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The symmetric-range accuracy A of a sampler is defined as the fractional range, symmetric
about the true concentration, that includes a specified proportion of sampler measurements.
In this article, we give an explicit expression for 4 assuming that the sampler measurements
follow a one-way random model so as to capture different components of variability, for exam-
ple, variabilities among and within different laboratories or variabilities among and within
exposed workers. We derive an upper confidence limit for 4 based on the concept of a ‘gen-
eralized confidence interval’. A convenient approximation is also provided for computing the
upper confidence limit. Both balanced and unbalanced data situations are investigated. Monte
Carlo evaluation indicates that the proposed upper confidence limit is satisfactory even for
small samples. The statistical procedures are illustrated using an example.

Keywords: coverage probability; generalized confidence interval; generalized pivotal quantity; non-central chi-

square distribution; upper confidence limit

INTRODUCTION

For quantifying the measurement accuracy of
exposure data, the development of accuracy
criteria is important. The National Institute of
Occupational Safety and Health (NIOSH) accu-
racy criterion is based on the symmetric-range
accuracy A, and the NIOSH accuracy require-
ment states that a 95% upper confidence limit for
A does not exceed 0.25 (see Bartley ef al., 2003;
Bartley, 2001, 2008; Bartley and Lidén, 2008).
By definition, the symmetric-range accuracy
A 1is defined as the fractional range, symmetric
about the true concentration C , within which
100 (1— o) % of sampler measurements are to be
found. Though the NIOSH accuracy criterion
applies strictly to intra-laboratory variations, a
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similar criterion, for example, at the 0.50 level,
could be adopted and applied also for controlling
inter-laboratory variations. In Bartley (2001) and
Bartley et al. (2003), an approximationis developed
for 4, and an approximate 95% upper confidence
limit is derived, assuming a normal distribution
for the original measurements. In a recent article,
Krishnamoorthy and Mathew (2009) have derived
an exact expression for 4. Also, an accurate upper
confidence limit on 4 may be obtained by exploit-
ing the generalized confidence interval idea. The
work of Krishnamoorthy and Mathew (2009) is
also in the setup of exposure measurements that
follow a normal distribution. It appears that the
symmetric-range accuracy and its confidence limit
calculation have not been addressed in the context
of other models; for example, in the context of a
model that involves random effects.

The one-way random model for the log-trans-
formed exposure data is widely used to capture
variability among workers when repeated meas-
urements are made on the same worker over time
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(see Symanski et al., 2006 for a review). The one-
way random model has also found applications
in the evaluation of sampling/analytical methods
where inter-sampler variation is significant. For
example, Bartley et al. (1994) discuss the 10-mm
nylon cyclone whose variation in inner diameter
leads to inaccuracy in estimating respirable dust
concentrations; a one-way random model is used
to capture these variations. The use of a one-way
random model results in a situation where a com-
bined uncertainty has to be computed by adding
the two variance components (corresponding to
variability among and within workers). The calcu-
lation of such a combined uncertainty is pointed
out in Bartley er al (2003). The same situation
arises in inter-laboratory evaluation of method-
ologies to determine workplace contaminations;
the two variance components will now represent
the variability between and within laboratories.
The goal of this investigation is to derive an exact
expression for the symmetric-range accuracy in
this scenario and to compute an accurate upper
confidence limit, where measurements can be
modeled using a one-way random effects model.
We have once again used the generalized confi-
dence interval idea in order to derive the required
upper confidence limit. We have addressed both
balanced and unbalanced data situations. Monte
Carlo results are reported to judge the accuracy
of the proposed upper confidence limits. We have
also illustrated our methodology in both balanced
and unbalanced data situations using data from
an inter-laboratory evaluation of a methodology
to determine trace beryllium in air filter samples.

SYMMETRIC-RANGE ACCURACY

Let X; denote the Jth sampler measurement
on the ith worker or from the i th laboratory,
assumed to follow the one-way random model
given by

Xij =U+T,; +e,'j7j:1727"'7ni>i:1:2:"'7k7 (1)

where pu=E(X;) is the overall mean of the
measurements, and the 7;’s and €; ’s are inde-

pendent random variables with % ~N(0,07) and
€; ~N(0,62). Thus, X, ~N(/.t,0'§ +02). Here,
k denotes the number of workers or number of
laboratories from where sampler measurements
are obtained, and #; denotes the number of sam-
pler measurements on the i th worker or from the

i thlaboratory. We note that the X; represent the

original measurements. Furthermore, the random
variable 7, Tepresents an effect due to the jth
laboratory or the i th worker.

If C denotes the true concentration and X
follows the model in equation (1), then the sym-
metric-range accuracy A satisfies

P(1-AC<X <(1+A4)C)=1-aq, )

where 0 <o <1, and for NIOSH applications,
a=0.05. Here, we have followed the notations
and definitions in Bartley et al. (2003), Bartley
(2001) and Krishnamoorthy and Mathew (2009).
As X ~N(u,02 +0>), We can write

P(1-AC<X <(1+AC)=P

(1-A)C—u X—u (1+A4)C—pu
<
Jo+a Jo+od  Jo+d
_p|=AC—u (A
e S e | O

where Z, = (X —u) /4ol +o> follows a stand-
ard normal distribution. Let

C—
[ 2 = 2" )
o, +0,

Then, equation (3) can be expressed as

P(|Z,—b|<AC/\Jor+02), or equivalently

P((Z, —b)* < A°C* /(02 +02)). Thus, the sym-
metric-range accuracy A4 should satisfy

b=

A*C?
T o =l-a.
T e

P|(Z,—b) <

Note that (Zy—b)’ ~x(b>), a non-central
chi-square distribution with one degree of free-
dom and a non-centrality parameter 5°. Hence,
AC? /(07 +02)= xi1o(b®), the 100(1- )
percentile of the non-central chi-square
distribution. Thus,

Joi+ol
A== e O

where b is defined in equation (4). Thus, equation
(5) gives an explicit expression for A4, similar to
what is obtained in Krishnamoorthy and Mathew
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(2009). Such an explicit expression facilitates the
computation of an upper confidence limit for 4,
as noted below.

Interval estimation with balanced data

Consider the model in equation (1) with balanced
data, i.e. the n,’s are equal with n denoting their
common value. Thus, we have sampler measure-
ments X;;’s following the model

X;=pn+7+e¢, j=12,....n, i=12..k. (6)

Define ¥, =4 X; and X.= ﬁz,{;l ijl X .
Recall that the 7;’s are random variables represent-
ing effects due to the different workers or laboratories.
Now let SiS; denote the between worker or between
laboratory sum of squares, and SS, denote the
within worker or within laboratory sum of squares.
These are given by

S—nZ(Xl ¥ ) and SS, = ZZ(XI] X,

i=l j=1

See Montgomery (2012, Chapter 3). It is known
that X., SS,, and SS, are independently

distributed with

Z:«/an~N(O,1),
no, + o,
SS, 5 q 55 SS,
mﬁaﬂa an 2 Xk(n 1)

e

where y; denotes the central chi-square distribu-

tion with r degrees of freedom (df).

A 100y % upper confidence limit for 4 will
now be computed using the generalized confi-
dence interval idea, as done in Krishnamoorthy
and Mathew (2009). The first step toward this
computation is the derivation of a generalized piv-
otal quantity (GPQ) for 4. As A4 is a function of
u and o2 +02, a GPQ for 4 can be obtained
by substituting the GPQs of these parameters
in the expression for 4 in equation (5). In order
to obtain GPQs for the parameters, let X., ss,,
and ss, denote the observed values of the ran-
dom variables X., SS,, and SS,, respectively.
The observed values X., ss;, and ss, are num-
bers computed from a given set of data and are

to be treated as fixed. A GPQ is a function of the
random variables X ., SS,, and SS,, and their
observed values X.., ss,,and ss,, and is required
to satisfy two conditions: (i) given the observed
quantities x., ss,, and ss,, the distribution of
the GPQ should be free of unknown parameters,
and (ii) in the definition of the GPQ, if the random
variables X ., SS_, and SS, are replaced by the
corresponding observed values, the GPQ will sim-
plify to the parameter of interest (the parameter of
interest being the symmetric-range accuracy 4). To
find a GPQ for o, + 0., let 6] =no; +0. and
0; =o. so that

40t =Lt (-1 ®
n

A GPQ for o7 is given by

L .
oSS, lk(n 1

Substituting these GPQs in equation (8), we
obtain a GPQ for o7 + o7 as

1| ss S8
o2iol s+ (m—1)—*—|. )
T M Xk Xk(n-1)

A GPQ for u is given by

G.—5 «/k_n(X u)\/g \/F
H / kn

where Z is defined in equation (7). Finally, a
GPQ for A can be obtained by replacing the
parameters in equation (5) by their GPQs and is
given by

G

2 +a3 C-G
C Ny 7W1tth (414;) (10)
Ova

An approximation

In order to numerically obtain a percentile of G,
that will provide the required upper confidence
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limit, simulation must be carried out a large
number of times. Furthermore, the non-central
critical value Zn a(Gb) must be evaluated for
each simulation run and this makes the calcula-
tion somewhat time-consuming. The following
approximation can be used to avoid the calcula-

tion of xﬁl,a(G,f) for each simulated G; :

Hop(8)=(m+8)|z

Y

g] m+268 _[g] m+26 ’
9)(m+8) \9)(m+6)>

= Xomp(8),

where z, is the 100p percentile of a standard
normal distribution. The above approximation
with =1, p=1—a, and §=G; can be used

to evaluate xﬁ,,a(G,f) in equation (10) as

Xi1-o(Gy) = (1+Gy)

3
[g] 1+2G; _[g] 142G,
9)1+GH)* 9)1+Gp)

=Xi1-a(G}), say. (11)

Simulation studies in the sequel indicate that this
approximation is very satisfactory and provide
results very close to those based on equation (10).

Note that, for given (x,ss,,ss,), the distribu-
tion of G, does not depend on any unknown
parameters, and so the percentiles of G, can be
estimated by Monte Carlo simulation as shown in
Algorithm 1. The 1007 percentile of G, isa 100
Y % upper confidence limit for A.

Algorithm 1

1. For given sampler measurements following the
model in equation (1), compute X.., s, and

58,

2. Generate random variates Z ~N(0,1), )(,%71,
and Z/%(n—l)'

3. Compute G,=x

VA ’ssr
2 kn
k-1

S‘YT +(n 1)
k 1 lk(n 1)

o‘% +03 n

, and

_(C-Gy)?

27 G .
L

G
\ a%+03

4. Compute G,= Zn o ] or
G52 4 52 *2 .
G, = O-TC +0p )Cl*jw sz] , where Xij-a is

given in equation (11).
5. Repeat Steps 2-4 a large number of times,
say, M .

The 1007 percentile of G, ’s generated above is a
100y 9, upper confidence limit for 4.

A special case

If it is assumed that gy =C (i.e. the bias is negli-
gible) so that X;; ~N(C,0; +07) , then b=0 (see
equation (4)), and the accuracy range A defined
in equation (5) becomes V"% +o7 Z“ , where

X « denotes the 100(1— ) th percentile of a
central chi-square distribution with one degree
of freedom. In this case, the GPQ for A4 is given

. Clearly, a 100y % upper

S2+62 [
by GA = C Zl;l—a
confidence limit for 4 can now be obtained after

numerically obtaining the 100y th percentile of

Go‘%+0'e . The estimation of this percentile based

on Monte Carlo simulation should be clear from
Algorithm 1.
However, we note that in this special case as

Vo +o2 , what i ired is a 1007 %
A= C+ IXﬁl—a what is required is a 0

upper confidence limit for 0;+0.. An approxi-

mate upper confidence limit can be explicitly
obtained using the Satterthwaite approximation
(see Montgomery, 2012, Chapter 13). In order
to see this, the chi-square distributions in equa-
tion (7) provide us with the unbiased estimators
of no?+o’ ando?, say ng2+ 6> and G2, given
by ngi+62=SS,/(k—1)=MS,

5. =SS, /[k(n—1)]=MS, (say). From these, we
immediately get

(say) and

)
orto.=

S (1]
n n

s,

which is a linear combination of MS, and MS, .

According to the Satterthwaite approximation, we
then have the distribution
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~ N 2
6i+60 X

o:to. A 12
o:+o. f (12)

approximately, where the degrees of freedom f

is given by
e ms]
f= > T (13)
MS; ( _L)2 MS}
n2(k—1) n) k(n-1)

We note that the degrees of freedom is estimated
using the data. A 1007 % approximate upper

confidence limit for o2 +40c> is now given by
f(o? Gi)/xi';l—y' Consequently, a 1007 %
approximate upper confidence limit for the sym-
metric-range accuracy 4 is now given by

NVICHCRTE
LI i

-0
C

where the degrees of freedom f is given in equa-
tion (13).

INTERVAL ESTIMATION WITH
UNBALANCED DATA

We shall now consider the model in equation
(1) with unbalanced data, i.e. not all the #,;’s are

equal. Thus, we have sampler measurements X ’s

following the model

Xy=u +7,+e; j=12,m, i=12,..k, (14)

where the various quantities in the model are as
before, satisfying the same distributional assump-
tions. Note that the number of observations is
not the same on the different workers or from the
different laboratories. In the case of unbalanced
data, a simple approach to compute an upper con-
fidence limit for the symmetric-range accuracy A
is to reduce the problem to the case of balanced
data using a fairly widely used approximation. In
order to introduce the approximation, define

— k
h:%Zn, ! ;?:%z and SS.

i=l i=1

pa (15)

Then,

o; + ho,

)?NNI'La A

By direct calculation, it can be verified that
E(SS;)=(k— 1)(0‘3 +ho?). An approximate
chi-square distribution associated with SS;
states that

SS;

—_— approximatel 16
G n hG Zkl pp y. (16)

If we define S, =" > (X, - ¥,)’, then

S8, is the usual error sum of squares and

K
55 where N => "n,. (17)

e i=l

Using g, SS;, and SS,, we shall now imitate
the derivation in the balanced case to obtain an

upper confidence limit for 4. Let X, s, and
S8,

e

X, SS;, and SS,, respectively. To find a GPQ

respectively, denote the observed values of
for o +o0’, let gi=0:+ho. and o; =0
so that

0. +o0. =6 +(1-h)o;. (18)

A GPQ for &7 is given by

We note that the GPQ for &7 is only approximate

as the chi-square distribution associated with SS;
is only approximate. Substituting these GPQs in
equation (18), we obtain a GPQ for 03 + 0'3 as
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+(1—h) (19)
oot 1% 1 XN—k
A GPQ for U is given by
G, x4 \/_(X NE(X —p ) [ss
\JSS;
=X+
Xia (20)

where Z = ﬁXJ N(0,1). Finally, a GPQ for

o7 +hcre

A can be obtained as in equation (10) by replac-
ing the parameters in equation (5) by their GPQs:

\/G"%*"g [2 2
=——W-«(G)),

C

WlthGZ 7(C‘—GL)

o o Q1)

The percentiles of G, can be estimated by
Monte Carlo simulation using an algorithm
similar to Algorithm 1. The 100y percentile
of G, is a 100y % upper confidence limit for

A. Tt should be clear that the approximation
based on equation (11) that was mentioned for
the balanced case can also be used in the unbal-
anced case. Furthermore, similar to the balanced
case, the results simplify in the special case of

negligible bias with u=C . The Satterthwaite
approximation can also be used in this special
case, as follows. Let MS.=SS;/(k—1) and

MS, =SS, /[k(n—1)]. In view of equations
(16) and (17), an unbiased estimator of o7 + 0.
is given by 62+ &2 = MS. +(1—h)MS,. A 100

Y % upper confidence limit for 4, based on the
Satterthwaite approximation, is given by

2 52
V(62601
[y \/Zn a>

C

where the degrees of freedom f is given by

fe (MS, +(1- h)MSe}z.

2
ms? (Y MS?
k-1 N

We shall conclude our analysis of unbalanced
data by making several comments on the chi-
square approximation given in equation (16). The
approximation is due to Thomas and Hultquist
(1978), and these authors have investigated its
accuracy. They conclude that the chi-square
approximation in equation (16) is accurate except

for o} /o2 <.25, and the data are very unbal-

anced. Although it is difficult to quantify the
extent of the unbalancedness under which the
chi-square approximation given in equation (16)
becomes unsatisfactory, several authors have used
the approximation and have also commented
on its accuracy (see e.g. Sahai and Ojeda, 2005,
Section 11.8). It should also be noted that in the
place of SS;, there are other formulations of the

sum of squares (see once again Sahai and Ojeda,
2005, Chapter 11). Furthermore, these alternative
formulations have found applications in industrial
hygiene (see Harper et al., 2012). However, for our

purpose, SSs is preferable due to the chi-square
approximation associated with it.

SIMULATION STUDIES

Because a generalized confidence limit is gener-
ally known to be only approximate, we note that
all of the upper confidence limits derived above
are only approximate. In order to assess the accu-
racy of the upper confidence limits, we performed
a simulation study and estimated the coverage
probabilities. The simulation was carried out as
follows. We first generated 2500 sample statistics
(x.,8s,,8s,) . For each generated statistic, we used
Algorithm 1 with M =5000 to find generalized
upper confidence limit for 4. The percentage of
the 2500 upper confidence limits so obtained that
are greater than A is a Monte Carlo estimate of
the coverage probability. For the simulation, we
chose 1-a=y=0.95, and (4,C) = (2, 2) and
(2, 1.5). In other words, we are considering the
cases H=C and L=C . Our extensive prelimi-
nary simulation study indicates that the coverage
probabilities are not much affected by the values
of 7, and they do depend on the values of k.
So, simulation results are reported for different
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values of k for n = 2, 3, and 4. Furthermore,
the generalized confidence limits G, based on
Algorithm 1 turned out to be similar to the ones
based on the approximation to G, given in Step
4, and so we used the approximate G, for our
simulation studies. The simulated coverage prob-
abilities are given in Table 1 for the balanced case.
It is clear from Table 1 that for smaller &k, the
generalized upper confidence limits are slightly
conservative, especially when C = u . However,
confidence limits are less conservative when C is
different from A .

In the simulation study for the unbalanced case,
we choose k=06 and 7, and the results are given
in Table 2. The 7;’s used in the simulation are
given at the end of Table 2. The reported coverage
probabilities are close to the nominal level for all
the cases considered. Overall, we see that our con-
fidence limits perform satisfactorily in terms of
coverage probability, even though they are slightly
conservative for smaller values of k .

AN EXAMPLE

The example is on the determination of trace
beryllium in air filter samples, and the purpose is
an inter-laboratory evaluation of a standardized
inductively coupled plasma mass spectrometry

method (see Ashley et al, 2009). The relevant
data are given in Table 3. We note that there are
20 laboratories, with three replicate observations
from each laboratory, except two laboratories,
which had only two replicate measurements. We
first consider the balanced case after omitting the
data for laboratories 13 and 15, which had only
two replications each. Thus, k = 1§ and n = 3.
Using the notations in the case of balanced data,
the summary statistics are

x.=8.084, ss, =81.298, and ss, =33.791.

The 95% upper confidence limit based on
Algorithm 1 with the exact G, in Step 4 is cal-

culated as .5329 and with the approximate G, is

.5264. As these upper confidence limits are not
<.50, the data do not indicate that the symmetric-
range accuracy is <.50. In other words, an accu-
racy requirement at the .50 level would not be met
in the example.

We shall now calculate 95% upper confidence

limit for 4 based on data from all 20 laboratories.
Using the notations for the unbalanced case, the
required summary statistics are calculated as

¥ =8.065, ss, = 28.329,and ss, = 34.794.

Table 1. Coverage probabilities of 95% upper confidence limits for symmetric-range accuracy in the balanced case.

u=Cc=1 u=150C=2

(k, n) (k, n)

A (6,2) (8,2) (10,2) (10,3) (15,2) 6,2) (8,2) (8,4) 9.,3) (10,2)
.10 .96 .96 .95 95 .95 .96 .96 .96 95 95
A5 .96 .96 .95 95 .95 .96 .96 .96 95 95
.20 .96 .96 .95 95 .95 .96 .96 .96 95 .95
.30 .96 .96 .95 .95 .95 .96 .96 .96 95 .95
40 .96 .96 .96 .95 .95 .96 95 .96 95 .95

Table 2. Coverage probabilities of 95% upper confidence limits for symmetric-range accuracy in the unbalanced case.

u=C=1 u=150C=2

A (a) (b) (©) (d) () (a) (b) (© (d) (e)
10 96 95 95 96 95 96 95 96 96 95
15 95 95 95 96 95 96 95 96 95 95
20 95 95 95 96 95 96 95 96 96 95
30 96 95 95 95 95 96 95 96 95 95
40 95 95 96 96 95 96 95 96 95 95

(a)—(e) represent the different choices of the #;’s: (a): (3,2.4,5,3,2); (b): (2,2,2,1,6,12); (¢): (4,3,9,2,1,1); (d): (2,2,1,1,3,3,3);

(e):(2,2,3,2,4,2,12).
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Table 3. Inductively Coupled Plasma-Mass Spectrometry
Inter Laboratory Study beryllium results reported by
participating laboratories at concentration C = 10 pg
beryllium.

Lab No. Replicates
1 8.75 8.35 8.80
2 9.38 9.56 8.61
3 8.99 7.81 7.16
4 8.60 7.60 6.00
5 8.84 8.80 6.95
6 4.92 5.24 5.87
7 10.1 8.86 8.04
8 9.01 8.36 8.19
9 9.81 9.44 8.16
10 6.42 4.92 4.40
11 10.0 9.60 9.00
12 9.00 7.60 6.50
13 9.28 7.91
14 9.40 8.82 8.95
15 6.93 7.29
16 8.90 7.10 4.80
17 7.90 8.33 7.48
18 9.32 9.22 10.1
19 7.89 8.64 6.11
20 9.93 8.55 7.72

Using the expressions in equations (19) and (20),
we find

L= 28.329 +(1—35) 34.294’
oTtoe 19 X8

and

6, =65+ 2 [B
\Xio 20

Using the above expressions in G, given in equa-
tion (21) and Monte Carlo simulation of 100 000

runs, we estimated the 95th percentiles of G,

as .5186. Thus, the 95% upper confidence limit

for A based on all data in Table 3 is .5186. This
upper confidence limit is close to the one based
only on the balanced data, and so, we arrive at the
same earlier conclusion that an inter-laboratory
requirement at the 0.50 level would not be met in
this example.

An R function routine that calculates upper con-
fidence limits for the symmetric-range accuracy A
is posted at www.ucs.louisiana.edu/~kxk4695

DISCUSSION

The computation of confidence limits for some
rather complicated parameters comes up in many
industrial hygiene applications, and the concept
of a generalized confidence interval has proved
very fruitful to address such problems. In a series
of articles, Krishnamoorthy and Mathew (2002,
2009) and Krishnamoorthy et al, (2006, 2007)
have successfully applied the generalized confi-
dence interval idea for the analysis of industrial
hygiene data. In particular, Krishnamoorthy and
Mathew (2009) have developed an accurate upper
confidence limit for the symmetric-range accu-
racy, using the generalized confidence interval
approach, in the context of normally distributed
sample measurements. In this article, we have
accomplished the same for laboratory measure-
ments that can be modeled using a one-way ran-
dom model, which is appropriate to model the
variability among and within an exposure group
or among and within different laboratories.
Monte Carlo simulation results have once again
demonstrated the accuracy of the proposed meth-
odology. Both balanced and unbalanced data
situations are addressed in this work. Given the
accuracy of the proposed upper confidence limits,
it should be of interest in applications where the
one-way random model is appropriate to model
the exposure data, and it is of interest to verify
accuracy requirements based on an upper confi-
dence limit for the symmetric-range accuracy.

It should be noted that the basic results and
approximations used in this article have also been
used in Krishnamoorthy and Mathew (2004) and
Krishnamoorthy et al., (2007) for the problems
involving the computation of tolerance limits in
a one-way random model. The generalized con-
fidence interval idea appears to provide a uni-
fied approach to address a number of problems
of interest in the context of analyzing exposure
data.
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