

causes no harm, and 87% of parents would choose laser treatment again for their children. In our opinion, until we have effective treatments, which may not be so far away (antiangiogenic drugs or factors), we should continue laser (or cryo) treatment in possibly problematic early lesions. If disfigurement or other complication can be avoided or amended in even a small number of children, we believe treatment is worth a try.

*Ulrich Hohenleutner, Michael Landthaler

Klinik und Poliklinik für Dermatologie, Klinikum der Universität Regensburg, 93042 Regensburg, Germany
(e-mail: Ulrich.Hohenleutner@klinik.uni-regensburg.de)

- 1 Enjolras O, Mulliken JB. The current management of vascular birthmarks. *Pediatr Dermatol* 1993; **10**: 311–33.
- 2 Enjolras O. Classification and management of the various superficial vascular anomalies: hemangiomas and vascular malformations. *J Dermatol* 1997; **24**: 701–10.
- 3 Frieden IJ. Management of hemangiomas: special symposium. *Pediatr Dermatol* 1997; **14**: 57–83.
- 4 Hohenleutner S, Badur-Ganter E, Landthaler M, Hohenleutner U. Long-term results in the treatment of childhood hemangioma with the flashlamp-pumped pulsed dye laser: an evaluation of 617 cases. *Lasers Surg Med* 2001; **28**: 273–77.
- 5 Grantzow R, Schmitzenbecher PP, Schuster T. Frühbehandlung von Hämagiomen: Lasertherapie. *Monatsschr Kinderheilk* 1995; **143**: 369–74.
- 6 Garden JM, Bakus AD, Paller AS. Treatment of cutaneous hemangiomas by the flashlamp-pumped pulsed dye laser: prospective analysis. *J Pediatr* 1992; **120**: 555–60.
- 7 Morelli JG, Weston WL. Pulsed dye laser treatment of hemangiomas. In: Tan OT, ed. Management and treatment of benign cutaneous vascular lesions. Philadelphia, London: Lea and Febiger, 1993: 124–32.
- 8 Wlotzke U, Michel S, Hohenleutner U. Laser- und Kryotherapie der Säuglingshämangiome im direkten Vergleich. *Zbl Haut* 1996; **168**: 21–22.
- 9 Poetke M, Philipp C, Berlien HP. Flashlamp-pumped pulsed dye laser for hemangiomas in infancy. *Arch Dermatol* 2000; **136**: 628–32.
- 10 Ashinoff R, Geronemus RG. Failure of the flashlamp-pumped pulsed dye laser to prevent progression to deep hemangioma. *Pediatr Dermatol* 1993; **10**: 77–80.

Casting their lot upon the water: commercial fishing safety

See page 543

As described in Stephen Roberts' and colleagues Research letter in today's *Lancet*, commercial fishermen work in the most hazardous occupation in the UK, followed closely by other mariners. This result is similar to the findings of Rafnsson and Gunnarsdottir's landmark 1994 study of Icelandic fishermen and mariners.¹ The hazard is probably similar worldwide.^{2,3} Although many of the hazards inherent to fishing (weather, waves, risk of capsizing and drowning) were known and described in classic texts (eg, the Bible, *Moby Dick*), these hazards have been greatly complicated during the past century, as fishing decks have become increasingly complex industrial environments. The deck of a modern fishing vessel is a pitching slippery surface with many winches, lines, booms, and pulleys, all with their hazards of injury.⁴ The worldwide realisation that something could be done to mitigate these hazards has only gained momentum during the past few decades. There have recently been productive scientific, technological, social, and regulatory approaches to the many hazards of work on the seas.

Although the physiology of drowning has been well-understood for centuries, that of immersion hypothermia only became well-described in the mid-20th century.⁵ This new knowledge led to the development of immersion suits, neoprene garments which can be donned by fishermen abandoning ship in cold waters and which can

keep them relatively warm and buoyant, optimally for a few hours, until rescue. Development of synthetic fabrics has made self-inflating life-rafts a practical option for many vessels, and their use in open seas is codified by the international Safety of Life at Sea convention. Wide deployment of communications satellites has permitted the development of emergency position-indicating radio beacons, which greatly facilitate the location of sinking vessels,⁶ and satellite-based weather surveillance, which has increased the precision of weather forecasts for much of the earth. Telemedicine services delivered by satellite telephone are now commercially available for fishing and merchant vessels.

There are, however, two other areas which have not been well exploited yet. Vessel stability is well understood and measurable. However, many of the vessels that sink have had their stability compromised by retrofitting and/or overloading, often by the addition of heavy machinery above deck. Another growing area is the study of human fatigue and its role in transportation incidents.⁷ Problematically, most scheduling of work time for fishing vessels still revolves around fishing seasons and long transport-times between port and the fishing grounds. Thus the performance of fishermen may often be below par because they are tired. This fatigue can lead to reduced vigilance in operating hazardous machinery and impaired judgment in deciding when to start or terminate a voyage.⁸

Although many developed nations (including the Nordic nations, the UK, Iceland, Canada, the USA, Spain, Russia, New Zealand, and Chile)⁹ maintain large and active search-and-rescue operations or coast guards, and have improved their surveillance for these events, international agencies—the International Labour Organization and, increasingly, the Food and Agriculture Organization—have taken on the organising of progress for many other developing nations.^{2,10} The industrial-scale high-seas fisheries using vessels over 24 m in length have been widely codified for safety by consensus among many nations in the 1993 Torremolinos Protocol, although formal adoption of these standards as national requirements (eg, the Commercial Fishing Vessel Safety Act of 1988 in the USA) has been variable. Where adopted, more vigorous safety regulations have already helped to prevent many deaths—well documented in Alaska¹¹—as has the implementation of rigorous training programmes by non-governmental organisations.¹² Organisation and regulation of fishing-vessel use, equipment, and training of personnel in the developed nations should continue to yield progress in reducing the mortality among fishermen and seafarers.

However, most of the world's estimated 36 million fishermen¹³ reside in developing nations and have hardly been touched by any of these developments, often going to sea in small marginally seaworthy craft with little or no safety equipment and limited access to reliable weather predictions. This situation may now be changing: the smaller artisanal (family-operated) fisheries that are common in developing nations are also being progressively organised. A large regional meeting, including official delegations from Bangladesh, India, Indonesia, the Maldives, Sri Lanka, and Thailand, was held last year in India to address this issue and resulted in the Chennai Declaration,¹⁴ which sets the stage for the application of appropriate technology, community-based training, and regulations to be implemented in these settings. Some of these approaches, imaginatively applied, may make for better lives as well as safer work—eg, by developing local fabrication of inexpensive personal

flotation-devices or internet interfaces in village kiosks to provide basic health information in addition to current weather predictions and safe-fishing tips.

Real progress in the developed nations' efforts to prevent fishing fatalities are just beginning. Much more work will be needed to make this occupation acceptably safe. Even more effort will be needed to spread the full benefits of new technology to the artisanal and subsistence fishermen and boats so numerous in maritime developing nations. These benefits, which include access to satellite weather prediction and simple, inexpensive measures such as flotation vests, and amendments to improve vessel buoyancy, are all within reach, provided there is sufficient international commitment.

George A Conway

CDC/NIOSH, Anchorage, AK 99508, USA
(e-mail: GConway@cdc.gov)

- 1 Rafnsson V, Gunnarsdottir H. Mortality among Icelandic seamen. *Int J Epidemiol* 1994; **23**: 730-36.
- 2 International Labor Organization. Report on the safety and health in the fishing industry. Geneva: ILO, 1999. <http://www.ilo.org/public/english/dialogue/sector/techmeet/tmf199/tmfir.htm> (accessed Aug 12, 2002).
- 3 Turner J, Petursdottir G. Safety at sea for fishermen and the role of FAO. In: Lincoln JM, Hudson DS, Conway GA, eds. Proceedings of the international fishing industry safety and health conference. Woods Hole, MA, 2000. Anchorage: National Institute for Occupational Safety and Health (in press).
- 4 Thomas TK, Lincoln JM, Husberg BJ, Conway GA. Is it safe on deck? Fatal and non-fatal workplace injuries among Alaskan commercial fishermen. *Am J Ind Med* 2001; **40**: 693-702.
- 5 Keatinge WR. Survival in cold water: the physiology and treatment of immersion hypothermia and of drowning. Oxford: Blackwell, 1969.
- 6 US National Research Council. Emergency position-indicating radio beacons. In: Safety and survival. Fishing vessel safety: blueprint for a national program. Washington, DC: National Academy of Sciences, 1991.
- 7 Batelle Memorial Institute. An overview of the scientific literature concerning fatigue, sleep, and the circadian cycle. JIL Information Systems, 1998. <http://www.alpa.org/internet/projects/ftdt/backgr/batelle.htm> (accessed Aug 12, 2002).
- 8 Marine Accident Investigation Board of the UK. Tiredness can kill. *Safety Digest* 2002; **1**: 4-44. <http://www.maib.dtlr.gov.uk> (accessed Aug 12, 2002).
- 9 Abraham P. International comparison of occupational injuries among commercial fishers of selected northern countries and regions. *Barents Newsletter Occup Safety Health* 2001; **4**: 24-28.
- 10 Food and Agriculture Organization: Fishers' safety, in selected issues facing fishers and aquaculturists. In: The state of the world fisheries and aquaculture. Rome, 2000. <http://www.fao.org/docrep/003/X8002E/x8002e05.htm> (accessed Aug 12, 2002).
- 11 Lincoln JM, Conway GA. Preventing commercial fishing deaths in Alaska. *Occup Environ Med* 1999; **56**: 691-95.
- 12 Perkins R. Evaluation of an Alaskan marine safety training program. *Public Health Rep* 1995; **110**: 701-02.
- 13 Food and Agriculture Organization. Number of fishers doubled since 1970. FAO: Rome. <http://www.fao.org/fi/highlight/fisher/c929.asp> (accessed Aug 13, 2002).
- 14 The Chennai declaration on sea safety for artisanal and small-scale fishermen. Chennai, India, Oct 12, 2001. <http://www.sigling.is/imo/imofishing/Chennai%20Declaration.doc> (accessed Aug 12, 2002).

“Chimps plead hands off our genome”

Snappy title, eh? Me and my old friend Eric thought up that one. We've chatted before,¹ about human rights, bit of a laugh. This time it's serious. The US National Genome Research Institute has picked us chimpanzees to have our genome sequenced, along with *Gallus gallus* and *Strongylocentrotus purpuratus* (that's chicken and sea urchin to you).² Some company. Still, that's not the point.

“How like us is that ugly beast, the monkey”

They say the human genome differs from ours by 1·2%, making it seem we and you lot are close—too close for comfort, Eric adds. Considering most of the genome is rubbish, it's probably closer than 1·2% of the useful bits. Anyway, it's no news we're related: was it not the orator Marcus Tullius Cicero (106-43 BC) who said, “Simia quam similis, turpissima bestia, nobis”? (Frankly, I think “turpissima” is a bit much.) What's insulting is that Robert Waterson from Washington says in the NHGRI report that we do not “suffer from some of the diseases that strike humans, such as malaria and AIDS”. Furthermore, “If we see genetic variants in the human population that we don't see in chimp, then we'll know that the genetic change occurred after human beings evolved from non-human primates and may be important for disease susceptibility.”

Let's take this point by point. Robert (if I may) hasn't done his homework. We do get malaria, but don't make much of a fuss about it.^{3,4} And if we don't actually get AIDS, we can get infected with HIV (usually by you lot), seroconvert, and have the virus persist in mononuclear cells,³ which is a pretty small difference from AIDS. Next, and it's not nugatory, we've got our dignity, you know—how would Robert take to being called a “hume”? Then, there's this wretched calumny about phylogeny: who evolved from whom? We reckon it's the other way about—we evolved from you. Bend the usual cladogram about 2 million years ago, so apes go straight ahead . . . it makes perfect sense.

I mean, if evolution is about progress, *Homo sapiens* just doesn't cut it in the real world. They've got no proper hair, so have to wear clothes (especially in Washington), they can't climb for toffee, and their teeth are, let's face it, a joke. I could go on. Let me just tell you: leave our genome alone. We don't want a single gene from you, so you can't have any of ours.

As told to John Bignall

The Lancet, London NW1 7BY, UK

- 1 As told to John Bignall. Rights for *Homo sapiens*. *Lancet* 1999; **353**: 510.
- 2 NHGRI prioritizes next organisms to sequence. <http://www.genome.gov/page.cfm?pageID=10002851> (accessed Aug 12, 2002).
- 3 Baskin GB. Pathology of nonhuman primates. Covington, Louisiana: Tulane University. <http://www.afip.org/vetpath/POLA/nhp.txt> (accessed Aug 12, 2002).
- 4 Bray R. The malarial parasites of anthropoid apes. *J Parasitol* 1963; **49**: 888-91.