Nb, Pt, Ta, V, As, Cd, Ga, In, Re, Te, Tb.

TABLE A-12. - Chemical analyses of process water, parts per million

Sample.....	1	2	3	Average
Major solubles:				
Al ₂ O ₃	<0.1	<0.1	<0.1	<0.1
Fe ₂ O ₃	<.05	<.05	<.05	<.05
Insolubles: ¹				
SiO ₂	16.4	21.1	14.3	17.3
TiO ₂	<.08	<.08	<.08	<.08
Total.....	16.48	21.18	14.38	17.38
Other solubles: ¹				
P ₂ O ₅	<1	ND	ND	<1
CaO.....	139.9	139.9	132.9	137.6
MgO.....	63.74	62.19	54.42	60.12
K ₂ O.....	6.99	6.99	6.02	6.67
Na ₂ O.....	167	162	142	157
SO ₄ ⁼	278	ND	ND	278
F ⁻	<1	1	<1	<1
Cr ₂ O ₃	<.01	<.01	<.01	<.01
ZnO.....	<.01	<.01	<.01	<.01
NiO.....	<.02	<.02	<.02	<.02
B ₂ O ₃	1.2	1.2	.5	.97
Cl ⁻	73	69	94	79
NO ₃ ⁻	2	2	1	2
Total ²	<733.87	NAP	NAP	<723.4
Density, at 23° C..... g/mL.....	0.9997	0.9978	0.9966	0.9980
pH.....	7.9	8.3	8.3	8.2

NAP Not applicable. ND Not determined.

¹"Insolubles" and "other solubles" are arbitrary groupings of components used to simplify the material balance calculations.²"Total other solubles," when compared to that in other tables and the material balance, should be calculated without including HCl (free), Cl⁻, and NO₃⁻ for a total of 639 ppm.

TABLE A-13. - Chemical analyses of reactor 3 discharge slurry--solids fraction, percent

Sample....	1	2	3	4	5	6	7	8	Average
Al ₂ O ₃	4.7	4.6	4.2	3.0	2.8	3.7	3.6	6.0	4.08
Fe ₂ O ₃4	.5	.5	.4	.4	.4	.4	.6	.45
TiO ₂	4.0	4.1	3.9	4.0	3.9	4.1	4.2	4.1	4.04
LOI ¹	13.12	12.53	12.14	12.60	12.32	12.60	13.17	12.18	12.58

¹Loss on ignition at 1,000° C.

TABLE A-14. - Chemical analyses and physical data for reactor 3 discharge slurry--liquid fraction

Sample	Slurry solids, pct	Density at 24° C, g/mL	Analysis, pct		
			Al ₂ O ₃	Fe ₂ O ₃	Free HCl
1.....	14.60	1.2909	10.8	0.23	0.67
2.....	14.66	1.2909	10.7	.23	.91
3.....	12.92	ND	8.8	.19	.42
4.....	16.95	1.2773	10.2	.22	1.36
5.....	14.33	1.2800	10.4	.22	1.05
6.....	12.70	ND	8.7	.20	.68
7.....	13.90	1.2805	10.4	.22	.99
8.....	12.40	1.2835	10.5	.23	.90
9.....	13.66	ND	9.3	.14	.08
Average.....	14.01	1.2839	9.98	.209	.784

ND Not determined.

TABLE A-15. - Chemical analyses of thickener 1 overflow liquor (raw pregnant liquor), percent

Sample.....	1	2	3	4	5	Average
Major solubles:						
Al ₂ O ₃	8.42	8.40	8.53	8.88	8.92	8.63
Fe ₂ O ₃17	.17	.17	.18	.18	.17
(FeO).....	(.016)	(.015)	(.013)	(.011)	(.012)	(.013)
HCl (free).....	.77	.90	.96	.99	.94	.912
Insolubles: ¹						
SiO ₂	<.0035	<.0035	<.0035	<.0035	<.0035	NAP
TiO ₂	<.005	<.005	<.005	<.005	<.005	NAP
Suspended solids.....	.011	.015	.015	.012	.011	.0128
Other solubles: ¹						
P ₂ O ₅019	.019	.015	.017	.017	.0174
CaO.....	.017	.013	.012	.012	.012	.0132
MgO.....	.017	.017	.016	.017	.017	.0168
K ₂ O.....	.013	.013	.014	.013	.014	.0134
Na ₂ O.....	.016	.015	.015	.015	.015	.0152
SO ₄ =.....	.053	.051	.050	.053	.054	.0522
F ⁻	<.001	<.001	<.001	<.001	<.001	NAP
Cr ₂ O ₃0024	.0021	.0024	.0025	.0024	.0024
SnO.....	<.004	<.004	<.004	<.004	<.004	NAP
MnO.....	.0013	.0013	.0014	.0014	.0014	.0014
CoO.....	.0023	.0023	.0023	.0024	.0024	.0023
CuO.....	.00071	.00076	.00068	.00071	.00073	.0007
ZnO.....	.0026	.0023	.0023	.0025	.0026	.0025
NiO.....	.0029	.0028	.0028	.0029	.0030	.0029
Ga ₂ O ₃0020	.0021	.0020	.0021	.0022	.0021
HgO.....	<.010	<.010	<.010	<.010	<.010	NAP
SrO.....	.0018	.0017	.0017	.0018	.0018	.0018
BaO.....	<.0010	<.0010	<.0010	<.0010	<.0010	NAP
As ₂ O ₃	<.0008	<.0008	<.0008	<.0008	<.0008	NAP
BeO.....	<.0003	<.0003	<.0003	<.0003	<.0003	NAP
MoO ₃	<.0011	<.0011	<.0011	<.0011	<.0011	NAP
PbO.....	.0018	.0017	.0018	.0018	.0018	.0018
V ₂ O ₅0011	.0014	.0014	.0014	.0018	.0014
B ₂ O ₃	ND	ND	ND	ND	ND	ND
Total.....	<.17211	<.16466	<.15898	<.16471	<.16733	.1475
Density, at 24° C...g/mL..	1.2215	1.2214	1.2250	1.2348	1.2351	1.22756

NAP Not applicable. ND Not determined.

¹"Insolubles" and "other solubles" are arbitrary groupings of components used to simplify the material balance calculations.

TABLE A-16. - Chemical analyses and physical data for washed and dried solids from classifier 1 overflow

Sample	Chemical analyses, pct				Physical data ¹			
	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	LOI at 1,000° C ²	Slurry solids, pct	Density (absolute), g/mL	Surface area (BET), m ² /g	Plus 100-mesh particles, pct
1.....	2.5	0.4	4.3	14.2	4.33	2.24	346	ND
2.....	2.8	.4	4.3	13.8	4.43	2.21	ND	4.89
3.....	3.3	.4	4.4	14.2	4.46	2.34	351	5.13
4.....	3.2	ND	4.6	15.2	4.40	ND	347	4.98
5.....	3.6	.4	4.0	11.5	3.16	2.28	351	3.34
6.....	2.7	.3	4.2	15.4	3.47	ND	347	11.26
7.....	3.0	.4	4.3	13.2	4.56	2.28	351	24.31
8.....	2.6	.5	4.7	12.9	3.51	ND	349	11.92
9.....	3.0	.3	4.1	13.5	3.35	2.28	349	16.91
10.....	3.3	.3	4.4	15.2	3.91	ND	349	4.96
Average.....	3.0	.38	4.33	13.91	3.958	2.27	349	9.74

LOI Loss on ignition. ND Not determined.

¹Density and surface area measurements were made on 5 composite samples of solids on which chemical analyses were made.²Air-dried at room temperature before analysis. (Weight loss at 125° C averages 8.4 pct. The residues dried at 125° C then lose about an additional 4.5 pct on ignition at 1,000° C for 1 hr.)TABLE A-17. - Detailed chemical analyses of washed and dried classifier 1 overflow--solids fraction,¹ percent

Sample.....	1	2	3	4	5	Average
Al ₂ O ₃	2.65	3.25	3.15	2.80	3.15	3.0
Fe ₂ O ₃40	.40	.35	.45	.30	.38
Cl ⁻33	ND	.18	.20	.20	.228
LOI at 1,000° C.....	14.00	14.90	13.45	13.05	14.40	13.96
Total.....	17.38	18.55	17.13	16.50	18.05	17.568
Insolubles: ²						
TiO ₂	4.3	4.5	4.1	4.5	4.25	4.33
SiO ₂	74.3	84.7	68.8	ND	91.50	79.82
Total.....	78.6	89.2	72.9	4.5	95.75	84.155
Other solubles: ²						
P ₂ O ₅005	ND	.006	.005	.003	.0048
CaO.....	.088	.083	.078	.070	.070	.0778
MgO.....	.051	.045	.045	.043	.045	.0458
K ₂ O.....	.095	.10	.11	.098	.098	.1002
Na ₂ O.....	.093	.092	.15	.069	.073	.0954
SO ₄ ⁼28	.34	.25	.25	.12	.2480
F ⁻012	.015	.014	.012	.014	.0134
SnO.....	.007	.01	.01	.02	.008	.0110
MnO.....	.00090	.00065	.00065	.00037	.00090	.0007
CoO.....	.0067	.0064	.0064	.0067	.0067	.0066
CuO.....	.0025	.0014	.0023	.0014	.0056	.0026
ZnO.....	.0027	.0024	.0022	.0010	.0025	.0022
NiO.....	.0087	.0080	.0090	.0087	.0090	.0087
BaO.....	.004	.007	.006	.004	.005	.0052
B ₂ O ₃03	.03	.03	.03	.03	.0300
PbO.....	.013	.013	.012	.012	.013	.0126
V ₂ O ₅04	.05	.05	.05	.05	.0480
Total.....	.73950	.80385	.78155	.68117	.55370	.7130
Grand total.....	96.71950	108.55385	90.81155	21.68117	114.35370	102.4355

LOI Loss on ignition. ND Not determined.

¹Classifier 1 overflow solids are ultimately equivalent to thickener 5 overflow solids.²"Insolubles" and "other solubles" are arbitrary groupings of components used to simplify the material balance calculations. Cr₂O₃, Ga₂O₃, and SrO were not detected.

TABLE A-18. - Chemical analyses and physical data for thickener 5 underflow--liquid fraction

Sample	Slurry solids, pct	Liquor density at 20° C, g/mL	Liquor analysis, pct		
			Al ₂ O ₃	Fe ₂ O ₃	HCl (free)
1.....	29.02	1.0644	2.70	0.065	0.14
2.....	28.40	1.0635	2.67	.062	.15
3.....	28.54	1.0633	2.67	.060	.13
4.....	ND	1.0614	2.59	.058	.13
5.....	28.89	1.0614	2.60	.059	.12
6.....	29.80	1.0665	2.84	.066	.16
7.....	ND	1.0668	2.84	.066	.16
8.....	ND	1.0670	2.86	.063	.13
9.....	ND	1.0647	2.74	.060	.095
10.....	ND	1.0661	2.83	.062	.12
Average.....	28.93	1.0645	2.73	.062	.134

ND Not determined.

TABLE A-19. - Chemical analyses and physical data for classifier 4 overflow--liquid fraction¹

Sample	Suspended sol- ids, pct	Liquor density at 20° C, g/mL	Liquor analysis, pct		
			Al ₂ O ₃	Fe ₂ O ₃	HCl (free)
1.....	0.70	1.0207	0.79	0.019	0.10
2.....	.63	1.0214	.79	.018	.099
3.....	.48	1.0224	.85	.020	.095
4.....	.43	1.0216	.85	.020	.094
5.....	.46	1.0186	.76	.018	.074
6.....	.45	1.0187	.76	.018	.074
7.....	.24	1.0207	.84	.020	.11
8.....	.37	1.0211	.84	.019	.11
9.....	.63	1.0323	1.33	.033	.17
10.....	.58	1.0324	1.34	.033	.17
Average.....	.597	1.0230	.915	.0218	.1096

¹Also used as analysis for liquor associated with the sand discharged to tailings.

TABLE A-20. - Chemical analyses of washed and dried classifier 4 sands---solids fraction, percent

Sample.....	1	2	3	4	Average
Al ₂ O ₃	6.9	4.4	4.7	4.8	¹ 5.2000
Fe ₂ O ₃5	.5	.6	.4	.5000
Cl ⁻01	.04	.17	.05	.0675
LOI at 1,000° C.....	11.5	11.8	ND	11.1	11.4667
Total.....	18.91	16.74	NAp	16.35	17.2342
Insolubles: ²					
TiO ₂	3.9	4.1	3.9	4.0	3.9750
SiO ₂	81.3	86.7	77.8	80.4	81.5500
Total.....	85.2	90.8	81.7	84.4	85.5250
Other solubles: ²					
P ₂ O ₅003	.004	.002	.003	.0030
CaO.....	.066	.098	.060	.060	.0710
MgO.....	.036	.036	.032	.030	.0335
K ₂ O.....	.098	.100	.093	.095	.0965
Na ₂ O.....	.059	.070	.059	.075	.0658
SO ₄ =.....	.16	.15	.09	.28	.1700
F ⁻010	.008	.009	.006	.0082
SnO.....	.002	.003	ND	ND	.0025
MnO.....	.00065	.00090	.00065	.0011	.0008
CoO.....	.0064	.0064	.0067	.0067	.0066
CuO.....	.0014	.0014	.0013	.0013	.0014
ZnO.....	.0020	.0017	.0016	.0017	.0018
NiO.....	.0094	.0080	.0087	.0090	.0088
BaO.....	.006	.002	.004	.004	.0040
B ₂ O ₃	ND	.06	ND	.03	.0450
PbO.....	.013	.013	.012	.013	.0128
V ₂ O ₅09	.05	.05	.07	.0650
Total.....	.56285	.61240	.42995	.6858	.5967
Grand total.....	104.67285	108.15240	87.59995	101.4358	103.3559

LOI Loss on ignition. NAp Not applicable. ND Not determined.

¹Classifier 4 sands produced during the 250-lb/hr feed rate contained 6.99 pct total and 5.73 pct acid-soluble alumina, respectively.

²"Insolubles" and "other solubles" are arbitrary groupings of components used to simplify the material balance calculations. Cr₂O₃, Ga₂O₃, and SrO were not detected.

TABLE A-21. - Chemical analyses of washed and dried classifier 4 sand screen fractions, percent

Screen size, mesh (Tyler standard sieve)	Sample				Average
	1	2	3	4	
Al ₂ O ₃ (total):					
Plus 14.....	7.0	5.6	3.7	4.5	5.20
14 by 28.....	7.3	6.5	4.4	4.5	5.68
28 by 48.....	7.2	6.5	5.1	6.1	6.23
Minus 48.....	14.8	11.7	9.2	9.9	11.40
All fractions.....	6.9	4.4	4.7	4.8	5.20
Fe ₂ O ₃ (total):					
Plus 14.....	.4	.4	.4	.4	.4
14 by 28.....	.5	.3	.2	.3	.3
28 by 48.....	.3	.3	.4	.4	.4
Minus 48.....	.3	.3	.4	.4	.4
All fractions.....	.5	.5	.6	.4	.5
TiO ₂ (total):					
Plus 14.....	4.0	4.2	3.7	4.3	4.0
14 by 28.....	4.1	4.2	4.2	4.3	4.2
28 by 48.....	4.1	4.0	4.0	3.9	4.0
Minus 48.....	3.2	3.5	3.6	3.5	3.4
All fractions.....	3.9	4.1	3.9	4.0	4.0
Screen fractions, total sample:					
Plus 14.....	22.26	21.90	17.67	17.96	19.95
14 by 28.....	39.24	37.68	34.66	37.12	37.18
28 by 48.....	26.61	26.31	26.81	25.37	26.28
Minus 48.....	11.89	14.11	20.86	19.55	16.60
Total.....	100.00	100.00	100.00	100.00	100.00

TABLE A-22. - Classifier 4 wet coarse sand discharge data

Sample	Flow rate, 1b/hr	Composition, pct	
		Liquid	Solids
1.....	141	41.56	58.44
2.....	146	45.77	54.23
3.....	159	46.05	53.95
4.....	160	44.62	55.38
5.....	158	45.72	54.28
6.....	128	45.85	54.15
7.....	143	48.13	51.87
8.....	142	48.10	51.90
9.....	138	51.89	48.11
10.....	177	52.48	47.52
11.....	193	52.35	47.65
12.....	173	53.15	46.85
Average.....	154.8	47.97	52.03

TABLE A-23. - Washing water flows to solids-liquid separation circuit

Measurement	Flow rate, lb/hr	
	Classifier 4	Thickener 5
1.....	139.64	83.65
2.....	144.64	66.26
3.....	145.56	75.61
4.....	143.06	ND
5.....	143.85	85.63
6.....	145.00	ND
7.....	151.49	84.31
8.....	144.64	84.31
9.....	140.95	85.63
10.....	141.48	85.63
11.....	123.04	84.31
12.....	143.59	83.65
13.....	140.95	86.68
14.....	142.27	84.31
15.....	ND	86.94
Average..	142.15	82.84

ND Not determined.

TABLE A-24. - Separan MGL solution flow to thickener circuit

(0.2 pct Separan MGL solution to thickeners)

Measurement	Flow, gph
1.....	1.998
2.....	1.645
3.....	1.814
Average.....	¹ 1.819

¹Average flow 15.17 lb/hr.

REPORT DOCUMENTATION PAGE		1. REPORT NO. BuMines RI 8759	2.	3. Recipient's Accession No. PB83 214346
4. Title and Subtitle Alumina Miniplant Operations--Overall Mass Balance for Clay-HCl Acid Leaching		5. Report Date April 1983		6.
7. Author(s) Dwight L. Sawyer, Jr., Theodore L. Turner, and Don B. Hunter		8. Performing Organization Rept. No.		
9. Performing Organization Name and Address U.S. Bureau of Mines Boulder City Engineering Laboratory 500 Date St. Boulder City, NV 89005		10. Project/Task/Work Unit No.		
11. Contract(C) or Grant(G) No. (C) (G)		12. Sponsoring Organization Name and Address Office of Assistant Director—Minerals & Materials Research Bureau of Mines U.S. Department of the Interior Washington, DC 20241		13. Type of Report & Period Covered Report of Investigation
14.				
15. Supplementary Notes				
16. Abstract (Limit: 200 words) To provide technology that can help decrease the dependence of the U.S. aluminum industry on imported bauxite, the main ore of aluminum, the Bureau of Mines is investigating the extraction of aluminum from abundant domestic reserves of kaolinitic clay. Miniplant studies of the continuous leaching of calcined kaolin with boiling 25-pct HCl acid resulted in a 93- to 99-pct extraction of the acid-soluble alumina in the calcined kaolin feed. Data are presented for an acid leaching study carried out in three or four continuously stirred tank reactors (CSTR) in series, feed rates of 100 to 250 lb/hr of calcined kaolin, and total nominal residence times of 0.7 to 2.3 hr. A material balance for a 176-lb/hr calcined kaolin feed rate in a circuit consisting of three reactors, four classifiers, and five thickeners is given. Data provide detailed compositional and physical information for calcined kaolin, process liquors, and acid-leached residue solids.				
17. Document Analysis a. Descriptors				
b. Identifiers/Open-Ended Terms				
c. COSATI Field/Group				
18. Availability Statement Release unlimited by NTIS		19. Security Class (This Report) Unclassified	21. No. of Pages 29	20. Security Class (This Page) Unclassified

