

TCDD-Inducible Poly(ADP-ribose) Polymerase: A Novel Response to 2,3,7,8-Tetrachlorodibenzo-p-dioxin

Qiang Ma,*.1 Kimberly T. Baldwin,* Anthony J. Renzelli,* Alison McDaniel,* and Liquin Dong†

*Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia 26505; and †Integra LifeSciences Corporation, San Diego, California 92121

Received October 22, 2001

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) causes pleotropic effects in mammalian species through modulating gene expression. Here we analyzed TCDDinduced mRNA expression by using mRNA differential display and report the cloning of a novel TCDDinducible poly(ADP-ribose) polymerase (TiPARP). TiPARP cDNA contains an open reading frame of 657 amino acid residues; the carboxyl half shares sequence similarity to the catalytic domain of PARP, a family of enzymes that catalyze poly ADP-ribosylation of proteins. Expression of the cDNA by in vitro transcription/translation reveals a protein of \sim 75 kDa. The expressed TiPARP exhibits PARP activity toward histone. TiPARP is highly homologous to RM1 which is induced during long-term potentiation, a memory formation process, and to TIL which is induced in T cells infiltrating progressing tumors. TiPARP mRNA is expressed in a broad range of mouse tissues. Together, these data demonstrate that TiPARP is a novel target of TCDD that may contribute to multiple responses to TCDD by modulating protein function through poly ADP-ribosylation. © 2001 Elsevier Science

Key Words: TiPARP; PARP; TCDD; Ah receptor; RM1; TIL.

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a prototype for a class of structurally related halogenated aromatic hydrocarbons (HAHs). HAHs are mostly byproducts of industrial processes and fuel combustion; moreover, HAHs are widespread in nature and are often resistant to biological degradation. As such, these chemicals are important environmental and industrial contaminants (1–3). Exposure to TCDD elicits a broad range of adaptive and toxic responses in animals, including induction of xenobiotic-metabolizing enzymes, tumor promotion, wasting syndrome, skin disorders,

¹ To whom correspondence and reprint requests should be addressed. Fax: (304) 285-5708. E-mail: qam1@cdc.gov.

reproductive lesions, and liver toxicity (1-6). The possibility that TCDD causes cancer, diabetic conditions, and damage to reproductive functions in exposed human populations remains a public health concern (7, 8).

Molecular biochemical studies have revealed an AhR/DRE paradigm for the induction of *CYP1A1* by TCDD, a transcriptional response to TCDD that has served as a model for analyzing the mechanism of TCDD action (4). The aromatic hydrocarbon receptor (AhR) is a cytoplasmic, ligand-activated, basic helixloop-helix (bHLH) PAS transcription factor (1, 2, 4, 9). Upon binding with TCDD, AhR is activated and translocated into the nucleus where it dimerizes with a partner protein called Arnt (Ah receptor nuclear translocator). The AhR/Arnt heterodimer binds to an enhancer sequence called the dioxin-responsive element (DRE) and mediates the transcription of *CYP1A1* (10). Recent studies have revealed two regulatory mechanisms that control the signal transduction of AhR. First, the unliganded cytoplasmic AhR is in a complex with hsp90 and AIP, an immunophillin type of chaperone molecule (11–13). The interaction among the proteins may determine the receptivity, protein stability, and other functional aspects of AhR. Second, agonist activated Ah receptor undergoes a rapid degradation through the ubiquitin-26S proteasome pathway (14, 15). The proteasome mediated turnover of AhR is controlled by a cycloheximide-sensitive factor (AhR degradation promoting factor, ADPF) (16). Thus, the AhRmediated transcriptional responses to TCDD involve a regulated, multistep signal transduction/transcription process.

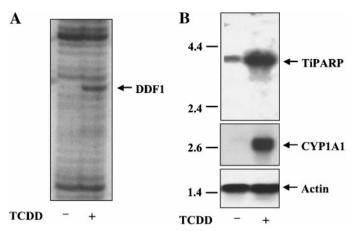
Genetic studies have implicated AhR in most of the responses to TCDD (17, 18). In addition, analyses using AhR null mice revealed a number of developmental and organ specific functional defects in the null mice (19-21). Studies in cultured cells suggest that AhR plays a role in cell growth and differentiation (22-24). Together, these findings suggest that AhR participates

in a range of cellular processes through regulating target gene expression and thereby, mediates the multiple effects of TCDD. One major challenge in explaining the mechanism of TCDD toxicity and AhR function is the lack of knowledge of AhR target genes. In this study, we utilized the mRNA differential display technique to identify new genes that are regulated by TCDD. We report here the cloning of a novel TCDDinducible poly(ADP-ribose) polymerase (designated TiPARP). TiPARP contains a PARP catalytic domain and exhibits PARP activity toward histone. TiPARP shares over 90% sequence similarity with RM1 and TIL, suggesting that it plays a role in memory formation and T cell function. These studies provide new opportunities for analyzing the mechanism of TCDD toxicity and the transcriptional gene regulation by

MATERIALS AND METHODS

Materials and cell culture. General molecular biology reagents were purchased from New England Biolabs (Beverly, MA), Roche Molecular Biochemicals (Indianapolis, IN), Life Technologies, Inc. (Grand Island, NY), and Promega (Madison, WI). Radioactive compounds were from Amersham–Pharmacia Biotech (Piscataway, NJ). TCDD was purchased from AccuStandard (New Haven, CT). The mouse hepa1c1c7 (Wt) cells were grown as a monolayer in α-minimal essential medium, supplemented with 10% fetal bovine serum and 5% CO_2 at 37°C, as described elsewhere (25).

Differential display. Differential display was performed using an mRNA differential display kit (GenHunter, Nashville, TN). Briefly, mouse hepa1c1c7 cells were exposed to 1 nM TCDD or Me₂SO for 10 h. Total RNA was isolated using an RNeasy kit (Qiagen, Valencia, CA). Three cDNA preparations were made by reverse transcribing the RNA with one of the three oligo (dT) primers (H-T₁₁M, where M is A, C, or G), which anneal to mRNA poly(A) tail. Polymerase chain reaction (PCR) was performed in the presence of [α -³³P]dATP, using one of the 80 arbitrary 5′ 13-mers and a corresponding 3′ oligo (dT) primer. Amplified cDNA fragments were resolved on a 6% denaturing polyacrylamide gel and visualized by autoradiography. Differentially expressed cDNA fragments (designated as differential display fragment or DDF) were eluted from the gel and reamplified using the same pair of PCR primers. Amplified cDNAs were subcloned into a TA cloning vector, pCRII (Invitrogen, San Diego, CA) for sequencing analysis.


cDNA cloning. Cloning of cDNAs was initially performed by screening a mouse liver cDNA library according to the D-loop technology developed by Pangene Corp. (Mountain View, CA). For cloning TiPARP, the sequence of DDF1 (~324 bp), which is induced by TCDD on a differential display analysis, was used to generate a pair of PCR primers: the sense primer, 5'-AGAGGCTATATGAGCAAA-GTGAGG-3', and the antisense primer, 5'-GTGGGTGATATATT-TCAGTCCTGG-3'. DDF1 was amplified with the primers by PCR; the PCR fragment was used as a probe to screen a plasmid cDNA library made from C57BL/6 mouse liver mRNA. Complementary single stranded DNA probes were coated with the RecA protein to catalyze stable D-loop hybrids with homologous cDNA targets. These duplexes were selectively captured with magnetic beads. PCR was then performed to verify the presence of captured cDNA fragments with a pair of primers that anneal to sequences outside the capture domain. Two positive clones with inserts of 2.3 and 1.4 kb in length were selected and were designated as D-loop1 and D-loop2, respectively. The cDNA fragments were amplified by PCR with the above primers and subcloned into the pCRII vector for further analysis.

5' rapid amplification of cDNA ends (5' RACE). 5' RACE was performed to obtain the full-length TiPARP cDNA according to the manufacturer's instructions (Clontech, Palo Alto, CA). Briefly, hepa1c1c7 cells were exposed to 1 nM TCDD or Me₂SO for 5 h. Total RNA was isolated. The cDNAs were prepared by reverse transcription of the RNA using a modified oligo(dT) primer, which contains two degenerate nucleotides at its 3' end (5'-CDS primer), followed by addition of a SMART II primer, which has a stretch of guanine residues at its 3' terminus. The cDNA was amplified using a gene specific primer and a universal primer mix (UPM long + UPM short) that recognizes the SMART II primer (UPM). Each amplified cDNA product was reamplified with nested primers to confirm a positive result. RACE8 was amplified with primers C52BGSP2 and the universal primer mix and was reamplified with nested primer C52QNGSP3 and NUPM. RACE32 was amplified with primers C5215GSP4 and the universal primer mix and was reamplified with nested primers C5215NGSP5 and NUPM. The RACE cDNA products were subcloned into pCRII for subsequent sequence analysis. The sequences of the primers used in the 5' RACE are as follows: 5'-CDS, 5'-(T)₂₅N₋₁N-3' (N₋₁ = A, G, or C; N = A, C, G, or T); SMART II, 5'-AAGCAGTGGTAACAACGCAGAGTACG-CGGG-3'; C52BGSP2, 5'-CAGAACCCTCACTTTGCTCATAGCCTC-3'; C52QNGSP3, 5'-CCAAACTTCTACCAGACCCAAGCAAG-3'; C5215GSP4, 5'-GGGTGGTGTAGACAGCCTTCGTAG-3'; C5215NGSP5, 5'-TCTGCCCAAAAGTCTTGTCCTCC-3'; UPM long, 5'-CTAAT-ACGACTCACTATAGGGCAAGCAGTGGTAACAACGCAGAGT-3'; UPM short, 5'-CTAATACGACTCACTATAGGGC-3'; NUPM, 5'-AAGCAGTGGTAACAACGCAGAGT-3'.

Northern blot analysis. DDF1, D-loop1, and D-loop2, each subcloned into pCRII, were used as templates to generate riboprobes specific for TiPARP. A 700-bp cDNA fragment encoding the 5' untranslated region of the mouse CYP1A1 mRNA was used to prepare a riboprobe for CYP1A1. A mouse actin cDNA fragment (~500 bp) was used to generate a riboprobe for actin. The riboprobes were synthesized in the presence of DIG-UTP using a DIG labeling kit (Roche Molecular Biochemicals). Total RNA (5 μg each lane) was fractionated on a 1% agarose–formaldehyde gel and transferred to a Nytran membrane. After UV cross-linking, the membrane was hybridized with a DIG-labeled riboprobe at 68°C for overnight. Signals were visualized by chemiluminescence using a DIG RNA detection kit with CDP star as a substrate (Roche Molecular Biochemicals).

In vitro expression of TiPARP. A coupled transcription/ translation reticulocyte lysate system (Promega) was used to express the TiPARP protein in the presence of [35S]methionine. The full length TiPARP cDNA coding region was amplified by PCR with two primers: (a) 5'-GTCGGAATTCCTCGAGATGGAAGTGGAAACCA-CTGAAC-3' and (b) 5'-TGCCGTCGACTCAGGGCCCAATGGAAAC-AGTGTTACTGACTTC-3'. The PCR product was digested with XhoI and ApaI, and subcloned into the pcDNA3.1 vector (Invitrogen), which was modified by adding HA and poly histidine tags downstream of the ApaI site; the plasmid was designated as pTiPARPhahis/cDNA3.1. One microgram of the plasmid was mixed with rabbit reticulocyte lysate, T7 RNA polymerase, RNase inhibitor, unlabeled amino acid mixture without methionine plus [35S]methionine, or a complete unlabeled amino acid mixture. The mixture was incubated at 30°C for 90 min. The radiolabeled TiPARP was resolved by SDS-polyacrylamide gel electrophoresis and visualized by fluorography; alternatively, the expressed TiPARP was analyzed by immunoblotting with a monoclonal antibody against the HA tag (Babco, Berkley, CA) and visualized by chemiluminescence.

PARP activity assay. The PARP activity assay was performed using a poly(ADP-ribose) polymerase assay kit (Trevigen, Gaithersburg, MD). Briefly, *in vitro* expressed TiPARP in reticulocyte lysate (10 μ l) was added to a reaction mixture, which contains 10 μ M NAD, 10 μ g/ml histones, 2 μ Ci 32 P-NAD, and 1× PARP buffer in a total volume of 100 μ l. The reaction was allowed to proceed for 10 min at room temperature and was stopped by mixing with 900 μ l of ice cold

FIG. 1. Induction of TiPARP in hepa1c1c7 cells. (A) Identification of DDF1. Mouse hepa1c1c7 cells were treated with TCDD (1 nM) or Me₂SO for 10 h. Total RNA was analyzed by differential display. The arrow indicates the TCDD-inducible DDF1. (B) Induction of TiPARP. Mouse hepatoma cells were treated with TCDD (1 nM) or Me₂SO for 5 h. Total RNA (5 μ g/lane) was analyzed by Northern blotting for DDF1 (top), *CYP1A1* (middle), or actin (bottom).

20% trichloroacetic acid (TCA), followed by a centrifugation at 12,000g for 10 min. The precipitate was washed with 1 ml of ice cold 10% TCA, dissolved in 2 ml of liquid scintillation cocktail, and counted for ^{32}P in a liquid scintillation counter.

RESULTS

Identification of a Novel TCDD-Inducible Gene

To identify new target genes of TCDD, we utilized the mRNA differential display to analyze the mRNA expression patterns in mouse hepatoma cells, a highly responsive cell line to AhR ligands. The cells were treated with TCDD (1 nM, 10 h) or Me₂SO; the total RNA was analyzed by differential display. A cDNA fragment of 324 bp was shown to be induced by TCDD and was designated as differential display fragment 1 (DDF1) (Fig. 1A). A sequence homology search of nucleotide databases using the Net Blast program showed no significant similarity of DDF1 to known gene sequences. Northern blot analysis of total RNA prepared from mouse hepa1c1c7 cells using DDF1 as a probe revealed a single mRNA band (Fig. 1B). TCDD at 1 nM (5 h) dramatically induces the expression of the mRNA similarly to the induction of CYP1A1 by TCDD, except that the basal expression of DDF1 is higher than that of *CYP1A1* (Fig. 1B). Thus, DDF1 represents a novel TCDD-inducible gene in mouse hepatoma cells.

Cloning of Full-Length cDNA

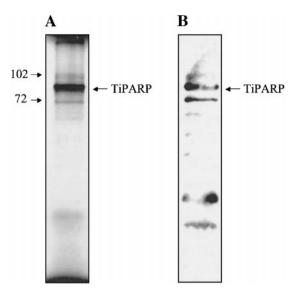
To clone the full length cDNA, we screened a mouse liver cDNA library with DDF1 as a probe. Two positive clones were isolated and were shown to contain cDNA fragments of 2310 and 1402 bp, respectively (designated as D-loop1 and D-loop2). Northern blot analysis

with probes for D-loop1 and D-loop2 reveals that both recognize the same TCDD-inducible mRNA band as DDF1 (data not shown). The nucleotide sequence of D-loop2 overlaps with the 3' half of D-loop1; D-loop1 contains a partial open reading frame, which lacks an initiation methionine.

To clone the 5' end, we performed 5' RACE, a PCRbased procedure that rapidly amplifies 5' ends of cDNAs. The first round of 5' RACE yielded a 1725-bp fragment (designated as RACE8). The nucleotide sequence of RACE8 overlaps with the 5' end of DDF1, D-loop1, and D-loop2, and contains a partial open reading frame. A second round of RACE yielded a 1063-bp fragment (designated as RACE32). Northern blot analvsis confirmed that probes from RACE8 and RACE32 hybridize to the same mRNA band as the DDF1 probe (data not shown). The nucleotide sequence of RACE32 overlaps with RACE8. The contig sequence generated from DDF1, D-loop1, RACE8, and RACE32 is 3851 bp in length, which is close to the size of the mRNA band revealed by Northern blotting. Figure 2 shows the nucleotide and predicted amino acid sequences with a putative Kozac sequence for translation (26) and a poly(A) tail signaling sequence. The sequence contains an open reading frame of 657 amino acid residues with a start codon 5' to and in frame with the open reading frame. The predicted peptide has a molecular mass of 75,879 Daltons and an isoelectric point of 6.63.

Next, we expressed the coding sequence using *in vitro* transcription/translation. The expressed protein is analyzed by SDS–polyacrylamide gel electrophoresis and visualized by fluorography for 35 S-labeled proteins, or by immunoblotting with a monoclonal antibody specific for the HA tag, which is at the carboxyl terminus of the expressed protein. Both assays detected a protein band of ~ 80 kDa, a value identical to the size predicted from the open reading frame (~ 75 kDa) plus the tag residues at the carboxyl terminus of the protein (Figs. 3A and 3B).

Full-Length DDF1 Encodes a PARP


Homology search of nucleotide databases reveals that DDF1 represents a novel gene. Inspecting the amino acid sequence of the gene revealed a partial homology with the catalytic domain of PARP enzymes (43% similarity over 87 amino acid residues) (Figs. 2 and 4) (27). PARPs are a family of enzymes that catalyze the formation of poly(ADP-ribose) onto a protein target (28). PARPs have been shown to be involved in multiple cellular functions, such as DNA damage-induced DNA repair (28, 29). These findings suggest that DDF1 is related to PARP and may function as a protein modulator by catalyzing the formation of poly(ADP-ribose) on protein targets. To test if DDF1 encodes a PARP activity, the *in vitro* expressed DDF1 was assayed for PARP activity using histone as a sub-

1

91 181 E GAAACCACTGAACCTGAGCCAGACTGTGTAGTACAGCCTCCTTCTCCTTCTGATGACTTTTCATGCCAAATGAGAATTTCTGAGAAAGATC 271 P D C V V O P P S P S D D F S C Q M R I S TEPE 361 $\verb|TCTCCATTGAAAACGTGTTTTAAGAAAAAACAGGAACAAAAAAGATTGGGAACTGGAACCCTGAGATCCTTGAGGCCAATATTAAATACT|$ 34 PLKTCFKKKQEQKRLGTGTLRSLRPILNT 451 64 ESGSLDGVFRARDQNRDESSLHEHIVKK 541 P L E I N P S C P P A E N S M P V L I P D G T N V E G O L P 94 631 124 H P S T D A P E Q G V P I Q D H S F P P E T I S G T V A H P V S G D V P S PDCV 154 отрыц 811 TIOYILDTS DKLST 184 ODNS F GAF 901 ${\tt GACAAAGTGAGGAAGCTTCCCTTGAGCTTGTGTTTTGAACTTGTAAACCAGCTACAGTACCATACTCACCAAGAGAATTGAATTGAAATTGAATTGAAAATTGAATTGAATTTGAATTG$ D K S E E A S L E L V F E L V N Q L Q Y H T H Q E N G I E I 214 991 M D F L Q G T C I Y G R D C L K H H T V L P Y H W Q I K R 1081 274 T T T Q K W Q S L S N D S Q E H L E R F Y C N P E N D R M R ATGAAGTATGGAGGACAAGACTTTTGGACAGATTTGAATGCCATGACTGTATTTGAAACAACTGAATTTGACCAACTACGAAGGCTGTCT1171 304 G G O D F W A D L N A M T V F E T T E F D O L R R L S 1261 S I Y H TFWKFFCRD Н FGWRE 334 N 1351 364 E A N S RGLKE V R F M M WNNHY 1441 S F F R R E I K R R P L F R S C F I L I P Y L O T L G G V 394 1531 424 QASLPLEATSSQIICPDGVTSANFYPETW GTTTATATGCATCCATCTCAGGACTTCATCCAAGTGCCTGTTTCTGCAGAACATAAAAGTTATCGAATCATTTACAACCTTTTTCATAAA 1621 454 V Y M H P S Q D F I Q V P V S A E H K S Y R I 1711 484 Y R T L O I L R V O N O F L W E K Y 1801 ATGAACAGAAAAATGTCTGGCCGTGACAGAATAATAAATGAGAGACACTTATTTCATGGAACATCCCAAGATGTAGTAGATGGAATTTGC NERHLFHGT 514 AAGCACAACTTTGATCCCCGTGTCTGTGGAAAGCATGCTACAATGTTTGGACAAGGCAGTTATTTCGCAAAGAAGGCAAGCTACTCTCAT 1891 544 GKHA TMFGQGSYFA AACTTTTCTAAGAAGTCCTCCAAAGGAGTCCATTTCATGTTTTTGGCCAAAGTGTTAACTGGCAGATACACAATGGGCAGTCATGGCATG 1981 S K K S S K G V H F M F L 574 Α K V L TGRYTMGSHGM 2071 604 R R P P P V N P G S V T S D L Y D S C V D N F F E P Q I F V 2161 634 N D D Q T Y P Y F V I Q Y E E V S N T V S I * 2251 2431 2521 2611 2701 2791 2881 2971 3061 3151 3241 3331 GGTATAGTAAGTACTTCTAAGCAAAGCAGAAACCTGAGTGAAGTGAAAAGTGGTTGTTGATAAAATATACCACAGAAGTCCTTCCGATAC 3421 3511 3601 3691 AAACTAAGCAAA AATAAA AGTTAATTCTTAAAAAAAAAAAAAAAAAAAAAAGTATTTCATTACCTCTTTCTCC

ACGCGTCCGGCAGAGCTGGACGCGACGAGCGAGCTGGAGCCTCGAGAGCAGTTGCGGCTTTCAGCGCTCAGGTCCGCGGAATGGCC

FIG. 2. Nucleotide and predicted amino acid sequences of TiPARP. Numbers in regular face indicate positions of nucleotide residues and numbers in bold face indicate positions of predicted amino acid residues. A putative Kozac sequence, the PARP domain, and a poly(A) signal sequence are indicated.

FIG. 3. *In vitro* expression. The full length coding sequence of TiPARP was subcloned into a pcDNA3.1-based expression vector. *In vitro* transcription/translation was performed using a coupled reticulocyte lysate system, (A) in the presence of [\$^3S]methionine and the [\$^3S] labeled proteins were resolved by SDS-PAGE and visualized by fluorography or (B) in the absence of [\$^3S]methionine and the protein products were immunoblotted with an anti-HA monoclonal antibody.

strate. Figure 5 shows that the reticulocyte lysate control expresses little PARP activity. Expression of DDF1 increases the PARP activity to fourfold higher. Thus, DDF1 represents a novel member of the PARP family that is induced by TCDD. Hence, we designate the gene as <u>TCDD-inducible poly(ADP-ribose)</u> polymerase (TiPARP).

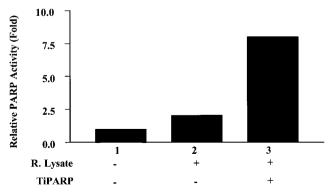
Sequence analyses also identified two partial cDNA sequences (RM1 and TIL) in the GenBank database that are highly homologous to the 3' end and the 5' end sequences of TiPARP (>90%), respectively. RM1 is expressed in rat hippocampus and is induced during the long-lasting long term potentiation (LTP), a process involved in memory formation (30). TIL is expressed in T cells isolated from a progressing murine mammary carcinoma, but not in T cells from a regressing tumor (31). The high homology of TiPARP with RM1 and TIL suggests that it serves as a homolog of RM1 and TIL, and plays a role in memory formation and tumor progression. Further study is needed to address these issues.

Expression of TiPARP in Mouse Tissues

To examine the expression of TiPARP in mouse tissues, we performed multiple tissue Northern blot analysis. As shown in Fig. 6, TiPARP is expressed in mouse heart, brain, lung, liver, kidney, and testis and, to a lesser extent, spleen and skeletal muscle. The broad tissue expression suggests that TiPARP is involved in multiple tissue functions and may contribute to multiple responses to TCDD.

DISCUSSION

We have identified a novel gene inducible by TCDD, which is a new member of the PARP family proteins and is designated TCDD-inducible PARP or TiPARP. PARPs are a growing family of enzymes that use NAD as a substrate to transfer ADP-ribose onto glutamic acid residues of a protein acceptor; repeated rounds of ADP-ribosylation leads to the formation of poly(ADP-ribose) chains on the protein, thereby altering the function of the target protein (28).


The best understood example of PARPs is PARP1, a nuclear protein that is induced and activated by strand-break DNA damage and participates in the early events of DNA repair in response to alkylation or ionizing irradiation. PARP1 is highly conserved through evolution. Loss of the PARP1 activity in PARP1 null mice leads to enhanced susceptibility to DNA damaging agents. Recent studies have revealed two new aspects of the PARP family. First, analyses of the PARP1 null mice demonstrated novel functions of PARP1 (29). For instance, PARP1 coordinates with p53, the Ku proteins, and cell cycle regulators to mediate apoptosis, cell cycle arrest, and DNA repair in response to DNA damage, and with Nf-kB to regulate cytokine expression in inflammatory responses. PARP1 is required for maintenance of genomic stability in cells (32) and for efficient integration of retroviral DNA, such as HIV-1, into host genome (33). In addition, PARP1 plays a critical role in determining the sensitivity of mice to chemical-induced diabetic conditions by regulating the NAD+ homeostasis and the transcription of the Reg gene, which controls the regeneration of pancreatic islet β cells (34). Second, recent studies have identified a number of novel PARPs, including PARP2, PARP3, VPARP (vault PARP), and tankyrase (28). The new PARPs each have a PARP domain that shares sequence similarity to the catalytic domain of PARP1, and exhibit PARP activities toward certain protein substrates. However, the new PARPs show large differences from PARP1 in structure, cellular localization, and function. For instance, tankyrase was identified as a component of the human telomeric complex, which is essential for chromosome maintenance and stability. Tankyrase regulates telomere function by interacting with TRF1, a negative regulator of telomere length (35). Tankyrase is also found in the peripheral membrane of the Golgi apparatus and may be involved in the metabolism of GLUT4 vesicles by interacting with the insulin-responsive amino peptides (or IRAP) of GLUT4 vesicles (36). Thus, poly ADP-ribosylation of proteins by PARPs appear to serve as a general means of posttranscriptional regulation of protein function and is involved in a diverse spectrum of cellular functions.

The exact function of TiPARP is currently unclear; however, it is conceivable that induction of TiPARP

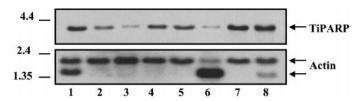

```
TiPARP
              475 RIIYN., LFH .K.T. VPEF.K YR. ILQILRVQ NQFLWEKYKR. .KKEYM.NRKMS
PARP1
   human
              816 KYVKN..T.H .ATT.HNAY.D LE.VIDIFKIE REGECORYKP. FKQ..LHNRRL.
              816 KYVKN..T.H .ATT.HNAY.D LE.VIDIFKIE REGESQRYKP. FRQLH..NRRL.
   rat
              815 KYVKN..T.H .ATT.HNAY.D LE.VIDIFKIE REGESORYKP, FROLH..NRRL
   mouse
   bovine
              818 KYVKN..T.H .ATT.HNAY.D LE.VVDIFKIE REGESQRYKP. FKQLH..NRRL.
                    VkN..T.H .AAT.HNAY.D LK.VVEIFRIE
   chick
              815
                                                    REGESORYKP. FKQLH..NRQL
              799
                   YVkn..T.H .ADT.HNAY.D LE.VLEIFKID
                                                    REGEYORYKP. FKQLH..NRQL
   frog
   fruit fly
              800
                    Vkn..T.H .AST.HKSY.D LK.IVDVFKVS RQGEARRFKP. FKKLH..NRKL.
             1130 RE.H.RDGG. NAG.GI..FNR Y.NVIRIQKVV NKKLRERF.CH RQKE.VS..E..
TANKYRASE
TiPARP
              520 GR.DRIINERH LEHGTSQDVV. DG..I.CKHN.FD .P.R.VCGK.HAT MFGQGSYFAK
PARP1
   human
              860 ..... LWHG.SRTTNF AG..ILSQ.GLRI APPE.APVTGY.. MFGKGIYFAD
              860 ..... LWHG.SRTTNF AG..ILSQ.GLRI APPE.APVTGY.. MFGKGIYFAD
   rat
              859 ..... LWHG. SRTTNF AG. .ILSQ.GLRI APPE.APVTGY. . MFGKGIYFAD
   mouse
              862 ..... LWHG.SRTTNF AG..ILSQ.GLRI APPE.APVTGY.. MFGKGIYFAD
   bovine
   chick
              857 ..... LWHG. SRTTNF AG. .ILSQ.GLRI APPE.APVTGY. . MFGKGIYFAD
              844 ..... LWHG.SRTTNF AG..ILSQ.GLRI APPE.APVTGY.. MFGKGIYFAD
   froq
              842 ..... LWHG.SRLTNF VG..ILS.HGLRI APPE.APPTGY.. MFGKGIYFAD
   fruit flv
             1172 .ENHNHHMERM LFHG.S..P.F I.NAII..HKGFD E..RHAYIGGY.. MFGAGIYFAE
TANKYRASE
TiPARP
              568 KA.SYSHN.F...SK....KSSKGV.HFM FLAKV.LTG
PARP1
   human
              900 MV.SKSAN.YCH TSQ....GDPIGL...I LLGEVAL.G
              900 MV.SKSAN.YCH TSQ....GDPIGL...I LLGEVAL.G
   rat
   mouse
              899 MV.SKSAN.YCH TSQ....GDPIGL...I MLGEVAL.G
              902 MV.SKSAN.YCH TSQ....GDPIGL...I LLGEAAL.G
   bovine
              997 MV.SKSAN.YCH TSQ....ADPIGL...I LLGEVAL.G
   chick
              894 MV.SKSAN.YCH A...MPGSPIGL...I LLGEVAL.G
   frog
   fruit fly
              882 MV.SKSAN.YCC TSQ....QNSTGL...M LLSEVAL.G
TANKYRASE
             1217 N.SSKS.NQYVY G..IGGGTGCP..THK. D..R.S.C.
```

FIG. 4. Sequence comparison of TiPARP with the catalytic domain of PARPs. The sequence of TiPARP between amino acid residues 475 and 594 is aligned with the catalytic domains of PARP1 from human (Accession No. P09874), rat (Accession No. P27008), mouse (Accession No. P11103), bovine (Accession No. P18493), chick (Accession No. P26446), frog (Accession No. P31669), and fruit fly (Accession No. P35875), and the human tankyrase (Accession No. AAC79842). Numbers indicate the positions of amino acid residues. Letters in bold face represent sequence identity and underlined letters represent sequence similarity of TiPARP to PARPs.

serves as an adaptive response to chemical exposure (TCDD, for instance) and thereby mediates certain effect(s) of the chemicals. Sequence homology search identified two cDNA sequences in the GenBank database that share over 90% homology with TiPARP. RM1, a partial sequence of a rat gene, is homologous to the 3' end of TiPARP. RM1 mRNA is expressed in hippocampus and other parts of the brain; RM1 is induced during the induction of long-lasting long term potentiation (LTP). Thus, RM1 is proposed to play a role in memory formation in rats (30). It has been shown that exposure to polychlorinated biphenols (PCB), a class of chlorinated AhR ligands, selectively reduces long term potentiation in the CA1 region of rat hippocampus (37). Behavioral and neurological studies in animals have also provided evidence that PCBs impair nervous system functions, including decrements in learning and memory (38). Furthermore, epidemiological studies indicated that prenatal exposure to PCBs is associated with deficits in intelligence and behavioral development in childhood (39-41). Therefore, it is possible that TiPARP is a mouse homolog of the rat RM1 and plays a role in LTP; induction of TiPARP by AhR ligands interferes with LTP formation, leading to impairment of memory function. TIL is a partial cDNA sequence homologous to the 5' end of TiPARP. TIL is induced in T cells from progressing tumors, but not in T cells from regressing tumors; whether TIL promotes or inhibits tumor growth is cur-

FIG. 5. PARP activity of TiPARP. The PARP activity of TiPARP was measured by using *in vitro* expressed TiPARP and a poly(ADP-ribose) polymerase assay kit.

FIG. 6. Expression of TiPARP in mouse tissues. A mouse multiple tissue Northern blot was probed with a riboprobe for TiPARP or actin according to the manufacturer's instructions (Clontech). The tissues represented are as follows: 1, heart; 2, brain; 3, spleen; 4, lung; 5, liver; 6, skeletal muscle; 7, kidney; and 8, testis.

rently unclear (31). It is known that TCDD is a potent tumor promoter in animals (3) and exposure to TCDD is associated with certain forms of cancer in human beings (7). These findings raise the possibility that TiPARP is involved in T cell function and induction of TiPARP by TCDD contributes to the tumor promotion by TCDD. Generation of TiPARP null mice by directed gene knockout will provide opportunities to test the role(s) of TiPARP in memory formation, T cell function, and TCDD-induced responses.

TCDD causes multiple toxic responses in a tissue, developmental stage, and species-dependent manner. TiPARP mRNA is constitutively expressed in a wide range of tissues in mouse, that includes heart, brain, lung, liver, kidney, testis, and to a lesser extent, spleen and skeletal muscle. These findings implicate TiPARP in a biological process(s) that is constitutively present and is regulated by environmental chemicals in multiple animal tissues. Studying the induction of TiPARP by TCDD and the functional consequences of the induction in animal tissues and during development will provide new opportunities to elucidate the biological function of AhR and the toxicity of TCDD and related environmental/industrial chemicals.

ACKNOWLEDGMENTS

We thank Drs. A. Little, Jr. and J. Matheson for internal review of the manuscript and Ms. H. Michael for secretarial assistance.

REFERENCES

- Whitlock, J. P., Jr. (1999) Induction of cytochrome P4501A1. Annu. Rev. Pharmacol. Toxicol. 39, 103–125.
- 2. Hankinson, O. (1995) The aryl hydrocarbon receptor complex. *Annu. Rev. Pharmacol. Toxicol.* **35**, 307–340.
- Poland, A., and Knutson, J. C. (1982) 2,3,7,8-Tetrachlorodibenzop-dioxin and related halogenated aromatic hydrocarbons: Examination of the mechanism of toxicity. Annu. Rev. Pharmacol. Toxicol. 22, 517–554.
- 4. Ma, Q. (2001) Induction of *CYP1A1*. The AhR/DRE paradigm: Transcription, receptor regulation, and expanding biological roles. *Curr. Drug Metab.* (Special Issue of Cytochrome P-450) **2**, 149–164.
- 5. Luster, M., Faith, R., and Clark, G. (1979) Laboratory studies on

- the immune effects of halogenated aromatics. *Ann. N.Y. Acad. Sci.* **31,** 473–486.
- Gonzalez, F. J., and Fernandez-Salguero, P. (1998) The aryl hydrocarbon receptor. Studies using the AhR-null mice. *Drug Metab. Dispos.* 26, 1194–1198.
- Fingerhut, M. A., Halerpin, W. E., Marlow, D. A., Piacitelli, L. A., Honchar, P. A., Sweeney, M. H., Greife, A. L., Dill, P. A., Steenland, K., and Suruda, A. J. (1991) Cancer mortality in workers exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. N. Engl. J. Med. 324, 212–218.
- 8. Calvert, G. M., Sweeney, M. H., Deddens, J., and Wall, D. K. (1999) Evaluation of diabetes mellitus, serum glucose, and thyroid function among United States workers exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. *Occup. Environ. Med.* **56**, 270–276.
- Swanson, H. I., and Bradfield, C. A. (1993) The AH-receptor: Genetics, structure and function. *Pharmacogenetics* 3, 213–230.
- Whitlock, J. P., Jr., Okino, S. T., Dong, L., Ko, H. P., Clarke-Katzenberg, R., Ma, Q., and Li, H. (1996) Cytochromes P450 5: Induction of cytochrome P4501A1. A model for analyzing mammalian gene transcription. FASEB J. 10, 809-818.
- Perdew, G. H. (1988) Association of the Ah receptor with the hsp90-kDa heat shock protein. J. Biol. Chem. 263, 13802–13805.
- Ma, Q., and Whitlock, J. P., Jr. (1997) A novel cytoplasmic protein that interacts with the Ah receptor, contains tetratricopeptide repeat motifs, and augments the transcriptional response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. J. Biol. Chem. 272, 8878–8884.
- Meyer, B. K., Pray-Grant, M. G., Vanden Heuvel, J. P., and Perdew, G. H. (1998) Hepatitis B virus X-associated protein 2 is a subunit of the unliganded aryl hydrocarbon receptor core complex and exhibits transcriptional enhancer activity. *Mol. Cell. Biol.* 18, 978–988.
- Pollenz, R. S. (1996) The aryl-hydrocarbon receptor, but not the aryl-hydrocarbon receptor nuclear translocator protein, is rapidly depleted in hepatic and nonhepatic culture cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. *Mol. Pharmacol.* 49, 391– 398
- Ma, Q., and Baldwin, K. T. (2000) 2,3,7,8-Tetrachlorodibenzo-p-dioxin-induced degradation of aryl hydrocarbon receptor (AhR) by the ubiquitin-proteasome pathway. Role of the transcription activation and DNA-binding of AhR. J. Biol. Chem. 275, 8432–8438
- Ma, Q., Renzelli, A. J., Baldwin, K. T., and Antonini, J. M. (2000) Superinduction of CYP1A1 gene expression. Regulation of 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced degradation of Ah receptor by cycloheximide. J. Biol. Chem. 275, 12676–12683.
- Fernandez-Salguero, P. M., Hilbert, D. M., Rudikoff, S., Ward, J. M., and Gonzalez, F. (1996) Aryl-hydrocarbon receptordeficient mice are resistant to 2,3,7,8-tetrachlorodibenzo-pdioxin-induced toxicity. *Toxicol. Appl. Pharmacol.* 140, 173–179.
- 18. Mimura, J., Yamashita, K., Nakamura, K., Morita, M., Takagi, T. N., Nakao, K., Ema, M., Sogawa, K., Yasuda, M., Katsuki, M., and Fujii-Kuriyama, Y. (1997) Loss of teratogenic response to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mice lacking the Ah (dioxin) receptor. Genes Cells 2, 645–654.
- Fernandez-Salguero, P. M., Ward, J. M., Sundberg, J. P., and Gonzalez, F. J. (1997) Lesions of aryl-hydrocarbon receptordeficient mice. *Vet. Pathol.* 34, 605–614.
- Schmidt, J. V., Su, G. H., Reddy, J. K., Simon, M. C., and Bradfield, C. A. (1996) Characterization of a murine Ahr null allele: Involvement of the Ah receptor in hepatic growth and development. *Proc. Natl. Acad. Sci. USA* 93, 6731–6736.
- Lahvis, G. P., Lindell, S. L., Thomas, R. S., McCuskey, R. S., Murphy, C., Glover, E., Bentz, M., Southard, J., and Bradfield, C. A. (2000) Portosystemic shunting and persistent fetal vascu-

- lar structure in aryl hydrocarbon receptor-deficient mice. *Proc. Natl. Acad. Sci. USA* **2000**, 10442–10447.
- Kolluri, S., Weiss, C., Koff, A., and Gottlicher, M. (1999) p27(Kip1) induction and inhibition of proliferation by the intracellular Ah receptor in developing thymus and hepatoma cells. *Genes Dev.* 13, 1742–1753.
- Ge, N.-L., and Elferink, C. (1998) A direct interaction between the aryl hydrocarbon receptor and retinoblastoma protein: Linking dioxin signaling to the cell cycle. *J. Biol. Chem.* 273, 22708– 22713
- Ma, Q., and Whitlock, J. P., Jr. (1996) The aromatic hydrocarbon receptor modulates the Hepa 1c1c7 cell cycle and differentiated state independently of dioxin. *Mol. Cell. Biol.* 16, 2144–2150.
- Miller, A. G., Israel, D. L., and Whitlock, J. P., Jr. (1983) Biochemical and genetic analysis of variant mouse hepatoma cells defective in the induction of benzo(a)pyrene-metabolizing enzyme activity. J. Biol. Chem. 258, 3523–3527.
- Kozak, M. (1987) An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 15, 8125– 8132.
- Ruf, A., De Murcia, J. M., De Murcia, G. M., and Schulz, G. E. (1996) Structure of the catalytic fragment of poly(ADP-ribose) polymerase from chicken. *Proc. Natl. Acad. Sci. USA* 93, 7481–7485.
- 28. Smith, S. (2001) The world according to PARP. *Trends Biochem. Sci.* **26**, 174–179.
- Shall, S., and Murcia, G. D. (2000) Poly(ADP-ribose) polymerase-1: What have we learned from the deficient mouse model?
 Mutat. Res. 460, 1–15.
- Matsuo, R., Murayama, A., Saitoh, Y., Sakaki, H., and Inokuchi, K. (2000) Identification and cataloging of genes induced by longlasting long-term potentiation in awake rats. *J. Neurochem.* 74, 2239–2249.
- Kurt, R. A., Bernstein, R. M., Schluter, S. F., Park, J., Marchalonis, J. J., and Akporiaye, E. (1996) The isolation and identification of genes differentially expressed in progressing versus regressing tumors through subtractive hybridization. GenBank Database Accession No. U55178.
- 32. Smulson, M. E., Simbulan-Rosnethal, C. M., Boulares, A. H.,

- Yakovelv, A., Stoica, B., Iyer, S., Luo, R., Haddad, B., Wang, Z. Q., Pang, T., Jung, M., Dritschilo, A., and Rosenthal, D. S. (2000) Roles of poly(ADP-ribosyl)ation and PARP in apoptosis, DNA repair, genomic stability and functions of p53 and E2F1. *Adv. Enzyme Regul.* **40**, 183–215.
- Ha, C. H., Juluri, K., Zhou, Y., Leung, S., Hermankova, M., and Snyder, S. H. (2001) Poly(ADP-ribose) polymerase-1 is required for efficient HIV-1 integration. *Proc. Natl. Acad. Sci. USA* 98, 3364–3368.
- 34. Akiyama, T., Takasawa, S., Nata, K., Kobayashi, S., Abe, M., Shervani, N. J., Ikeda, T., Nakagawa, K., Unno, M., Matsuno, S., and Okamoto, H. (2001) Activation of Reg gene, a gene for insulin-producing b-cell regeneration: Poly(ADP-ribose) polymerase binds Reg promoter and regulates the transcription by autopoly(ADP-ribosyl)ation. *Proc. Natl. Acad. Sci. USA* 98, 48–53.
- 35. Smith, S., Giriat, I., Schmitt, A., and de Lange, T. (1998) Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. *Science* **282**, 1484–1487.
- 36. Chi, N.-W., and Lodish, H. F. (2000) Tankyrase is a Golgiassociated mitogen-activated protein kinase substrate that interacts with IRAP in GLUT4 vesicles. *J. Biol. Chem.* **275**, 38437– 38444.
- 37. Niemi, W. D., Audi, J., Bush, B., and Carpenter, D. O. (1998) PCBs reduce long-term potentiation in the CA1 region of rat hippocampus. *Exp. Neurol.* **151**, 26–34.
- Miller, R. W. (1985) Congenital PCB poisoning: A reevaluation. *Environ. Health Perspect.* 60, 375–396.
- Yamashitaa, F., and Hayashi, M. (1985) Fetal PCB syndrome: Clinical features, intrauterine growth retardation and possible alteration in calcium metabolism. *Environ. Health Perspect.* 60, 41–45.
- Yu, M.-L., Hsu, C.-C., Guo, Y. L., Lai, T.-J., Chen, S.-J., and Luo, J.-M. (1994) Disordered behavior in the early-born Taiwan YuCheng children. *Chemosphere* 29, 2413–2422.
- Rogan, W. J., Gladen, B. C., Hung, K. L., Koong, S.-L., Shih, L. Y., Taylor, J. S., Wu, Y.-C., Yang, D., Ragan, N. B., and Hsu, C.-C. (1988) Congenital poisoning by polychlorinated biphenyls and their contaminants in Taiwan. *Science* 241, 334–336.