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Abstract—Fatigue in lower extremity musculature is associ-
ated with decline in postural stability, motor performance
and alters normal walking patterns in human subjects.
Automated recognition of lower extremity muscle fatigue
condition may be advantageous in early detection of fall and
injury risks. Supervised machine learning methods such as
support vector machines (SVMs) have been previously used
for classifying healthy and pathological gait patterns and also
for separating old and young gait patterns. In this study we
explore the classification potential of SVM in recognition of
gait patterns utilizing an inertial measurement unit associated
with lower extremity muscular fatigue. Both kinematic and
kinetic gait patterns of 17 participants (29 £ 11 years) were
recorded and analyzed in normal and fatigued state of
walking. Lower extremities were fatigued by performance of
a squatting exercise until the participants reached 60% of
their baseline maximal voluntary exertion level. Feature
selection methods were used to classify fatigue and no-fatigue
conditions based on temporal and frequency information of
the signals. Additionally, influences of three different kernel
schemes (i.e., linear, polynomial, and radial basis function)
were investigated for SVM classification. The results indi-
cated that lower extremity muscle fatigue condition influ-
enced gait and loading responses. In terms of the SVM
classification results, an accuracy of 96% was reached in
distinguishing the two gait patterns (fatigue and no-fatigue)
within the same subject using the kinematic, time and
frequency domain features. It is also found that linear kernel
and RBF kernel were equally good to identify intra-individ-
ual fatigue characteristics. These results suggest that intra-
subject fatigue classification using gait patterns from an
inertial sensor holds considerable potential in identifying “at-
risk” gait due to muscle fatigue.
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INTRODUCTION

Localized muscle fatigue is a potential risk factor for
slip-induced falls*® as muscle fatigue adversely affects
proprioception,'*'** movement coordination and
muscle reaction times'® leading to postural instability®’
and gait alterations.”**® As such, identifying “at risk”
gait patterns associated with fatigue may help in
assessment of fatigue related fall risks in various envi-
ronments (especially in the working environments). In
this study, we explore the classification potential of
support vector machines (SVMs) in recognizing gait
patterns associated with lower extremity muscle fatigue
utilizing an inertial measurement unit (IMU).>?

Numerous classification algorithms already exist to
provide human motion classification and associated
movement patterns. Najafi e al. used gyroscope data and
wavelet method to analyze the “‘sit-to-stand” transition in
relation to the fall risk.** Lee er al** proposed linear
discriminant analysis method to classify external load
conditions during walking. Begg et al.® used the SVM
classifier to analyze the minimum foot clearance owing to
aging. The SVM is considered a powerful technique for
general data classification and has been widely used to
classify human motion patterns with good results.>!>3!-3
The advantage of SVM algorithm is that it can generate a
classification result with limited data sets by minimizing
both structural and empirical risks.”> Although numer-
ous studies have been devoted to improving the SVM
algorithms, little work has been performed to assess the
robustness of SVM algorithms associated with move-
ment variations and fatigue states. Furthermore, existing
analysis is mainly based on motion capture systems and
force plate measurements. While these systems are highly
accurate, they do not allow continuous monitoring out-
side laboratory environments.*® Additionally, the high
commercial cost and complexity of data analysis in such
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motion capture systems restrict their use to research
environments and trained personnel only.

In the current study, we aim to monitor kinematics of
walking in unconstrained environments using an IMU
situated at the sternum during fatigue and no-fatigue
walking conditions. IMU’s may help in assessment of
fall risk induced by fatigue and this mobile system may
help monitoring people unobtrusively in outside envi-
ronments (e.g., firefighters and construction workers,
etc.). Additionally, feature selection methods as well as
influences of different kernel schemes on classification
accuracies were investigated. We hypothesize that lower
extremity muscle fatigue will influence walking behavior
and these subtle changes in gait can be classified by
supervised machine learning techniques such as SVMs.

MATERIALS AND METHODS

Participants

Seventeen healthy young adults (nine males and
eight females) participated in this study. The partici-
pants mean age was 29 £ 11 years, height was in the
range of 174 £ 10 cm, and weight was 73 + 12 kg. All
participants were healthy, independent and non-sed-
entary and, were formally screened for major muscu-
loskeletal, cardiovascular, and neurological disorders
by a research coordinator during initial participant
contact. Exclusion criteria of this study were factors
that could interfere with gait, such as medication use,
presence of neuromuscular disease and, balance and
vision disorders. Informed consent was approved by
the Institutional Review Board (IRB) of Virginia Tech
and was signed by all participants prior to the study.

Experimental Procedure

Participants were instructed not to perform any
strenuous exercise 48 h prior to the experiment. All

experiments were conducted between 11:00 am and
4:00 pm, and this was conducted to control the circa-
dian effects of fatigue. Walking trials were conducted
both prior and after the fatigue inducement. All
walking trials were conducted on a linear walkway
(15.5 x 1.5 m) embedded with two force plates
(BERTEC #K&80102, Type 45550-08, Bertec Corpora-
tion, Columbus, OH 43212, USA) in the middle of the
walkway. A six-camera ProReflex system (Qualysis)
was used to collect three-dimensional movement data
of participants using passive infra-red markers. A total
of 5 reflective markers were attached on heels and toes
of both lower limbs, and one at sacrum of the partic-
ipants. Two IMU’s were affixed on the participants,
one at right shank (to normalize the gait cycle) and the
other at the sternum level using velcro straps and
surgical tapes (Fig. 1).

All non-fatigue walking trials were preceded by
acclimatization in laboratory environment and warm-
up for about 10 min (walking back and forth on the
laboratory track). Timeline of testing procedure is
illustrated in Fig. 2.

Non-Fatigue Walking Trials

Participants were instructed to walk at their self-
preferred pace on the walking track and gait charac-
teristics were assessed in the middle portion (5 m) of
this walkway. Infrared markers on both feet were used
to determine step length (SL), step width, heel contact
velocity (HCV) and single stance time. SL refers to the
linear distance in the direction of progression between
successive points of foot-to-floor contact of the first
foot and contralateral foot. The SL is calculated from
the difference between consecutive positions of the heel
contacting the floor.*” The step width is the distance
between the rear end of the right and left heel center-
lines along the mediolateral axis of foot. Heel contact
velocity is the instantaneous horizontal heel velocity at
heel contact is calculated utilizing heel velocities in the

A

FIGURE 1. Attachment of IMU sensors at (a) shank and (b) sternum level using velcro strap.
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FIGURE 2. Timeline of testing procedures. Practice trials were performed with the dynamometer followed by data collection for
maximum voluntary torque and normal walking. Before inducing fatigue warm up exercises were conducted. Participants were
considered fatigued when their isokinetic MVC was below 70% of initial isokinetic values for all three trials.

horizontal direction at the foot displacement of 1/60 s
before and after the heel contact phase of the gait
cycle.* Single stance time refers to the time person is
standing on one foot.”” And it is one of the most sig-
nificant gait parameters.’®

Reflective marker affixed on the sacrum is used to
determine walking velocity. Heel contact and toe-off
time events were confirmed using ground reaction
forces measured (sampling frequency 1200 Hz) from
the forceplates positioned across the center area of the
walkway. Ground reaction force measurement was
reviewed in every trial for ascertaining foot placement
in the desired sequence (i.e., left-right heel contacts on
the two forceplates). If the foot placement did not lie at
the center of the force platform the participants were
requested to repeat the trial. Five good walking trials
were collected and each trial consisted of 6—7 complete
gait cycles.

Fatigue Inducement

A custom built Biodex (Biodex System 3 Dyna-
mometer, Shirley, New York, USA) attachment for
the shoulders was used to assess maximum voluntary
isokinetic exertions (MVE) during squatting (Fig. 3).
The Biodex attachment was designed to measure
combined torque from the ankles, knees, hips and
lower back through vertical motion/force exerted via
shoulders. Although MVEs were performed using the
shoulder attachment with a dynamometer during squat
protocol, fatigue was induced by holding 5% of their
body weight in front of themselves by both hands while
squatting repeatedly at 22 repetitions per minute. An
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exercise set was set for 5 min and was followed by
measurement of three MVEs using dynamometer.
Experimenters did not instruct participants to take
break between the exercise sets, but it was kept on
participant’s choice to start their next new exercise set
as soon as they felt they were ready for it. The exercise
sets continued until the participants reached 60% of
their baseline MVE; this was categorized as fatigued
state (time taken by participants was 52 + 7 min to
reach this state).

Fatigue Walking Trials

After inducement of fatigue as determined by deg-
radation in MVEs, locations of all five infrared
markers were re-checked. Participants did not warm-
up after isotonic fatiguing exercises but were asked to
walk again on the walking track at their own preferred
pace. All gait characteristics were derived similar to
that mentioned in non-fatigue walking section and five
good walking trials were collected. The complete
experiment lasted for 3—4 h.

Instrumentation

The IMU node consisted of MMA7261QT tri-axial
accelerometers and IDG-300 (x and y plane gyroscope)
and ADXRS300, z-plane uniaxial gyroscope aggre-
gated in the Technology-Enabled Medical Precision
Observation (TEMPO) platform which was manufac-
tured in collaboration with the research team of the
University of Virginia.>>° The data acquisition was
carried out using a Bluetooth adapter and laptop
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FIGURE 3. Customized Biodex attachment for measurement of maximum voluntary exertions.

through a custom built program in LabView (LabView
2009, National Instruments Corporation, Austin, TX).
Data was acquired with sampling frequency of 120 Hz.
This frequency is largely sufficient for human move-
ment analysis in daily activities, which occurs, in low
bandwidth (0.8-5 Hz).” The data was processed using
custom software written in MATLAB (MATLAB
version 6.5.1, 2003, computer software, The Math-
Works Inc., Natick, Massachusetts) and libSVM
toolbox.!" The processor of laptop used for analysis
was 2.2 GHz Intel Core i7.

Statistical Data Analysis

A repeated-measure design was used to test changes
within-subject in gait parameters from normal walking
and post fatigue walking trials. A paired sample ¢ test
was used to test the gait parameters obtained using
camera system and forceplates. Gait parameters such as
SL, step width, HCV, and single stance time were com-
puted for all five trials around the two forceplates.*’

Input Data to the SVM Classifier

Kinematic data from the IMU located at the sternum
during walking [i.e., representative gait cycle (RGC)]
was used as the SVM classifier input. RGC was defined
as the period between one-foot contact to same foot
contact again representing a stride duration, which was
determined by the angular velocity profiles of the shank
IMU. A perfect RGC signal between two easily identi-
fiable events of the same foot was chosen for the analysis

(Fig. 4). RGC started at peak right shank angular
velocity and terminated at consecutive peak right shank
angular velocity. IMU signals from the sternum were
truncated between the RGC and normalized from 0%
(beginning of RGC) to 100% (end of RGC).

Training and Testing Sets

For the classification, both training and testing data
sets consisted of fatigue and no fatigue RGC data.
Each normal and fatigue walking trial consisted of 67
gait cycles, of which two middle RGCs data were ex-
tracted from each walking trial. In total, twenty RGCs
were extracted: ten RGCs were extracted from five
normal walking trials and the other ten RGCs from
five fatigue walking trials. In both intra-subject and
inter-subject classifications, training set was kept 70%
of the total number of sets whereas the remaining 30%
was kept for testing.

Intra-Subject Classification

Training set consisted of 14 RGC data sets, 7 from
each walking condition (fatigue/no-fatigue). The
remaining 6 RGC data sets, 3 from each walking
condition were used as testing sets in intra-subject
classification.

Inter-Subject Classification

Inter-subject fatigue/no-fatigue classification was
performed using training sets of 238 RGCs and testing

sets of 102 RGC data sets.
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FIGURE 4. Two consecutive time epochs when right shank attains peak angular velocities were chosen during walking as input
gait pattern data mimicking gait cycle and was defined as RGC. The R-GC data from IMU situated at trunk was truncated for

extraction of features values to SVM.

FEATURE SELECTION METHODS

General Features

The general features were chosen to include all
possible spatial and temporal information from the
signals. Based on the criterion of minimizing compu-
tational complexity and maximizing the class discrim-
ination, several key features have been previously
proposed for SVM classification.”® All features in this
study have been extracted from raw signals.

Mean Absolute Value

The mean absolute value of the original signal, ¥ in
order to estimate signal information in time domain:

N

N 1)

k=1

where x; is the kth sampled point and N represents the
total sampled number over the entire signal.

Zero Crossings Zero crossing is defined as the
number of times the waveform crosses zero, in order
to reflect signal information in frequency domain.
Slope sign changes It is the number of times the
slope of the waveform changes sign, which re-
flects frequency content of the signal.
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Length of waveform It represents the cumulative
curve length over the entire signal, in order to
provide information about the waveform com-
plexity.

Dominant frequency RGC signal was filtered
using Butterworth low-pass filter of 4th order
with cut-off frequency of 6 Hz. Fast Fourier
Transformation (FFT) was carried out on the
filtered signal and the dominant frequency was
defined as the frequency with the highest mag-
nitude.

Other general features included mean, standard
deviation, maximum, minimum, skewness, kurtosis,
and energy of RGC signal segments. All of these fea-
tures would give a measure of waveform amplitude,
frequency, and duration within a single parameter.
Table 1 elaborates general features used in this study.

Selected Features

In total, 11 kinematic features were selected from
the resultant walking acceleration and jerk. Resultant
acceleration was calculated from the raw accelerometer

data:
R:,/A§+AJ2,+A§ (2)
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TABLE 1. Three feature sets were used as inputs to SVM.

General features

Domain knowledge based selected features

Data input for feature
extraction

Accelerometer (A, A, A,)

Mean

Standard deviation

Maximum

Minimum

Mean absolute value X = £ 3" | Xk|
k=1

2

Skewness

Kurtosis

Energy

Number of slope sign changes
Number of zero crossings
Length of waveform

Dominant frequency using low-pass filter and FFT

and gyroscope (G, G, G,) signals in
all three directions of normalized RGC

Resultant acceleratiodr; (R =\ A+ A+ A§>

Resultant Jerk (J = 2%)

Resultant acceleration features
Skewness (temporal shift)
Energy

Dominant frequency
Maximum acceleration
Minimum acceleration

Range of acceleration
Resultant jerk features
Skewness (temporal shift)
Mean jerk at heel contact
Absolute maximum jerk
Absolute minimum jerk

Range of jerk produced abs (max—min)
Jerk cosst 5

JC = | g ot

(1) General features and (2) selected features.

where 4., 4,, A. are accelerations sensed by triaxial
accelerometer situated on trunk in a period elapsed for
one RGC. Jerk is computed as a derivative of resultant
acceleration. Resultant acceleration and jerk of the
trunk segment and their derived features such as mean,
maximum, minimum, range, energy and dominant
frequency while walking are important as they provide
complete kinematics of the trunk. Helbostad and his
colleagues have reported significant increase in trunk
acceleration due to physical fatigue.”® Skewness of
resultant accelerations and jerk provides information
of the temporal shift of peak accelerations and jerk in
RGC derived signals. Jerk cost, as described by the
area under squared jerk curve is an important measure
to estimate the energy economy of walking.

T
JC:/

0

2

3
o (3)

as

During walking, minimizing jerk and minimizing
energy are believed to be complementary performance
criteria.*>>* Figure 4 illustrates resultant acceleration
profiles for a complete RGC. We have performed
the classification with possible kinematic features,
which could bring significant changes due to fatigue
(Table 1).

Input Data Processing

Preprocessing of features is usually required before
using the SVM classifier to maximize the classification
accuracy. The input features derived from RGC signals

were normalized, and the dimension of the feature
space was reduced using principal component analysis.

(A) Normalizing input data: All features values
were normalized by combining training and
testing feature space and dividing all of them
by the maximum value of that particular
feature. In this kind of scaling the input data
was kept in range between 0 and 1, and where
1 was the maximum value of the feature.

(B) Dimension reduction of feature space: Principle
Component Analysis (PCA)'® was employed
to decrease the dimensions. The objective of
PCA is to perform dimensionality reduction
while preserving as much of the randomness
in the high-dimensional space as possible.

Kernel Schemes

A kernel is a function that transforms the input data
to a high-dimensional space where classification is
possible. Kernel functions can be linear or nonlinear.
Kernel selection plays an important role in acquiring
high accuracy from SVM classification. A good se-
lected kernel may minimize generalization error, and
increase classification accuracy. The linear kernel
function is the simplest kernel function and works well
when there are many features in the training data.
Radial basis function (RBF) kernel is usually the first
reasonable choice as it can nonlinearly map data into
higher dimensional space. Polynomial kernels are non-
stationary kernels and are well suited for normalized

training data.
BIOMEDICAL ENGINEE§NG SOCIETY™
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Cross-Validation

Cross-validation is a standard technique usually
adopted for adjusting hyper-parameters to improve the
quality of its estimates in SVM model. A five-fold
cross-validation scheme was adopted to evaluate the
generalizability of the SVM classifier.*> In cross-vali-
dation procedure, the training data set is uniformly
divided into five subsets with one used for testing and
the other four used for training and constructing the
SVM decision surface. This process is continued until
all subsets are used as the testing sample.

Performance Assessment of SVM Classifier

All SVM models were trained over the range of cost
parameter, C (27 '°-2'%) using linear, polynomial and
RBF kernel. The cost parameter C controls the
tradeoff between training error and margins. The cri-
terions used to assess the classification performance of
SVM classifier were:

TP+ TN

A acy = 1 4
ceuracy = zp N v < 0% )

TP

ivity — 1P

Sensitivity TPrFEN > 00% (5)

A TN
SpelelClty = m X 100% (6)

where TP represents the number of true positive,
SVM identified a normal no-fatigued gait that was
labeled as no-fatigue; TN is the number of true neg-
atives, identified fatigued gait data that was labeled as
fatigue; FP is the number of false positives, and FN is
the number of false negatives, false fatigue identifi-
cation. While accuracy indicates overall detection
accuracy; sensitivity is defined as the ability of the
SVM classifier to accurately recognize no-fatigue
condition; and specificity would indicate the SVM
classifier’s ability to avoid false detection. Schematic
diagram of SVM classification algorithm is illustrated
in Fig. 5.

Furthermore, Receiver Operating Characteristic
(ROC) curve was also used to evaluate SVM classifier’s
performance. ROC analysis is generally utilized to se-
lect optimal models and to quantify the accuracy of
diagnostic tests. Besides, the area under the ROC curve
(AUCQ), which is a representation of the classification
performance, was utilized to assess the effectiveness of
SVM classifier. Further, tests were also conducted to
evaluate performance of the SVM classifier in three
different kernel functions: linear, polynomial and RBF
kernels.
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RESULTS

Gait parameters were extracted using forceplate and
motion capture system as shown in Table 2. No sig-
nificant differences were found for the SL of the par-
ticipants due to inducement of fatigue. However, it was
seen that participants adopted wider base of support
(12% wider) in post fatigue walking trials. Although
no statistical significant difference was observed in
walking velocity, HCV was significantly increased
(p = 0.01) in post-fatigue walking trials.

The machine learning classification results demon-
strated high intra-individual classification rates across
all three types of kernel (i.e., linear, polynomial and
RBF kernel). We found that linear (accuracy 97%) and
RBF (accuracy 96%) kernels performed equally well
in intra-individual fatigue/no-fatigue classifications
(Table 3). And polynomial kernel had the lowest
classification accuracy (about 88%) amongst all three
different types of kernels.

Table 4 shows mean success rates of SVM classifier
for inter-subject fatigue classification. SVM achieved
about 90% inter-subject fatigue classification accura-
cies with general features for identifying fatigue among
participants. Selected features from the trunk kine-
matics could achieve a good accuracy of 88%. Addi-
tionally, these selected set of features were analyzed
statistically for both fatigue and no-fatigue conditions.

We found that features of resultant acceleration and
jerk such as maximum; minimum, range, skewness,
and energy along with jerk cost were significantly dif-
ferent for post-fatigue walking as reported in Table 5.

Computation time for linear kernel was 70.85 s,
polynomial kernel required 15.18 s and RBF kernel
required 16.59 s for classification. The inter-subject
fatigue classification results from three different ker-
nels are shown in Fig. 6. Linear kernel defines a linear
boundary to achieve classification (Fig. 6a). Polyno-
mial kernel utilizes polynomials of the original input
data to classify post-fatigue walking and no-fatigue
walking (Fig. 6b). It belongs to nonlinear classifica-
tion, and has more complexity and better performance
when compared to linear kernel. RBF kernel is the
most popular kernel function, and the two curves
running through support vectors are the nonlinear
counterparts of the convex hulls (Fig. 6¢).

DISCUSSION

In this study we explored the classification potential
of SVM in recognition of gait patterns utilizing an
IMU associated with lower extremity muscular fatigue.
Limited information exist in understanding the impact
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FIGURE 5. Schematic diagram of procedure of SVM classification.

TABLE 2. Step length (mm), step width (mm), HCV (mm/s),
walking velocity (m/s) and stance duration (s) were evaluated
for no fatigue and post fatigue walking trials.

No fatigue Post fatigue p value

SL (mm) 755 + 59
Step width (mm) 110 £ 32 123 + 38 0.02*
Heel contact velocity (mm/s) 569 + 110 637 + 122 0.01*
Walking velocity (m/s) 1.41+£0.15 1.40+0.16 0.90
Single stance time (s) 0.68 £ 0.04 0.66 £ 0.04 0.005*

748 + 58 0.22

The data provided is in mean + SD for the group and paired t test
was used with alpha set at 0.05.

of muscle fatigue on dynamic postural control during
walking that may be amendable to -classification
schemes. Our results indicate that fatigue effects are
evident in individuals’ gait patterns and loading
responses (as measured by an extracted feature—jerk
costs). Additionally, these changes although subtle,
can provide helpful information for SVM to classify
the status of lower extremity muscle fatigue.

Fatiguing of the muscles around a joint may have
inhibited the joint’s neuromuscular feedback and syn-
ergism between joint proprioception leading to insta-
bility and gait changes.'->!6-23:26:303541.51 The cyrrent
results suggest that single stance duration is decreased
in post-fatigue walking trials which are similar to
previous findings.*® During stance phase of the gait
cycle, proprioceptive input from extensor muscles and
mechanoreceptors in the sole of the foot provide the
loading information'* to the central nervous system.
Thus, the reduced stance duration decreases foot-
loading information through afferent sensory and
proprioceptive mechanoreceptors, such as Golgi-ten-
don units, muscle spindles, and joint receptors, and
may have adversely influenced motor control of the
lower extremity during walking. Additionally, fatigue
inducement increased step width,®> which may be
associated with modulation of self-selected pace and
loss of proprioception due to fatigue,* or due to
change in motor control schema with adoption of
other compensatory strategy to increase stability.
Furthermore, inducement of fatigue also increased
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TABLE 3. Intra-subject fatigue classification using IMU
derived features.

Intra-subject classification

Linear Polynomial RBF
General features
Accuracy 0.97 0.88 0.96
Sensitivity 0.98 0.92 0.98
Specificity 0.96 0.84 0.94
AUC 0.98 0.98 0.98
Selected features
Accuracy 0.93 0.86 0.93
Sensitivity 0.90 0.82 0.88
Specificity 0.96 0.90 0.98
AUC 0.96 0.94 0.97

Accuracy, sensitivity, specificity and AUC (area under the ROC
curve) are tabulated for three kinds of feature selections methods
and three kernels.

TABLE 4. Inter-subject fatigue classification using force-
plate and IMU derived features.

Intra-subject classification

Linear Polynomial RBF
General features
Accuracy 0.88 0.90 0.90
Sensitivity 0.88 0.92 0.92
Specificity 0.88 0.88 0.88
AUC 0.93 0.92 0.95
Selected features
Accuracy 0.85 0.85 0.88
Sensitivity 0.80 0.82 0.86
Specificity 0.90 0.88 0.90
AUC 0.93 0.92 0.94

Accuracy, sensitivity, specificity and AUC (area under the Receiver
operating curve) are tabulated for three kinds of feature selections
methods and three kernels.

HCV in post-fatigue walking trials.”' Considering

HCYV is a kinematic gait parameter that can drastically
alter the friction demand (by change in required coef-
ficient of friction)'? and influence the likelihood of slip-
induced falls,”®**%¢ fatigue inducement in lower
extremity may ultimately increase slip-induced fall
risks. Hence, our findings support the previous studies
by Helbostad et al.*® and Johnston et al.,*® suggesting
that lower extremity fatigue impairs gait performance
and locomotor control.

Gait adaptations associated with lower extremity
muscle fatigue, as described above, may influence the
energetics of walking and these changes in energy costs
associated with fatigued state may be utilized to clas-
sify fatigue/no-fatigue gait conditions. Assuming,
walker’s body mass to be a point mass and, a rigid
strut connecting it to the point of ground contact. This
point mass reaches the highest point at the middle of
the stance phase.®'® The trajectory of whole body
center-of-mass (COM) follows a sinusoidal path along
vertical direction,® '*? which may have been influ-
enced due to fatigue. Similarly in walking, accelerom-
eter located at the trunk allowed the measurement of
mechanical work done during walking (i.e., induce-
ment of fatigue and its associated relationship to
economy during walking as assessed by the jerk cost).
Energy is defined as the external work done by muscles
to maintain locomotion and is highly correlated with
vertical displacement of COM. An approach to mini-
mize vertical movements of the COM (at trunk level)
was detailed by Inman and his colleagues,** in which
they identified several mechanisms involved in flat-
tening the trajectory of the COM,*** including sag-
ittal plane knee flexion and extension during stance
phase. However, with fatigue, flattening of the trajec-
tory of the COM may not be efficient due to the
kinematics of lower extremity joints. For example,

TABLE 5. Selected features from IMU were computed for no-fatigue and post fatigue walking and statistical analysis is reported.

Gait characteristics from IMU Features No-fatigue walking Post-fatigue walking p value
Resultant acceleration Maximum (g) 0.201 0.428 <0.0001
Minimum (g) 0.042 0.127 <0.0001
Range (g) 0.157 0.301 <0.0001
Skewness 0.209 0.078 0.0333
Energy (g2 s) 2.144 10.150 0.0006
Dominant frequency (Hz) 1.494 1.558 0.1584
Jerk Maximum (g/s) 0.010 0.022 <0.0001
Minimum (g/s) 0.009 0.018 0.0003
Range (g/s) 0.021 0.041 <0.0001
Skewness 0.185 0.317 0.0493
Jerk at heel contact (g/s) 0.003 0.007 <0.0001
Jerk cost (g%/s) 0.007 0.022 0.0233
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SVM Classification with Linear Kernel
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FIGURE 6. Inter-subject fatigue classification results via
three different kernels: (a) linear kernel; (b) polynomial kernel,
and (c) RBF kernel.

Kellis and Liassou®® found that ankle muscle fatigue
decreased ankle dorsiflexion, while knee fatigue
increased knee flexion at initial heel contact. In addi-
tion, they reported increased hip extension following
knee fatigue and increased plantar-flexion following
ankle muscle fatigue, resulting in higher vertical

movements in post-fatigue walking than that of a no-
fatigue walking condition.

Hreljac and Martin®® concluded in their study that
minimum jerk movements should also minimize energy
consumption during walking. When lower extremity
muscle fatigue was induced, high abruptness in the
trunk acceleration (Jerk) was noticed.'® Fatiguing of
the muscles in lower extremity joints may influence the
joint’s neuromuscular feedback and synergism between
joint proprioception and muscular function leading to
instability!-216:23:26:30.354151 44 stiffness.*>* How-
ever, constant muscular stiffness has to be maintained
to minimize jerk during repetitive, skilled move-
ments.* It is seen that jerk at heel contact increased in
magnitude by 2.3 folds and jerk cost increased by 2.8
folds in post-fatigue walking. Higher resultant accel-
erations (two folds higher range of acceleration) as well
as higher signal energy magnitudes (5 folds higher
signal energy) in post-fatigue walking trials were
observed in our study. In essence, it appears that in
post-fatigue walking trials, the total energy at the
sternum level goes through large fluctuations during
stance and the elastic energy storage is reduced; thus,
resulting in higher energy dissipation through fluctua-
tions at the trunk level (similar to catching a baseball
with fully-extended elbow with greater impact (fati-
gued) vs. flexed elbow with less impact (non-fatigued)).
It appears that SVM can map this nonlinear inter-
feature relationship using the kinematics of the trunk
for better discrimination of fatigue and no-fatigue
states.

Previous researchers have adopted various gait
feature extraction methods for SVM classification.
Begg and coworkers differentiated elderly and young
gait patterns using general features on minimum foot
clearance data.* In another study, they selected kinetic
and kinematic gait features for classification.! Whereas
Eskoifer et al. adopted concatenated waveforms from
infrared markers to classify young and elderly gait."”
Results of our investigation (Tables 3, 4) indicate that
features extraction methods influenced classification
accuracy. In inter-individual and intra-individual fati-
gue classification, general feature input performed with
higher classification accuracy followed by selected
feature input. In essence, general features exhibited
superior classification accuracy and had important gait
information to classify fatigue, on the contrary, the
selected feature extraction method lacked peculiar
information relevant to achieving higher classification
results.

Three different types of kernels were employed in
SVM classifier: linear, polynomial, and RBF. Both
linear and RBF kernels performed well in intra-indi-
vidual fatigue/no-fatigue classifications, which com-
plied with Lee and Grimson’s report,*® showing that
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linear kernel performs better than polynomial kernel in
SVM gait recognition. However, for inter-individual
classification, RBF performed better than the other
two kernels. Considering the computational cost, RBF
and polynomial kernels need less time compared to
linear kernel in the same conditions. As such, RBF
kernel is the most promising kernel function in the
fatigue classification schemes, and it may also provide
better applicability to real time system implementation.

LIMITATIONS

Conclusions based on this study should be consid-
ered in context of the limitations. Due to limited
number of testing and training data sets, a separate
cross-validation set was not employed for generaliza-
tion of regularization parameters. An IMU was placed
at the sternum, which could only approximate kine-
matics of trunk center-of-mass, but does not accurately
quantify its kinematics as this placement position may
miss smaller nuances associated with fatigued data.
Thus, the results of this study should be limited to
kinematics of the sternum placement of participants
and not to kinematics of trunk COM. It is also quite
possible that during our intense fatiguing protocol,
squatting exercises might have lead to some extent of
anterior knee pain in few subjects, which would have
added to another dimension into altered gait (pain
avoidance), beyond the altered characteristics of sim-
ple muscle fatigue. Another limitation of this study is
that no feature selection method was used to extract
optimal set of features. In addition, order effects are an
inevitable limitation in all fatigue experiments. Fatigue
level may change from day-to-day basis in humans and
it also follows circadian rhythm and thus time of
experiment may influence fatigue levels.

CONCLUSION

IMUs can assist in identification of localized muscle
fatigue. Intra-subject fatigue classification results in
this study ranged from 93 to 98%, thus body worn
sensors can potentially open doors for personalized
monitoring on a regular basis to identify “at-risk’ gait.
SVMs are powerful machine learning tools applicable
to the identification of post fatigue gait patterns by
using a set of gait features relevant to the kinematics of
the trunk during walking.

While the algorithms allow for online implementa-
tion, it is necessary to determine an optimal feature set
that could automatically identify the most significant
kinematic changes in gait after inducement of fatigue.
Thus, we conclude that fatigue affects kinematics and
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gait characteristics, which can be assessed by an IMU
using SVMs.
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