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KRIEG. JR., E. F, D. W. CHRISLIP AND J. M. RUSSO. A mathematical model of performance on a simple reaction
time test. NEUROTOXICOL TERATOL 18(5) 587-593. 1996.—A nonlinear function with components for learning and fa-
tigue was used to model! individual performance on a simple reaction time test. The relationships between the parameters of
the model and the mean and variance of the reaction times are discussed. The function is used to analyze data from a field
study of agricultural workers exposed to organophosphate pesticides. Exposure had a significant effect on the relationships
between education level and initial performance, age and fatigue rate. and age and performance variability. Parameter esti-
mates from the model were able to distinguish between effects that the mean and standard deviation of the reaction times

were unable to distinguish.

Simple reaction time Nonlinear model

Organophosphate pesticides

Intraclass regression model

A recent review of behavioral testing in the workplace re-
ported that tests of reaction time have been employed in more
than 80 workplace studies (4). These studies have revealed
that reaction time performance is affected by many sub-
stances encountered in the workplace, including lead (19.22),
mercury (5), manganese (34), pesticides (43), carbon disulfide
(25,41), styrene (15,29), anesthetic gases (16), and solvent
mixtures (9,26). The usefulness of the reaction time test as a
tool for workplace testing has led to its being incorporated in
a number of test batteries, including the Finnish Institute of
Occupational Health (FIOH) Battery (17), the World Health
Organization’s Neurobehavioral Core Test Battery (WHO
NCTB) (21), the London School of Hygiene Battery (10), the
Williamson Battery (42), the Armed Forces Cooperative Per-
formance assessment Battery (UTC-PAB) (13). and the Neu-
robehavioral Evaluation System (NES) (24).

A number of individual characteristics are also known to
affect reaction time. These include age (1,38). sex (8,28). de-
gree of physical fitness (37), mental retardation (6), fatigue
(18), and sleepiness (12). Reaction times can also be affected
by physical activity (38), alcohol intake (12,30), and cigarette
smoking (30).

Reaction time data are typically analyzed by dropping out the
reaction times of the initial trials and calculating the mean and

SD of the remaining ones. Information is lost about the rate
of acquisition of the reaction time response as well as any
other trend over trials. The pattern of response over trials can
vary substantially from subject to subject. Some subjects ac-
quire the response skill more rapidly, some subjects show a
gradual increase in reaction times as the number of trials in-
creases, and the performance of some subjects is more vari-
able than others.

The trends in reaction time over trials can be modeled
mathematically. Parameters that reflect these trends can be
estimated and used as variables in analyses done to determine
the effects of toxic exposure, age, or other variables. A non-
linear model is described below: it is compared to the mean
and variance of the reaction times, and it is applied to data
from a field study of agricultural workers exposed to organo-
phosphate pesticides.

DESCRIPTION OF THE MODEIL

The model has two components, one to account for learn-
ing (the initial decrease in reaction time) and one to account
for fatigue (the gradual increase in reaction time over trials).
The reaction time at trial t can be written as a product of these
two components: R(t) = L(t) X F(1).

Requests for reprints should be addressed to Edward F. Krieg, Jr.. Division of Biomedical and Behavioral Science. National Institute for Oc-
cupational Safety and Health, 4676 Columbia Parkway. MS C-22. Cincinnati, OH 45226.
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The learning function is
Ly =L_~(L_~Lp-n"
fort = land 0 =1 = [./is the learning rate. L, is the initial
performance level, and L., is the performance limit. If / = 0
there is no learning, and if / = | there is one-trial learning:
maximum performance is reached by the second tnal. L(¢) is
undefined when/=1land¢=1.
The fatigue function is

Fiy = (l+ )t

for ¢ = 1 and f = (). fis the fatigue rate. If f= (), there is no fa-
tigue. If /> 0, there 1s no fatigue on the first trial, but as the
trials progress fatigue increases without bound.

Combining the two functions one gets

R(t)y = [L_-(L_-L)(I =D+ et
R(1) is undefined when /=1l andr=1.

RELATIONSHIPS TO THE MEAN AND VARIANCE

A statistical version of the model can be written as

R, = R(1)+¢,,

where €, is a variable representing a random disturbance at
time 1. If Ele,] =0.then E[R] = R(r). Var[R(£)] =0, so Var[R, |=
Varlg,].

The sample mean of the reaction times over a set of T trials
has expected value E[R] = (1/T) 3 R(¢) and variance

Var|R| = —]l— Zqus,] +% 22(70\»{3,,9“].
I

tou>t

By examining the equation for R(r) one can see that R in-

creases as L. increases. as L increases relative to L. and as f

increases. R decreases as [ increases.
The sample variance of the reaction times, using a divisor
of T — 1, has expected value

2 | S|
EISy 1= T_—IZ(RU)-&[R]) +7,ZV111'[E[]
! !

z Z Covle, g, .

2
nr-1 rou>
I /=0 and f=0 then R(¢) is constant and will not contrib-
ute to S%, otherwise the first term to the right of the equal sign
will be greater than 0 and S,z‘, will contain variability due to the
trend.

AN EXAMPLE

The data used herc are from a study of agricultural work-
ers exposed to organophosphate pesticides (39). Workers
with medically documented episodes of acute poisoning by
one or more organophosphate pesticides were examined 2-10
years after apparent recovery for signs of residual neurobe-
havioral deficits. The study subjects were selected from medi-
cal surveillance records maintained by the State of California
Department of Food and Agriculture, and were restricted to
cases in which males, age 16 years or older, had sought medi-
cal attention after a definite or probable episode of organo-
phosphate pesticide overexposure. A total of 83 definite poi-
soning cases were identified in which symptoms compatible
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with organophosphate poisoning were accompanied by docu-
mented cholinesterase inhibition. An additional 46 cases of
probable organophosphate poisoning lacked evidence of cho-
lincsterase inhibition, but exhibited compatible symptoms ac-
companied by specified medical signs or by a history of dircct
overexposure to an organophosphate pesticide. Another 45
subjects were identified as having had one or more prior cpi-
sodes of cholinesterase inhibition without symptoms of poi-
soning. Ninety adult male friends and neighbors of the cx-
posed cases who were not currently exposed to pesticides
constituted the nonexposed control group.

The subjects in the study were given an assessment battery
that included a clinical neurological examination. cvaluation
of nerve conduction velocities. measurement of vibrotactile
thresholds, and computerized tests of postural balance, mood,
finger tapping speed, sustained visual attention, hand-eye co-
ordination, symbol-digit matching. short-term pattern mem-
ory. short-term scrial digit learning, and simple reaction time.

The simple reaction time test was from the NES. In this
test, the subject is asked to press a button cach time a large
square appears on the computer screen. The number of trials
can be set by the test giver and is typically set between 50 and
100 trials (in this study subjects were given 90 trials). The in-
tertrial interval varies randomly between 2.5 and 7.5 s to pre-
vent the subject [rom anticipating the next stimulus,

Steenland ct al. (39) analyzed the definitely and probably
poisoned groups, but not the group with inhibited acetylcho-
linesterase and no symptoms. This group was included in the
present analysis. Twelve subjects from the definite group,
three from the probable group, two from the inhibited group,
and four controls did not have reaction time data. Addition-
ally. data from four definite. four probable. and cight control
subjects were not included in the analysis because their data
was collected during pilot testing.

Fitting the Model

The reaction times (#,) of individual subjects were fit using
the Gauss—Newton algorithm {all calculations were done with
the SAS System (SAS Institute. Inc., Cary, NC)|. The first re-
action time (r() was used as a starting value for L, the arith-
metic mean of reaction times 11 through 60 was used as an ini-
tial estimate of L, and d was calculated as d = L, — L,. The
initial value of the learning rate was calculated as = (r, — L,/
(L.. ~ L)), and the initial value for the fatiguc rate was calcu-

lated as
90 1/30
. 1’1
/= {H } -1
;
r=6l 71

Only values greater than 100 ms and less than 700 ms were
included in the calculation of the initial values of L and f.

Conditional statements were uscd to adjust extreme initial
values: if / was less than 0.2 or greater than 1, then it was set to
0.6:if d was greater than —50, then d and / were set to (); and if

[ was less than or equal to 0 or greater than or equal to 0.01,

then it was set to L.001. Constraints were also placed on the
parameter estimates: L., = 100,d =0.0=/{= |,and f = 0.

A Ljung-Box (27) test was performed on the residuals of
each of the fits. This test indicated significant autocorrelations
for 21% of the subjects. The correlations for lags greater than
zero ranged from —0.33 to 0.57. Their average was —(.01. Ex-
amining the autocorrelation functions and fitting autoregres-
sive-moving average models to the residuals indicated that
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some of the residuals varied cyclically, some appeared to be
an autoregressive process (negative and positive). and some
were a combination of both; about one-third of the 21% were
in cach category. We did not develop a model for the residu-
als because of the size and inconsistency of the correlations.
and because correlated residuals have been shown not to bias
parameter estimates (11).

The standard error of the estimate (SEE) was calculated
for each regression and was used as a measure of performance
variability. For purposes of comparison. the mean (R) and SD
(Sy) of the last 80 reaction times of each subject were also cal-
culated. Examples of fitted regression lines are shown in Fig. 1.

Statistical Analysis of the Parameter Estimates

A linear model was used to test for the effect of exposure,
the linear effects of age and education level (grade), as well as
age X exposure and grade X exposure interactions on the pa-
rameter estimates. The model is called an intraclass regression
model because a different regression is assumed for each class
or group (36). The equation for the model can be written as

589

Y= u+0,+pB,,7Z,,+ B:izzz/ T,

Y is the value of the dependent variable for the jth subject
from the ith group. Z,;; and Z,; are the values of the covari-
ales age and grade. and g, represents a random disturbance.
p + «; 1s the intercept for the /th group. and 3, and B; are
slope coefficients.

The design matrix for this model included a column of
ones for the intercept and four columns to code for the
groups. A subject was coded as | if he was in the group or
otherwise. Age and grade were included as continuous vari-
ables and columns for the interactions were calculated by
multiplving the age and grade columns by the group columns.

If a main cffect or an interaction was significant. contrasts
were done to compare the groups. If an interaction was signif-
icant, the slope coefficient of each group was tested to see if it
was significantly different from zero.

Results

Summary statistics for the variables used in the analysis are
shown in Table 1. a summary table of the lincar models is pre-
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FIG. 1. Examples of data from individual subjects and their fitted regression lines
(solid). 95% prediction intervals (dash) and confidence intervals (dot) are also
included. / is the estimated learning rate. fis the estimated fatigue rate. and SEE is the

standard error of the estimate.



590

KRIEG. CHRISLIP AND RUSSO

TABLE 1
SUMMARY STATISTICS BY EXPOSURE GROUP

Variable Group n Mean SD Min Max

I Control 78 713 274 178 1186
Inhibited 43 792 251 209 1106
Definite 67 758 258 239 1188
Probable 39 700 258 312 1150

Il Control 78 263 52 175 468
Inhibited 43 264 56 100 422
Definite 67 277 69 186 584
Probable 39 241 42 100 322

/ Control 7% (1.6405 0.3407 (0.0000 1.0000
Inhibited 43 .6483 {1.2967 (1.00GG [.0066
Dcfinite 67 (1.6593 0.2828 (.0000 1.0000
Probable 39 0.6749 0.3095 0.0000 1.0000

i Control 78 0.001448 0.001382 0 11005020
Inhibited 43 0.001292 0.001953 0 HLotre
Definite 67 0.001391 0.001788 0 (.007621
Probable 39 0.001782 0.002423 0 (.013015

SEE Control 78 72.40 33.79 20.94 178.97
[nhibited 43 70.37 34.43 24.69 197.61
Definite 67 76.70 42.82 23.71 22245
Probable 39 67.89 28.62 18.16 130.99

R Control 7 283 54 202 4358
Inhibited 43 285 32 208 445
Delinite 67 301 82 210 706
Probable 39 264 40 199 409

Sw Control 78 70 34 19 176
[nhibited 43 68 36 22 199
Definite 67 76 44 24 230
Probable 39 65 28 I8 135

Age Controt 78 299 11.0 17 67
Inhibited 43 384 12.0 19 67
Definite a7 32.8 9.0 20 09
Probable 39 352 10.0 21 67

Grade Control 77 10.7 3.6 3 18
Inhibited 43 10.2 3.9 2 10
Definite 63 9.1 4.7 0 17
Probable 39 12.7 2.5 6 17

All means were significantly different from zero, p = 0.0001.

sented in Table 2, and regression coefficients are shown in Ta-
ble 3.

For L, there was a significant grade X exposure interac-
tion. The slope of the control group was significantly greater
than the inhibited (p = 0.0372) and definite (p = 0.0046)
groups. The slope of the definite group was significantly less
than zero (p = 0.0019) (see Fig. 2).

There were no statistically significant effects for L., and I.

The age X exposure interaction was significant for f. The
slope of the definite group was significantly greater than the
control (p =0.0111) group, and it was also significantly greater
than vero (p = 0.0107) (sec Fig. 2).

For SEE there were significant age X exposure and
grade X exposure interactions. For age, the slope of the defi-
nite group was significantly greater than the control (p =
(.0008). inhibited (p = 0.0161), and probable (p = 0.0007)
groups. The slope of the definite group was significantly greater
than zero (p = 0.0066) (see Fig. 2). For grade. the slope of the
probable group was significantly less than the control (p =
0.0044), inhibited (p = 0.0080). and definite (p = 0.0103) groups,
and it was significantly less than zero (p = 0.0013).

The effect of grade was significant for R, as the grade in-
creased the mean reaction time decreased. The age X expo-

sure interaction was also significant. The slope of the definite
group was significantly greater than the control (p = 0.0050),
inhibited (p = 0.0085), and possible (p = 0.0220) groups, and it
was also significantly greater than zero (p = 0.0009).

For S the age X exposure interaction was significant. The
slope of the definite group was significantly greater than the
control (p = 0.0004), inhibited (p = 0.0051). and probable (p =
0.0016) groups. and it was significantly greater than zero (p =
0.0012). The grade X exposure interaction was also signifi-
cant. The slope of the probable group was significantly less
than the control (p = 0.0076), inhibited (p = 0.0077), and defi-
nite (p = 0.0138) groups. and it was significantly less than zero
(p =0.0023).

DISCUSSION

The components of the performance model come from a
family of exponential equations of the form

G(1) = A+ B(1 + )it

which can be used to model other types of performance. If ¢ is
continuous the natural exponential form can be used:

G(1) = A+ Be'tn
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TABLE 2
LINEAR MODEL SUMMARY TABLE
Dependent
Variable Source din dfyy F P
I, Exposure 3 212 1.50 0.2154
Age 1 212 0.00 0.9543
Grade 1 212 6.73 0.0102
Age X exposure 3 212 0.67 0.5727
Grade X exposure 3 212 3.25 0.0227
L.. Exposurc 3 212 .59 1.6213
Age 1 212 0.18 1.6701
Grade 1 212 3.00 1.0846
Age X exposure 3 212 1.52 0.2099
Grade X exposure 3 212 2.32 0.0760
/ Exposure 3 212 0.49 1.6867
Age 1 212 1.62 0.2048
Grade I 212 0.01 0.9140
Age X gxposure 3 212 0.84 0.4708
Grade X exposure 3 212 0.31 0.8169
f Exposure 3 212 27 0.0463
Age 1 212 335 0.0685
Grade 1 212 271 0.1009
Age X exposure 3 212 2.66 0.0494
Grade X exposure 3 212 1.25 .2922
SEE Exposure 3 212 5.06 0.0021
Age 1 212 0.08 07717
Grade 1 212 8.63 0.0037
Age X exposure 3 212 sl 0.0020
Grade X exposure 3 212 293 0.0344
R Exposure 3 212 1.43 0.2351
Age 1 212 2.11 0.1480
Grade | 212 7.64 0.0062
Age X exposure 3 212 332 0.0206
Grade X exposure 3 212 1.92 0.1273
Sk Exposure 3 212 4.69 0.0034
Age 1 212 0.00 (1.9568
Grade 1 212 7.21 0.0078
Age X exposure 3 212 5.23 0.0017
Grade X exposure 3 212 2.73 0.0451

Aldridge (3) has used a natural exponential equation as a
model of mastery learning. In either case, r represents a rate
and A and B are scaling parameters. A, B, r. and A(r) can be
positive, negative, or zero.

Hyperbolic (40) and power (31) functions have also been
used to fit learning curves. By equating these functions to
L(t), one can show that the hyperbolic function is undefined
when there is no learning, and that the power function is un-
defined when there is one-trial learning. L(1) is defined in
both of these circumstances. Bittner (7) used a quadratic poly-
nomial to fit learning curves to estimate long-term individual
and system performance. This polynomial provides an esti-
mate of asymptotic performance unconfounded by learning.
as does L(z), but it does not provide a learning rate.

If the mean of a measurement is taken over several trials, a
change in the mean could represent an overall shift that oc-
curs at each trial or a change in the trend over trials. A change
in the SD could represent a change in the variability around a
trend or a change in the trend itself. Even if the initial trials
are removed from a test, learning can still have an effect on
the mean and SD if the learning rate is low or if the difference
between initial performance and asymptotic performance is
large.

In the example, it was possible to separate the information
contained in the mean and SD. There was an effect of educa-
tion level on mean reaction time that reflected an effect on

the initial performance level, and there was a significant age
X exposure interaction for mean reaction time that reflected
an increase in the fatigue rate. The age X exposure interac-
tion was also significant for the SD of the reaction times, re-
flecting an effect on the SEE, and the grade X exposure inter-
action was significant for the SD, reflecting an effect on the
initial performance level and the SEE. One can be more cer-
tain that there was an actual effect on performance variability
if the trends are taken into account.

It should be noted that the focus of the analysis in the ex-
ample was on the effect of exposure on the linear relation-
ships between age and education level and the dependent
variables. If analysis of covariance had been used, the focus
would have been on the group means adjusted for the covari-
ates. Such an analysis would have been inappropriate for sev-
eral of the dependent variables because the assumption of ho-
mogeneous slopes was violated.

In the example analysis the definite poisonings showed an
increase in the fatigue rate and in performance variability as
their age increased, and their initial reaction times were
higher if their education level was lower. This group also
showed an increase in the mean and SD of the reaction times
as age increased. A previous study did not find an effect of or-
ganophosphate pesticides on reaction time (35). In their anal-
ysis of the data used in the example, Steenland et al. (39) also
found no effect. The negative results may be explained by
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TABLE 3
ESTIMATES OF THE REGRESSION COEFFICIENTS FOR THE FOUR EXPOSURE GROUPS

Dependent Variable

Cocfficient Group L, I.. ! f SEE R Se
Intercepts Control 637 260 0.6140 0.00264() 91 299 92
Inhibited Y31 255 0.9090 0.001733 78 202 78
Definite 833 262 0.7730 ~0.000819 37 244 31
Probable 1180 347 0.6697 (0.002752 22 389 156
Slopes
Age Control -0.67 01l G010 ~0.000016 0.58 015 u.62
Inhibited 0.79 0.19 -0.0070 0.000002 —0.12 0.21 0.28
Definite 383 1.55 —0.0010 0000065 149 2.80 1.64
Probable —3.56 —1.83 —0.0037 0000042 =106 0.12 ~0.78
Grade Control 9.16 —0.04 —0.0003 —0.000065 -0.12 103 0.23
Inhibited —18.50 1.64 0.0009 —0.000036 —0.30 0.07 0.10
Definite ~21.66 —415 ~0.0080 0.000031 —107 406 0.99
Probable -2787 ~6.08 0.0107 ~.000192 -7.57 9.53 -7.36
1ac0 smaller sample sizes or by different methods of analyzing the
ool . : . data. These investigators looked for differences in group
o o e e s e . . . means, or group means adjusted for covariates.
soo| Tl ° " At the present time the biological interpretation of the pa-
T e 6w rameters in the model is not clear. The reaction time task used
- ool 7 : = e T here involves the eyes, the peripheral and central nervous sys-
: . g < - tems. and striate muscle. The effect of a variable on a model
o0 - g * . parameter could reflect an action on one or more of these ar-
200 c , eas. The two trends in the reaction time curves have been pro-
visionally called lcarning and fatigue because these seem to be
1001, — . S the likely processes underlying the trends. It is possible that
ereEEe s e TRl R e RS other processes or a combination of processes may cause the
o008 trends, especially the one called fatigue.
1 ° Following the interpretation of temporary work decrement
: - by Kohl et al. (23), fatigue in the present reaction time model
0.006 . may, in part, reflect the influence of reactive inhibition. a re-
° ° sponse-decrementing process viewed by some to reside
— ooos ° P strictly in the neuromotor apparatus, and by others to be a
' - e state of negative motivation capable of supporting inhibitory
. . o associative relationships (14,20). Because the usual method of
0.002 o0 e detecting this type of decrement-producing variable is to mea-
7 “Cogess ™ - . sure its dissipation over time, it should be possible to design
0000 .0 0o S o ‘ . reaction time intervals to control the influence of reactive in-
15 30 P 80 75 hibition. The fatigue component of the present reaction time
Age (vears) model would then be expected to differentiate between long and
300 short intertrial intervals.

A second process capable of influencing fatigue in the re-
= action time response has been termed "inhibition of return”
200 - (33), an increased difficulty in directing attention to a previ-

| ) ously attended location. Because therc is considerable cvi-
8 so ° - dence indicating slower reaction times to previously attended
- ST targets (32). this potentially combined perceptual-motor pro-
1e0 T cess (2) may have influenced the present results indepen-
ol : dently of other types of inhibition.
. Regardless of the details of interpreting the reaction time
ol . . decrement, future studies may find it useful to apply the
15 30 45 e 75 present mathematical model to uncover local decrementing
Age (years)

FIG. 2. The effect of ecducation level (grade) on the initial
performance level (L)), and the effect of age on the fatigue rate (f)
and performance variability [as measured by the standard error of the
estimate (SEE)] in the definite exposure condition.

trends in the reaction time response. Apart from addressing
questions about the mechanisms controlling this response, the
technique would permit more sensitive detection of untoward
chemical effects on reaction time than has been possible pre-
viously.
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