


This article was downloaded by: [Stephen B. Thacker CDC Library]

On: 17 November 2014, At: 13:00

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954

Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Agromedicine

Publication details, including instructions for authors and subscription information:

<http://www.tandfonline.com/loi/wagr20>

ROPS Design for Pre-ROPS Tractors

Paul D. Ayers PhD ^a

^a Department of Chemical and Bioresource Engineering, Colorado State University, Fort Collins, CO, 80523, USA

Published online: 11 Oct 2008.

To cite this article: Paul D. Ayers PhD (1997) ROPS Design for Pre-ROPS Tractors, Journal of Agromedicine, 4:3-4, 309-311, DOI: [10.1300/J096v04n03_15](https://doi.org/10.1300/J096v04n03_15)

To link to this article: http://dx.doi.org/10.1300/J096v04n03_15

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is

expressly forbidden. Terms & Conditions of access and use can be found at
<http://www.tandfonline.com/page/terms-and-conditions>

ROPS Design for Pre-ROPS Tractors

Paul D. Ayers, PhD

SUMMARY. Tractor overturns are the leading cause of agricultural fatalities in the United States. Many of these fatalities could be prevented if the tractor was equipped with a rollover protective structure (ROPS). Of the estimated 4.8 million tractors, 2.8 million are considered pre-ROPS tractors (tractors that were designed prior to ROPS availability).¹ This project involves the design, construction and testing of ROPS for pre-ROPS tractors. Testing was successfully conducted with Ford and John Deere pre-ROPS tractors. Current testing involves a Farmall pre-ROPS tractor.

The ASAE Standard S519 is utilized for the testing. Static longitudinal (rear), transverse (side) and vertical (top) tests are conducted in addition to field upset testing. Tractors are equipped with remote controls to perform side and rear field upset tests. Axle housing drawings have been obtained from the tractor manufacturer to assist the ROPS and axle mounting design process. Commercialization of the ROPS is in progress with a ROPS manufacturing company. *[Article copies available for a fee from The Haworth Document Delivery Service: 1-800-342-9678. E-mail address: getinfo@haworth.com]*

KEYWORDS. Tractor, safety, roll-over protective structure (ROPS)

INTRODUCTION

Tractor overturns are a major cause of agricultural worker deaths. These deaths and serious injuries may have been prevented if the tractors

Paul D. Ayers is Professor, Department of Chemical and Bioresource Engineering, Colorado State University, Fort Collins, CO 80523.

Support for this research was provided by the NIOSH Grant 5-R01-OH03163.

[Haworth co-indexing entry note]: "ROPS Design for Pre-ROPS Tractors." Ayers, Paul D. Co-published simultaneously in *Journal of Agromedicine* (The Haworth Medical Press, an imprint of The Haworth Press, Inc.) Vol. 4, No. 3/4, 1997, pp. 309-311; and: *Agricultural Health and Safety: Recent Advances* (ed: Kelley J. Donham et al.) The Haworth Medical Press, an imprint of The Haworth Press, Inc., 1997, pp. 309-311. Single or multiple copies of this article are available for a fee from The Haworth Document Delivery Service [1-800-342-9678, 9:00 a.m. - 5:00 p.m. (EST). E-mail address: getinfo@haworth.com].

had been equipped with ROPS. Additional protection is assured if the operator wears a seat belt. Many tractors manufactured prior to 1970 did not have ROPS as an option and thus the axle mounts were not designed to structurally support a ROPS during an overturn. If guidelines can be developed to design and construct ROPS for these pre-ROPS tractors, then ROPS protection will be more readily available. The test results for this project provide the initial steps in generating these guidelines.

SPECIFIC AIMS

The specific aims of this project are to:

1. Identify and categorize pre-ROPS tractors in order to determine axle mount designs appropriate for ROPS design and testing, and
2. Design, construct and test a ROPS for three major axle housing categories identified. This includes conducting static and field upset ROPS testing in accordance with ASAE S519.

METHODS AND RESULTS

The ROPS design, construction and, static and field tests for the first major axle housing category have been completed for the initial axle category.² This axle housing category includes the Ford 8N/800 series tractors.

The second major axle housing category was selected and includes the axle design for the John Deere A, B, G, 50, 60, 70, 520, 620, 720, 530, 630, and 730 tractors. There were about 920,000 tractors with this axle category sold, and approximately 150,000 are still in operation. Axle housing drawings for these tractors have been obtained from Deere and Co. The design modification for the second major axle housing category is complete. A John Deere A rear axle housing has been obtained and was used for successful static ROPS testing (side, rear and vertical) based on ASAE S519.

A John Deere A tractor has been purchased and has been modified for field upset testing. The modification includes structural support, battery protection, gas tank redesign, pneumatic power source for starting, braking and clutching, and radio controls for remote operation. The ROPS for the John Deere A has been built and installed. The ROPS deflection measuring system has been installed. Successful field upset testing was conducted in accordance to ASAE S519.

The third major axle housing category has been selected based on the available tractor databases and discussions with Saf-T-Cab (ROPS manufacturer). The axle category covers the Farmall H, M, Super H, Super M, 300, 400, 350, 450, 460. Although ROPS for some of these tractors are listed as being available through Saf-T-Cab, a more economical two-post design is needed for commercialization. This category of axle housing makes up a large number of tractors in operation (approximately 278,000). As of the writing of this paper, laboratory static tests are underway and a Farmall M tractor is being modified for radio control for field upset testing.

DISCUSSION

The results from this project indicate ROPS can be successfully mounted to pre-ROPS tractors to provide protection to the operator in the event of a tractor overturn. Many pre-ROPS tractor axle housings are similar so that one ROPS design and mounting configuration can be used for several tractor models.

REFERENCES

1. Myers JR, Snyder KA. Roll-over Protective Structure Use and Cost of Retrofitting Tractors in the United States, 1993. *Journal of Agricultural Safety and Health* 1995; 1(3):185-197.
2. Ayers PD, Johnson CM, Lorenz JW. Rollover Protective Structure (ROPS) Field Testing for Pre-ROPS Tractors. *Proceedings of the Second National Conference for NIOSH-Sponsored Agricultural Health and Safety Centers*. 1995.