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Abstract

Carbon nanotubes (CNT) have been developed into new materials with a variety of industrial
and commercial applications. In contrast, the physicochemical properties of CNT at the
nanoscale render them the potency to generate toxic effects. Indeed, the potential health
impacts of CNT have drawn a great deal of attention in recent years, owing to their identified
toxicological and pathological consequences including cytotoxicity, inflammation, fibrosis,
genotoxicity, tumorigenesis, and immunotoxicity. Understanding the mechanisms by which
CNT induce toxicity and pathology is thus urgently needed for accurate risk assessment of CNT
exposure in humans, and for safe and responsible development and commercialization of
nanotechnology. Here, we summarize and discuss recent advances in this area with a focus on
the molecular interactions between CNT and mammalian systems, and the signaling pathways
important for the development of CNT toxicity such as the NF-kB, NLRP3 inflammasome,
TGF-b1, MAPK, and p53 signaling cascades. With the current mechanistic evidence summarized
in this review, we expect to provide new insights into CNT toxicology at the molecular level and
offer new clues to the prevention of health effects resulting from CNT exposure. Moreover, we
disclose questions and issues that remain in this rapidly advancing field of nanotoxicology,
which would facilitate ascertaining future research directions.

Abbreviations: 8-OHdG: 8-hydroxydeoxyquanosine; a-SMA: a-smooth muscle actin; ALD:
atonic layer deposition; ASC: apoptosis-associated speck-like protein containing a caspase
activation and recruitment domain; AIM2: absent in melanoma 2; BAL: bronchoalveolar lavage;
Cav-1: caveolin-1; CB: carbon black; CNT: carbon nanotubes; COX-2: cyclooxygenase-2; DWCNT:
double-walled CNT; ECM: extracellular matrix; EGF: epidermal growth factor; ELISA: enzyme-
linked immunosorbent assay; EMT: epithelial-mesenchymal transition; ERK: extracellular signal-
regulated kinase; GFR: growth factor receptor; IFN: interferon; IgE: immunoglobulin E; IKKa: IkB
kinase a; IL: interleukin; IL1R: interleukin-1 receptor; iNOS: inducible nitric oxide synthase; JNK:
c-Jun N-terminal kinase; LPS: lipopolysaccharides; MAPK: mitogen-activated protein kinase;
MAPKK: MAPK kinase; MAPKKK: MAPK kinase kinase; MCA: methylcholanthrene; MCP: monocyte
chemotactic protein; MPO: myeloperoxidase; MWCNT: multi-walled CNT; MWCNT-COOH:
carboxylated MWCNT; NADPH: nicotinamide adenine dinucleotide phosphate; NF-kB: nuclear
factor-kB; NK: natural killer; NLR: nucleotide-binding oligomerization domain-like receptor;
NLRC4: nucleotide-binding oligomerization domain-like receptor: caspase activation and
recruitment domain-containing 4; NLRP3: nucleotide-binding oligomerization domain-like
receptor: pyrin domain-containing 3; NOX: NADPH oxidase; OPN: osteopontin; OVA: ovalbumin;
PAR6: partitioning defective protein 6; PDGF: platelet-derived growth factor; PDTC: pyrrolidine
dithiocarbamate; PI3K: phosphoinositide 3-kinase; PMA: phorbol myristate acetate; RAS:
retrovirus-associated DNA sequences; RNS: reactive nitrogen species; ROS: reactive oxygen
species; SAEC: small airway epithelial cells; siRNA: small interfering RNA; Smad: contraction of
Sma and Mad (mothers against decapentaplegic); SWCNT: single-walled CNT; TGF: transforming
growth factor; Th2: T helper 2; TLR: toll-like receptor; TNF: tumor necrosis factor; TNFR: tumor
necrosis factor receptor; TPCK: N-tosyl-l-phenylalanine chloromethyl ketone; VEGF: vascular
endothelial growth factor
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Introduction

The development of nanotechnology has led to the creation
of a vast array of nanomaterials in the recent few decades.
The engineered nanomaterials have at least one dimension of less
than 100 nm, but vary in size, shape, chemical composition, and
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surface characteristics considerably, giving rise to distinct and
unique physicochemical and conducting properties highly desir-
able for industrial and commercial applications. As such,
nanotechnology and nanomaterials are poised to revolutionize
numerous fields (IWGN, 1999; NSF, 2011). However, the rapid
increase in the production and use of nanomaterials may lead to
greater exposure of workers, consumers, and the environment,
which, alongside the uncertainty of the biological effects of
nanoexposure, has raised considerable concerns over their poten-
tial effects on human health (Council, 2012; NIOSH, 2013b).

The large number and many variations of nanomaterials
produced and their properties at the nanoscale have made it
difficult, if not all impossible, to examine the entire nanomaterials
through conventional toxicological characterizations, making risk
assessment of nanoexposure a formidable task in the field of
nanotoxicology. Therefore, it is imperative for toxicologists not to
test every variation of a new nanomaterial, but to elucidate the
mode of action from representative nanomaterials, such as
identification of key factors and pathways that govern the
interactions between nanomaterials and biological systems and
their pathological consequences. Such information could then be
used to predict toxicity, guide targeted screening, and allow safety
to be built into the design of nanomaterials and their applications,
with a goal to ultimately foster the safe and responsible
development of the nanoindustry (Maynard et al., 2011; Stone
& Donaldson, 2006). From this prospect, carbon nanotubes
(CNT) with sp2 carbon bonding and excellent mechanical,
electrical, thermal, and transport properties have been selected
as a model nanomaterial to demonstrate the road of nanomaterials
towards industry (De Volder et al., 2013; Zhang et al., 2013).
Collateral to the rapid development of CNT nanotechnology, a
large body of toxicological data has accumulated to characterize
the potential health effects of CNT and as a result, the study on
CNT toxicity has had a major impact on our understanding of the
potential health effects of nanoexposure on humans over the past
decade (Donaldson et al., 2010; Johnston et al., 2010).

CNT are made of one-atom-thick carbon walls called graphene
that roll into long and hollow nanostructures with either a single
layer (single-walled CNT, SWCNT) or concentric multiple layers
(multi-walled CNT, MWCNT). SWCNT and MWCNT have large
surface areas that can be modified to introduce specific functions
on pristine nanofibers, further increasing the complexity and
diversity of CNT. As a newly developed material, the current
annual production capability of CNT has reached several
thousand tons, and because of their outstanding tensile and
electro- and thermal-conducting properties, CNT have been
developed with a variety of applications in both industrial and
consumer products, ranging from electronics, such as

rechargeable batteries, to biomedical uses, such as medical
devices and drug delivery (De Volder et al., 2013; Zhang et al.,
2013).

The initial concern over the health impact of CNT exposure
stemmed from the notion that most CNT are respirable fibers with
a high aspect (length to width) ratio, and are presumed to have
substantial biodurability and insolubility in biological systems,
attributes known to cause the fibrotic and tumorigenic effects of
toxic fibers such as asbestos (Donaldson et al., 2006; Morgan &
Gee, 1995). Animal testing has demonstrated that certain forms
of CNT can cause fibrosis in the lungs of mice and rats upon
pulmonary exposure, and the formation of mesotheliomas when
injected into the peritoneal cavity of susceptible mice (Lam et al.,
2004; Muller et al., 2005; Poland et al., 2008; Porter et al., 2010;
Shvedova et al., 2005). Exposure to CNT can occur from
industrial, commercial, and environmental sources, as the life
cycles of CNT and their commercial products include not only
their innovation and manufacturing but also their commercial-
ization, consumer usage, disposal, recovery, and recycling
(Figure 1). Owing to the above factors, the potential adverse
impacts of CNT exposure in humans have drawn a great deal of
attention, and some basic understanding on CNT pathology has
been achieved, but detailed characterization awaits further
investigation. Nonetheless, progress has been made in several
aspects in the recent few years, which provides a necessary
knowledge base to guide future mechanistic and translational
studies on nanotoxicity and safety.

First and foremost, characterization of CNT toxicity in a
variety of animal and in vitro models has revealed an increasing
list of toxic effects of CNT exposure, which includes, in addition
to the originally suspected fibrotic and mesothelioma-causing
effects, a range of cytotoxic effects, inflammation, genotoxicity,
and immune modulation. These findings have created a broader
basis for assessing the structure–activity relationship, mechanism
of action, and health risk of CNT toxicity. Second, analysis of the
structure–activity relationship has uncovered a close correlation
between the toxicity and the size, shape, composition, and surface
characteristics of CNT fibers, which impact the distribution,
clearance, internal dose, and intrinsic pathogenicity of CNT
fibers. Such knowledge is highly desirable for improving
nanosafety by the way of prevention-through-design. Third, a
body of information has been gathered to reveal CNT’s actions at
cellular, subcellular, and molecular levels, which provided
considerable new insights into the mechanisms of CNT toxicity.
Fourth, a number of signaling pathways have been shown to be
significantly activated by CNT and to play important roles in the
development of CNT pathologic effects, such as tumorigenesis,
inflammation, and fibrosis. A better understanding of the

Figure 1. Human exposure to carbon nano-
tubes. The major source of CNT is industrial
manufacturing, owing to a diversity of CNT
applications. The production activity leads
to a direct occupational exposure to humans,
a release of CNT to natural environment, and
potentially an accumulation of CNT in food
web as CNT are resistant to degradation
mechanisms. Humans can be exposed to CNT
through inhalation, skin absorption, inges-
tion, or the use of CNT-carried drugs.
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pathways in CNT toxicity would be critical for future research on
the mechanisms, biomarkers, and intervention of CNT toxicity.

This review is intended to display the current understanding on
CNT toxicity at the molecular level with a focus on the
mechanisms and signaling pathways that play major roles in
determining the dynamic behavior and pathologic effects of CNT
in mammalian systems. Implications of the findings and questions
that remain to be addressed in the field of nanotoxicology will be
discussed to facilitate the founding of future research directions.
Although CNT toxicity may be generated from a number of routes
of exposure that include dermal and oral exposures in addition to
inhalation (Johnston et al., 2010), the health concerns and
toxicological studies on CNT exposure have mostly involved the
pulmonary effects of CNT fibers at the present stage. Therefore,
to facilitate mechanistic understanding of the major toxic effects
of CNT, we focused the current review on CNT pulmonary
toxicity from respiratory exposures.

The expanding CNT toxicity

The manifestations of the pulmonary effects of inhaled particles
and fibers, which typically include inflammation and tumorigen-
esis, vary considerably. Those caused by inert or ‘‘nuisance dusts’’,
i.e. carbon black (CB) and titanium dioxide (TiO2) particles, follow
a similar dose–response curve, characteristic of poorly soluble low
toxicity (PSLT) particles; whereas those of more chemically active
materials, i.e. crystalline silica and asbestos fibers, demonstrate a
markedly different dose–response relationship, typical of high
toxicity dusts (Borm et al., 2004; Maynard & Kuempel, 2005). A
major accomplishment in the study of CNT toxicity over the past
decade has been the recognition that CNT are capable of eliciting a
wide range of biological effects in experimental systems, which
exceed beyond what would be predicted from insoluble and
‘‘nuisance dust’’-like materials, but are more similar to those of
high toxicity dusts.

Demonstrated CNT toxicity includes various cytotoxic effects
such as oxidative stress, mitochondrial damage, cell cycle arrest,
and cell death; acute and chronic inflammation; interstitial
fibrosis and formation of granulomas; genotoxicity with DNA
and chromosomal aberrations; tumorigenesis such as formation of
mesotheliomas in the mesothelial spaces and promotion of

adenocarcinomas in the lungs; and modulation of immune
functions such as immunosuppression and boosting asthmatic
responses to allergens. To facilitate our discussion on the
mechanisms of CNT action, we summarized recent findings on
CNT toxicity in Figure 2. Detailed discussions on CNT toxicity
can be found in several recent reviews by others (Johnston et al.,
2010; Nerl et al., 2011; Zhao & Liu, 2012).

The effect of CNT on mammalian cells has been reported in
multiple cell types, which provides guidance for screening, and
mechanistic and in vivo investigations on CNT toxicity. CNT
conferred cytotoxicity in a dose- and time-dependent manner in
different cell types (Donaldson et al., 2006; Jia et al., 2005;
Johnston et al., 2010; Pacurari et al., 2008). Both SWCNT and
MWCNT induced secretion of inflammatory cytokines, chemo-
kines, and growth factors such as tumor necrosis factor (TNF)-a,
interleukin (IL)-1b, monocyte chemotactic protein (MCP)-1, and
transforming growth factor (TGF)-b1, in mouse RAW264.7
macrophages (He et al., 2011, 2012; Shvedova et al., 2005),
indicating that CNT have the potential to trigger inflammatory
responses. CNT-treated cells demonstrated elevated levels of
intracellular reactive oxygen species (ROS) in a variety of
cell types, which leads to oxidative stress and toxicity (Alarifi
et al., 2014; He et al., 2011, 2012; Pacurari et al., 2008). In addition,
CNT generate genotoxic effects in cultured cells, such as DNA
strand breakage, DNA base oxidation, formation of micronuclei,
and chromosomal aberrations, which were recently reviewed by
van Berlo et al. (2012). These genotoxic effects of CNT suggest a
potential of CNT to cause cancer in animals and humans.

In vivo characterization of the responses to CNT exposure in
animals has been pivotal in disclosing the hazardous effects of
CNT. First, CNT were found to induce lung inflammation and
fibrosis in mice and rats, as have been predicted from their size and
fiber shape (Aiso et al., 2010; Dong et al., 2014; Lam et al., 2004;
Mangum et al., 2006; Muller et al., 2005; Park et al., 2011; Porter
et al., 2010, 2013; Reddy et al., 2012; Shvedova et al., 2005; Wang
et al., 2013; Warheit et al., 2004). The inflammatory response
includes the accumulation of inflammatory cells and elevated
secretion of cytokines, chemokines and growth factors in the lungs
and the bronchoalveolar lavage (BAL) fluid, and formation of
epithelioid granulomas in the lung parenchyma. The fibrogenic
response was evaluated by histopathological analysis of lung
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Figure 2. Toxicological and pathological effects of carbon nanotubes. A variety of CNT-induced effects have been identified in recent studies
performed in cultured mammalian cells and experimental animals. These effects demonstrate the potential health impacts of CNT exposure on humans.
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tissues, such as increased fibrous collagen level and thickened
alveolar wall. In addition, inflammation and fibrosis were observed
in the pleural space and the abdominal cavity upon direct injection
into the spaces (Murphy et al., 2011; Poland et al., 2008; Ryman-
Rasmussen et al., 2009a). Second, from the genotoxicity of CNT
identified in cultured cells (discussed above) and in different
strains of mice (Kato et al., 2013; Patlolla et al., 2010; Shvedova
et al., 2008a), carcinogenesis has been linked to CNT-induced
pathologic effects. Mesotheliomas were observed in mice and rats
after exposure to MWCNT through intraperitoneal or intrascrotal
injection (Nagai et al., 2011; Sakamoto et al., 2009; Takagi et al.,
2012). Recently, it was reported that inhalation of MWCNT at a
dose relevant to human occupational exposures, following admin-
istration of a tumor initiator methylcholanthrene (MCA), induced a
high incidence of lung adenocarcinomas in mice, demonstrating
MWCNT is a potent tumor promoter in the lungs (Sargent et al.,
2014). Third, CNT modulate immune functions both systemically
and locally. Inhalation of MWCNT caused systemic immunosup-
pression in mice characterized by reduced T-cell-dependent
antibody to sheep erythrocytes, reduced T-cell proliferation in
the presence of Concanavalin A, and decreased NK (natural killer)
cell activity (Mitchell et al., 2007). Inhalation of MWCNT also
exacerbated airway remodeling in a murine allergic asthma model
pre-challenged with ovalbumin (OVA), revealing a potential of
CNT to increase asthmatic responses (Inoue et al., 2009; Ryman-
Rasmussen et al., 2009b). In addition, CNT have been shown to
modulate the expression of multiple cytokines and other factors
critical in immune functions such as Th2 (T helper 2) cytokines and
IgE (immunoglobulin E) (Park et al., 2009; Yamaguchi et al.,
2012).

Although the spectrum of CNT toxicity has expanded
substantially, many of the observed biological effects of CNT
are scalable and thus, are predictable from those of non-
nanoscaled materials. Nonetheless, it has been postulated that
some CNT fibers, because of their similarity in size and shape to
certain structures in the cell, such as the spindle microtubules,
may replace or perturb the function of the cellular structures to
result in harm to the cell, for instance, disrupt the mitotic spindle
during mitosis to lead to clastogenic effects (Muller et al., 2008;
Sargent et al., 2012). However, further evidence from molecular,
cellular, and animal studies are needed to substantiate this
hypothesis. Therefore, whether and how the unique properties of
CNT at the nanoscale, which defines nanotechnology, can be
applied to the propensity of the materials to cause harm in
biological systems remain a major challenge for future study.

Another major challenge in the study of CNT toxicity derives
from the fact that the manufactured nanomaterials differ consid-
erably in their structures and physicochemical properties, making
it very difficult, if not impossible, to compare among different
forms of CNT, for instance, between SWCNT and MWCNT,
despite all CNT use graphene as the building block and have a
fiber-like shape. Even with the same CNT product, minor
variations among different batches of manufacturing may alter
their behaviors and toxicological endpoints in biological systems
considerably, underscoring the importance of identifying CNT
properties critical for their toxicity in nanosafety evaluation.

Factors affecting the intrinsic pathogenicity and
internal dose of CNT

Considerable information has been gathered to disclose the
physicochemical properties and in vivo kinetic behaviors of CNT
that determine the intrinsic pathogenicity and internal dose of the
nanomaterials, inasmuch as such knowledge would facilitate
predicting the health risks of CNT and designing safer
nanomaterials.

Solubility and biopersistence

On one hand, pristine CNT are insoluble in biological fluids.
Moreover, CNT are generally considered highly biopersistent, i.e.
having a long half-life, in biological systems compared with most
other carbonaceous substances for several reasons. First, CNT are
resistant to biological degradation mechanisms, because their
building block, graphene, is an exceedingly strong material made
of strong sp2, instead of the more common sp3, carbon–carbon
bonds. Second, CNT fibers with a large aspect ratio, for instance,
a length of410mm, are more difficult to be cleared off from the
lungs and plural space by macrophages and through size-
dependent mechanisms, such as the stomatal openings, as
discussed in more detail below. Third, CNT also tend to form
large bundles and aggregates in tissues making them more
difficult to be removed from their site of deposition.

On the other hand, a recent study indicated that SWCNT may
be susceptible to myeloperoxidase (MPO)-catalyzed and reactive
radical-dependent degradation in vitro in neutrophils and, to a
lesser extent, in macrophages. In this scenario, the basic amino
acids of MPO interact with the carboxyl groups of SWCNT to
position the nanotubes near the enzyme’s catalytic site.
Hypochlorite and the reactive radical intermediate of MPO
carry out the degradation (Kagan et al., 2010). Consistent with
these findings, MPO knockout mice were shown to have impaired
clearance and enhanced pulmonary inflammatory and fibrotic
responses to SWCNT in the lungs (Shvedova et al., 2012a).
Whether MPO catalyzes the degradation of more sophisticated
CNT including MWCNT effectively remains to be examined.
Nonetheless, the findings provide new insights into CNT biodeg-
radation and biopersistence, and suggest potential new ways of
reducing the pathogenicity of carbonaceous nanomaterials
including CNT in the body via MPO.

As a result of the CNT’s insolubility and biopersistence, CNT
toxicity, typified by pulmonary inflammation and fibrosis,
resembles a response to foreign body deposition, wherein the
deposition of CNT in alveoli and small airways causes local
damage and triggers acute inflammation characterized by marked
infiltration of inflammatory cells. The alveolar and interstitial
macrophages engulf deposited CNT to facilitate their clearance
via the mucociliary clearance system of the airway or to the
circulation via local lymphatic vessels. As discussed above,
fibrogenic CNT are resistant to these mechanisms of clearance,
leading to their continued presence and accumulation in the lungs
and consequently, chronic inflammation, interstitial fibrosis, and
granuloma formation (Mercer et al., 2011).

Rigidity and physical state

MWCNT and SWCNT differ in their rigidity and physical state,
which affect the dispersion, distribution, and pathogenicity of
the fibers.

Long and straight (i.e. needle-like) MWCNT fibers with
lengths of 5–20 mm, but not short, entangled MWCNT (1–5 mm),
were shown to exhibit asbestos-like behavior and induced
mesothelial granulomatous inflammation upon injection into
mouse peritoneal cavity (Poland et al., 2008). Long, needle-like
CNT and asbestos, but not CB, short CNT, or long and tangled
CNT, stimulated the secretion of IL-1b from macrophages,
indicating activation of the inflammasome pathway respon-
sible for the maturation and secretion of IL-1b (Palomaki et al.,
2011).

In recent studies, MWCNT and SWCNT were compared: the
MWCNT tested are fiber-like with a mean diameter of 49 nm
and a mean length of 3.9 mm; whereas the SWCNT are thread
filament-like with a mean diameter of 1–4 nm and a length of
several hundred nm. Thus, the MWCNT are more rigid and
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straighter than the SWCNT. The MWCNT appeared to be more
easily dispersed than the SWCNT in solution; and importantly,
the MWCNT showed a greater tendency to penetrate cells and
membranous structures, and to reach distal spaces and organs
from the port of entry in vivo, including the pleural space of the
thorax and extra-pulmonary organs such as the kidneys and liver.
These findings raised the possibility of extra-pulmonary effects
from inhalation of CNT (Mercer et al., 2011, 2013b).

CNT may aggregate to form agglomerates in the form of ropes
(fiber-like), loose bundles, or large agglomerate mass (particle-
like). Aggregation of CNT fibers would change the overall surface
area available for interaction with target cells and molecules and
thereby, affect CNT biological effects. Compared with singlet or
small bundles of CNT, large agglomerates of CNT are more
difficult to be cleared off and thus, tend to stimulate the formation
of granulomas in which macrophages are transformed to
epithelioid cells to segregate CNT from the surrounding tissues.
CNT agglomerates may also release singlet CNT fibers over time,
resulting in the redistribution and alteration of the internal dose of
CNT in different compartments and organ systems in the body,
causing extended and potentially, unexpected effects in extra-
pulmonary organs (Mercer et al., 2013a).

In one study, four SWCNT preparations from the same CNT
source (raw CNT, CNT agglomerates, well-dispersed CNT
bundles, and pellet from centrifugation of the CNT bundles that
contains non-tube shaped carbonaceous particulate matters) were
compared. The CNT raw material and agglomerates, but not CNT
bundles, were found to inhibit the proliferation of a mesothelioma
cell line, supporting the notion that the physical states of CNT
affect toxicity (Wick et al., 2007). In another study, treatment with
acetone was used to reduce Van der Waals attractions among CNT
fibers to result in a better ‘‘dispersed’’ preparation. Acetone
treatment reduced the diameters of SWCNT aggregates from
�15.2 mm to �0.69 mm. The untreated SWCNT were shown to be
easily encased by macrophages to form granulomas, whereas the
acetone-treated SWCNT induced an interstitial fibrotic response
without apparent granuloma formation. These findings suggest
that agglomeration of CNT promotes macrophage engulfment of
CNT fibers to induce granulomatous inflammation (Mercer et al.,
2008).

In the comparison between SWCNT and MWCNT discussed
above, the SWCNT were mostly present within the interstitial
space (up to 90% of the lung burden) with few being incorporated
into alveolar macrophages upon inhalation into the lungs; but the
MWCNT were predominantly distributed within the alveolar and
interstitial macrophages (68% of the lung burden). The differential
distribution patterns of MWCNT and SWCNT in the lungs
appeared to correlate with their ability to induce the formation of
granulomas (Mercer et al., 2011). What accounts for the
differential distribution of the SWCNT and MWCNT fibers is
currently unclear. Presumably, the properties of SWCNT and
MWCNT, such as rigidity and physical state, as well as surface
area and fiber length, affect their interactions with macrophages
and the microenvironment to result in preferential distributions in
different compartments in the lungs.

Fiber length

Fibrogenic and tumorigenic fibers with a high aspect ratio, such
as asbestos and CNT, differ from particles in that the inhaled
fibers may reach the pleural space and cause parietal pleural
lesions leading to pleural fibrosis, effusion, and mesotheliomas, in
addition to causing interstitial fibrosis and tumors in the lungs. In
the case of asbestos, the capacity of the pathogenic fibers to
induce both lung and pleural lesions is directly correlated with the
length of the fibers, which was summarized in the so-called

‘‘fiber pathogenicity paradigm’’, that is, to be hazardous, a fiber
must be biopersistent and thinner than 3mm, but longer than
10–20mm (Adamson et al., 1993; Davis et al., 1986; Stanton,
1973). The regulated forms of ‘‘asbestos’’, as defined by World
Health Organization (WHO), Occupational Safety and Health
Administration (OSHA), and National Institute for Occupational
Safety and Health (NIOSH), denote asbestos fibers with a length
longer than 5 mm and an aspect ratio of 3:1–5:1, which was largely
based on the fiber length–pathogenicity relationship of pathogenic
fibers (Case et al., 2011, Liu et al., 2013).

A fiber length–toxicity relationship was demonstrated for CNT
recently by comparing the pathologic effects of CNT fibers with
different lengths injected into the peritoneal or pleural cavity. In
these scenarios, long, but not short, CNT fibers (i.e. 415 mm in
length) induced significant inflammatory and fibrotic responses
and granuloma formation on the parietal mesothelium (Murphy
et al., 2011; Poland et al., 2008), as well as mesotheliomas in the
case of peritoneal injection in p53+/� mice (Takagi et al., 2008).
By using single-photon emission computed tomographic imaging,
it was shown that the long, but not short, CNT fibers were
retained along the parietal mesothelium. Presumably, on one
hand, short CNT fibers were cleared off quickly from the cavities
through the stomatal openings (3–10mm in diameter) on the
surface of the parietal pleural wall and the diaphragm, which
drain into local lymphatic vessels. On the other hand, long CNT
fibers could not negotiate through the stomata leading to their
accumulation on the parietal surface. Retained CNT would then
be engulfed by macrophages, which are 10–15 mm in diameter;
but long CNT could not be effectively phagocytized, resulting in
‘‘frustrated phagocytosis’’ that damages the mesothelium and
stimulates inflammation, which ultimately lead to chronic
inflammation, fibrosis, and malignancy (Donaldson et al.,
2010). These findings imply that the parietal pleural mesothelium
is the site of initial pathological alterations, thus providing a
rationale for estimating the internal dose of pathogenic CNT for
pleural lesions at the parietal pleural surface. Because mesotheli-
oma has a long latency and is generally difficult to study with
regard to its course of tumorigenesis and development, the pleural
findings at the stomata also provide an opportunity for analyzing
the early events that would lead to mesothelioma.

It remains to be examined whether and how this fiber length–
pathogenicity relationship demonstrated for CNT pleural toxicity
are applied to the fibrotic and tumorigenic effects of CNT in the
lungs, because the lung parenchyma does not seem to have a
‘‘sieve’’ mechanism similar to the stomata of the pleural parietal
mesothelium for selective retention of CNT fibers in the lungs.
Nonetheless, such a relationship is predicted for CNT by analogy
with the findings on asbestos’ effects in the lungs, i.e. asbestosis
and lung cancer, and on the basis of a critical role of macrophages
in the clearance of CNT fibers from the lungs, both of which are
fiber length-dependent. This notion was supported by two recent
studies. First, long MWCNT (NM400, 0.7–3 mm and NM402,
0.7–4mm) as well as crocidolite asbestos, but not short MWCNT
(MWCNTg2400, 0.7mm) and crushed NM400 (NM400c, 0.14–
0.5mm), were shown to stimulate fibroblast proliferation in vitro
and induce fibrosis in the lungs (Vietti et al., 2013). Second,
spontaneously hypertensive (SH) rats administered with long
MWCNT (20–50 mm), but not short MWCNT (0.5–2 mm), were
found to exhibit increased fibroblast proliferation, collagen
deposition, granuloma formation in the lungs in a TGF-b-depend-
ent manner (Wang et al., 2013).

Surface area

The intrinsic pathogenic activity of CNT is closely correlated with
their surface area, as is true for most other insoluble particulate
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matters. For this reason, surface area, as well as biopersistence
and fiber length (discussed above) and surface reactivity
(discussed below), are considered key elements of the ‘‘biologic-
ally effective dose’’ of CNT fibers.

A correlation between surface area and toxicity was clearly
observed by comparing between SWCNT and MWCNT. When
the target site dose was used to assess the fibrotic potential of
CNT in the lungs, SWCNT were estimated to be approximately
8.5-fold more fibrogenic than MWCNT per mg dose. Presumably,
on one hand, SWCNT fibers are lighter and have a larger surface
area than MWCNT and thus, are more pathogenic on an equal
weight basis. On the other hand, when adjusted for surface area,
MWCNT is 2.5-time more toxic than SWCNT (Mercer et al.,
2008, 2011; Porter et al., 2010; Shvedova et al., 2008a). Using the
above data, a recent NIOSH Current Intelligence Bulletin
suggests a benchmark dose of CNT exposure associated with a
10% increase in abnormal response to be 3.6 and 0.48 mg/lung for
MWCNT and SWCNT, respectively, or an approximately 7.5-fold
difference (NIOSH, 2013a).

It is noteworthy to point out that, for safety evaluation and
risk assessment of CNT toxicity, multiple dose metrics,
including surface area, mass concentration, and fiber number,
should be used where possible, even though there is a growing
evidence supporting a better correlation between toxicity and
surface area compared with other metrics (Seaton et al.,
2010).

Surface reactivity

Modification of the surface of CNT would alter their toxicity. On
one hand, acid treatment would oxidize CNT to introduce
hydroxyl and carboxyl groups on the surface of CNT, which
alters the bioactivity and interaction of CNT with other molecules.
Compared with pristine MWCNT, acid-oxidized MWCNT
showed increased toxicity toward Jurkat cells (Bottini et al.,
2006). On the other hand, nitrogen-doped MWCNT demonstrated
significantly reduced toxicity and increased tolerance than
their pure CNT counterparts in exposed mice (Carrero-Sanchez
et al., 2006).

Covalent modification or surfactant addition is sometimes
called functionalization of CNT. Functionalized CNT are being
increasingly used in industrial and commercial applications.
Functionalization of CNT potentially affects their toxicity. In one
study, on one hand, pristine MWCNT were dispersed in mouse
serum or were functionalized with ammonium. Functionalization
of the CNT promoted rapid excretion of the CNT from the body
and thus, reduced toxicity in mice; on the other hand, the serum-
coated MWCNT induced respiratory distress, which was asso-
ciated with accumulation of CNT in pulmonary vasculature
(Lacerda et al., 2008). In another study, lung cells were exposed to
pristine or carboxylated MWCNT (MWCNT or MWCNT–
COOH) and a panel of toxic responses were analyzed including
cell survival, DNA damage, and cytokine expression. MWCNT–
COOH were found to have increased cytotoxicity in bronchial
cells compared with pristine MWCNT, whereas the pristine
MWCNT showed higher toxicity toward alveolar cells than
MWCNT–COOH (Ursini et al., 2014). Recently, atomic layer
deposition (ALD), a novel process to enhance functional proper-
ties of MWCNT, was used to coat MWCNT with a thin film of
aluminum oxide (Al2O3). The ‘‘Al2O3’’-coated MWCNT showed
reduced fibrosis in mice compared with pristine MWCNT (Taylor
et al., 2014).

These examples demonstrate that surface modification can
both increase and decrease toxicity, depending on the particular
modification taken, providing new ways of prevention-through-
design for CNT and other nanomaterials.

Composition

The chemical composition of CNT is generally not considered as
a major determinant of toxicity compared with fiber length,
surface area, and biopersistence. However, in the case of surface
functionalization and coating (discussed above), and when the
graphene structure is altered by elements other than carbon or
substantial impurity is present, the chemical composition would
be important in CNT toxicity, as it potentially alters the surface
reactivity and/or the distribution and half-life of CNT in the body.
Additionally, it remains possible that the coated materials,
functionalized groups, and contaminants would be detached
from CNT fibers upon entering the body and be released into
tissues over time to cause harm to cells locally or systemically.
However, few studies have been conducted to address these
possibilities.

Metals present in a CNT preparation may affect the biological
effects of CNT. Metals, such as iron and nickel, are used as
catalysts during the production of CNT. The metal content of a
CNT preparation appeared to affect some, but not all, toxico-
logical effects of CNT. For instance, SWCNT with an iron content
of �26% showed a greater effect in inducing ROS production than
the iron-depleted preparation that has an iron content of �0.23%,
in both cell-free systems and cultured cells (Kagan et al., 2006).
In a separate study, unpurified SWCNT (iron content, 30%) were
shown to be more cytotoxic to skin cells in vitro compared with
acid-treated counterparts (iron content, 0.23%), and their toxicity
was decreased with the addition of a metal chelator. The
unpurified CNT also caused skin pathology upon topical appli-
cation, compared with acid-washed CNT. These findings support
a critical role of metals in the toxic effects of CNT (Murray et al.,
2009). In contrast, the iron contents of a number of different CNT
samples (iron contents, 0.53–26.9%) did not appear to affect their
potentials to induce granulomas in mice, which may be more
related to the CNT’s tendency to aggregate and induce a foreign
body response in the lungs (Lam et al., 2004).

Molecular mechanisms of CNT toxicity

Given the considerable progress made in understanding the
structure–toxicity relationship of CNT, it remains an important
task to elucidate how CNT interact with cellular macromolecules
to elicit specific pathologic effects, such as inflammation,
fibrosis, and tumorigenesis; and how the physicochemical
properties of CNT affect the CNT-biological interactions at the
molecular level, both of which remain poorly understood. In this
regard, several molecular processes associated with toxicities of
pathogenic particles and fibers were observed in animal and
in vitro models exposed to CNT, which would allow certain broad
conclusions to be drawn with regard to the mechanisms under-
lying CNT toxicity.

Oxidative stress

One of the most consistent observations that would associate CNT
exposure to toxicity mechanistically is oxidative stress, a cellular
stress state caused by an imbalance between the production of
ROS and antioxidant defense to result in harm to the cell.
Biologically relevant ROS include oxygen radicals (O��2 , �OH,
RO2

�, and RO�) and oxygen species that are oxidizing agents and/
or are easily converted to radicals (H2O2, HOCl, O3, and 1O2).
Eukaryotes are constantly exposed to ROS, resulting from both
internal metabolism, such as the mitochondrial oxidative phos-
phorylation and the plasma membrane-bound NADPH (nicotina-
mide adenine dinucleotide phosphate) oxidase (NOX)-catalyzed
reactions, as well as exogenous exposures, such as bacterial
infection and exposure to particles, fibers, and transition metals.
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ROS may serve useful purposes under a physiological condition,
such as regulation of cell proliferation and immune response, and
killing of invading microbes during phagocytosis. However,
overproduction of ROS would overwhelm the body’s antioxidant
capacity, leading to damages to macromolecules such as DNA
strand break, DNA mutation, protein peptide chain break, and
lipid peroxidation, and eventually cell death. Therefore, ROS
production and anti-oxidation are consequences of oxygen
utilization in mammalian physiology, and oxidative stress
contributes to the development of a range of diseases including
aging, cancer, neurodegeneration, and chronic inflammatory
pathology such as asbestosis and silicosis (Finkel, 2005;
Ma, 2010).

Both SWCNT and MWCNT increased the production of ROS,
often accompanied with elevated levels of oxidative markers,
depletion of antioxidants, and induction of antioxidant enzymes
in animals (Han et al., 2010; Rothen-Rutishauser et al., 2010;
Shvedova et al., 2007). CNT may stimulate ROS production via a
direct effect on cells, as they induced oxidative stress in a number
of cell types including macrophages, bronchial and alveolar
epithelial cells, and fibroblasts in vitro (Brown et al., 2007; He
et al., 2011, 2012; Rothen-Rutishauser et al., 2010; Thurnherr
et al., 2011). On one hand, deficiency of vitamin E in animal diet,
which decreases the body’s antioxidant capacity, caused oxidative
stress and increased the sensitivity to SWCNT-induced lung
lesions in mice (Shvedova et al., 2007). On the other hand,
addition of antioxidants or ROS scavengers alleviated oxidative
stress and inflammatory cytokine expression in cells exposed to
MWCNT (Brown et al., 2010; Han et al., 2010).

In addition to directly damaging macromolecules and cellular
structures to result in cytotoxicity and cell death (Ma, 2010), ROS
can activate signaling pathways, such as the NF-kB (nuclear
factor-kB) signaling pathway, to boost the production and
secretion of proinflammatory and profibrotic cytokines and
growth factors that promote inflammation and fibrosis (He
et al., 2011, 2012). ROS may also serve as signaling molecules
to regulate growth factor-induced proliferation and differentiation
of fibroblasts critical in the fibrogenic response to CNT. ROS
have been implicated in transducing the signals of epidermal
growth factor (EGF) and platelet-derived growth factor (PDGF) to
stimulate cell proliferation by boosting tyrosine phosphorylation
signaling through their plasma membrane receptors and NADPH
oxidases (Dickinson & Chang, 2011; Finkel, 2011), as well as
activating cellular programs such as the inflammasome and
autophagy signaling pathways (Ma, 2013; Shvedova et al.,
2012b). Given the long half-life of CNT fibers in the body, it
would be expected that there is continued production of ROS and
prolonged oxidative stress in CNT-deposited tissues over a long
period of time. Therefore, strategies to suppress ROS production
by administering antioxidants would not be sufficient to prevent
or halt CNT-induced lung fibrosis, if the tissue burden of CNT is
not effectively reduced.

CNT may boost ROS production in several ways. First, in
accordance with the fiber length paradigm, long CNT fibers
(415 mm in length) can cause ‘‘frustrated phagocytosis’’ in which
macrophages are activated but cannot effectively engulf the long
fibers that exceed their body diameter. ‘‘Frustrated’’ macrophages
release the contents of their phagosomes including digestive
enzymes, anti-microbial agents, and highly toxic ROS and
reactive nitrogen species (RNS), resulting in local inflammation
and destruction of surrounding tissues (Brown et al., 2007).
Second, many SWCNT and MWCNT fibers are shorter than
10mm, but are capable of inducing ROS production in vitro and
in vivo. In these scenarios, phagocytosis of CNT by activated
macrophages are also necessary for induction of oxidative stress,
and entangled or long and straight CNT generate considerably

more ROS than CNT that are short and have a relatively small
surface area (Rothen-Rutishauser et al., 2010). Third, in addition
to being the power house and a major source of ROS production
in mammalian cells under physiologic conditions, the mitochon-
dria are prone to damage by toxic agents including pathogenic
fibers to result in oxidative stress. Both SWCNT and MWCNT
have been shown to induce mitochondrial damage and elevated
ROS production in lung cells (He et al., 2011, 2012). Fourth,
NOXs, a group of membrane enzymes, can generate superoxide
anion and hydroxyl radicals near the plasma membrane. NOX2
(gp91phox) is responsible for the ‘‘respiratory burst’’ during
phagocytosis by neutrophils and other phagocytic cells. NOX2
was shown to play a role in the transition of CNT-induced acute
inflammation to chronic fibrosis in mice, as the NOX2 knockout
mice exposed to SWCNT exhibited significantly more proin-
flammatory, but not profibrotic, phenotypes compared with wild-
type (Shvedova et al., 2008b). Lastly, impurities from CNT
preparations, such as iron and other transition metals, can
stimulate the Fenton (Fe2+ + H2O2 !Fe3+ + �OH + OH�) or
Fenton-like (Mnn+ + H2O2!Mn(n + 1)+ + �OH + OH�) reactions
to result in ROS production and oxidative stress in biological
systems.

In addition to ROS, exposure to particles and fibers, such as
silica and asbestos, has been shown to stimulate the expression of
inducible nitric oxide synthase (iNOS) in the lungs that produces
nitric oxide (NO�) (Kang et al., 2000). NO� serves as a gaseous
signaling molecule for blood vessel relaxation or as a neurotrans-
mitter in the brain physiologically, but it may also react with ROS
to form stronger oxidants such as the potent peroxynitrite
(ONOO�). Overproduction of NO�, ONOO�, and their deriva-
tives, which are collectively called reactive nitrogen species,
causes nitrosative stress that contributes to toxicity and disease
pathogenesis in the body (Pacher et al., 2007). RNS have been
implicated in the development of silicosis and asbestosis, but
whether CNT stimulate RNS production to cause nitrosative stress
and toxicity remains controversial, as both positive and negative
results for iNOS induction have been observed (Lee et al., 2012;
Pulskamp et al., 2007).

Inflammation

The tissue response to CNT deposition in the lungs and in the
pleural and abdominal cavities resembles a foreign body-induced
response in that it initiates with a marked acute inflammatory
response, followed by prolonged or chronic pathologic alterations
(Dong et al., 2014; Mercer et al., 2011). Acute inflammation is
characterized by rapid infiltration of neutrophils and macrophages
and high titers of proinflammatory mediators, which peak at
around 1–7 d and subside at 14 d post-exposure (Dong et al., 2014;
Porter et al., 2010). The chronic response, marked by interstitial
or pleural fibrosis and granulomas, is contingent on continued
presence and accumulation of CNT in the tissue and is considered
to reflect the function of inflammation to promote tissue repair
(i.e. fibrosis) and clearance of CNT (i.e. granuloma formation).
Thus, inflammation is a major component of the acute phase and,
arguably, the chronic phase of the tissue response to CNT.

In vitro studies reveal that both MWCNT and SWCNT
stimulate the production and secretion of inflammatory mediators
such as TNF-a, IL-1b, IL-6, and IL-8, from a variety of cell types,
including macrophages, bronchial and alveolar epithelia, kera-
tinocytes, and fibroblasts (He et al., 2011, 2012). In vivo induction
of inflammatory mediators by CNT has also been detected (Dong
et al., 2014). It is believed that elevated levels of the inflammatory
mediators in the local matrix and circulation would drive the
recruitment and activation of inflammatory cells to cause the
acute inflammatory infiltration at the site of CNT deposition.
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CNT are likely to activate specific signaling pathways, such as the
NF-kB and the NLRP3 (nucleotide-binding oligomerization
domain-like receptor, pyrin domain-containing 3) inflammasome
pathways, to up-regulate gene transcription and post-translational
processing of inflammatory mediators, which will be discussed in
more detail in later sections. The mediators and mechanisms that
control the transition from acute to chronic inflammation and the
subsequent propagation of the chronic phase response to CNT
remain unclear for the most part. Together, these findings imply
that anti-inflammation by targeting key mediators may be used to
help in preventing or halting the pathologic processes caused by
CNT. However, because CNT may persist and continuously
stimulate inflammatory and pathogenic responses in the tissue,
any anti-inflammation therapy would need to be administered in
conjunction with measures that reduce the tissue load of CNT
fibers to be effective.

Proliferation

Cell proliferation has been recognized as a prominent molecular
and cellular mechanism critical in tumorigenesis, fibrosis, and
inflammation, which are major pathologic outcomes of CNT
exposure in animals. Recent research has provided ample
evidence demonstrating that CNT modulate the proliferation of
a number of types of cells in vitro and in animals. Long MWCNT
induced the proliferation of primary mouse lung fibroblasts and a
number of fibroblast cell lines including human fetal lung
fibroblasts (HFL-1), mouse embryonic fibroblasts (BALB-3T3),
and mouse lung fibroblasts (MLg), in a dose-dependent manner;
moreover, the potentials of different preparations of MWCNT to
induce proliferation of the cells in vitro correlated with their
fibrotic effects in vivo in C57BL/6 mice (Vietti et al., 2013). The
role of fibroblast proliferation in CNT-induced fibrosis is further
discussed in the section below.

MWCNT exposure induced hyperplastic proliferative lesions
of the visceral mesothelium in which the proliferating cell
nuclear antigen levels were approximately 10-fold higher than
vehicle control in F344 rats; furthermore, the pleural cavity
lavage fluid from the dosed rats or conditioned culture media of
macrophages treated with MWCNT increased mesothelial cell
proliferation in vitro, further supporting the notion that stimu-
lation of mesothelial proliferation by CNT potentially leads to
the formation of mesotheliomas (Xu et al., 2012). Therefore,
MWCNT clearly produce pathological effects by promoting cell
proliferation in certain cell types.

The fibroblastic response

Fibroblasts play a major role in tissue fibrosis (Wynn, 2011).
Upon exposure to CNT, fibroblasts increase in number and
transform to myofibroblasts to secret a large number of matrix
proteins such as collagens and fibronectin, as well as matrix
modulating enzymes such as metalloproteinases, resulting in the
deposition and processing of collagen proteins and, eventually,
replacement of the parenchyma with collagen fibers, near CNT
deposits. Pulmonary interstitial fibroblasts may derive from
several sources during fibrosis, which conceivably include the
following: (a) proliferation of resident fibroblasts in the lungs; (b)
recruitment of bone marrow-derived fibrocytes from blood into
the lung interstitial space; and (c) epithelial–mesenchymal
transition (EMT) of airway and alveolar epithelial cells.
MWCNT and SWCNT have been shown to stimulate fibroblast
proliferation in vitro (Vietti et al., 2013; Wang et al., 2010a,b),
transformation of fibroblasts into myofibroblasts (He et al., 2011,
2012), and induction of EMT (Chang et al., 2012, Chen et al.,
2014). The role of fibrocyte recruitment in CNT toxicity has not
been demonstrated.

Two mechanisms have been hypothesized to account for the
effects of CNT on fibroblasts. First, CNT fibers may stimulate
fibroblasts to proliferate and differentiate by mimicking endogen-
ous collagen fibers or other fibrous structures to attract fibroblasts
to adhere to their surface, leading to activation of the fibroblasts.
Alternatively, CNT stimulate the secretion of profibrogenic
mediators, such as the inflammatory cytokines TNF-a and
IL-1b, and growth factors TGF-b1 and PDGF, which exert
potent mitogenic effects on fibroblasts to promote the prolifer-
ation and differentiation of the cells (Dong et al., 2014). Although
some in vitro and in vivo evidence has been obtained to support
these posits, a definitive proof of either mechanism to account for
the fibrotic effects of CNT in the lungs in vivo has not been
available.

Genotoxicity and tumorigenesis

MWCNT and SWCNT have been shown to damage DNA both
in vitro and in vivo, though negative results have also been
observed in studies with some CNT preparations (van Berlo et al.,
2012). These potentially controversial reports likely reflect the
heterogeneity in the physicochemical properties and the genotoxic
potentials of the CNT fibers tested, as well as differences in the
assay types and testing conditions of the studies. The spectrum of
genotoxicity by CNT is similar to that known to be caused by
tumorigenic fibers such as asbestos, including (a) single- and
double-DNA strand breaks, as demonstrated by comet assay,
formation of gH2AX foci, and activation of poly(ADP-ribose)
polymerase 1; (b) oxidation of DNA base such as formation of 8-
hydroxydeoxyguanosine (8-OHdG); (c) micronucleus formation;
(d) clastogenic and aneugenic effects; and (e) increased mutation
frequency in mutation-screening model systems (Schins &
Knaapen, 2007). Mutagenicity tests in bacterial strains have
been mostly negative for CNT (and asbestos in this regard). In
light of these findings, it was proposed that CNT do not damage
DNA by directly acting on DNA. Instead, CNT cause genetic
lesions indirectly via several mechanisms. First, CNT may
stimulate cells to produce DNA-damaging ROS as discussed
above, to cause DNA base oxidation and DNA strand breaks.
Second, CNT may suppress DNA repair and thereby facilitate
genotoxic processes. This notion was supported by the findings
that a decrease of the tumor suppressor p53 in mice enhanced
tumorigenesis by MWCNT, and p53 is known to be critical in
initiating DNA repair in the presence of DNA impairment. Third,
CNT may cause damage to DNA as a consequence of elevated
inflammatory response to CNT. Lastly, CNT may enter
the nucleus and interfere with the mitotic machinery, i.e. the
centrosomes and mitotic spindle, due to their similarities to the
microtubules of the spindle, to result in clastogenic and aneugenic
phenotypes (Sargent et al., 2010, 2012).

Tumorigenesis is a multi-step process involving an initial
insult(s) to the genome, failure of the defense and repair
mechanisms, and neoplastic growth and progression. CNT
tumorigenicity was studied in two types of animal cancer
models, i.e. induction of abdominal mesothelioma and promotion
of lung adenocarcinoma. Intraperitoneal injection of MWCNT
induced mesothelioma formation in heterozygous p53+/� mice at
high (3 mg/mouse) and low (30 or 300mg/mouse) doses in two
separate studies (Takagi et al., 2008, 2012). In a study on rats, thin
MWCNT (diameter approximately 50 nm) with high crystallinity
showed inflammogenicity and mesotheliomagenicity, but thick
(diameter approximately 150 nm) or tangled (diameter approxi-
mately 2–20 nm) MWCNT were found less toxic, inflammogenic,
and carcinogenic. Moreover, the mesothelioma induced by
MWCNT had homozygous deletion of Cdkn2a/2b tumor sup-
pressor genes similarly to asbestos-induced mesothelioma (Nagai
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et al., 2011). In a separate study, MWCNT with short length
(51 mm) were found incapable of inducing inflammation and
mesothelioma in the rat abdominal cavity, which is in accordance
with the notion that short CNT would be rapidly cleared from
mesothelial cavities through the parietal stomatal openings and
would not induce frustrated phagocytosis (Donaldson et al., 2010;
Muller et al., 2009). Taken together, these findings indicate that
the ability of MWCNT to induce inflammation and mesothelioma
in the abdominal cavity is associated with their diameter-
dependent piercing of the cell membrane to cause mesothelial
injury as well as their resistance to clearance from the mesothelial
surface, and is significantly enhanced by disruption of tumor
suppression mechanisms.

The tumorigenicity of MWCNT in the lungs was investigated
in a two-stage initiation/promotion model (Sargent et al., 2014).
B6C3F1 mice, with an intermediate susceptibility for spontaneous
lung tumor formation, were exposed to a single intraperitoneal
injection of vehicle or MCA (10mg/g body weight, i.p.); followed,
1 week later, by inhalation of either filtered air (control) or
MWCNT at 5 mg/m3, 5 h/d, 5 d/week for a total of 15 d. This dose
gave a lung burden of 31.2 mg/mouse, which is relevant to feasible
human occupational exposures. Lung tumors were examined
17 months post-exposure. Exposure to MCA followed by
MWCNT caused lung adenocarcinoma and adenoma formation
in 90% of the mice with a mean of 2.9/mouse, compared with 23%
in the filtered air controls (mean of 0.25/mouse), 26.5% in the
MWCNT-exposed (mean of 0.38/mouse), and 51.9% in the MCA
followed by the filtered air-exposure (mean of 0.81/mouse) group.
In addition, MCA plus MWCNT increased the incidence of
serosal tumor, which is consistent with sarcomatous mesotheli-
oma, by 4.5-fold, compared with MCA alone (9% versus 2%).
These findings would not support MWCNT as an initiator or a
complete carcinogen, but demonstrate that MWCNT inhaled at a
dose relevant to human exposures is a strong tumor promoter in
mouse lungs. The mechanism(s) by which MWCNT promote
tumor progression remains to be elucidated. By analogy with the
findings from asbestos, tumor promotion by MWCNT is likely to
relate to MWCNT’s capacity to induce cytotoxicity, inflamma-
tion, fibrosis, cell proliferation, and cellular atypia in the lungs
(Poland et al., 2008; Porter et al., 2010).

Modulation of immune functions

Inhalation of MWCNT caused systemic immunosuppression in
mice, suggesting that the signals originated in the lungs were
transduced to directly affect the functions of T cells in distal
organs such as the spleen (Mitchell et al., 2007). Suppression of
T cell functions was partially rescued by administering ibupro-
fen, a common anti-inflammatory drug that blocks the
cyclooxygenase-2 (COX-2) pathway; moreover, mice deficient
in COX-2 did not develop overt lung inflammation after inhaling
MWCNT; in addition, proteins from the lungs of exposed mice
suppressed the immune functions of spleen cells from normal
mice, but not those from COX-2 knockout mice (Mitchell et al.,
2009). From this study, it was posited that signals from the CNT-
exposed lungs activate signals in the spleen to suppress the
immune functions of exposed mice, which, in part, involves the
COX-2 pathway. The role of COX-2 was also investigated in a
murine asthmatic model using COX-2 knockout mice. MWCNT
were shown to exacerbate the OVA-induced airway remodeling,
which was associated with activation of a mixed Th1/Th2/Th17
immune response, and COX-2 appeared to protect against the
inflammation and mucous cell metaplasia, but not the fibrosis
induced by OVA and MWCNT. The results demonstrate a role
for COX-2 in the exacerbation of allergen-induced airway
remodeling by MWCNT and suggest different pathways in the

development of fibrotic and allergic responses, respectively
(Sayers et al., 2013).

CNT alter the expression of multiple immune-related cyto-
kines and factors, which contribute to their effects on the immune
system in a tissue and organ-dependent manner. Intratracheal
instillation of MWCNT resulted in elevated levels of proin-
flammatory cytokines in a dose-dependent manner in the blood
and BAL fluid, elevated Th2 and Th1 cytokine levels, increased
numbers of B cells in the spleen and blood, and enhanced
production of IgE in mice; the findings suggest that MWCNT
induce allergic responses in mice through B cell activation and
production of IgE (Park et al., 2009). Intraperitoneal administra-
tion of MWCNT in mice led to increased mRNA expression of
proinflammatory cytokines and chemokines (IL-1b, IL-33, TNF-
a, and MCP-1), Th2 cytokines (IL-4, IL-5, and IL-13), and Th17
cytokine (IL-17) in peritoneal cells at early stage and increased
mRNA expression of Th1 cytokines (IL-2 and interferon (IFN)-g)
at a later stage, elevated numbers of inflammatory cells in the
peripheral blood, and enhanced production of ovalbumin-specific
IgM and IgG1 (Yamaguchi et al., 2012).

Signaling pathways of CNT toxicity

Many of the mechanisms for CNT toxicity discussed above would
reflect, to a large extent, common strategies that cells use to
perform physiologic functions and/or to cope with adverse insults.
At the molecular level, these functions are carried out through
specific cellular signaling pathways and programs. An increasing
body of evidence indicates that a number of signaling pathways
are activated by CNT and mediate the biological response to
CNT, providing new molecular insights into the mechanism by
which CNT induce toxic effects (Figure 3).

NF-kB

The transcription factor NF-kB plays an important role in immune
and inflammatory responses by regulating the expression of genes
that serve as inducers or effectors at multiple levels in the
inflammatory networks in response to stimuli. NF-kB is activated
by CNT in a variety of experimental conditions both in vivo and
in vitro. As a result, NF-kB has become one of the most studied
pathways involved in CNT biological effects.

CNT induced NF-kB activation in a number of cell lines. In
human HaCaT keratinocytes, SWCNT stimulated NF-kB signal-
ing in a dose-dependent manner, revealed by sequential events of
the signaling pathway, including activation of IkB kinase a
(IKKa), enhanced phosphorylation and degradation of the NF-kB
inhibitor IkBa, accumulation of NF-kB subunit p65 in the
nucleus, elevated binding of NF-kB p50/p65 complex to DNA,
and increased NF-kB-dependent reporter gene expression (Manna
et al., 2005). SWCNT induced NF-kB activation in a dose-
dependent manner in human normal mesothelial and malignant
mesothelial cells detected by enzyme-linked immunosorbent
assay (ELISA) (Pacurari et al., 2008). Both unpurified (30%
iron) and partially purified (0.23% iron) SWCNT activated NF-kB
in mouse epidermal JB6 P+ cells (Murray et al., 2009). NF-kB
was activated by SWCNT in rat aortic endothelial cells (RAEC)
(Zhiqing et al., 2010). In a recent study, SWCNT were shown to
activate the NF-kB signaling cascade and increase the secretion
of a panel of NF-kB-regulated proinflammatory cytokines and
chemokines, including TNF-a, IL-1b, IL-6, IL-10, and MCP-1, in
mouse RAW264.7 macrophages (He et al., 2012). Treating human
alveolar epithelial A549 cells with MWCNT led to NF-kB
activation and increased IL-8 mRNA expression; moreover,
induction of IL-8 expression was suppressed by NF-kB inhibitors
N-tosyl-l-phenylalanine chloromethyl ketone (TPCK) and parthe-
nolide (Ye et al., 2009). In a separate study, MWCNT were shown
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to activate the NF-kB signaling pathway and increase the
secretion of a number of NF-kB-regulated proinflammatory
cytokines and chemokines, including TNF-a, IL-1b, IL-6, IL-10,
and MCP-1, in mouse RAW264.7 macrophages; moreover,
activation of NF-kB involved degradation of IkBa, nuclear
translocation of NF-kB subunit p65, binding of NF-kB to specific
kB-binding sites, and elevated NF-kB-controlled reporter gene
expression (He et al., 2011). In addition, MWCNT induced time-
dependent phosphorylation of the NF-kB inhibitor IkBa, an
essential step leading to IkBa degradation, NF-kB nuclear
translocation, and nuclear accumulation of NF-kB in rat lung
epithelial cells (Ravichandran et al., 2010).

Intratracheal instillation of SWCNT caused airway hyper-
reactivity, airflow obstruction, and granuloma formation, as well
as alveolar macrophage activation and chronic inflammatory
responses in mouse lungs. Pathway analysis of Affymetrix
microarray data from the mouse lungs indicated that NF-kB-

related inflammatory responses and downstream signals affecting
tissue remodeling played an important role to account for the
SWCNT-induced effects (Chou et al., 2008; Hsieh et al., 2012).
Treatment of mice with NF-kB inhibitor pyrrolidine dithiocarba-
mate (PDTC) attenuated the pathologic phenotypes and induction
of inflammatory genes by SWCNT significantly, further support-
ing an important role of NF-kB in the toxicity of SWCNT in vivo
(Hsieh et al., 2012).

Given the complexity of the NF-kB pathway and the marked
activation and involvement of NF-kB in CNT-induced cytotox-
icity and pathology, it remains critical to elucidate the
complicated layers of molecular mechanisms through which
CNT affect NF-kB activity. In particular, how CNT activate the
signaling pathway of NF-kB remains largely elusive. In this
respect, several upstream signaling molecules leading to activa-
tion of NF-kB in response to physiologic and microbial cues have
been identified, including tumor necrosis factor receptor (TNFR),
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Figure 3. Signaling molecules and pathways activated by carbon nanotubes. It has been demonstrated that CNT can positively or negatively influence
several signaling cascades that play critical roles in physiological and pathological conditions, including the NF-kB, NLRP3 inflammasome, p53, TGF-
b1, and MAPK pathways. Dysregulation of these pathways leads to abnormal gene expression and protein function, and eventually results in disease
occurrence and progression.
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interleukin-1 receptor (IL1R), toll-like receptors (TLRs), and
growth factor receptors (GFRs), which may guide future studies
of the interactions between CNT and the NF-kB pathway in the
development of inflammation, fibrosis, and tumorigenesis
by CNT.

Inflammasomes

CNT induced high levels of secreted IL-1b in culture media of
macrophages treated with CNT (He et al. 2011, 2012; Shvedova
et al., 2005) and in the BAL lavage fluid from CNT-exposed
mouse lungs (Han et al., 2010; Sager et al., 2014; Shvedova et al.,
2005). Secretion of IL-1b requires the proteolytic processing of
the protein by the NLRP3 inflammasome (Lamkanfi & Dixit,
2014). Since the first report on the topic by Palomaki et al.
(2011), activation of the NLRP3 inflammasome under CNT
stimulation has drawn a large attention.

Inflammasomes are cytoplasmic sensors that detect extracel-
lular and intracellular signals and initiate innate immune
responses in response to microbe infection and tissue injury.
Assembled as a large complex from multiple proteins, a number
of inflammasomes have been identified, including the NLRP1b,
NLRP3, NLRC4 (nucleotide-binding oligomerization domain-like
receptor, caspase activation and recruitment domain-containing
4), and AIM2 (absent in melanoma 2) inflammasomes, which
have distinct protein compositions and are activated by distinct
and specific danger signals, such as microbial pathogens and
stress cues (Lamkanfi & Dixit, 2014; Schroder & Tschopp, 2010).
The NLRP3 inflammasome is the most extensively studied
complex, as it is implicated in responses to a wide range of signals
derived from pathogens, endogenous danger signals, and envir-
onmental stimuli. This inflammasome contains the NLR (nucleo-
tide-binding oligomerization domain-like receptor) protein
NLRP3, the adaptor protein ASC (apoptosis-associated speck-
like protein containing a caspase activation and recruitment
domain), and the effector proteolytic enzyme caspase-1, i.e. pro-
caspase-1. In resting cells, NLRP3 is auto-repressed in the
cytoplasm. Upon stimulation, NLRP3 is activated and oligomer-
ized, followed by recruitment of ASC and pro-caspase-1 to form
the NLRP3 inflammasome. The inflammasome cleaves pro-
caspase-1 to become active caspase-1, which in turn converts
proinflammatory cytokines IL-1b and IL-18 from inert to active
and secreted forms by cleavage. The matured cytokines in the
extracellular space propagate inflammatory responses (Sutterwala
et al., 2014; Tschopp & Schroder, 2010).

MWCNT have been reported to induce NLRP3 inflammasome
activation in a number of studies. In the first report, long needle-
like, but not tangled, MWCNT induced secretion of IL-1b from
LPS (lipopolysaccharides)-primed human primary macrophages,
which involved NLRP3 inflammasome activation because knock-
ing down of NLRP3 diminished MWCNT-induced IL-1b secre-
tion (Palomaki et al., 2011). Double-walled CNT (DWCNT)
enhanced IL-1b release in human monocytes, which was
exclusively linked to caspase-1 and NLRP3 inflammasome
activation (Meunier et al., 2012). MWCNT induced IL-1b and
IL-18 secretion in cultured alveolar macrophages isolated from
C57BL/6 mice; and increased IL-1b secretion was repressed by a
caspase-1 inhibitor (Hamilton et al., 2013). MWCNT also
increased IL-1b secretion in PMA (phorbol myristate acetate)-
primed THP-1 human monocytes, which was suppressed by
caspase-1 inhibitor, and MWCNT treatment led to cleavage of
pro-caspase-1 to mature caspase-1, indicating the activation of
inflammasome by MWCNT (Kanno et al., 2014). These studies
suggested that NLRP3 inflammasome activation contributes to
MWCNT-induced inflammation by controlling IL-1b and IL-18
maturation and secretion.

In addition to the enhanced secretion of IL-1b and IL-18,
pyroptosis, another outcome of inflammasome activation, was
shown to play a role in MWCNT-induced lung injury (Hussain
et al., 2014). Pyroptosis is a highly inflammatory form of cell
death controlled by inflammasome-dependent caspase-1 activity
(Bergsbaken et al., 2009). MWCNT induced pyroptosis in
primary human bronchial epithelial (HBE) cells in a time- and
dose-dependent manner; and induction of pyroptosis was
mediated by NLRP3 inflammasome activation, as it was signifi-
cantly reduced by treatment with NLRP3 siRNA (small interfer-
ing RNA) or caspase-1 inhibitor (Hussain et al., 2014).

It is noteworthy to point out that current studies on NLRP3
inflammasome activation by CNT were mostly conducted with
MWCNT in cultured cells and the molecular understanding of the
mechanism by which CNT activate the inflammasome is limited
at present. Nonetheless, Palomaki et al. (2011) have shown that
CNT-induced NLRP3 inflammasome activation involved ROS
production, cathepsin B activity, P2X(7) receptor, and Src and
Syk tyrosine kinases, providing molecular targets for further
research. In addition to CNT, other particles and fibers, including
silica, asbestos, alum, and nanoparticles, such as nano-TiO2 and
nano-SiO2, have been shown to activate the NLRP3 inflamma-
some, but their underlying mechanisms and pathologic implica-
tions remain unaddressed to a large extent (Cassel et al., 2008;
Dostert et al., 2008; Hornung et al., 2008; Kool et al., 2008;
Peeters et al., 2013; Winter et al., 2011; Yazdi et al., 2010). Thus,
although the research on the CNT-NLRP3 inflammasome inter-
action is at an early stage, detailed analyses on the NLRP3
inflammasome pathway under CNT exposure would provide
significant new insights into the inflammatory responses triggered
by CNT and other toxic particles and fibers for future studies.

TGF-b1

The molecular mechanisms underlying lung fibrosis in most
animal models and human diseases have remained uncertain for
the most part, but a number of cytokines, known as fibrogenic
cytokines because of their capacity to induce or promote fibrosis
and/or whose expression and function are altered during the
development of fibrotic pathology, have been identified (Wynn,
2011). Among them, TGF-b1 is considered as a key regulator in
fibrosis. TGF-b1 induces the recruitment of macrophages and
fibroblasts, promotes fibroblast proliferation, and stimulates the
transformation of fibroblasts to myofibroblasts, which are key
cellular and molecular events in the development of lung fibrosis
(Desmouliere et al., 1993; Fernandez & Eickelberg, 2012; Sime
et al., 1997). TGF-b1 also drives EMT to convert epithelial cells
to fibroblasts at the site of injury to boost fibrosis (Iwano et al.,
2002; Kalluri & Neilson, 2003). TGF-b1 binds to its receptors on
the surface of target cells to initiate the signaling pathway. In the
canonical pathway, activated Type 1 receptor phosphorylates
R-Smads (Smad2 and Smad3), which subsequently form a
complex with the Co-Smad, Smad4. The resulting active Smad
complex enters the nucleus and interacts with distinct transcrip-
tion factors to activate or inhibit the transcription of many TGF-b
responsive genes involved in apoptosis, cell growth and differen-
tiation, extracellular matrix neogenesis, and immunosuppression
(Schmierer & Hill, 2007). Additionally, TGF-b1 activates a
number of non-Smad pathways collectively known as the non-
canonical pathways including PI3K, RAS, PAR6, and JNK/p38/
MAPK pathways, which cumulatively regulate TGF-b functions
(Chaudhury & Howe, 2009; Zhang, 2009).

Recent studies demonstrated that both SWCNT and MWCNT
induced the production of TGF-b1 in cultured cells including
mouse RAW264.7 macrophages, normal human bronchial epi-
thelial cells BEAS-2B, and normal human lung fibroblasts WI38-

DOI: 10.3109/17435390.2015.1009187 Mechanisms and signaling pathways of carbon nanotube toxicity 11

N
an

ot
ox

ic
ol

og
y 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
ah

ea
lth

ca
re

.c
om

 b
y 

98
.2

39
.1

40
.3

0 
on

 0
2/

13
/1

5
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.



VA13 (He et al., 2011, 2012). In a separate study, long SWCNT
increased the expression and secretion of TGF-b1 in cultured
normal human lung fibroblasts NHLF (Manke et al., 2014).
Therefore, CNT possess the ability to enhance TGF-b1 expression
and function, as shown by in vitro studies.

A number of in vivo studies provided evidence to support that
TGF-b plays a critical role in CNT-induced lung fibrosis.
SWCNT-exposed C57BL/6 mice showed EMT and injury in the
lungs, with an increasing occurrence of epithelium-derived
fibroblasts that produced collagen, indicating that EMT occurred
and contributed to CNT-induced fibroblast expansion; moreover,
an elevated number of hyperplastic epithelial cells with positive
staining for TGF-b/p-Smad2 were observed, suggesting that
activation of TGF-b/p-Smad2 signaling is involved in SWCNT-
induced EMT and fibrosis in the lungs (Chang et al., 2012). Long
MWCNT (20–50mm) increased fibroblast proliferation, collagen
deposition, and granuloma formation in the lungs of spontan-
eously hypertensive (SH) rats (Wang et al., 2013). Furthermore,
the long MWCNT induced macrophage activation, TGF-b1
secretion, Smad2 phosphorylation, and the expression of collagen
III and extracellular matrix (ECM) protease inhibitors in vivo; and
in vitro studies revealed that the long MWCNT enhanced TGF-
b1-induced phosphorylation of Smad2 as well as up-regulated the
expression of collagen III in a TGF-b-dependent manner in mouse
embryonic fibroblast NIH3T3 cells. In C57BL/6J mice, exposure
to long MWCNT (5–15 mm) led to increased collagen deposition,
pulmonary fibrosis, TGF-b1 secretion and Smad2 phosphoryl-
ation (Chen et al., 2014). About 20% of the pro-surfactant protein-
C positive epithelial cells transformed to fibroblasts at 56 d post-
exposure, indicating occurrence of EMT. In vitro studies showed
that the long MWCNT induced TGF-b1 production and Smad2
phosphorylation, down-regulated epithelial marker protein
E-cadherin, and up-regulated mesenchymal marker protein
a-smooth muscle actin (a-SMA) protein expression in human pul-
monary epithelial A549 cells, which were dependent on TGF-b1
signaling. These studies demonstrated that TGF-b/Smad signaling
is activated by CNT and plays an important role in CNT-induced
lung fibrosis.

Despite the above findings and the common belief of TGF-b as
a promoter of fibrosis, some studies demonstrated an opposite
role of the TGF-b/Smad pathway in pulmonary pathologic
responses. For example, blockade of TGF-b/Smad signaling was
shown to enhance airway inflammation and reactivity (Hansen
et al., 2000; Nakao et al., 2000), whereas over-expression of TGF-
b1 in regulatory T cells inhibited bleomycin-induced lung fibrosis
(Kitani et al., 2003). Thus, TGF-b may have a suppressive effect
on tissue remodeling under certain conditions. This double-edged
nature of TGF-b1 function demands that caution is to be taken
when analyzing and interpreting studies relating TGF-b to lung
fibrosis.

MAPKs

The mitogen-activated protein kinase (MAPK) pathways control a
wide range of fundamental processes including cell proliferation,
differentiation, apoptosis, inflammation, and organismal devel-
opment (Arthur & Ley, 2013; Jeffrey et al., 2007; Munshi &
Ramesh, 2013; Rose et al., 2010; Wagner & Nebreda, 2009). The
MAPK pathways are activated in response to endogenous signals,
such as growth factors, inflammatory cytokines, and mitogens, as
well as environmental stressors, such as ultraviolet irradiation,
oxidants, genotoxic agents, and microbial toxins. The MAPK
pathways are activated through a well-conserved three-tiered
kinase cascade, in which a MAPK kinase kinase (MAPKKK,
MAP3K, MEKK, or MKKK) activates a MAPK kinase (MAPKK,
MAP2K, MEK, or MKK), which in turn activates the MAPK

through serial phosphorylation. This kinase cascade transduces
signals from the cell membrane to the nucleus to regulate a variety
of intracellular signaling pathways. Well-studied MAPKs include
the extracellular signal-regulated kinase 1 and 2 (ERK1/2), the
c-Jun N-terminal kinases 1, 2, 3 (JNK1, 2, 3), the p38 MAPKs
(p38a, b, g, d), and the big MAPK (ERK5). The ERK pathway
(ERK1/2) is activated by mitogens and growth factors, and plays a
major role in regulating cell growth, survival, and differentiation.
In contrast, JNK and p38 MAPKs respond most robustly to
inflammatory cytokines and cellular stresses, and are strongly
associated with stress responses such as apoptosis and inflam-
mation, although they can also be weakly activated by growth
factors. ERK5 is activated in response to both growth factors
and stresses, and has various biological effects on cell growth,
survival, and differentiation.

A few studies reported that SWCNT activate MAPK signaling
in cultured cells. Significant phosphorylation of p38 and ERK1/2
in malignant human mesothelial cells was detected upon exposure
to SWCNT (Pacurari et al., 2008). In human lung fibroblasts
CRL-1490, SWCNT induced p38 phosphorylation in a dose-
dependent manner, which in turn contributed to SWCNT-induced
fibrogenesis and angiogenesis through the induction of TGF-b1
and vascular endothelial growth factor (VEGF) (Azad et al.,
2013). Prolonged treatment of human mesothelial cells with
SWCNT induced neoplastic-like transformation, which was
associated with phosphorylation of ERK1/2 (Lohcharoenkal
et al., 2014).

MWCNT were shown to induce MAPK activation in several
in vitro systems. In a gene expression profiling study on human
skin fibroblasts, a whole genome expression array analysis was
performed to identify the genes whose expression was changed at
transcriptional level upon exposure to MWCNT (Ding et al.,
2005). Promoter analysis of the microarray results indicated that
p38/ERK-MAPK cascades are critical pathways in the induced
signal transduction by MWCNT. A phosphokinase array study
using lysates from human bronchial epithelial BEAS-2B cells
exposed to MWCNT demonstrated that phosphorylation of p38
and ERK1 was significantly increased (Hirano et al., 2010).
MWCNT increased phosphorylation of ERK1/2 in mouse
RAW264.7 macrophages, which was critical to the elevated
COX-2 expression induced by MWCNT (Lee et al., 2012). In a
co-culture system in which human small airway epithelial cells
(SAEC) and human microvascular endothelial cells (HMVEC)
were cultured separately by a Transwell membrane to mimic an
alveolar-capillary interaction, treatment of SAEC with MWCNT
induced phosphorylation of p38 in HMVEC (Snyder-Talkington
et al., 2013).

The above discussed studies on the relation between CNT and
MAPK signaling were performed in cultured cells and using
phosphorylation of MAPKs as the readout of MAPK activation,
which limit the interpretation of the results. Therefore, detailed
in vivo analyses are much needed to demonstrate the activation
and functional consequences of MAPK pathways in CNT-induced
toxicity. Analyses of both upstream and downstream components
in the MAPK cascade under CNT exposure would facilitate to
address the mechanisms by which CNT modulate the MAPK
pathways in future studies.

p53

In addition to stimulating the proliferation of lung cells such as
fibroblasts and mesothelial cells for their fibrotic and mesotheli-
oma-causing effects, CNT induce cell-cycle arrest, apoptosis, and
autophagy. For instance, cell-cycle analyses revealed that
SWCNT induced a G2 block in cell cycle (Sargent et al., 2012;
Wang et al., 2011a), whereas exposure to MWCNT caused a G1/S
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block in cultured cells (Han et al., 2012; Siegrist et al., 2014).
Recent studies showed that SWCNT induced apoptosis in rat
pheochromocytoma PC12 cells and rat aorta endothelial cells
(Cheng et al., 2011; Wang et al., 2011a), and MWCNT stimulated
apoptosis in rat glioma cells and RAW 264.7 cell-derived
osteoclasts (Han et al., 2012; Ye et al., 2012). In addition,
SWCNT were shown to stimulate autophagy in BEAS-2B cells,
with up-regulated autophagy-related genes and autophagosome
formation-related proteins (Park et al., 2014), and certain types
of MWCNT affect autophagy, as examined in a fluorescent
autophagy-reporting cell line (Wu et al., 2014).

The tumor suppressor protein p53 plays a critical role in the
control of cell proliferation and cell death, two fundamental
biological functions critical in many physiological, developmen-
tal, and disease processes during organismal life, by directly
regulating cell cycle, apoptosis, and the response to genomic
damage. Given the dominant role of p53 in the regulation of cell
proliferation and cell death, it is rational to posit that the tumor
suppressor protein is involved in CNT-induced toxicity, which has
been supported by some experimental evidence. SWCNT were
shown to affect cell proliferation and apoptosis by interrupting
p53 signaling in cultured cells. Prolonged (6 months) exposure to
SWCNT caused malignant transformation of human lung epithe-
lial BEAS-2B cells showing characteristics of cancer stem cells,
such as excessive cell growth and colony formation. The
transformed cells were resistant to apoptosis and induced
tumors in nude mice. These cells had decreased phosphorylation
of p53, a major determinant of p53 function. This study indicated
that prolonged exposure to SWCNT perturbs p53 signaling,
leading to loss of function of p53, promotion of cell proliferation,
and inhibition of apoptosis (Wang et al., 2011b). A follow-up
study confirmed that, in cells transformed by prolonged exposure
to SWCNT, the total p53 protein level was dramatically
decreased, which involved the plasma membrane-associated
protein caveolin-1 (Cav-1), supporting a role of p53 and Cav-1
in CNT tumorigenesis (Luanpitpong et al., 2014).

In the initial study with heterozygous p53+/� mice, decreased
function of p53 was shown to promote induction of mesotheli-
omas in the peritoneal cavity injected with MWCNT at a dose of
3 mg per mouse (Takagi et al., 2008). In a follow-up study, a
dose–response curve at much lower doses was pursued in p53+/�
mice with MWCNT (3, 30, or 300 mg/mouse, intraperitoneal
injection, 1 year); mesotheliomas were observed at all doses with
a dose-dependent cumulative incidence, further supporting that
MWCNT induce mesotheliomas, in a p53 compromised genetic
background (Takagi et al., 2012). In a recent study, intravenous
injection of large-sized MWCNT into pregnant p53 heterozygous
mice induced p53-dependent responses during fetal development,
manifesting restriction of fetal development and deformity of the
brain; moreover, molecular analyses revealed that the MWCNT
triggered p53-dependent apoptosis and cell-cycle arrest in
response to MWCNT-induced DNA damage; but SWCNT and
small-sized MWCNT failed to induce fetotoxicity. This study
demonstrates that p53 modulates MWCNT fetotoxicity by
controlling cell proliferation and cell death (Huang et al., 2014).

A working model for CNT pathogenic effects

The study on CNT has served as a model for analyzing
nanotoxicity. The major findings conclude that CNT can induce
a variety of adverse effects in experimental systems including
cytotoxicity, inflammation, fibrosis, genotoxicity, tumorigenesis,
and immune effects, which extend well beyond the predictions
from ‘‘nuisance dust’’-like fibers (Figure 2). As a result, the
health impacts of CNT on humans have evolved into an urgent
issue to evaluate, discuss, and prevent. Under such a situation, a

comprehensive understanding of the characteristics of pathogenic
CNT and the cellular and molecular mechanisms underlying
CNT-triggered and disease-related effects is imminently required.
In this review, we provide a summary and a discussion of the
current advances in these areas, which allow us to propose a
working model to integrate determinants of CNT toxic activities,
molecular mechanisms, and signaling pathways relating to the
development of inflammation, fibrosis, and tumorigenesis, three
major pathogenic effects observed in animals exposed to CNT
(Figure 4).

Respirable CNT fibers exhibit apparent pathogenic potentials
to induce toxicity and diseases similar to those by asbestos fibers.
CNT also show dynamic and specific behaviors in their depos-
ition, distribution, and clearance in tissue compartments in the
body. Moreover, many toxic effects of CNT depend on their
physicochemical properties, in particular, their solubility, bioper-
sistence, rigidity, physical state, fiber length, surface area, and
surface reactivity, which determine CNT’s intrinsic pathogenicity,
in vivo kinetics, and internal dose. The molecular mechanisms by
which pathogenic fibers and particles, including CNT, asbestos,
and silica, cause toxicity have remained poorly understood for the
most part; but a few molecular events have been observed in
animal and cell models exposed to CNT, among which, oxidative
stress, inflammation, proliferative response, fibroblast prolifer-
ation and differentiation, oxidative DNA base damage and
clastogenic/aneugenic abnormalities, as well as immuno-modula-
tory effects, have been demonstrated to provide a mechanistic
explanation to CNT toxicity at molecular level. Mechanistic
studies have also uncovered a number of cellular signaling
pathways; in particular, the NF-kB, NLRP3 inflammasome, TGF-
b1, MAPK, and p53 pathways have been recognized to play
important roles in CNT-induced pathologic phenotypes. More
specifically, the NF-kB, NLRP3 inflammasome and MAPK
signaling may be involved in inflammatory responses, whereas
the NF-kB, TGF-b1, MAPK, and p53 signaling may contribute to
fibrosis and tumorigenesis, following CNT exposure.

The findings on CNT toxicity have created a body of know-
ledge critical for understanding the health effects of nanoexpo-
sure, as well as for providing guidance to risk assessment,
screening of new nanomaterials, policy making, and prevention-
through-design for nanoapplications. These efforts have signifi-
cantly impacted on and will continue to promote the safe and
responsible development of the nanoindustry; and, at the same
time, protect humans and the environment from potentially
deleterious effects of nanomaterials and products.

Perspectives

Issues relating to nanotoxicity

It is evident that the research on CNT toxicity is still at its early
but rapidly growing stage, and a number of major knowledge gaps
relating to CNT’s structure–toxicity relationship and molecular
mechanisms of action remain to be filled.

One challenging issue derives from the fact that, despite of
large efforts, the properties of CNT at the nanoscale, which define
their relevance to nanotechnology, have not been convincingly
linked to the biological activities of CNT. For instance, CNT have
been hypothesized to perturb the structure and functions of the
mitotic spindle in the nucleus, which may explain their
clastogenic effects. Similarly, CNT in the extracellular matrix
are thought to attract and activate fibroblasts in the interstitial
space of the lungs by mimicking collagen fibers, because of their
nanoscale size and fiber-like shape. Conceivably, detailed
molecular analyses of the interactions between CNT and the
subcellular and molecular targets would be required to identify
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‘‘nanotube-specific’’ toxic effects and the mechanisms of action
underlying the effects.

From a mechanistic point of view, only a small number of
cellular mechanisms and signaling pathways critical to disease
occurrence and development have been detected and reported
under CNT exposure. Even for the relatively well-studied
mechanisms and signaling pathways as summarized above, the
molecular details and biological consequences are lacking in these
cases. For instance, most of the mechanistic studies have been
performed in cultured cells, thus lacking the in vivo confirmatory
information; many of the findings are based on the observation of
positive readout of a specific signaling molecule or pathway,
missing the necessary characterization of critical upstream and
downstream components involved in the signal cascade, such as
the initial events responsible for the activation of a specific
pathway by CNT; and the detailed pathological functions of a
certain pathway in the onset of disease-related phenotypes
induced by CNT have not been addressed to a large extent. In
contrast, these issues are largely anticipated to encounter, given
that the mechanistic study of nanotoxicity is at its early stage and
the molecular mechanisms of toxicity for fibers and particles
including asbestosis and silicosis have remained poorly under-
stood for the most part. Future research into these issues would
promise to provide significant new insights into the toxicity
and safety of pathogenic fibers and particles, including CNT and
their products.

The observations that toxicity can be reduced by changing
CNT’s surface reactivity, i.e. functionalization and coating,
pointed out new ways to build safety into the design of
nanoproducts, but the research in this area remains elementary.
Further analyses of how modification of CNT surface alters CNT
behavior and toxicity in vivo at cellular and molecular levels
would yield valuable new insights into CNT biology and
nanotoxicology.

Because there appears to be a lack of CNT-specific
toxicity, and most of the identified toxic effects, mechanisms
of action, and signaling pathways of toxic CNT can be found
from exposure to non-nanomaterials, such as asbestos and
silica, it was proposed that CNT may be grouped either as
high toxicity fibers, which often represent rigid, biopersistent,
and respirable fibers with a specific geometry and high aspect
ratio, or low toxicity fibers, which typically reflect insoluble,
granular, and biodurable particles and fibers. This categoriza-
tion assumes that CNT can be distinguished by their dose
response curves of toxicity, although they may share similar
mode of action and signaling pathways, if a sufficiently high
dose is given. Additionally, a third category was proposed for
nanomaterials whose toxicity is mediated by specific chemical
properties of their components and thus, should be evaluated
individually (Gebel et al., 2014). It is conceivable that further
mechanistic understanding of the differences in the toxicity
and mechanisms of action between high and low toxicity CNT
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Figure 4. A working model for molecular mechanisms underlying CNT-induced diseases. The activation of NF-kB and NLRP3 inflammasome plays
important functions in the inflammatory responses induced by CNT. TGF-b1 signaling triggers EMT and fibroblast to myofibroblast transformation,
and results in fibrosis under CNT exposure. Abnormal p53 function plays a critical role in CNT-induced tumorigenesis, through dysregulating cell
proliferation and apoptosis. Although in vivo studies have not been performed, NF-kB, p53, and/or MAPK pathways may contribute to the onset of
fibrosis, and NF-kB, TGF-b1, and/or MAPK activation is expected to be involved in tumorigenesis following CNT exposure, according to the functions
of these pathways. Meanwhile, as a critical and rapid-onset immune response, inflammation may initiate and facilitate both fibrosis and tumorigenesis
following exposure to CNT.

14 J. Dong & Q. Ma Nanotoxicology, Early Online: 1–19

N
an

ot
ox

ic
ol

og
y 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
ah

ea
lth

ca
re

.c
om

 b
y 

98
.2

39
.1

40
.3

0 
on

 0
2/

13
/1

5
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.



would be needed before this classification of CNT becomes
meaningful for practical use.

Issues relating to new developments in nanotechnology

Nanotechnology has been advancing rapidly and will keep this
rapid pace of innovation in a foreseeable future, continuously
introducing novel and ‘‘smart’’ nanomaterials of newer gener-
ations, whose health effects would be uncertain and require
toxicological evaluations. In recent years, a number of new
nanomaterials or nanoscale materials have been created and used
for industrial and commercial applications, raising considerable
new challenges for toxicological evaluation of the materials,
which would require new methodology and mechanistic insights
with regard to their potential health effects.

In the first example, CNT have been exploited to produce
nanomedicine for therapeutic and diagnostic purposes, owing to
their unique physicochemical properties. For instance, drugs can
be linked to CNT through covalent or noncovalent attachment on
the surface of CNT, or can be filled within the tubular structure of
CNT, for delivery. As CNT have the ability to cross the various
biological barriers in the body and penetrate into the cell, they
have the potential to efficiently and directly deliver drugs to target
cells and tissues. Therefore, CNT have become good candidates
as drug carriers recently. As examples, the breast cancer drug
Paclitaxel linked to SWCNT and the human gastric carcinoma
drug HCPT linked to MWCNT have been tested in vitro and in
mice (Liu et al., 2008; Wu et al., 2009).

The potential applications of CNT to therapeutic platforms
demand imperative toxicological considerations and evaluations
of CNT-based drugs, due to the identified cytotoxic and
pathologic effects induced by CNT. After the drug is released
from CNT, the CNT vehicles may continue to deposit and
accumulate in targeted cells and tissues, and thus may result in
local toxic effects. CNT released at the targeted site may also
enter the circulation and translocate to distant organs, such as the
cardiovascular system and lymph nodes, leading to systemic
effects. Therefore, CNT-based medicines will need to be
evaluated for the in vivo distribution, pharmaco- and toxico-
kinetics, and internal dose of the CNT vehicles, for the purpose of
developing physiologically safe and therapeutically effective
nanomedicine in humans.

‘‘Active nanomaterials’’ and ‘‘nanoscale sophisticated mater-
ials’’ are two examples of novel nanomaterials. An ‘‘active’’
nanomaterial is a nanostructure that changes or evolves its state
during its operation, as defined according to the National Science
Foundation in the Active Nanostructures and Nanosystems grant
solicitation in 2006. Five types of active nanomaterials have
emerged, including (a) remote actuated active nanostructure; (b)
environmentally responsive active nanostructure; (c) miniaturized
active nanostructure; (d) hybrid active nanostructure; and (e)
transforming active nanostructure (Subramanian et al., 2010). A
few examples that involve active nanostructures are nanoelec-
tromechanical systems, targeted drugs and chemicals, sensors,
self-healing materials, and energy storage devices. Unlike trad-
itional or passive nanomaterials, active nanomaterials can shift
from a passive stage to an active stage, which may render them
extra activity and functions including potential and previously
uncharacterized toxic effects.

The ‘‘nanoscale sophisticated’’ materials possess novel,
dynamic, multifaceted, and even time- and context-specific
functionality. Based on the definition, the materials that (a)
demonstrate abrupt scale-specific changes in biological or
environmental behavior, (b) are capable of penetrating to
normally inaccessible places, (c) are active, (d) are self-
assembling, or (e) exhibit scalable hazard that is not captured

by conventional hazard assessments, have been classified as
sophisticated materials, which were introduced and reviewed
elaborately by Maynard et al., (2011). Accordingly, the nanoscale
sophisticated materials may have more complicated physico-
chemical properties, in vivo kinetics, and bioactivities, compared
with traditional nanomaterials.

The production and applications of these active nanomaterials
and nanoscale sophisticated materials demand careful consider-
ation and evaluation with regard to the health risks that these new
materials might pose, bringing about new challenges in toxicology
studies. Conceivably, the research methods that have been
developed and the findings that have been achieved on the
toxicity of CNT and other traditional nanomaterials are expected
to be applicable to the health effect studies on these new
materials, which, together with new tools, experimental designs,
and methodologies to be established and commensurate with the
novel and complex features and functions of the new materials,
would allow the study into critical toxicological issues, such as
how the physicochemical properties and chemical composition of
active nanomaterials and sophisticated materials interact with
cells and bio-molecules to determine their dynamic behaviors,
molecular interactions, and ultimately, toxicity within a biological
system.

Conclusions

The expanding production and applications of CNT-related
materials could result in an unavoidable and increasing human
exposure to CNT, which has developed into an environmental and
occupational issue in the toxicology field, due to the identified
effects induced by CNT. Understanding the molecular mechan-
isms related to CNT-induced toxicity and pathology is a necessary
approach to elucidate and prevent the adverse effects of using
CNT as new materials in human life. In addition, results from the
research on CNT toxicity will provide new clues for developing,
producing and applying novel nanomaterials that will be
hazardless to humans and to the environment. We anticipate an
intensive research effort and a bloom of new findings in the field
of nanotoxicology during the coming few years.
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