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Imputation and subset-based association analysis
across different cancer types identifies multiple
independent risk loci in the TERT-CLPTM1L region
on chromosome 5p15.33
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Genome-wide association studies (GWAS) have mapped risk alleles for at least 10 distinct cancers to a small
region of 63 000 bp on chromosome 5p15.33. This region harbors the TERT and CLPTM1L genes; the former
encodes the catalytic subunit of telomerase reverse transcriptase and the latter may play a role in apoptosis.
To investigate further the genetic architecture of common susceptibility alleles in this region, we conducted
an agnostic subset-based meta-analysis (association analysis based on subsets) across six distinct cancers
in 34 248 cases and 45 036 controls. Based on sequential conditional analysis, we identified as many as six in-
dependent risk loci marked by common single-nucleotide polymorphisms: five in the TERT gene (Region 1:
rs7726159, P = 2.10 x 10~3%; Region 3: rs2853677, P = 3.30 x 107 ® and Pconditional = 2.36 X 10~2; Region 4:
rs2736098, P = 3.87 x 102 and Pcongitional = 5-19 X 1076, Region 5: rs13172201, P = 0.041 and Pconditional =
2.04 x 10~%;and Region 6: rs10069690, P = 7.49 X 10~ "5 and Pgconditional = 5-35 X 10~ 7)and one in the neighbor-
ing CLPTM1L gene (Region 2:rs451360; P = 1.90 X 10~ "8 and Pconditional = 7-06 x 107 '€). Between three and five
cancers mapped to each independent locus with both risk-enhancing and protective effects. Allele-specific
effects on DNA methylation were seen for a subset of risk loci, indicating that methylation and subsequent
effects on gene expression may contribute to the biology of risk variants on 5p15.33. Our results provide
strong support for extensive pleiotropy across this region of 5p15.33, to an extent not previously observed in
other cancer susceptibility loci.

INTRODUCTION

Genome-wide association studies (GWAS) have identified inde-
pendent susceptibility loci in a region on chromosome 5p15.33
that are associated with at least 10 distinct cancers. The pub-
lished findings include bladder (1), estrogen-negative breast
(2), glioma (3), lung (4—7), ovary (8), melanoma (9), non-
melanoma skin (10,11), pancreas (12), prostate (13) and testicu-
lar germ cell cancer (14). This degree of pleiotropy for common

susceptibility alleles suggests that the region harbors an import-
ant set of elements that could influence multiple cancers. It has
been observed previously that one allele may be protective for
one cancer while conferring susceptibility to another (15).
These independent loci map to ~63,000 bp of 5p15.33 that
harbors two plausible candidate genes: TERT, which encodes
the catalytic subunit of telomerase reverse transcriptase (16)
and CLPTM 1L, which encodes the cleft lip and palate-associated
transmembrane 1 like protein (also called cisplatin resistance
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related protein, CRR9). CLPTMIL appears to play a role in
apoptosis and cytokinesis, is overexpressed in both lung and
pancreatic cancer and is required for KRAS driven lung cancer
(17-21). Germline mutations in TERT can cause dyskeratosis
congenita (DC), a cancer-prone inherited bone marrow failure
syndrome caused by aberrant telomere biology (22). Clinically
related telomere biology disorders, including idiopathic pul-
monary fibrosis and acquired aplastic anemia, can also be
caused by germline 7TERT mutations (reviewed in 23).

To investigate the genetic architecture of common suscepti-
bility alleles across this region of 5p15.33 in multiple cancer
sites, we utilized a recently developed method called association
analysis based on subsets (ASSET) that combines association
signals for an SNP across multiple traits by exploring subsets
of studies for true association signals in the same, or the opposite
direction, while accounting for the multiple testing required
(24). The method has been shown to be more powerful than
the standard meta-analysis in the presence of heterogeneity,
where the effect of a specific SNP might be restricted to only a
subset of traits or/and may have different directions of associa-
tions for different traits (24).

RESULTS

In this study, we conducted a cross-cancer fine-mapping analysis
ofaregion on chromosome 5p15.33 known to be associated with
multiple cancer sites. We imputed each dataset across a 2 Mb
window (chr5: 250 000-2 250 000; hgl9) using the 1000
Genomes (1000G) and DCEG reference datasets (25,26) and
applied a subset-based meta-analysis method (ASSET) (24) to
combine results across six cancers (11 studies) (see Materials
and Methods for details). This method has been shown to
improve power and interpretation when compared with other
traditional methods for the analysis of heterogeneous traits (24).

In the first analysis, we focused on six distinct cancer sites in
which 5p15.33 had previously been reported and had a nominal
P-value in our dataset (‘Tier-I studies’ scans, see Materials and
Methods). We performed the analysis across all studies (77%
European, 7% African American and 16% Asian ancestry,
ALL scans), and, because the majority of studies and subjects
were of European ancestry, we conducted parallel analyses in
this group only (EUR scans). Bonferroni correction was used
to assess significance, using the threshold at 1.3 x 10>, based
on the number of single-nucleotide polymorphisms (SNPs) ana-
lyzed across the region (n = 1924) and the two analyses per-
formed (ALL or EUR scans) (see Materials and Methods). In
the second analysis, we examined the regions identified above
in eight cancers in which 5p15.33 had not been reported in the
literature (NHGRI Catalog of Published GWAS studies: http://
www.genome.gov/gwastudies/), or did not show a nominal
P-value in our dataset (‘Tier-II studies’).

Application of ASSET by sequential conditioning of asso-
ciated SNPs revealed up to six independent loci on 5p15.33,
each influencing risk of multiple cancers (Fig. 1, Table 1; Sup-
plementary Material, Table S1). In the primary analysis of all
subjects, we performed the ASSET meta-analysis based on un-
conditional association results from each of the six cancer
scans (11 studies). This identified rs7726159 with the lowest
P-value (P = 2.10 x 10>%), thus marking Region 1. The next

four SNPs, ranked by P-values, were highly correlated with
the index SNP based on 1000G CEU data: rs7725218 (P =
2.98 x 1073, pair-wise 7* = 0.90), rs4449583 (P = 3.37 x
1073, pair-wise * = 1.0), rs7705526 (P = 1.00 x 10~ >¢, pair-
wise 7* = 0.74) and rs4975538 (P = 4.11 x 102, pair-wise
r* =0.76). These five SNPs reside in the second and third
intron of the TERT gene and are common, with effect allele fre-
quencies ranging between 0.18 and 0.43 in African (AFR),
0.35-0.37 in Asian (ASN) and 0.32—0.38 in European (EUR)
populations, each estimated in the 1000G project (Supplemen-
tary Material, Table S2). A search for surrogates using an r
threshold of 0.7 across a 1 Mb window centered on the index
SNP did not identify additional highly correlated SNPs. The
effect allele (A) of rs7726159 was positively associated with
glioma (Glioma Scan) and lung cancer (Asian Lung) (P =
438 x 107%°, ORcombined = 1.47; 95% CI = 1.38-1.56), but
negatively associated with testicular cancer (TGCT NCI), pros-
tate cancer (Pegasus and AdvPrCa) and pancreatic cancer
(ChinaPC) (P = 5.07 x 10™°, ORcompined = 0.85; 95% CI =
0.80—0.91) (Fig. 2A).

The most significant SNP after conditioning onrs7726159 was
15451360 (P = 1.90 x 10™'®; Pconditional = 7.06 x 107 19), res-
iding in intron 13 of CLPTM 1L and marking Region 2 (Fig. 1,
Table 1). Six SNPs were correlated with rs451360 with an 7~ >
0.7, all located within 500 kb of this SNP and spanning the
entire length of CLPTMIL: rs380145, rs13170453, rs37004,
rs36115365, rs35953391 and rs7446461. This effect allele
(rs451360-A) was positively associated with pancreatic cancer
(PanScan) and testicular cancer (TGCT NCI) (P =4.38 x
10713, OR compined = 1.34; 95% CI = 1.24—1.45), but negative-
ly associated with lung cancer (AA Lung, Asian Lung and Eur
Lung) (P = 9.50 x 10~ ®, ORcombined = 0.85; 95% CI = 0.80—
0.90) (Fig. 2B). Although large differences were seen in the
effect allele frequencies across the 1000G continental popula-
tions, 0.02—0.03 in AFR, 0.12 in ASN and 0.17-0.24 in EUR
(Supplementary Material, Table S2), the signal was still suffi-
ciently strong to be detected, particularly in African and Asian
lung studies, suggesting its importance in lung cancer etiology.

In our sequential conditional analysis, 152853677 (located in
the first intron of TERT) was the most significant SNP after con-
ditioning on both rs7726159 and rs451360, thus marking Region
3 (P=3.30 x 107°%  Pcongitional = 2.36 x 107%) (Fig. 1,
Table 1). No additional SNPs with an »* > 0.7 were located
within 500 kb of this SNP, which has relatively low LD with
both 157726159 (#*=0.13) and rs451360 (+*=0.12) in
1000G CEU data. Region 3 (rs2853677-A) was positively asso-
ciated with testicular cancer (TGCT NCI) and pancreatic cancer
(PanScan and ChinaPC) (P = 1.36 x 10”7, OR compined = 1.22;
95% CI=1.13-1.31), but negatively associated with lung
cancer (Asian Lung and AA Lung) and glioma (Glioma scan)
(P =2.79 x 10", ORCombined = 0.73; 95% CI = 0.70—0.77)
(Fig. 2C). The effect allele frequency for rs2853677 was consist-
ent across the three continental 1000G populations correspond-
ing to the studies included in this analysis: 0.60 in EUR, 0.67 in
ASN and 0.71 in AFR (Supplementary Material, Table S2).

A conditional analysis based on the three SNPs above
(rs7726159, 1rs451360 and rs2853677) yielded Region 4,
marked by 1s2736098 (P =3.87 x 10 "%  Pconditional =
5.19 x 10~%), a synonymous variant (A305A) in the second
exon of TERT (Fig. 1, Table 1). Three additional SNPs with an
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Figure 1. Sequential conditional analyses and ASSET meta-analyses identified up to six independent signals for the TERT-CLPTM 1L region on chromosome 5p15.33.
SNPs marking each region are plotted in the upper panel with two P-values (solid diamonds correspond to an unconditional test and open diamonds correspond to a
conditional test) on a negative log scale (left y-axis) against genomic coordinates (x-axis, hg19). Cancers from different GWAS scans (acronyms detailed in box in top
panel) that are associated within each region in the subset meta-analysis are listed (red, positively associated; green, negatively associated) from the unconditional
ASSET meta-analysis. Effect alleles are shown next to SNP identifiers. Recombination hotspots (curved lines, top panel) were inferred from three populations
from the DCEG Imputation Reference Set version 1 (red, CEU; green, ASN; blue, YRI) as the likelihood ratio statistics (right y-axis). Also shown are the gene struc-
tures for TERT, MIR4457 and CLPTM1L (middle panel), and LD heat map based on 7 using the 1000 Genomes CEU population (lower panel). Results are shown for
the ALL analysis except the region marked by rs10069690 (top panel) and labeled with a “*” that was identified in the European ancestry-only analysis (EUR).
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Table 1. Association results for SNPs on chromosome 5p15.33 with the risk of cancer

SNP Gene Region Position Unconditional OR (95% CI) Unconditional Significant phenotype clusters Conditional OR (95% CI) Conditional
Positively Negatively P-value Positively Negatively Positively Negatively P-value
associated associated associated associated associated associated

ALL

187726159  TERT 1 1282319 1.47 (1.38-1.56) 0.85(0.80-0.91)  2.10 x 107 AsianLung, Glioma Scan TGCT NCI, Pegasus,
AdvPrCa, ChinaPC
rs451360 CLPTMIL 2 1319680 1.34 (1.24-1.45) 0.85(0.80-0.90) 1.90 x 107'% PanScan, TGCT NCI EurLung, AfrAmLung, 1.33(1.23-1.44) 0.86 (0.81-0.92) 7.06 x 107'¢
AsianLung
1s2853677  TERT 3 1287194 1.22 (1.13-1.31) 0.73 (0.70-0.77)  3.30 x 1073¢ TGCT NCI, PanScan, AsianLung?, 1.11 (0.94-1.30) 0.80 (0.74—0.86) 2.36 x 107*
ChinaPC Glioma Scan,
AfrAmLung
12736098  TERT 4 1294086 1.15 (1.10-1.21) 0.81(0.74-0.89)  3.87 x 10712 AfrAmLung, Pegasus, PanScan, TGCT NCI* 1.18 (1.10-1.25) 0.94 (0.67-1.31) 5.19 x 10~¢
EurLung?, Bladder NCI
rs13172201 TERT 5 1271661 1.06 (0.80—1.41) 0.84 (0.73-0.96)  5.00 x 1072 EurLung, Pegasus®, TGCT NCI, Glioma Scan  1.13 (1.03-1.23) 0.81(0.70-0.92) 131 x 107*
PanScan, AfrAmLung®
EUR
rs4449583  TERT 1 1284135 1.50(1.35-1.68)  0.89 (0.83-0.94)  1.02 x 10™"* Glioma Scan TGCT NCI, Pegasus,
AdvPrCa, PanScan
rs13170453 CLPTMIL 2 1317481 1.34(1.24-1.45) 0.87 (0.80-0.95)  6.69 x 1073 PanScan, TGCT NCI EurLung 1.33(1.22-1.44) 0.86 (0.80-0.93) 6.67 x 1074
rs10069690 TERT 6 1279790 1.48 (1.31-1.67) 0.87(0.83-0.92)  7.49 x 107 1° Glioma Scan® AdvPrCa, TGCT NCIY,  NA 0.77 (0.69-0.85) 535 x 1077
PanScan®, Bladder
NCI, Pegasus®
rs13172201 TERT 5 1271661 1.07 (0.88—1.29) 0.84 (0.73-0.96)  4.08 x 1072 EurLung, Pegasus®, TGCT NCI, Glioma Scan  1.13 (1.04-1.22) 0.82 (0.75-0.90) 2.04 x 10°°
PanScan
12736098  TERT 4 1294086 1.14 (1.08-1.20) 0.81(0.74-0.89) 573 x 107 Pegasus, EurLung®, Bladder PanScan, TGCT NCI 1.23(1.11-1.35) 0.88 (0.75-1.02) 6.31 x 10°°
NCI*

The results from the imputation and subset-based ASSET meta-analysis is shown for the ‘ALL’ scans that include 1 1 GWAS scans performed in subjects of European, Asian and African American ancestry; and for the ‘EUR’ scans that include
eight scans performed in subjects of European ancestry. Scan acronyms are detailed in Materials and Methods. Listed are SNPs that mark each of the regions identified, gene, genomic location, unconditional and conditional P-values and
GWAS scans that were positively or negatively associated with the minor allele for each SNP/region. Note that different highly correlated SNPs may mark the same region in the ‘ALL’ vs. the ‘EUR’ analysis (Regions 1 and 2). NA indicates
that no scan was associated with a particular region.

“Cancer sites that were no longer significant in the conditional analysis.
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Figure 2. (A—F) Forest plots for individual risk loci on chr5p15.33 for the unconditional ASSET meta-analysis. For each cancer/GWAS scan, OR and 95% CI were
listed and plotted along each line as per the unconditional association analysis. A vertical line of OR = 1 indicates the null. Two summary lines list ORs for the posi-
tively or negatively associated subsets as estimated by the ASSET program. (A) rs7726159, (B) rs451360, (C) rs2853677, (D) rs2736098, (E) rs13172201 and (F)
rs10069690 in the analysis of European-ancestry studies only. Forest plots for the conditional analyses are shown in Supplementary Material, Figure SIA—E.
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2 > 0.7 were located within 500 kb of this SNP: rs2853669,
rs2736108 and rs2736107, all in the promoter of TERT,
from ~200 to 2700 bp upstream of the transcriptional start
site. This region (rs2736098-T) was positively associated with
lung cancer (Eur Lung and AA Lung), prostate cancer
(Pegasus) and bladder cancer (Bladder NCI) (P =2.58 x
10~%, OR Compined = 1.15;95% CI = 1.10—1.21), and negative-
ly associated with testicular cancer (TGCT NCI) and pancreatic
cancer (PanScan) (P = 4.89 x 107%, ORcombined = 0.81; 95%
CI = 0.74-0.89) (Fig. 2D). The effect allele frequencies dis-
played a wide range across the three continental populations in
1000G, interestingly with the lowest frequency in the most
ancient population, 0.06—0.08 (AFR), whereas the other two
populations were comparably high: 0.23-0.29 (EUR) and
0.22-0.33 (ASN) (Supplementary Material, Table S2).

An additional suggestive region (Region 5) marked by
1513172201 (P = 0.05; Pconditionas = 1.31 x 10~ %) was deter-
mined by our sequential conditional analyses (Fig. 1, Table 1),
unmasked mainly due to conditioning on rs7726159 (Region 1).
The risk alleles for rs13172201 and rs7726159 were negatively
correlated (r = —0.27, based on 1000G CEU data) and, in an ex-
ploratory analysis of rs13172201 in the Eur Lung scan, this SNP
appeared to have a stronger association inrs7726159 CC carriers
(P=7.0x10"* OR = 1.2195% CI = 1.08—1.35) when com-
pared with rs7726159 AC/AA carriers (P = 0.10, OR = 1.12
95% CI = 0.98-1.27).

Region 5 (rs13172201-C) was positively associated with lung
cancer (Eur Lung and AA Lung), prostate cancer (Pegasus) and
pancreatic cancer (PanScan) and negatively associated with tes-
ticular cancer (TGCT NCI) and glioma (Glioma scan) (Fig. 2E).
The effect allele for rs13172201, the sentinel SNP in Region 5,
was the minor allele in European (0.26 in EUR) and African
(0.39 in AFR) populations, while it has become the major
allele in Asians (0.85 in ASN).

In an analysis restricted to studies of European ancestry (EUR
scans), we noted strong associations for Regions 1, 2, 4 and 5
(Table 1) but not Region 3 (marked by rs2853677). The condi-
tional P-value for Region 5, suggestive in the analysis based
on all ethnic groups, improved in this subset and surpassed the
threshold of 1.3 x 1073 (rs13172201: P = 0.041; Pconditional =
2.04 x 107°). An additional region, Region 6, marked by
1310069690 (P = 7.49 x 10~ '%; Pconditional = 5.35 x 1077) in
intron 4 of TERT was identified in the European ancestry-only
analysis (Fig. 1, Table 1). The significance for this region did
not reach our Bonferroni-corrected P-value threshold in the ana-
lysis of all studies (P =15.4 x 10~* after conditioning on
1s7726159, rs451360, rs2853677 and rs2736098). As Regions
3 and 6 were located between the same two recombination hot-
spots (Fig. 1), we assessed correlation in 1000G CEU subjects
and noted virtually no LD (rs10069690, rs2853677, P =
0.0052), thus supporting the notion that they are independent
si%nals. Low LD existed for these two SNPs in the 1000G YRI
(r* = 0.098) and CHB/JPT (r* = 0.048) populations (Supple-
mentary Material, Table S3). Region 6 (rs10069690-T) was
positively associated with glioma (Glioma scan) (P = 4.07 x
107"°, OR Combined = 1.48;95% CI = 1.31—1.67) and negative-
ly associated with testicular (TGCT NCI), prostate (Pegasus and
AdvPrCa), bladder (Bladder NCI) and pancreatic cancer
(PanScan) (P = 4.95 x 107, ORcombinea = 0.87; 95% CI =
0.83-0.92) (Fig. 2F). Highly correlated SNPs (+* > 0.7) were

not observed within 500 kb of rs10069690. Notably, the
P-value for rs10069690 in the Advanced Prostate cancer scan
improved from 1.64 x 10> t02.03 x 10~ '? after conditioning
on Region 1. The correlation between rs10069690 and
157726159 (Region 1) is #* = 0.13 in the 1000G CEU, r* =
0.30in YRIand7* = 0.42 in CHB/JPT populations (Supplemen-
tary Material, Table S3). SNP rs10069690 was nominally
significant in the other two prostate cancer scans with uncondi-
tional P-values of 0.003 (Pegasus) and 0.02 (CGEMS PrCa)
but was not significant after conditioning on the first region in
these scans (P = 0.36 in Pegasus, P = 0.078 in CGEMS PrCa).

For the six signals noted, Regions 1, 3 and 6 are flanked by two
recombination hotspots that separate them from Region 5 on the
telomeric side and from Region 4 on the centromeric side. Re-
combination hotspots also separate Regions 2 and 4 (Fig. 1).
The LD between SNPs in loci 1, 3 and 6 was low to moderate
(r* = 0.0052, 0.131 and 0.449 in 1000G CEU, r* = 0.0981,
0.298 and 0.0765 in YRI and »* = 0.0484, 0.415 and 0.341 in
CHB/JPT); however, the conditional analyses supported the
presence of three signals bounded by strong recombination hot-
spots on either side. Region 5 is the most telomeric one and sepa-
rated from the rest by a strong recombination hotspot.
Supplementary Material, Table S1 shows P-values for the six
regions along each step of the sequential conditional analysis
to reflect the change in significance in the analysis.

We also assessed the associations for each of the regions in the
‘Tier-1II studies’ comprising nine GWAS datasets across eight
cancers, including 11385 cases and 18 322 controls. None of
the regions showed significant association (data not shown).

In addition to characterizing independent signals in the
TERT-CLPTMIL region, we have fine-mapped previously
reported signals. For pancreatic cancer, the reported GWAS
SNP rs401681 had a P-value of 3.7 x 10~ and an OR of 1.19
(12). After imputation, an improved P-value was seen for
15451360 (marking Region 2) (P = 2.0 x 10~ '%; OR = 1.29).
After conditioning on rs451360, the P-value for rs401681 was
no longer significant (P = 0.1). The LD between these two
SNPs is moderate (+* = 0.35). For glioma, the GWAS SNP
152736100 had a P-value of 8.49 x 10~° and OR of 1.08 in the
Glioma scan (27). The best imputed SNP rs449583 (> =1
with 1s7726159, marking Region 1) showed a much improved
P-value of 4.1 x 10~ '* with an OR of 1.50, and the P-value of
rs2736100 was no longer significant after conditioning on
rs449583 (P = 0.64). The LD between these two SNPs was mod-
erate (> = 0.39).

Bioinformatic analyses using public data bases (ENCODE
and TCGA) were performed to investigate the possible function
of SNPs that mark each of the six regions as regulators of expres-
sion of TERT, or CLPTM1L, as well as other genes. Based on
ENCODE data, the strongest evidence for putative regulatory
functions was seen for SNPs in Regions 1 (rs7725218 and
rs4975538), 2 (rs36115365 and rs380145), 4 (rs2736108 and
rs2853669) and 5 (rs13172201) with evidence of an open chro-
matin conformation, regulatory histone modification marks
and transcription factor binding in multiple cell types such as
prostate, pancreas, breast, lung and brain (Supplementary Mater-
ial, Table S2).

We next examined the TCGA datasets for expression (eQTL)
and methylation (meQTL) quantitative trait loci for lung adeno-
carcinoma (LUAD), prostate adenocarcinoma (PRAD) and
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glioblastoma multiforme (GBM). We did not observe signifi-
cant eQTLs (P > 0.41, data not shown) but noted multiple
meQTLs in LUAD and PRAD tumor samples (Supplementary
Material, Tables S5 and S6). Methylation at a subset of CpG
probes with meQTLs correlated with expression of TERT
and/or CLPTMIL, including two for Region 4 in TCGA
LUAD samples (cg26209169: B= —0.47, P=1.18 x 107,
cgl11624060: B =— 0.36, P = 0.001). These CpGs are located
~1800 bp downstream of CLPTMIL (227 bp apart), overlap
with key transcription factor binding sites (e.g. TCF3, TCF4,
HNF3A, MAX, RUNX3/AML2, ATF-2 and USF1/USF2) and
active histone modification marks from ENCODE, and are nega-
tively correlated with expression of TERT and CLPTM 1L (Sup-
plementary Material, Table S5 and Fig. S2). Replication was
seen in normal lung samples (cg26209169 and Region 4,
B=—0.650, P=5.17 x 10°; cgl1624060 and Region 4,
B = —0.493, P = 0.0027) from EAGLE (28). The most signifi-
cant meQTLs in TCGA PRAD samples were seen for Region 1
(cg03935379: B= —1.06, P =847 x 10°'5; ¢cg06531176:
B=—1.18, P=2.61 x 10~ "°). These replicated in EAGLE
(P =5.93 x 10"%and P = 0.002, respectively), did not correl-
ate with expression of TERT or CLPTMIL, and were both
located within exon 3 of TERT (Supplementary Material,
Table S6).

Analysis of TCGA data also revealed increased expression of
TERT and CLPTM1L in tumors compared with normal tissues
for lung and prostate cancer (on average 1.29- to 2.02-fold
change for paired samples). Copy number differences were
more evident in lung tumors (average number of copies was
2.02 in normal and 2.54 in tumors for 51 paired samples, P =
1.10 x 10~ ") (Supplementary Material, Fig. S3).

DISCUSSION

Chr5p15.33 harbors a unique cancer susceptibility region that
contains at least two plausible candidate genes: TERT and
CLTPMIL. Through a subset-based meta-analysis of GWAS
data drawn from six different cancers from three continental
populations, we have characterized up to six independent,
common, susceptibility alleles, all with evidence of both
risk-enhancing and protective effects, differing by cancer type.

TERT encodes the catalytic subunit of the telomerase reverse
transcriptase, which, in combination with an RNA template
(TERC), adds nucleotide repeats to chromosome ends (29).
Although telomerase is active in germ cells and in early develop-
ment, it remains repressed in most adult tissues. Telomeres
shorten with each cell division and when they reach a critically
short length, cellular senescence or apoptosis is triggered.
Cancer cells can continue to divide despite critically short telo-
meres, by upregulating telomerase or by alternative lengthening
oftelomeres (16,30,31). While studies investigating the relation-
ship between surrogate tissue (i.e. buccal or blood cell DNA)
telomere length and cancer risk have been contradictory,
larger prospective studies have not reported an association for
risk but only survivorship (32—35). Heritability estimates of
telomere length in twin studies suggest a significant genetic con-
tribution, between 36 and 78% (36,37). GWAS SNPs on 5p15.33
have been associated with telomere length implying that TERT
may indeed be the gene targeted by at least some risk variants
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in this region (38—40). In addition, germline 7ERT promoter
mutations have been identified in familial melanoma as well as
somatic mutations in multiple cancers (41,42).

The most commonly reported SNP in the TERT gene,
rs2736100, was first reported in several GWAS: glioma (3,43),
lung cancer in European and Asians (7,44—46) and testicular
cancer (14). We have fine-mapped this locus (Region 1) to a
set of five correlated SNPs in the second and third intron of
TERT (marked by rs7726159). In addition to the cancers listed
above, we noted novel contributions to this locus by prostate
and pancreatic cancer. Fine-mapping efforts in lung (47) and
ovarian cancer (48) have reported the same SNP. Region 3
(rs2853677), located in the first intron of TERT, has been asso-
ciated with glioma in Chinese subjects (49) and lung cancer in
Japanese subjects (50), in agreement with the strong contribution
to this region seen in our analysis by scans performed in indivi-
duals of Asian ancestry. In addition to lung cancer and glioma,
we noted novel associations for Region 3 with pancreatic and tes-
ticular cancer. Region 4 was marked by a synonymous SNP
(rs2736098) located in the second exon of TERT, with three add-
itional highly correlated SNPs in the promoter region. This
region has been reported via fine-mapping in lung, bladder, pros-
tate, ovarian and breast cancer, and shown to influence TERT
promoter activity (8). Novel contributions to Region 4 were
noted for pancreatic and testicular cancer.

In our analysis, we uncovered a new susceptibility locus,
Region 5 (marked by rs13172201, Fig. 1), which surpassed the
Bonferroni threshold in European studies. We found evidence
for a negative correlation between this SNP and rs7726159
(Region 1), indicating a possible interaction. This locus is not
significant at a GWAS threshold and requires confirmation in
independent samples. Region 6 (marked by rs10069690) has
previously been associated with estrogen- and progesterone
receptor-negative breast cancer in populations of European
and African ancestry (2,51); our analysis adds five cancers to
this list: glioma, prostate, testicular germ cell, pancreas and
urinary bladder.

The gene adjacent to TERT, namely CLPTMIL, encodes a
protein that is overexpressed in lung and pancreatic cancer, pro-
motes growth and survival, and is required for KRAS driven lung
cancer, indicating that it is a plausible candidate gene in this
region (17—21). The locus in CLPTM1L (Region 2) has previ-
ously been associated with risk of cancer in multiple GWAS,
marked by rs401681 or rs402710 in pancreatic, lung and
bladder cancer as well as in melanoma (1,4,5,12,52). Our subset-
based approach has fine-mapped this signal to a set of seven cor-
related SNPs that span the entire length of CLPTM1L.

Two recent papers from the Collaborative Oncology
Gene-Environment Study (COGs) fine-mapped 5p15.33 in pros-
tate, breast and ovarian cancer and identified four of the six loci
noted in the current study (53,54). In prostate cancer, COGs iden-
tified three regions that corresponded to our Region 1 (COGs
Region 1, rs7725218), Region 3 (COGs Region 2, rs2853676,
r* = 0.32 with rs2853677) and Region 4 (COGs Region 3,
rs2853669) (54). Interestingly, COGs reported protective
alleles in Region 1 associated with increased TERT expression
in benign prostate tissue samples. The fourth COGs prostate
cancer locus, marked by rs13190087, was not significant in our
study (P = 0.089), possibly due to a more specific effect for
prostate cancer for this locus where our study had less power.
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In breast and ovarian cancer, COGs identified three regions corre-
sponding to our Region 1 (COGs Region 2, 157705526, associated
with risk of ovarian cancer with low malignant potential, telomere
length and promoter activity), Region 4 (COGs Region 1,
1rs2736108, associated with risk of ER-negative and BRCA/ mu-
tation carrier breast cancer, telomere length and altered promoter
activity) and Region 6 (COGs Region 3, rs10069690, associated
with risk of ER-negative breast cancer, breast cancer in BRCAI
carriers and invasive ovarian cancer) (53). Regions 2 (in
CLPTMIL) and 5 (in TERT) were not observed in the COGs
reports, perhaps due to the choice of SNPs by COGs for fine-
mapping as well as the more comprehensive reference set for
1000 Genomes used to conduct our imputation, or because of
cancer-specific effects for these loci.

It is becoming increasingly clear that DNA methylation is
under genetic control. Regions of variable methylation exist
across tissues and individuals, tend to be located in intergenic
regions, overlapping known regulatory elements. Notably,
these are enriched for disease-associated SNPs (28,55,56). Ana-
lysis of TCGA data, while not uncovering significant eQTLs,
indicated that DNA methylation could play a role in the under-
lying biology at 5p15.33. Methylation in a small region down-
stream of CLPTMIL, with features supporting an active
regulatory function, was consistent with lower methylation
levels in carriers of risk alleles for lung cancer (Region 4) and
higher expression of TERT and CLPTM L. Increased expression
of both genes is consistent with a pro-tumorigenic role in lung
cancer (19,21,31). For prostate cancer, the most notable
meQTLs were located within exon 3 of TERT with increased
rates of methylation for carriers of risk alleles in Regions 1 and
6. Although gene-body methylation has been observed to posi-
tively correlate with gene expression (57), we did not see evi-
dence to support this for this particular set of CpGs. As a large
fraction of meQTLs does not overlap with eQTLs (55), they
may influence molecular phenotypes other than gene expression
such as alternative promoter usage, splicing and even mutations
(58-60). It is intriguing that methylation QTLs observed in
TCGA data differ to some degree between lung and prostate
cancer, and that none were observed in glioblastoma. This indi-
cates that the TERT-CLPTM L region may harbor multiple ele-
ments that have the capacity to influence molecular phenotypes
that in turn impact cancer development. However, only a subset
ofthese elements may be active in each organ, thus leading to dif-
ferent mechanistic avenues for risk modulation in different
tissues. It is possible that the interplay between risk variants,
multiple biological mechanisms and attributed genes, in addition
to environmental and lifestyle factors that differentially influ-
ence various cancers may eventually come to explain how the
same alleles at this complex locus can mediate opposing
cancer risk in different organs.

In summary, we report up to six independent loci on
chr5p15.33, each influencing the risk of multiple cancers. We
observed pleiotropy for common susceptibility alleles in this
region, defined as the phenomenon wherein a single genetic
locus affects multiple phenotypes (61). These alleles could influ-
ence multiple cancers distinctly, perhaps in response to environ-
mental factors or in interactions with other genes. Our cardinal
observations underscore the complexity of the alleles and
suggest the importance of tissue-specific factors that contribute
to cancer susceptibility. Further laboratory analysis is needed to

validate our findings using TCGA data, and investigate the
optimal functional variants in each of the six independent loci
in order to provide a clearer understanding of each of the loci
in this multi-cancer susceptibility region.

MATERIALS AND METHODS
Study participants

Participants were drawn from a total of 20 previous GWAS scans
of 13 distinct cancer types: bladder, breast, endometrial, esopha-
geal squamous, gastric, glioma, lung, osteosarcoma, ovarian,
pancreatic, prostate, renal cancer and testicular germ cell
tumors. We first assessed a set of 11 GWAS representing six dis-
tinct cancers (‘Tier-I studies’) in which 5p15.33 had previously
been implicated (NHGRI Catalog of Published GWAS studies:
http://www.genome.gov/gwastudies/). The GWAS scans and
their acronyms were: Asian lung cancer scan (AsianLung),
European lung cancer scan (EurLung), African American lung
(AA Lung), PanScan, China pancreatic cancer scan
(ChinaPC), Testicular germ cell tumor (TGCT NCI) scan,
glioma scan, Bladder NCI scan, Pegasus prostate cancer scan
(Pegasus), CGEMS prostate cancer scan (CGEMS PrCa) and
Advanced prostate cancer scan (Adv PrCa) (see case and
control counts in Supplementary Material, Tables S4A—D). In
a second analysis, we separately assessed a set of nine GWAS
scans representing eight cancers (‘Tier-II studies’) in which
5p15.33 had not been previously reported in the literature
(NHGRI Catalog of Published GWAS studies: http:/www.
genome.gov/gwastudies/). These studies were: Asian esopha-
geal scan (Asian EsoCa), Asian gastric cancer scan (Asian
GastCa), CGEMS Breast cancer scan (CGEMS Breast), Endo-
metrial cancer scan (EndomCa), ER negative breast cancer
scan (ERneg BPC3 BrCa), Ghana prostate cancer scan (Ghana
PrCa), Osteosarcoma scan (OS), Ovarian cancer scan (OvCa)
and Renal cancer scan (Renal US) (see case and control counts
in Supplementary Material, Tables S4E—H). Studies were con-
ducted in individuals of European background (EUR scans)
but we did include studies in populations of Asian ancestry
(i.e., esophageal squamous, gastric, non-smoking lung and pan-
creatic cancers) and African ancestry (i.e. lung and prostate
cancer) (ALL scans). Study characteristics, genotyping and
quality control have been previously published for all studies
listed by cancer type and GWAS scan acronym: bladder
cancer/Bladder NCI (1,62), breast cancer/CGEMS BrCa (63),
breast cancer/ERneg BPC3 BrCa (64), endometrial cancer/
EnCa (65), gastric cancer and esophageal squamous cell carcin-
oma/Asian UpperGI (66), glioma/Glioma scan (27), lung cancer
in Europeans/EurLung (7), lung cancer in African Americans/
AALung (67), lung cancer in non-smoking women from Asia/
AsianLung (68,69), osteosarcoma/OS (70), ovarian cancer/
OvCa (71), pancreatic cancer/PanScan (12,72), pancreatic
cancer in Asians/ChinaPC (73), prostate cancer/Pegasus (un-
published data), prostate cancer/CGEMS PrCa (74), advanced
prostate cancer/AdvPrCa (75), prostate cancer in Africans/Gha-
naPrCa (unpublished data), renal cancer/Renal US (76) and tes-
ticular germ cell tumors/TGCT NCI (77).

Each participating study obtained informed consent from
study participants and approval from its Institutional Review
Board (IRB) including IRB certification permitting data
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sharing in accordance with the National Institutes of Health
(NIH) Policy for Sharing of Data Obtained in NIH Supported
or Conducted GWAS.

Genotyping

Arrays used for scanning included the Illumina HumanHap
series (317 + 2408, 550, 610 K, 660 W and 1 M), as well as
the Illumina Omni series (OmniExpress, OmnilM, Omni2.5
and Omni5SM). The majority of the studies were genotyped at
the Cancer Genomics Research Laboratory (formerly Core
Genotyping Facility) of the National Cancer Institute (NCI) of
the NIH. The ChinaPC GWAS (Affymetrix 6.0) was genotyped
at CapitalBio in Beijing, China. This necessitated imputation
before the cross-cancer subset-based meta-analysis. We used a
combination of public resources, 1000 Genomes (1000G) (25)
and DCEG (26) reference datasets, to impute existing GWAS
datasets (78) using IMPUTE2 (79).

In addition to the standard QC procedures previously applied
in the primary GWAS publications, we further filtered SNPs as
follows: (i) completion rate per locus < 90%, (ii)) MAF <
0.01, (iii) Hardy—Weinberg proportion P-value <1 x 10¢,
(iv) exclusion of A/T or G/C SNPs.

Lift over the genomic coordinates to NCBI genome build 37
or hgl9

Because the March 2012 release of the 1000 Genomes Project
data is based on NCBI genome build 37 (hg19), we utilized the
LiftOver tool (http://hgdownload.cse.ucsc.edu/) to convert
genomic coordinates for scan data from build 36 to build 37.
The tool re-maps only coordinates, but not SNP identifiers. We
prepared the inference.bed file and then performed the lift over
as follows:

~/tools/liftover/liftOver inference.bed ~/tools/liftover/hgl8
ToHgl9.over.chain.gz output.bed unlifted.bed

A small number of SNPs that failed LiftOver, mostly because
they could not be unambiguously mapped to the genome by
NCBI, were dropped from each imputation inference set.

Strand alignment with 1000 Genomes reference data set

Since A/T or G/C SNPs were excluded, strand alignment for the
scan data required checking allele matches between the infer-
ence set and reference set locus by locus. If they did not match,
alleles were complemented and checked again for matching.
SNPs that failed both approaches were excluded from the infer-
ence data. Locus identifiers were normalized to those used in the
1000 Genomes data based on genomic coordinates, although the
IMPUTE2 program uses only the chromosome/location to align
each locus overlapping between the imputation inference and
reference set.

Conversion of genotype files into WTCCC format

After LiftOver to genome build 37 and ensuring that alleles were
reported on the forward strand, we converted the genotype data
into IMPUTE2 format using GLU. We split the genotype file into
one per chromosome and sorted SNPs in order of genomic loca-
tion using the GLU transform module.
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Imputation of a 2Mb window on chr5p15.33

We used both the 1000G data (March 2012 release) (25) and the
DCEG imputation reference set (26) as reference datasets to
improve overall imputation accuracy. The IMPUTE2 program
(79) was used to impute a 2 Mb window on chr5p15.33 from
250000 to 2250000 (hgl9) with a 250 kb buffer on either
side as well as other recommended default settings. For the asso-
ciation analysis, we focused on a smaller region from chr5:
1250000—1450000 delineated by recombination hotspots
(discussed below).

Post-imputation filtering and association analysis

We excluded imputed loci with INFO < 0.5 from subsequent
analyses. SNPTEST (79) was used for the association analysis
with covariate adjustment and score test of the log additive
genetic effect. The same adjustments as used originally in each
individual scan were used. Note that the per SNP imputation ac-
curacy score (IMPUTE’s INFO field) is calculated by both
IMPUTE2 and SNPTEST. The two INFO metrics calculated
during imputation by IMPUTE2 and during association testing
by SNPTEST are strongly correlated, especially when the addi-
tive model is fitted (78). We chose the INFO metric calculated by
SNPTEST for post-imputation SNP filtering.

Subset and conditional analyses

Association outputs from SNPTEST were reformatted and sub-
sequently analyzed using the ASSET program, an R package
(http://www .bioconductor.org/packages/devel/bioc/html/ASSET.
html; https://r-forge.r-project.org/scm/viewvce.php/*checkout™/p
kg/inst/doc/vignette.Rnw?root=asset) for subset-based meta-
analyses (24). ASSET is a suite of statistical tools specifically
designed to be powerful for pooling association signals across mul-
tiple studies when true effects may exist only in a subset of the
studies and could be in opposite directions across studies. The
method explores all possible subset (or a restricted set if user spe-
cifies so) of studies and evaluates fixed-effect meta-analysis-type
test-statistics for each subset. The final test-statistics is obtained
by maximizing the subset-specific test-statistics over all possible
subsets and then evaluating its significant after efficient adjustment
for multiple testing, taking into account the correlation between
test-statistics across different subsets due to overlapping subjects.
The method not only returns a P-value for significance for the
overall evidence of association of an SNP across studies, but also
outputs the ‘best subset’ containing the studies that contributed to
the overall association signal. For detection of SNP association
signals with effects in opposite directions, ASSET allows subset
search separately for positively and negatively associated studies
and then combines association signals from two directions using
a chi-square test-statistics. The method can take into account cor-
relation due to overlapping subject across studies (e.g. share con-
trols). More details about these and other features of the method
can be found elsewhere [22].

For our current study, the matrices of the overlapping counts
for cases—controls across datasets, which are utilized by
ASSET to adjust for possible correlation across studies, were
constructed and passed into the ASSET program (Supplemen-
tary Tables S4A—H). We used a two-sided test P-value, which
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can combine association signals in opposite directions, to assess
the overall significance of whether an SNP was associated with
the cancers under study. For detection of independent suscepti-
bility SNPs, we performed sequential conditional analysis in
which in each step the ASSET analysis is repeated by condition-
ing on SNPs that have been detected to be most significant in pre-
vious steps. The process was repeated until the P-value for the
most significant SNP for a step remained <1.3 x 107, a con-
servative threshold that corresponds to Bonferroni adjustment
for the 1924 SNPs used in the analysis for an alpha level of
0.05 and the two analyses performed (for the ALL vs. the EUR
scans).

In the primary analysis, we included all GWAS scans in which
one or more susceptibility alleles on 5p15.33 had been previous-
ly noted at genome-wide significant threshold (‘Tier-I studies’).
We further required a nominal signal in our data (P < 0.05). This
yielded 11 GWAS across six distinct cancer sites and includes
34248 cases and 45 036 cancer-free controls (Supplementary
Material, Tables S4A—D). In a secondary analysis, we assessed
the associations for each of the six regions in scans in which
5p15.33 had not been previously reported in the literature (http://
www.genome.gov/gwastudies/), or did not show a nominal
P-value in the GWAS datasets used in the current study
(‘Tier-II studies’). This yielded nine GWAS datasets across
eight cancers, including a total of 11 385 cases and 18 322 con-
trols (Supplementary Material, Tables S4E—H).

Recombination hotspot estimation

Recombination hotspots were identified in the region of 5p15.33
harboring TERT and CLPTMIL (1264 068—1 360 487) using
SequenceLDhot (80), a program that uses the approximate mar-
ginal likelihood method (81) and calculates likelihood ratio sta-
tistics at a set of possible hotspots. We tested three sample sets
from East Asians (n = 88), CEU (n = 116) and YRI (n = 59)
from the DCEG Imputation Reference Set. The PHASE v2.1
program was used to calculate background recombination
rates (82,83).

Validation of imputation accuracy

Imputation accuracy was assessed by direct TagMan genotyping.
TagMan genotyping assays (ABI, Foster City, CA, USA) were
optimized for six SNPs (rs7726159, rs451360, rs2853677,
1s2736098, rs10069690 and rs13172201) in the independent
regions. In an analysis of 2327 samples from the Glioma brain
tumor study (Glioma BTS, 330 samples) (27), testicular germ
cell tumor (TGCT STEED study, 865 samples) (77) and
Pegasus (PLCO, 1132 samples) (unpublished data), the allelic
R? (84) measured between imputed and assayed genotypes
were 0.88, 0.98, 0.86, 0.85, 0.81 and 0.61 for the six SNPs
listed in the same order as above.

Bioinformatic analysis of functional potential

HaploReg v2 (http://www.broadinstitute.org/mammals/haploreg/
haploreg.php) was used to annotate functional and regulatory po-
tential of highly significant and highly correlated SNPs that mark
each of the regions identified (using ENCODE data) (85). Regulo-
meDB  (http://regulome.stanford.edu/) was used to assess and

score regulatory potential of SNPs in each locus (86). eQTL
effects were assessed using the Multiple Tissue Human Expres-
sion Resource database (http://www.sanger.ac.uk/resources/
software/genevar/) but significant findings at a P <1 x 103
threshold were not noted (data not shown) (87). Predicted
effects of SNPs on splicing were assessed using NetGene?2 (http://
www.cbs.dtu.dk/services/NetGene2/) (88) but no effect were seen
for any of the SNPs in the six regions (data not shown).

We carried out eQTL and methylation quantitative trait locus
(meQTL) analyses to assess potential functional consequences
of SNPs in the six regions identified in normal and tumor
derived tissue samples from TCGA: LUAD (52/403 normal/
tumor samples for eQTL analysis: 26/354 normal/tumor
samples for meQTL analysis), PRAD (31/133 normal/tumor
for eQTL; 39/158 normal/tumor for meQTL) and GBM (109
tumor for eQTL; 83 tumor for meQTL; normal GBM samples
were not available). Transcriptome (Illumina HiSeq 2000,
level 3), methylation (Illumina Infinium Human DNA Methyla-
tion 450 platform, level 3), genotype data (Affymetrix Genome-
Wide Human SNP Array 6.0 platform, level 2) and phenotypes
were downloaded from the TCGA data portal (https://tcga-
data.nci.nih.gov/tcga/). Methylation probes located on X/Y
chromosomes, annotated in repetitive genomic regions (GEO
GPL16304), with SNPs (Illumina dbSNP137.snpupdate.ta-
ble.v2) with MAF > 1% in the respective TCGA samples,
with missing rate >5%, as well as 65 quality control probes on
the 450 K array. We excluded transcripts on X/Y chromosomes
and those with missing rate >5%. A principle component ana-
lysis was conducted on a genome-wide level in R using gene ex-
pression and methylation data (separately in normal and tumor
tissues, and after excluding transcripts with variance < 10~%
and methylation probes with variance <<0.001). Genotype im-
putation was performed as described above for the 2 Mb
window centered on TERT and CLPTM L. For eQTL analysis,
normalized transcript counts for CLPTMIL and TERT were
normal quantile transformed and regressed against the imputed
dosage of minor allele for each risk locus (six loci, 19 SNPs).
The regression model included age, gender (not for PRAD),
stage (only for tumor samples), copy number, top five principle
components (PCs) of imputed genotype dosage and top five PCs
of transcript counts to account for possible measured or unmeas-
ured confounders and to increase detection power. The meQTL
analysis was conducted in a similar manner in TCGA LUAD,
PRAD GBM samples; beta-values of methylation at 169 CpG
probes in the region encompassing 7TERT and CLPTM1L were
normal quantile transformed and regressed as described above
with the exception of inclusion of the top five PCs of methylation
instead of expression values. We report the estimate of regres-
sion coefficient of imputed dosage, its standard error and
P-values, adjusted by the Benjamini—Hochberg procedure for
controlling false discovery rate (89). Spearman’s rank-order cor-
relation was calculated to assess the relationship between the
methylation and gene expression for TCGA LUAD (n = 486),
PRAD (rn=186) and GBM (n=126) tumor samples.
P-values were adjusted by the Benjamini—Hochberg procedure
as described above. For the purpose of visualizing meQTLs, the
most likely genotype was selected from the imputed genotype
dosages.

Methylation QTLs were assessed in EAGLE normal lung
tissue samples (n =215) as previously described with the
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addition of imputation of the 19 SNPs in the 6 regions under
study here (28).

AUTHORS’ CONTRIBUTIONS

Conceived and designed the experiments: Z.W., N.C.,
L.T.A. Performed the experiments: Z.W., B.Z.,, M.Z., HP., J.J.,
C.CC,INS.,JWH, AH, LB, Al, CH., LT.A. Analyzed
the data: Z.W., BZ., M.Z., HP., 1J.,, C.C.C, JN.S,, JW.H,
M.Y., N.C., L.T.A. Contributed reagents/materials/analysis
tools: all authors. Wrote the paper: ZW and LTA. Contributed
to the writing of the paper: all authors.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.

ACKNOWLEDGEMENTS

The authors acknowledge the contribution of the staff of the
Cancer Genomics Research Laboratory for their invaluable
help throughout the project.

Conflict of Interest statement: None declared.

FUNDING

This work was supported by the Intramural Research Program
and by contract number HHSN261200800001E of the US
National Institutes of Health (NIH), National Cancer Institute.
The content of this publication does not necessarily reflect the
views or policies of the Department of Health and Human Ser-
vices nor does mention of trade names, commercial products
or organizations imply endorsement by the U.S. Government.
Additional funding acknowledgements are listed in Supplemen-
tary Material. The funders had no role in study design, data col-
lection and analysis, decision to publish or preparation of the
manuscript.

REFERENCES

1. Rothman, N., Garcia-Closas, M., Chatterjee, N., Malats, N., Wu, X.,
Figueroa, J.D., Real, F.X., Van Den Berg, D., Matullo, G., Baris, D. ez al.
(2010) A multi-stage genome-wide association study of bladder cancer
identifies multiple susceptibility loci. Nat. Genet., 42, 978—984.

2. Haiman, C.A., Chen, G.K., Vachon, C.M., Canzian, F., Dunning, A.,
Millikan, R.C., Wang, X., Ademuyiwa, F., Ahmed, S., Ambrosone, C.B.
etal (2011) A common variant at the TERT-CLPTMI1L locus is associated
with estrogen receptor-negative breast cancer. Nat. Genet.,43,1210—1214.

3. Shete, S., Hosking, F.J., Robertson, L.B., Dobbins, S.E., Sanson, M.,
Malmer, B., Simon, M., Marie, Y., Boisselier, B., Delattre, J.Y. et al. (2009)
Genome-wide association study identifies five susceptibility loci for glioma.
Nat. Genet., 41, 899—-904.

4. Wang, Y., Broderick, P., Webb, E., Wu, X., Vijayakrishnan, J., Matakidou,
A., Qureshi, M., Dong, Q., Gu, X., Chen, W.V. et al. (2008) Common
5p15.33 and 6p21.33 variants influence lung cancer risk. Nat. Genet., 40,
1407-1409.

5. McKay, J.D., Hung, R.J., Gaborieau, V., Boffetta, P., Chabrier, A., Byrnes,
G., Zaridze, D., Mukeria, A., Szeszenia-Dabrowska, N., Lissowska, J. et al.
(2008) Lung cancer susceptibility locus at 5p15.33. Nat. Genet., 40,
1404-1406.

6. Broderick, P., Wang, Y., Vijayakrishnan, J., Matakidou, A., Spitz, M.R.,
Eisen, T., Amos, C.I. and Houlston, R.S. (2009) Deciphering the impact of

20.

21.

22.

23.

24.

Human Molecular Genetics, 2014, Vol. 23, No. 24 6631

common genetic variation on lung cancer risk: a genome-wide association
study. Cancer Res., 69, 6633—-6641.

. Landi, M.T., Chatterjee, N., Yu, K., Goldin, L.R., Goldstein, A.M., Rotunno,

M., Mirabello, L., Jacobs, K., Wheeler, W., Yeager, M. ef al. (2009) A
genome-wide association study of lung cancer identifies a region of
chromosome 5p15 associated with risk for adenocarcinoma. Am. J. Hum.
Genet., 85, 679—-691.

. Beesley, J., Pickett, H.A., Johnatty, S.E., Dunning, A.M., Chen, X., Li, J.,

Michailidou, K., Lu, Y., Rider, D.N., Palmieri, R.T. et al. (2011) Functional
polymorphisms in the TERT promoter are associated with risk of serous
epithelial ovarian and breast cancers. PLoS ONE, 6, €24987.

. Rafnar, T., Sulem, P., Stacey, S.N., Geller, F., Gudmundsson, J., Sigurdsson,

A., Jakobsdottir, M., Helgadottir, H., Thorlacius, S., Aben, K.K. e al. (2009)
Sequence variants atthe TERT-CLPTM 1L locus associate with many cancer
types. Nat. Genet., 41,221-227.

. Stacey, S.N., Sulem, P., Masson, G., Gudjonsson, S.A., Thorleifsson, G.,

Jakobsdottir, M., Sigurdsson, A., Gudbjartsson, D.F., Sigurgeirsson, B.,
Benediktsdottir, K.R. et al. (2009) New common variants affecting
susceptibility to basal cell carcinoma. Nat. Genet., 41,909-914.

. Yang, X., Yang, B., Li, B. and Liu, Y. (2013) Association between

TERT-CLPTMIL rs401681[C] allele and NMSC cancer risk: a
meta-analysis including 45,184 subjects. Arch. Dermatol. Res., 1,49—-52.

. Petersen, G.M., Amundadottir, L., Fuchs, C.S., Kraft, P.,

Stolzenberg-Solomon, R.Z., Jacobs, K.B., Arslan, A.A.,
Bueno-de-Mesquita, H.B., Gallinger, S., Gross, M. ef al. (2010) A
genome-wide association study identifies pancreatic cancer susceptibility
loci on chromosomes 13¢22.1, 1q32.1 and 5p15.33. Nat. Genet., 42,
224-228.

. Kote-Jarai, Z., Olama, A.A., Giles, G.G., Severi, G., Schleutker, J.,

Weischer, M., Campa, D., Riboli, E., Key, T., Gronberg, H. et al. (2011)
Seven prostate cancer susceptibility loci identified by a multi-stage
genome-wide association study. Nat. Genet., 43, 785-791.

. Turnbull, C., Rapley, E.A., Seal, S., Pernet, D., Renwick, A., Hughes, D.,

Ricketts, M., Linger, R., Nsengimana, J., Deloukas, P. et al. (2010) Variants
near DMRT1, TERT and ATF7IP are associated with testicular germ cell
cancer. Nat. Genet., 42, 604—607.

. Mocellin, S., Verdi, D., Pooley, K.A., Landi, M.T., Egan, K.M., Baird, D.M.,

Prescott, J., De Vivo, I. and Nitti, D. (2012) Telomerase reverse transcriptase
locus polymorphisms and cancer risk: a field synopsis and meta-analysis.
J. Natl. Cancer Inst., 104, 840—854.

. Kim, N.W., Piatyszek, M.A., Prowse, K.R., Harley, C.B., West, M.D., Ho,

P.L., Coviello, G.M., Wright, W.E., Weinrich, S.L. and Shay, J.W. (1994)
Specific association of human telomerase activity with immortal cells and
cancer. Science, 266, 2011-2015.

. Yamamoto, K., Okamoto, A., Isonishi, S., Ochiai, K. and Ohtake, Y. (2001)

A novel gene, CRR9, which was up-regulated in CDDP-resistant ovarian
tumor cell line, was associated with apoptosis. Biochem. Biophys. Res.
Commun., 280, 1148—1154.

. James, M.A., Wen, W., Wang, Y., Byers, L.A., Heymach, J.V., Coombes,

K.R.,Girard, L.,Minna,J. and You, M. (2012) Functional characterization of
CLPTMIL as a lung cancer risk candidate gene in the 5p15.33 locus. PLoS
ONE, 7,¢36116.

. Ni, Z., Tao, K., Chen, G., Chen, Q., Tang, J., Luo, X., Yin, P. and Wang, X.

(2012) CLPTMIL is overexpressed in lung cancer and associated with
apoptosis. PLoS ONE, 7, €52598.

Jia, J., Bosley, A.D., Thompson, A., Hoskins, J.W., Cheuk, A., Collins, I.,
Parikh, H., Xiao, Z., Ylaya, K., Dzyadyk, M. et al. (2014) CLPTMIL
promotes growth and enhances aneuploidy in pancreatic cancer cells.
Cancer Res., 74, 2785-2795.

James, M.A., Vikis, H.G., Tate, E., Rymaszewski, A.L. and You, M. (2014)
CRRY/CLPTMI1L Regulates Cell Survival Signaling and Is Required for Ras
Transformation and Lung Tumorigenesis. Cancer Res., 74, 1116—1127.
Ballew, B.J. and Savage, S.A. (2013) Updates on the biology and
management of dyskeratosis congenita and related telomere biology
disorders. Expert Rev. Hematol., 6, 327—-337.

Armanios, M. and Blackburn, E.H. (2012) The telomere syndromes. Nat.
Rev. Genet., 13, 693—704.

Bhattacharjee, S., Rajaraman, P., Jacobs, K.B., Wheeler, W.A., Melin, B.S.,
Hartge, P., Yeager, M., Chung, C.C., Chanock, S.J. and Chatterjee, N. (2012)
A subset-based approach improves power and interpretation for the
combined analysis of genetic association studies of heterogeneous traits.
Am. J. Hum. Genet., 90, 821—835.

102 ‘92 JequenoN uo Akeiqi DAD exdey L g usydeis e /B10'seulnofpioxoBuiy//:dny woly papeojumoq


http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu363/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu363/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu363/-/DC1
http://hmg.oxfordjournals.org/

6632

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Human Molecular Genetics, 2014, Vol. 23, No. 24

Genomes. (2010) A map of human genome variation from population-scale
sequencing. Nature, 467, 1061-1073.

Wang, Z., Jacobs, K.B., Yeager, M., Hutchinson, A., Sampson, J.,
Chatterjee, N., Albanes, D., Berndt, S.I., Chung, C.C., Diver, W.R. et al.
(2012) Improved imputation of common and uncommon SNPs with a new
reference set. Nat. Genet., 44, 6—7.

Rajaraman, P., Melin, B.S., Wang, Z., McKean-Cowdin, R., Michaud, D.S.,
Wang, S.S., Bondy, M., Houlston, R., Jenkins, R.B., Wrensch, M. et al.
(2012) Genome-wide association study of glioma and meta-analysis. Hum.
Genet., 131, 1877—-1888.

Shi, J., Marconett, C.N., Duan, J., Hyland, P.L., Li, P., Wang, Z., Wheeler,
W., Zhou, B., Campan, M., Lee, D.S. et al. (2014) Characterizing the genetic
basis of methylome diversity in histologically normal human lung tissue.
Nat. Commun., 5, 3365.

Cheung, A.L. and Deng, W. (2008) Telomere dysfunction, genome
instability and cancer. Front. Biosci., 13,2075-2090.

Cesare, A.J. and Reddel, R.R. (2010) Alternative lengthening of telomeres:
models, mechanisms and implications. Nat. Rev. Genet., 11, 319-330.
Shay, J.W.and Bacchetti, S. (1997) A survey of telomerase activity in human
cancer. Eur. J. Cancer, 33, 787—-791.

Hou, L., Zhang, X., Gawron, A.J. and Liu, J. (2012) Surrogate tissue telomere
length and cancer risk: shorter or longer? Cancer Lett., 319, 130—135.
Pooley, K.A., Sandhu, M.S., Tyrer, J., Shah, M., Driver, K.E., Luben, R.N.,
Bingham, S.A., Ponder, B.A., Pharoah, P.D., Khaw, K.T. et al. (2010)
Telomere length in prospective and retrospective cancer case-control
studies. Cancer Res.,70,3170-3176.

De Vivo, 1., Prescott, J., Wong, J.Y., Kraft, P., Hankinson, S.E. and Hunter,
D.J. (2009) A prospective study of relative telomere length and
postmenopausal breast cancer risk. Cancer Epidemiol. Biomarkers Prev.,
18, 1152-1156.

Weischer, M., Nordestgaard, B.G., Cawthon, R.M., Freiberg, J.J.,
Tybjaerg-Hansen, A. and Bojesen, S.E. (2013) Short telomere length, cancer
survival, and cancer risk in 47102 individuals. J. Natl. Cancer Inst., 105,
459-468.

Slagboom, P.E., Droog, S. and Boomsma, D.I. (1994) Genetic determination
of telomere size in humans: a twin study of three age groups. Am. J. Hum.
Genet., 55, 876—-882.

Andrew, T., Aviv, A., Falchi, M., Surdulescu, G.L., Gardner, J.P., Lu, X.,
Kimura, M., Kato, B.S., Valdes, A.M. and Spector, T.D. (2006) Mapping
genetic loci that determine leukocyte telomere length in a large sample of
unselected female sibling pairs. Am. J. Hum. Genet., 78, 480—486.

Nan, H., Qureshi, A.A., Prescott, J., De Vivo, I. and Han, J. (2011) Genetic
variants in telomere-maintaining genes and skin cancer risk. Hum. Genet.,
129, 247-253.

Melin, B.S., Nordfjall, K., Andersson, U. and Roos, G. (2012) hTERT cancer
risk genotypes are associated with telomere length. Genet. Epidemiol., 36,
368-372.

Hsu, C.P.,Hsu,N.Y., Lee, L.W. and Ko, J.L. (2006) Ets2 binding site single
nucleotide polymorphism at the hTERT gene promoter — effect on
telomerase expression and telomere length maintenance in non-small cell
lung cancer. Eur. J. Cancer, 42, 1466—1474.

Horn, S., Figl, A., Rachakonda, P.S., Fischer, C., Sucker, A., Gast, A., Kadel,
S., Moll, I., Nagore, E., Hemminki, K. ef al. (2013) TERT promoter
mutations in familial and sporadic melanoma. Science, 339, 959-961.
Killela, P.J., Reitman, Z.J., Jiao, Y., Bettegowda, C., Agrawal, N., Diaz,
L.A. Jr, Friedman, A.H., Friedman, H., Gallia, G.L., Giovanella, B.C. et al.
(2013) TERT promoter mutations occur frequently in gliomas and a subset of
tumors derived from cells with low rates of self-renewal. Proc. Natl. Acad.
Sci. US4, 110, 6021-6026.

Simon, M., Hosking, F.J., Marie, Y., Gousias, K., Boisselier, B., Carpentier,
C., Schramm, J., Mokhtari, K., Hoang-Xuan, K., Idbaih, A. et al. (2010)
Genetic risk profiles identify different molecular etiologies for glioma. Clin.
Cancer Res., 16, 5252—-5259.

Yang, P.,Li, Y., Jiang, R., Cunningham, J.M., Zhang, F. and de Andrade, M.
(2010) A rigorous and comprehensive validation: common genetic
variations and lung cancer. Cancer Epidemiol. Biomarkers Prev., 19,
240-244.

Hu, Z., Wu, C., Shi, Y., Guo, H., Zhao, X., Yin, Z., Yang, L., Dai, J., Hu, L.,
Tan, W. et al. (2011) A genome-wide association study identifies two new
lung cancer susceptibility loci at 13q12.12 and 22q12.2 in Han Chinese. Nat.
Genet., 43, 792—796.

Miki, D., Kubo, M., Takahashi, A., Yoon, K.A., Kim, J., Lee, G.K., Zo, J 1.,
Lee, J.S., Hosono, N., Morizono, T. et al. (2010) Variation in TP63 is

47.

48.

49.

50.

S1.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

associated with lung adenocarcinoma susceptibility in Japanese and Korean
populations. Nat. Genet., 42, 893—-896.

Pande, M., Spitz, M.R., Wu, X., Gorlov, L.P., Chen, W.V. and Amos, C.I.
(2011) Novel genetic variants in the chromosome 5p15.33 region associate
with lung cancer risk. Carcinogenesis, 32, 1493—1499.

Johnatty, S.E., Beesley, J., Chen, X., Macgregor, S., Duffy, D.L., Spurdle,
A.B., deFazio, A., Gava, N., Webb, P.M., Rossing, M.A. et al. (2010)
Evaluation of candidate stromal epithelial cross-talk genes identifies
association between risk of serous ovarian cancer and TERT, a cancer
susceptibility ‘hot-spot’. PLoS Genet., 6,¢1001016.

Zhao, Y., Chen, G., Song, X., Chen, H., Mao, Y. and Lu, D. (2012)
Fine-mapping of a region of chromosome 5p15.33 (TERT-CLPTMIL)
suggests a novel locus in TERT and a CLPTMI1L haplotype are associated
with glioma susceptibility in a Chinese population. Int. J. Cancer, 131,
1569-1576.

Shiraishi, K., Kunitoh, H., Daigo, Y., Takahashi, A., Goto, K., Sakamoto, H.,
Ohnami, S., Shimada, Y., Ashikawa, K., Saito, A. et al. (2012) A
genome-wide association study identifies two new susceptibility loci for
lung adenocarcinoma in the Japanese population. Nat. Genet., 44, 900—903.
Palmer, J.R.,Ruiz-Narvaez, E.A., Rotimi, C.N., Cupples, L.A., Cozier, Y.C.,
Adams-Campbell, L.L. and Rosenberg, L. (2012) Genetic susceptibility loci
for subtypes of breast cancer in an African American population. Cancer
Epidemiol. Biomarkers Prev.,22,127-34.

Barrett, J.H., Illes, M.M., Harland, M., Taylor, J.C., Aitken, J.F., Andresen,
P.A., Akslen, L.A., Armstrong, B.K., Avril, M.F., Azizi, E. et al. (2011)
Genome-wide association study identifies three new melanoma
susceptibility loci. Nat. Genet., 43, 1108—1113.

Bojesen, S.E., Pooley, K.A., Johnatty, S.E., Beesley, J., Michailidou, K.,
Tyrer, J.P., Edwards, S.L., Pickett, H.A., Shen, H.C., Smart, C.E. et al.
(2013) Multiple independent variants at the TERT locus are associated with
telomere length and risks of breast and ovarian cancer. Nat. Genet., 45,
371-384.

Kote-Jarai, Z., Saunders, E.J., Leongamornlert, D.A., Tymrakiewicz, M.,
Dadaev, T., Jugurnauth-Little, S., Ross-Adams, H., Al Olama, A.A.,
Benlloch, S., Halim, S. e al. (2013) Fine-mapping identifies multiple
prostate cancer risk loci at 5p15, one of which associates with TERT
expression. Hum. Mol. Genet., 22,2520—-2528.

Grundberg, E., Meduri, E., Sandling, J.K., Hedman, A K., Keildson, S., Buil,
A., Busche, S., Yuan, W., Nisbet, J., Sekowska, M. et al. (2013) Global
analysis of DNA methylation variation in adipose tissue from twins reveals
links to disease-associated variants in distal regulatory elements.

Am. J. Hum. Genet., 93, 876—890.

Irizarry, R.A., Ladd-Acosta, C., Wen, B., Wu, Z., Montano, C., Onyango, P.,
Cui, H., Gabo, K., Rongione, M., Webster, M. ez al. (2009) The human colon
cancer methylome shows similar hypo- and hypermethylation at conserved
tissue-specific CpG island shores. Nat. Genet., 41, 178—186.

Jjingo, D., Conley, A.B., Yi, S.V., Lunyak, V.V. and Jordan, I.K. (2012) On
the presence and role of human gene-body DNA methylation. Oncotarget, 3,
462-474.

Rideout, W.M. III, Coetzee, G.A., Olumi, A.F. and Jones, P.A. (1990)
5-Methylcytosine as an endogenous mutagen in the human LDL receptor and
p53 genes. Science, 249, 1288—1290.

Maunakea, A K., Nagarajan, R.P., Bilenky, M., Ballinger, T.J., D’Souza, C.,
Fouse, S.D., Johnson, B.E., Hong, C., Nielsen, C., Zhao, Y. ef al. (2010)
Conserved role of intragenic DNA methylation in regulating alternative
promoters. Nature, 466, 253—-257.

Shen, H. and Laird, P.W. (2013) Interplay between the cancer genome and
epigenome. Cell, 153, 38—-55.

Solovieff, N., Cotsapas, C., Lee, P.H., Purcell, S.M. and Smoller, J.W.
(2013) Pleiotropy in complex traits: challenges and strategies. Nat. Rev.
Genet., 14, 483—-495.

FigueroalJD,Y.Y., Siddiq, A., Garcia-Closas, M., Chatterjee, N. et al. (2014)
Genome-wide association study identifies multiple loci associated with
bladder cancer risk. Hum. Mol. Genet., 23, 1387—1398.

Hunter, D.J., Kraft, P., Jacobs, K.B., Cox, D.G., Yeager, M., Hankinson,
S.E., Wacholder, S., Wang, Z., Welch, R., Hutchinson, A. et al. (2007) A
genome-wide association study identifies alleles in FGFR2 associated with
risk of sporadic postmenopausal breast cancer. Nat. Genet., 39, 870—874.
Siddiq, A., Couch, F.J., Chen, G.K., Lindstrom, S., Eccles, D., Millikan,
R.C.,Michailidou, K., Stram, D.O., Beckmann, L., Rhie, S.K. et al. (2012) A
meta-analysis of genome-wide association studies of breast cancer identifies
two novel susceptibility loci at 6q14 and 20q11. Hum. Mol. Genet., 21,
5373-5384.

102 ‘92 JequenoN uo Akeiqi DAD exdey L g usydeis e /B10'seulnofpioxoBuiy//:dny woly papeojumoq


http://hmg.oxfordjournals.org/

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

De Vivo, L., Prescott, J., Setiawan, V.W., Olson, S.H. and Wentzensen, N.,
Australian National Endometrial Cancer Study Group, Attia, J., Black, A.,
Brinton, L., Chen, C. ef al. (2014) Genome-wide association study of
endometrial cancer in E2C2. Hum. Genet. 133,211-24.

Abnet, C.C., Freedman, N.D., Hu, N., Wang, Z., Yu, K., Shu, X.O., Yuan,
J.M., Zheng, W., Dawsey, S.M., Dong, L.M. et al. (2010) A shared
susceptibility locus in PLCE1 at 10923 for gastric adenocarcinoma and
esophageal squamous cell carcinoma. Nat. Genet., 42, 764—767.

Hinch, A.G., Tandon, A., Patterson, N., Song, Y., Rohland, N., Palmer, C.D.,
Chen, G.K., Wang, K., Buxbaum, S.G., Akylbekova, E.L. ef al. (2011) The
landscape of recombination in African Americans. Nature, 476, 170—175.
Hsiung, C.A., Lan, Q., Hong, Y.C., Chen, C.J., Hosgood, H.D., Chang, LS.,
Chatterjee, N., Brennan, P., Wu, C., Zheng, W. et al. (2010) The 5p15.33
locus is associated with risk of lung adenocarcinoma in never-smoking
females in Asia. PLoS Genet., 6.

Lan, Q., Hsiung, C.A., Matsuo, K., Hong, Y.C., Seow, A., Wang, Z.,
Hosgood, H.D. 3rd, Chen, K., Wang, J.C., Chatterjee, N. et al. (2012)
Genome-wide association analysis identifies new lung cancer susceptibility
loci in never-smoking women in Asia. Nat. Genet., 44, 1330—1335.
Savage, S.A., Mirabello, L., Wang, Z., Gastier-Foster, J.M., Gorlick, R.,
Khanna, C., Flanagan, A.M., Tirabosco, R., Andrulis, I.L., Wunder, J.S. et al.
(2013) Genome-wide association study identifies two susceptibility loci for
osteosarcoma. Nat. Genet., 45, 799—-803.

Bolton,K.L., Tyrer, J., Song, H., Ramus, S.J., Notaridou, M., Jones, C., Sher,
T., Gentry-Maharaj, A., Wozniak, E., Tsai, Y.Y. ef al. (2010) Common
variants at 19p13 are associated with susceptibility to ovarian cancer. Nat.
Genet., 42, 880—884.

Amundadottir, L., Kraft, P., Stolzenberg-Solomon, R.Z., Fuchs, C.S.,
Petersen, G.M., Arslan, A.A., Bueno-de-Mesquita, H.B., Gross, M.,
Helzlsouer, K., Jacobs, E.J. et al. (2009) Genome-wide association study
identifies variants in the ABO locus associated with susceptibility to
pancreatic cancer. Nat. Genet., 41, 986—990.

Wu, C., Miao, X., Huang, L., Che, X., Jiang, G., Yu, D., Yang, X., Cao, G.,
Hu,Z., Zhou, Y. et al. (2012) Genome-wide association study identifies five
loci associated with susceptibility to pancreatic cancer in Chinese
populations. Nat. Genet., 44, 62—66.

Thomas, G., Jacobs, K.B., Yeager, M., Kraft, P., Wacholder, S., Orr, N., Yu,
K., Chatterjee, N., Welch, R., Hutchinson, A. et al. (2008) Multiple loci
identified in a genome-wide association study of prostate cancer. Nat.
Genet., 40,310-315.

Schumacher, F.R., Berndt, S.I., Siddiq, A., Jacobs, K.B., Wang, Z.,
Lindstrom, S., Stevens, V.L., Chen, C., Mondul, A.M., Travis, R.C. et al.
(2011) Genome-wide association study identifies new prostate cancer
susceptibility loci. Hum. Mol. Genet., 20, 3867—3875.

76.

71.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

Human Molecular Genetics, 2014, Vol. 23, No. 24 6633

Purdue, M.P., Johansson, M., Zelenika, D., Toro, J.R., Scelo, G., Moore,
L.E., Prokhortchouk, E., Wu, X., Kiemeney, L.A., Gaborieau, V. et al.
(2011) Genome-wide association study of renal cell carcinoma identifies two
susceptibility loci on 2p21 and 11q13.3. Nat. Genet., 43, 60—65.
Schumacher, F.R., Wang, Z., Skotheim, R.I., Koster, R., Chung, C.C.,
Hildebrandt, M.A., Kratz, C.P., Bakken, A.C., Timothy Bishop, D., Cook,
M.B. et al. (2013) Testicular germ cell tumor susceptibility associated with
the UCK2 locus on chromosome 1q23. Hum. Mol. Genet., 22,48—53.
Marchini, J. and Howie, B. (2010) Genotype imputation for genome-wide
association studies. Nat. Rev. Genet., 11,499-511.

Marchini, J., Howie, B., Myers, S., McVean, G. and Donnelly, P. (2007) A
new multipoint method for genome-wide association studies by imputation
of genotypes. Nat. Genet., 39, 906—913.

Fearnhead, P. (2006) SequenceLDhot: detecting recombination hotspots.
Bioinformatics, 22,3061-3066.

Fearnhead, P. and Donnelly, P. (2002) Approximate likelihood methods for
estimating local recombination rates. J. R. Stat. Soc., 64, 657—680.

Li, N. and Stephens, M. (2003) Modeling linkage disequilibrium and
identifying recombination hotspots using single-nucleotide polymorphism
data. Genetics, 165,2213-2233.

Crawford, D.C., Bhangale, T., Li, N., Hellenthal, G., Rieder, M.J.,
Nickerson, D.A. and Stephens, M. (2004) Evidence for substantial fine-scale
variation in recombination rates across the human genome. Nat. Genet., 36,
700-706.

Browning, B.L. and Browning, S.R. (2009) A unified approach to genotype
imputation and haplotype-phase inference for large data sets of trios and
unrelated individuals. Am. J. Hum. Genet., 84,210-223.

Ward, L.D. and Kellis, M. (2012) HaploReg: a resource for exploring
chromatin states, conservation, and regulatory motif alterations within sets
of genetically linked variants. Nucleic Acids Res., 40, D930—934.

Boyle, A.P., Hong, E.L., Hariharan, M., Cheng, Y., Schaub, M.A.,
Kasowski, M., Karczewski, K.J., Park, J., Hitz, B.C., Weng, S. et al. (2012)
Annotation of functional variation in personal genomes using RegulomeDB.
Genome Res., 22, 1790-1797.

Grundberg, E., Small, K.S., Hedman, A.K., Nica, A.C., Buil, A., Keildson,
S., Bell, J.T., Yang, T.P., Meduri, E., Barrett, A. ef al. (2012) Mapping cis-
and trans-regulatory effects across multiple tissues in twins. Nat. Genet., 44,
1084—-1089.

Hebsgaard, S.M., Korning, P.G., Tolstrup, N., Engelbrecht, J., Rouze, P. and
Brunak, S. (1996) Splice site prediction in Arabidopsis thaliana pre-mRNA
by combining local and global sequence information. Nucleic Acids Res., 24,
3439-3452.

Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery
rate — a practical and powerful approach to multiple testing. J. R. Stat. Soc. B,
57,289-300.

¥TOZ ‘92 JeqWenoN uo Akelqi 0aD ey L *g usydels e /B10°seuno [pio4xo Buiy//:dny wouy popeojumod


http://hmg.oxfordjournals.org/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG2000
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG2000
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages true
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 175
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


