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The symmetric-range accuracy A  of a sampler is defined as the fractional range, symmetric 
about the true concentration, that includes a specified proportion of sampler measurements. 
In this article, we give an explicit expression for A  assuming that the sampler measurements 
follow a one-way random model so as to capture different components of variability, for exam-
ple, variabilities among and within different laboratories or variabilities among and within 
exposed workers. We derive an upper confidence limit for A  based on the concept of a ‘gen-
eralized confidence interval’. A convenient approximation is also provided for computing the 
upper confidence limit. Both balanced and unbalanced data situations are investigated. Monte 
Carlo evaluation indicates that the proposed upper confidence limit is satisfactory even for 
small samples. The statistical procedures are illustrated using an example.

Keywords: coverage probability; generalized confidence interval; generalized pivotal quantity; non-central chi-
square distribution; upper confidence limit

Introduction

For quantifying the measurement accuracy of 
exposure data, the development of accuracy 
criteria is important. The National Institute of 
Occupational Safety and Health (NIOSH) accu-
racy criterion is based on the symmetric-range 
accuracy A , and the NIOSH accuracy require-
ment states that a 95% upper confidence limit for 
A  does not exceed 0.25 (see Bartley et al., 2003; 
Bartley, 2001, 2008; Bartley and Lidén, 2008). 
By definition, the symmetric-range accuracy 
A  is defined as the fractional range, symmetric 
about the true concentration C , within which 
100 ( )1-α % of sampler measurements are to be 
found. Though the NIOSH accuracy criterion 
applies strictly to intra-laboratory variations, a 

similar criterion, for example, at the 0.50 level, 
could be adopted and applied also for controlling 
inter-laboratory variations. In Bartley (2001) and 
Bartley et al. (2003), an approximation is developed 
for A , and an approximate 95% upper confidence 
limit is derived, assuming a normal distribution 
for the original measurements. In a recent article, 
Krishnamoorthy and Mathew (2009) have derived 
an exact expression for A . Also, an accurate upper 
confidence limit on A  may be obtained by exploit-
ing the generalized confidence interval idea. The 
work of Krishnamoorthy and Mathew (2009) is 
also in the setup of exposure measurements that 
follow a normal distribution. It appears that the 
symmetric-range accuracy and its confidence limit 
calculation have not been addressed in the context 
of other models; for example, in the context of a 
model that involves random effects.

The one-way random model for the log-trans-
formed exposure data is widely used to capture 
variability among workers when repeated meas-
urements are made on the same worker over time 
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(see Symanski et al., 2006 for a review). The one-
way random model has also found applications 
in the evaluation of sampling/analytical methods 
where inter-sampler variation is significant. For 
example, Bartley et al. (1994) discuss the 10-mm 
nylon cyclone whose variation in inner diameter 
leads to inaccuracy in estimating respirable dust 
concentrations; a one-way random model is used 
to capture these variations. The use of a one-way 
random model results in a situation where a com-
bined uncertainty has to be computed by adding 
the two variance components (corresponding to 
variability among and within workers). The calcu-
lation of such a combined uncertainty is pointed 
out in Bartley et  al. (2003). The same situation 
arises in inter-laboratory evaluation of method-
ologies to determine workplace contaminations; 
the two variance components will now represent 
the variability between and within laboratories. 
The goal of this investigation is to derive an exact 
expression for the symmetric-range accuracy in 
this scenario and to compute an accurate upper 
confidence limit, where measurements can be 
modeled using a one-way random effects model. 
We have once again used the generalized confi-
dence interval idea in order to derive the required 
upper confidence limit. We have addressed both 
balanced and unbalanced data situations. Monte 
Carlo results are reported to judge the accuracy 
of the proposed upper confidence limits. We have 
also illustrated our methodology in both balanced 
and unbalanced data situations using data from 
an inter-laboratory evaluation of a methodology 
to determine trace beryllium in air filter samples.

Symmetric-range accuracy

Let Xij  denote the j th sampler measurement 
on the i th worker or from the i th laboratory, 
assumed to follow the one-way random model 
given by

	
X e j n i kij i ij i= + + , = , ,..., , = , ,..., ,µ τ 1 2 1 2

� (1)

where µ = E Xij( )  is the overall mean of the 
measurements, and the τ i ’s and eij ’s are inde-

pendent random variables with τ στi N ( )0 2,  and 
e Nij e ( )0 2,σ . Thus, X Nij e ( )µ σ στ, +2 2 . Here, 
k  denotes the number of workers or number of 
laboratories from where sampler measurements 
are obtained, and ni  denotes the number of sam-
pler measurements on the i th worker or from the 
i th laboratory. We note that the Xij  represent the 

original measurements. Furthermore, the random 
variable τ i  represents an effect due to the i th 
laboratory or the i th worker.

If  C  denotes the true concentration and X  
follows the model in equation (1), then the sym-
metric-range accuracy A  satisfies

	 P A C X A C(( ) ( ) )1 1 1− < < + = − ,α � (2)

where 0 1< <α , and for NIOSH applications, 
α = .0 05 . Here, we have followed the notations 
and definitions in Bartley et  al. (2003), Bartley 
(2001) and Krishnamoorthy and Mathew (2009). 
As X N e ( )µ σ στ, +2 2 , we can write

P A C X A C P

A C X A C

e e

( ) ( )

( ) ( )

1 1

1 1
2 2 2 2 2

− < < +( )=

− −

+
<

−

+
<
+ −µ

σ σ
µ

σ σ
µ

στ τ τ ++











σe
2

=
− −

+
< <

+ −

+












,P

A C
Z

A C

e e

( ) ( )1 1
2 2 0 2 2

µ
σ σ

µ
σ στ τ 	

(3)

where Z X e0
2 2= − / +( )µ σ στ  follows a stand-

ard normal distribution. Let

	 b
C

e

=
−

+
.

µ
σ στ

2 2
� (4)

Then, equation (3) can be expressed as 

P Z b AC e( )| − |< / + ,0
2 2σ στ  or equivalently 

P Z b A C e(( ) ( ))0
2 2 2 2 2− < / + .σ στ  Thus, the sym-

metric-range accuracy A  should satisfy

P Z b
A C

e

( )0
2

2 2

2 2 1− <
+









= − .

σ σ
α

τ

Note that ( ) ( )Z b b0
2

1
2 2- χ , a non-central 

chi-square distribution with one degree of free-
dom and a non-centrality parameter b2 . Hence, 
A C be

2 2 2 2
11
2 2/ + = ; −( ) ( )σ σ χτ α , the 100 1( )-α  

percentile of the non-central chi-square 
distribution. Thus,

	 A
C

be=
+

: −

σ σ
χτ

α

2 2

11
2 2( ), � (5)

where b  is defined in equation (4). Thus, equation 
(5) gives an explicit expression for A , similar to 
what is obtained in Krishnamoorthy and Mathew 
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(2009). Such an explicit expression facilitates the 
computation of an upper confidence limit for A ,  
as noted below.

Interval estimation with balanced data

Consider the model in equation (1) with balanced 
data, i.e. the ni ’s are equal with n  denoting their 
common value. Thus, we have sampler measure-
ments Xij ’s following the model

X e j n i kij i ij= + + , = , ,..., , = , ,..., .µ τ 1 2 1 2
� (6)

Define i n j

n
ijX X. =

= ∑1 1  and .. = =
= ∑ ∑X X

kn i

k

j

n
ij

1
1 1 . 

Recall that the τ i ’s are random variables represent-
ing effects due to the different workers or laboratories. 
Now let SSτ  denote the between worker or between 
laboratory sum of squares, and SSe  denote the 
within worker or within laboratory sum of squares. 
These are given by

SS n X X SS X X
i

k

i e
i

k

j

n

ij iτ = − = −
=

. ..
= =

.∑ ∑∑
1

2

1 1

2( ) ( ) .and

See Montgomery (2012, Chapter 3). It is known 
that ..X , SSτ , and SSe  are independently 
distributed with

	

Z kn X

n
N

SS

n

SS
e

e
k

e

e
k

=
−

+
, ,

+
,

..

−

( )
( )

(

µ
σ σ

σ σ
χ

σ
χ

τ

τ

τ

2 2

2 2 1
2

2

0 1

 and nn− ,1
2

)
�

(7)

where χr
2  denotes the central chi-square distribu-

tion with r  degrees of freedom (df).
A 100γ % upper confidence limit for A  will 

now be computed using the generalized confi-
dence interval idea, as done in Krishnamoorthy 
and Mathew (2009). The first step toward this 
computation is the derivation of a generalized piv-
otal quantity (GPQ) for A . As A  is a function of 
µ  and σ στ

2 2+ e , a GPQ for A  can be obtained 
by substituting the GPQs of these parameters 
in the expression for A  in equation (5). In order 
to obtain GPQs for the parameters, let ..x , ssτ ,  
and sse  denote the observed values of the ran-
dom variables ..X , SSτ , and SSe , respectively. 
The observed values ..x , ssτ , and sse  are num-
bers computed from a given set of data and are 

to be treated as fixed. A GPQ is a function of the 
random variables ..X , SSτ , and SSe , and their 
observed values ..x , ssτ , and sse , and is required 
to satisfy two conditions: (i) given the observed 
quantities ..x , ssτ , and sse , the distribution of 
the GPQ should be free of unknown parameters, 
and (ii) in the definition of the GPQ, if  the random 
variables ..X , SSτ , and SSe  are replaced by the 
corresponding observed values, the GPQ will sim-
plify to the parameter of interest (the parameter of 
interest being the symmetric-range accuracy A ). To 
find a GPQ for σ στ

2 2+ e , let σ σ στ1
2 2 2= +n e  and 

σ σ2
2 2= e  so that

	 σ σ σ στ
2 2

1
2

2
21

1+ = + − .e n
n[ ( ) ] 	 (8)

A GPQ for σ1
2  is given by

G
SS

ss
ss

k
σ

τ
τ

τσ
χ1

2
1
2

1
2= =
−

,

and a GPQ for σ2
2  is given by

G
SS

ss
ss

e
e

e

k n
σ

σ
χ2

2
2
2

1
2= = .
−( )

Substituting these GPQs in equation (8), we 

obtain a GPQ for σ στ
2 2+ e  as

	 G
n

ss
n

ss
e k

e

k n
στ σ

τ

χ χ2 2
1

2
1

2

1
1

+
− −

= + −















.( )

( )

� (9)

A GPQ for µ  is given by

G x
kn X

SS

ss
kn

x
Z ss

kn
k

µ
τ

τ τµ
χ

= −
−

= − ,..
..

..

−

( )

1
2

where Z  is defined in equation (7). Finally, a 
GPQ for A  can be obtained by replacing the 
parameters in equation (5) by their GPQs and is 
given by

G
G

C
G G

C G

GA
e

b b

e

= , =
−

.
+

: −

+

στ σ

α
µ

στ σ

χ
2 2

11
2 2

2

2

2 2

( )
( )

with

�

(10)

An approximation

In order to numerically obtain a percentile of GA  
that will provide the required upper confidence 
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limit, simulation must be carried out a large 
number of times. Furthermore, the non-central 
critical value χ α11

2 2
; − ( )Gb  must be evaluated for 

each simulation run and this makes the calcula-
tion somewhat time-consuming. The following 
approximation can be used to avoid the calcula-
tion of χ α11

2 2
; − ( )Gb  for each simulated Gb

2 :

χ δ δ δ
δ

δ
m p pm z

m

m

m
; +







+
+

−






+2

3

2

2
9

2 2
9

2
( ) ( )

( )


(( )

( )

m

m p

+
+

















= ,;
∗

δ

χ δ

2

2

1

where zp  is the 100p  percentile of a standard 

normal distribution. The above approximation 

with m=1, p= −1 α , and δ =Gb
2  can be used 

to evaluate χ α11
2 2
; − ( )Gb  in equation (10) as

χ α

α

11
2 2 2

3

1

2

2 2

1

2
9

1 2

1

2
9

; −

−

+







+
+

−




( ) ( )

( )

G G

z
G

G

b b

b

b







+
+

+
















= ,; −
∗

1 2

1
1

2

2 2

11
2 2

G

G

G

b

b

b

( )

( )χ α say.
� (11)

Simulation studies in the sequel indicate that this 
approximation is very satisfactory and provide 
results very close to those based on equation (10).

Note that, for given ( ).., ,x ss sseτ , the distribu-
tion of GA  does not depend on any unknown 
parameters, and so the percentiles of GA  can be 
estimated by Monte Carlo simulation as shown in 
Algorithm 1. The 100 γ  percentile of GA  is a 100
γ % upper confidence limit for A.

Algorithm 1

1.	 For given sampler measurements following the 
model in equation (1), compute ..x , ssτ , and 
sse .

2.	 Generate random variates Z N ( )0 1, , χk-1
2 , 

and χk n( )− .1
2

3.	 Compute G x Z

k

ss
knµ

χ

τ= −..
−1

2
,  

G n
e n

ss

k

sse

k n
στ σ

τ
χ χ2 2

1

1
2

1
21

+
− −

= + −














( )
( )

, and 

G
b

C G

G
e

2

2

2 2
= .

−

+

( )µ

στ σ

4.	 Compute G GA

G
e

C b
= +

; −










στ σ
αχ

2 2

11
2

2
 or 

G GA

G
e

C b


στ σ
αχ

2 2

11
2

2
+

; −
∗ 







 , where χ α11

2
; −
∗

 is 

given in equation (11).

5.	 Repeat Steps 2–4 a large number of times,  
say, M .

The 100 γ  percentile of GA ’s generated above is a 
100γ % upper confidence limit for A .

A special case

If  it is assumed that µ =C  (i.e. the bias is negli-
gible) so thatX N Cij e ( ), +σ στ

2 2 , then b = 0  (see 
equation (4)), and the accuracy range A  defined 

in equation (5) becomes στ σ
αχ

2 2

11
2+
: −

e
C

, where 
χ α11
2
: −  denotes the 100 1( )-α th percentile of a 

central chi-square distribution with one degree 
of freedom. In this case, the GPQ for A  is given 

by GA

G
e

C= +
; −

στ σ
αχ

2 2

11
2 . Clearly, a 100γ % upper 

confidence limit for A  can now be obtained after 
numerically obtaining the 100γ th percentile of 
G

eστ σ2 2+ . The estimation of this percentile based 
on Monte Carlo simulation should be clear from 
Algorithm 1.

However, we note that in this special case as 

A e
C= +

: −
στ σ

αχ
2 2

11
2 , what is required is a 100 γ % 

upper confidence limit for σ στ
2 2+ e . An approxi-

mate upper confidence limit can be explicitly 
obtained using the Satterthwaite approximation 
(see Montgomery, 2012, Chapter  13). In order 
to see this, the chi-square distributions in equa-
tion (7) provide us with the unbiased estimators 

of n eσ στ
2 2+  and σ e

2,  say n eτσ σ2 2ˆ ˆ+  and e
2ˆ ,σ  given 

by n SS k MSeτ τ τσ σ2 2 1ˆ ˆ ( )+ = / − =  (say) and 

e e eSS k n MS2 1ˆ [ ( )]σ = / − =  (say). From these, we 

immediately get

τ
τσ σ2 2 1

1
ˆ ˆ+ = + −







 ,e e

MS
n n

MS

which is a linear combination of MSτ  and MSe . 

According to the Satterthwaite approximation, we 
then have the distribution
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	 τ

τ

σ σ
σ σ

χ2 2

2 2

2
ˆ ˆ+
+

,e

e

f

f
 � (12)

approximately, where the degrees of freedom f  

is given by

	 f
MSMS

n n e

MS

n k n
MSe
k n

=
+ −( )

+ −( )

















− −

2
1

2

2 1

21
2

1

1

1

τ

τ
( ) ( )







. � (13)

We note that the degrees of freedom is estimated 
using the data. A  100 γ % approximate upper 
confidence limit for σ στ

2 2+ e  is now given by 
f e f( )σ σ χτ γ
 

2 2
1

2/ .; −  Consequently, a 100 γ % 
approximate upper confidence limit for the sym-
metric-range accuracy A  is now given by

f

C
e f( )

,
σ σ χ

χτ γ
α

 

2 2
1

2

11
2

/ ; −
: −

where the degrees of freedom f  is given in equa-

tion (13).

Interval estimation with 
unbalanced data

We shall now consider the model in equation 

(1) with unbalanced data, i.e. not all the ni ’s are 

equal. Thus, we have sampler measurements Xij ’s 

following the model

X e j n i kij i ij i= + + , = , ,...., , = , ,...., ,µ τ 1 2 1 2
� (14)

where the various quantities in the model are as 
before, satisfying the same distributional assump-
tions. Note that the number of observations is 
not the same on the different workers or from the 
different laboratories. In the case of unbalanced 
data, a simple approach to compute an upper con-
fidence limit for the symmetric-range accuracy A  
is to reduce the problem to the case of balanced 
data using a fairly widely used approximation. In 
order to introduce the approximation, define

	

h
k

n X
k

X SS

X X

i

k

i
i

k

i x

i

k

i

= , = ,

= − .

=

−

=
.

=
.

∑ ∑

∑

1 1

1

1

1

1

2

and

( )
� (15)

Then,

X N
h
k

e
 µ σ στ,

+







.

2 2

By direct calculation, it can be verified that 

E SS k hx e( ) ( )( )= − +1 2 2σ στ . An approximate 

chi-square distribution associated with SSx  

states that

	
SS

h
x

e
kσ σ

χ
τ
2 2 1

2

+ − approximately. � (16)

If  we define SS X Xe i

k

j

ni
ij i= −

= = .∑ ∑1 1
2( ) , then 

SSe  is the usual error sum of squares and

	
SS

N ne

e
N k

i

k

iσ
χ2
2

1

 −
=

, = .∑where � (17)

Using X , SSx , and SSe , we shall now imitate 

the derivation in the balanced case to obtain an 

upper confidence limit for A . Let x , ssx , and 

sse , respectively, denote the observed values of 

X , SSx , and SSe , respectively. To find a GPQ 

for σ στ
2 2+ e , let 1

2 2 2
σ σ στ= + h e  and σ σ2

2 2= e  

so that

	 σ σ σ στ
2 2

1
2

2
21+ = + − .e h ( ) � (18)

A GPQ for 1
2
σ  is given by

G
SS

ss
ss

x
x

x

k1
2

1
2

1
2





σ
σ

χ
= =

−

,

and a GPQ for σ2
2  is given by

G
SS

ss
ss

e
e

e

N k
σ

σ
χ2

2
2
2

2= = .
−

We note that the GPQ for 1
2
σ  is only approximate 

as the chi-square distribution associated with SSx  

is only approximate. Substituting these GPQs in 

equation (18), we obtain a GPQ for σ στ
2 2+ e  as
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	 G
ss

h
ss

e

x

k

e

N k
στ σ χ χ2 2

1
2 21

+
− −

= + − .( ) � (19)

A GPQ for µ  is given by

	

G x
k X

SS

ss
k

x
Z ss

k

x

x

k

x

µ
µ

χ

= +
−

= + ,
−

( )

1
2

�
(20)

where Z Nk X

h e

= ,−

+

( ) ( )µ

στ σ2 2
0 1 . Finally, a GPQ for 

A  can be obtained as in equation (10) by replac-
ing the parameters in equation (5) by their GPQs:
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The percentiles of GA  can be estimated by 

Monte Carlo simulation using an algorithm 
similar to Algorithm 1.  The 100 γ  percentile 

of GA  is a 100 γ % upper confidence limit for 

A . It should be clear that the approximation 
based on equation (11) that was mentioned for 
the balanced case can also be used in the unbal-
anced case. Furthermore, similar to the balanced 
case, the results simplify in the special case of 
negligible bias with µ =C . The Satterthwaite 

approximation can also be used in this special 

case, as follows. Let MS SS kx x= / −( )1  and 

MS SS k ne e= / −[ ( )]1 . In view of equations 

(16) and (17), an unbiased estimator of σ στ
2 2+ e  

is given by τσ σ2 2 1ˆ ˆ ( )+ = + −e x eMS h MS . A  100

γ % upper confidence limit for A , based on the 
Satterthwaite approximation, is given by

( )
,

σ σ χ
χτ γ

α

 

2 2
1

2

11
2e f

C

/ ; −
: −

where the degrees of freedom f  is given by

f
MS h MS

h

x e

MSx
k

MSe
N k

=
+ −

+ −












.






− −

2

2

1
2 2

1

1

( )

( )

We shall conclude our analysis of unbalanced 
data by making several comments on the chi-
square approximation given in equation (16). The 
approximation is due to Thomas and Hultquist 
(1978), and these authors have investigated its 
accuracy. They conclude that the chi-square 
approximation in equation (16) is accurate except 

for σ στ
2 2 25e < . , and the data are very unbal-

anced. Although it is difficult to quantify the 
extent of the unbalancedness under which the 
chi-square approximation given in equation (16) 
becomes unsatisfactory, several authors have used 
the approximation and have also commented 
on its accuracy (see e.g. Sahai and Ojeda, 2005, 
Section 11.8). It should also be noted that in the 

place of SSx , there are other formulations of the 

sum of squares (see once again Sahai and Ojeda, 
2005, Chapter 11). Furthermore, these alternative 
formulations have found applications in industrial 
hygiene (see Harper et al., 2012). However, for our 

purpose, SSx  is preferable due to the chi-square 

approximation associated with it.

Simulation studies

Because a generalized confidence limit is gener-
ally known to be only approximate, we note that 
all of  the upper confidence limits derived above 
are only approximate. In order to assess the accu-
racy of  the upper confidence limits, we performed 
a simulation study and estimated the coverage 
probabilities. The simulation was carried out as 
follows. We first generated 2500 sample statistics 
( , )..,x ss sseτ . For each generated statistic, we used 
Algorithm 1 with M = 5000  to find generalized 
upper confidence limit for A . The percentage of 
the 2500 upper confidence limits so obtained that 
are greater than A  is a Monte Carlo estimate of 
the coverage probability. For the simulation, we 
chose 1 0 95− = = .α γ , and ( )µ,C  =  (2, 2)  and 
(2, 1.5). In other words, we are considering the 
cases µ =C  and µ ¹C . Our extensive prelimi-
nary simulation study indicates that the coverage 
probabilities are not much affected by the values 
of  n , and they do depend on the values of  k . 
So, simulation results are reported for different 
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values of  k  for n  = 2, 3, and 4. Furthermore, 
the generalized confidence limits GA  based on 
Algorithm 1 turned out to be similar to the ones 
based on the approximation to GA  given in Step 
4, and so we used the approximate GA  for our 
simulation studies. The simulated coverage prob-
abilities are given in Table 1 for the balanced case. 
It is clear from Table  1 that for smaller k , the 
generalized upper confidence limits are slightly 
conservative, especially when C = µ . However, 
confidence limits are less conservative when C  is 
different from µ .

In the simulation study for the unbalanced case, 
we choose k = 6  and 7, and the results are given 
in Table  2. The ni ’s used in the simulation are 
given at the end of Table 2. The reported coverage 
probabilities are close to the nominal level for all 
the cases considered. Overall, we see that our con-
fidence limits perform satisfactorily in terms of 
coverage probability, even though they are slightly 
conservative for smaller values of k .

An example

The example is on the determination of trace 
beryllium in air filter samples, and the purpose is 
an inter-laboratory evaluation of a standardized 
inductively coupled plasma mass spectrometry 

method (see Ashley et  al., 2009). The relevant 
data are given in Table 3. We note that there are 
20 laboratories, with three replicate observations 
from each laboratory, except two laboratories, 
which had only two replicate measurements. We 
first consider the balanced case after omitting the 
data for laboratories 13 and 15, which had only 
two replications each. Thus, k  = 18 and n  = 3. 
Using the notations in the case of balanced data, 
the summary statistics are

.. = . , = . , = . .x ss sse8 084 81 298 33 791τ and

The 95% upper confidence limit based on 

Algorithm 1 with the exact GA  in Step 4 is cal-

culated as .5329 and with the approximate GA  is 

.5264. As these upper confidence limits are not 
<.50, the data do not indicate that the symmetric-
range accuracy is <.50. In other words, an accu-
racy requirement at the .50 level would not be met 
in the example.

We shall now calculate 95% upper confidence 
limit for A  based on data from all 20 laboratories. 
Using the notations for the unbalanced case, the 
required summary statistics are calculated as

x ss ssx e= . , = . , = . .8 065 28 329 34 794and

Table 1.  Coverage probabilities of 95% upper confidence limits for symmetric-range accuracy in the balanced case.

μ = C = 1 μ = 1.5, C = 2

(k, n) (k, n)

A (6,2) (8,2) (10,2) (10,3) (15,2) (6,2) (8,2) (8,4) (9,3) (10,2)

.10 .96 .96 .95 .95 .95 .96 .96 .96 .95 .95

.15 .96 .96 .95 .95 .95 .96 .96 .96 .95 .95

.20 .96 .96 .95 .95 .95 .96 .96 .96 .95 .95

.30 .96 .96 .95 .95 .95 .96 .96 .96 .95 .95

.40 .96 .96 .96 .95 .95 .96 .95 .96 .95 .95

Table 2.  Coverage probabilities of 95% upper confidence limits for symmetric-range accuracy in the unbalanced case.

μ = C = 1 μ = 1.5, C = 2

A (a) (b) (c) (d) (e) (a) (b) (c) (d) (e)

.10 .96 .95 .95 .96 .95 .96 .95 .96 .96 .95

.15 .95 .95 .95 .96 .95 .96 .95 .96 .95 .95

.20 .95 .95 .95 .96 .95 .96 .95 .96 .96 .95

.30 .96 .95 .95 .95 .95 .96 .95 .96 .95 .95

.40 .95 .95 .96 .96 .95 .96 .95 .96 .95 .95

(a)–(e) represent the different choices of the ni ’s: (a): (3,2,4,5,3,2); (b): (2,2,2,1,6,12); (c): (4,3,9,2,1,1); (d): (2,2,1,1,3,3,3); 

(e): (2,2,3,2,4,2,12).
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Using the expressions in equations (19) and (20), 
we find

G
eστ σ χ χ2 2

19
2

38
2

28 329
1 35

34 794
+
=

.
+ −.

.
,( )

and

G
Z

µ
χ

= . +
.
.8 065

28 329
20

19
2

Using the above expressions in GA  given in equa-
tion (21) and Monte Carlo simulation of 100 000 

runs, we estimated the 95th percentiles of GA  

as .5186. Thus, the 95% upper confidence limit 
for A  based on all data in Table 3 is .5186. This 
upper confidence limit is close to the one based 
only on the balanced data, and so, we arrive at the 
same earlier conclusion that an inter-laboratory 
requirement at the 0.50 level would not be met in 
this example.

An R function routine that calculates upper con-
fidence limits for the symmetric-range accuracy A  
is posted at www.ucs.louisiana.edu/~kxk4695

Discussion

The computation of confidence limits for some 
rather complicated parameters comes up in many 
industrial hygiene applications, and the concept 
of a generalized confidence interval has proved 
very fruitful to address such problems. In a series 
of articles, Krishnamoorthy and Mathew (2002, 
2009) and Krishnamoorthy et  al., (2006, 2007) 
have successfully applied the generalized confi-
dence interval idea for the analysis of industrial 
hygiene data. In particular, Krishnamoorthy and 
Mathew (2009) have developed an accurate upper 
confidence limit for the symmetric-range accu-
racy, using the generalized confidence interval 
approach, in the context of normally distributed 
sample measurements. In this article, we have 
accomplished the same for laboratory measure-
ments that can be modeled using a one-way ran-
dom model, which is appropriate to model the 
variability among and within an exposure group 
or among and within different laboratories. 
Monte Carlo simulation results have once again 
demonstrated the accuracy of the proposed meth-
odology. Both balanced and unbalanced data 
situations are addressed in this work. Given the 
accuracy of the proposed upper confidence limits, 
it should be of interest in applications where the 
one-way random model is appropriate to model 
the exposure data, and it is of interest to verify 
accuracy requirements based on an upper confi-
dence limit for the symmetric-range accuracy.

It should be noted that the basic results and 
approximations used in this article have also been 
used in Krishnamoorthy and Mathew (2004) and 
Krishnamoorthy et  al., (2007) for the problems 
involving the computation of  tolerance limits in 
a one-way random model. The generalized con-
fidence interval idea appears to provide a uni-
fied approach to address a number of  problems 
of  interest in the context of  analyzing exposure 
data.
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Table 3.  Inductively Coupled Plasma-Mass Spectrometry 
Inter Laboratory Study beryllium results reported by 
participating laboratories at concentration C = 10 μg 
beryllium. 

Lab No. Replicates

1 8.75 8.35 8.80

2 9.38 9.56 8.61

3 8.99 7.81 7.16

4 8.60 7.60 6.00

5 8.84 8.80 6.95

6 4.92 5.24 5.87

7 10.1 8.86 8.04

8 9.01 8.36 8.19

9 9.81 9.44 8.16

10 6.42 4.92 4.40

11 10.0 9.60 9.00

12 9.00 7.60 6.50

13 9.28 7.91

14 9.40 8.82 8.95

15 6.93 7.29

16 8.90 7.10 4.80

17 7.90 8.33 7.48

18 9.32 9.22 10.1

19 7.89 8.64 6.11

20 9.93 8.55 7.72
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