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KRIEG. JR., E. F.. D. W. CHRISLIP AND J. M. RUSSO. A rrrr/rl~,~ricnl n~tiel of/~fi~rr~~c~c o/r t, vi,rt/r/c rcrcc.rior~ 
ti,rre rest. NEUROTOXICOL TERATOL 1X(S) 5X7-93, 1906.-A nonlinear function with components for learning and fa- 
tigue was used to model individual performance on a simple reaction time test. The relationships between the parameters 01 
the model and the mean and variance of the reaction times are discussed. The function is used to analyze data from a field 
study of agricultural workers exposed to organophosphatc pcsticidcs. Exposure had a significant effect on the relationships 
between education level and initial performance, age and fatigue rate. and age and performance variability. Parameter csti- 
mates from the model were able to distingtish hctwcen effscts that the mean and standard deviation of the reaction times 
were unable to distinguish. 

Simple reaction time Nonlinear model Organophosphate pesticides Intrnclass regression model 

A recent review of behavioral testing in the workplace re- 
ported that tests of reaction time have been employed in more 
than 80 workplace studies (4). These studies have revealed 
that reaction time performance is affected by many sub- 
stances encountered in the workplace, including lead (19.22) 
mercury (5) manganese (34) pesticides (43). carbon disulfide 
(25,41). styrene (15.29) anesthetic gases (16). and solvent 
mixtures (9,26). The usefulness of the reaction time test as a 
tool for workplace testing has led to its being incorporated in 
a number of test batteries, including the Finnish Institute of 
Occupational Health (FIOH) Battery (17). the World Health 
Organization’s Neurobehavioral Core Test Battery (WHO 
NCTB) (21) the London School of Hygiene Battery (10). the 
Williamson Battery (42) the Armed Forces Cooperative Per- 
formance assessment Battery (UTC-PAB) (13). and the Ncu- 
robehavioral Evaluation System (NES) (24). 

A number of individual characteristics are also known to 
affect reaction time. These include age (1,38), sex (8,28), de- 
gree of physical fitness (37) mental retardation (6) fatigue 
(18) and sleepiness (12). Reaction times can also be affected 
by physical activity (38), alcohol intake (12,30). and cigarette 
smoking (30). 

Reaction time data are typically analyzed by dropping out the 
reaction times of the initial trials and calculating the mean and 

_ 

SD of the remaining ones. Information is lost about the rate 
of acquisition of the reaction time response as well as any 
other trend over trials. The pattern of response over trials can 
vary substantially from subject to subject. Some subjects ac- 
quire the response skill more rapidly, some subjects show a 
gradual increase in reaction times as the number of trials in- 
creases, and the performance of some subjects is more vari- 
able than others. 

The trends in reaction time over trials can be modeled 
mathematically. Parameters that reflect these trends can be 
estimated and used as variables in analyses done to determine 
the effects of toxic exposure, age. or other variables. A non- 
linear model is described below: it is compared to the mean 
and variance of the reaction times, and it is applied to data 
from a field study of agricultural workers exposed to organo- 
phosphate pesticides. 

DESCRlPTlON OF THE MODFI. 

The model has two components, one to account for learn- 
ing (the initial decrease in reaction time) and one to account 
for fatigue (the gradual increase in reaction time over trials). 
The reaction time at trial t can be written as a product of these 
two components: R(t) = L(t) X F(t). 

Kequests tor reprtnts should be addressed to Edward F. Krieg. Jr.. Division of Biomedical and Behavioral Science. National Institute for Oc- 
cupational Safety and Health, 4676 Columbia Parkway. MS C-22. Cincinnati. OH 45226. 
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The learning function is 

L(I) = L~~(L~-I,,)(l -/)‘--’ 

for I 2 I and 0 5 I 5 I. 1 is the Icarning rate. L, i5 the initial 
performance level, and I.,. is the performance limit. If I = 0 
thcrc is no learning, and if I = I there is one-trial learning: 
maximum performance is reached by the second trial. L(r) is 
undefined when I= 1 and t = I. 

The fatigue function is 

i-(r) = ( I + ,l)‘_ ’ 

for t 2 I and .f” 0. f‘is the fatigue rate. If f’= 0. there is no fa- 
tigue. If /‘> 0. there is no fatigue on the first trial, but as the 
trial5 progress fatigue increases without bound. 

Combining the two functions one gets 

R(t) is undefined when I= I and I = I. 

RI:LA’I IONSIIIPS K) THE’ MEAN AND VARIANCE 

A statistical version oc the model can be written as 

R, = R(t) + c, . 

where f, is a variable representing a random disturbance at 
time t. If E[e,] = 0, then E[R,] = R(f). Var(R(r)] = 0. so Var[R, ]= 
Var[F,]. 

The sample mean c&the reaction times over a set of T trials 
has expected value E[R] = (l/r) C R(t) and variance 

By examining the equation for R(r) one can see that x in- 
creases as I__, increases. as L, increases relative to I,.,,. and as f 
incrcascs. R decrcascs as 1 increases. 

The sample variance of the reaction times. using a divisor 
of 7‘ - I. has expected value 

If I = 0 and .f’= 0 then R(f) is constant and will not contrib- 
utc to .S$ otherwise the first term to the right of the cqual sign 
will bc greater than 0 and S$ will contain variability due to the 
trend. 

AN EXAMPLE 

The data used here are from a study of agricultural work- 
ers exposed to organophosphate pesticides (39). Workers 
with medically documented episodes of acute poisoning by 
one or more organophosphate pesticides were examined 2-10 
years after apparent recovery for signs of residual neurobe- 
havioral deficits. The study subjects were selected from medi- 
cal surveillance records maintained by the State of California 
Department of Food and Agriculture, and were restricted to 
casts in which males, age I6 years or older. had sought medi- 
cal attention after a definite or probable episode of organo- 
phosphate pesticide ovcrcxposure. A total of 83 definite poi- 
soning cases were identified in which symptoms compatible 

with organophosphate poisoning were accompanied by docu- 
mented choline,terase inhibition. An additional 46 cases of 
probable organophosphate poisoning lacked evidence of cho- 
lincstcr-ase inhibition, but exhibited compatible symptoms ac- 
companied by spccificd medical signs or by a history of direct 
overexposure to an ol-ganophosphatc pesticide. Another 45 
subjects wcrc idcntificd as having had one or more prior cpi- 
sodes of cholincsterase inhibition without symptoms of po- 
soning. Ninet) J adult male friends and neighhot-s of the cx- 
posed casts who were not currently exposed to pesticides 
constituted the noncxposcd control group. 

The sub.jects in the study wcrc given an asses5mcnt battery 
that included a clinical neurological examination. evaluation 
of ncrvc conduction velocities. measurement of’ vibrotactile 
thresholds. and computerized tests of postural balance. mood. 
finger tapping speed, sustained visual attention. hand-eye co- 
ordination. symbol~dipit matching. short-term pattern mern- 
ory. short-term serial digit learning. and simple reaction time. 

The simple reaction time test was from the NES. In this 
test. the subject is asked to pi-cs a button coch time a large 
square appears on the computer screen. The number of trials 
can be set by the test giver and is typically set between 50 and 
100 trials (in this study subjects wcrc given 90 trials). ‘l‘hc in- 
tcrtrial interval varies randomly between 2.5 and 7.5 s to prc- 
vent the subject from anticipating the next stimulus. 

Stccnland et al. (39) analyzed the definitely and probably 
poisoned groups, but not the group with inhibIted acetvlcho- 
lincstcrasc and no symptoms. This group was included -in the 
present analysis. Twelve subjects from the dcfinitc group, 
thl-cc l’i-om the probable group, two from the inhibited go-oup, 
and four controls did not have reaction time data. Atldition- 
ally. data from ~OLIT definite. four probable. and eight control 
subjects were not included in the analysis because their data 
was collected during pilot testing. 

The reaction times (u,) of individual subjects were fit using 
the Gauss-Newton algorithm [all calculations were done with 
the SAS System (SAS Institute. Inc., Gary, NC)]. The first rc- 
action time (r,) was used as a starting value for f>,. the arith- 
metic mean of reaction times I I through 60 was used as an ini- 
tial estimate of L _,, and d was calculated as d = L,, - L,. The 
initial value of the learning rate was calculated as I= (rI ~ I,,)/ 

(I,,, --- L,), and the initial value for the fatigue rate was calcu- 
latcd as 

Only values greater than 100 ms and less than 700 ms were 
included in the calculation of the initial values of L,, and f 

Conditional statements were used to adjust extreme initial 
values: if I was less than 0.2 or greater than I, then it was set to 
0.6: if d was greater than -SO, then d and I were set to 0: and if 
.f’was less than or equal to 0 or greater than or equal to 0.01, 
then it was set to 0.001. Constraints were also placed on the 
parameter estimates: I+ 2 100, d 5 0.0 5 1 5 I, and ,f 2 0. 

A Ljung-Box (27) test was performed on the residuals of 
each of the fits. This test indicated significant autocorrelations 
for 21% of the subjects. The correlations for lags greater than 
zero ranged from -0.33 to 0.57. Their average was -0.01. Ex- 
amining the autocorrelation functions and fitting autoregrcs- 
sive-moving average models to the residuals indicated that 
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some of the residuals varied cyclically. some appeared to be 
an autoregressive process (negative and positive). and some 
were a combination of both; about one-third of the 21 ‘Y/o were 
in each category. We did not develop a model for the residu- 
als because of the size and inconsistency of the correlations. 
and because correlated residuals have been shown not to bias 
parameter estimates (11). 

The standard error of the estimate (SEE) was calculated 
for each regression and was used as a measure of performance 
variability. For purposes of comparison. the mean (R) and SD 
(S,() of the last 80 reaction times of each subject were also ca- 
culated. Examples of fitted regression lines are shown in Fig. 1. 

A linear model was used to test for the effect of exposure, 
the linear effects of age and education level (grade). as well as 
age X exposure and grade X exposure interactions on the pa- 
rameter estimates. The model is called an intraclass regression 
model because a different regression is assumed for each class 
or Froup (36). The equation for the model can be written as 

I = 23 f = .aB7 SEE = 59.357 

1303 

y/, = P + a, + PJ,,, + D’,Zl,, + El, 

I’,, is the value of the dependent variable for the jth subject 
from the ith group. Z,,, and Z,,, are the values of the covari- 
ates age and grade. and E,, represents a random disturbance. 
p. + 01, is the intercept for the ith group. and p,, and pz, are 
slope coefficients. 

The design matrix for this model included a column of 
ones for the intercept and four columns to code for the 
groups. A sub,@_? was coded as I if’ he was in the group or 0 
otherwise. Age and grade were included as continuous vari- 
ablcs and columns for the interactions were calculated by 
multiplying the age and grade columns by the group columns. 

If a main effect or an interaclion was sigiificant. contrasts 

were done to compare the groups. If an interaction was signif- 
icant, the slope coefficient of each group was tested to see if it 
was significantI\ different from xro. 

Summary statistics for the variables usccl in the analysis are 
shown in l‘ablc I. a summary table of the linear models is pre- 

I = .67 I = .w16 SEE = 9.483 

I = .87 I = .Moo SEE = 105.470 

‘9 

I = 1.03 f = NH4 SEE = 41.886 

3 IO a, 30 40 50mmm9lolo20mommmmm 

TM W 

FIG. I. Examples of data from individual suhjzcts and their fitted regression linrs 
(solid). 95% prediction intervals (dash) and confidence intervals (dot) al-e alw 
included. I is the estimated learning rate. f’is the estimnred faiiguc rate. and SEE is the 
standard error of the estimate. 
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TABLE I 
SIJMMARY STATISTICS BY EXPOSIJRE GROIJP 

7x 713 
43 792 
61 758 
3’) 700 
7X 263 
43 264 
67 277 
.TJ 231 
7x 0.640.5 
4.3 U.h4X3 
67 0.6593 
34 0.6740 
7x 0.00 144x 
4.3 0.0012Y2 
67 0.0015Y1 
?J O.OOI7X2 
7X 72.40 
4.3 70.37 
07 76.70 
3’) 67.X9 
7x 2X.? 
43 2X.5 
67 301 
3’) 26-l 
7X 70 
4.; hS 
67 76 
30 65 

7s ?‘).‘J 

-13 ix.1 

67 32.X 
IV ‘5.2 
77 10.7 
43 10.7 
65 ‘J. I 

.YJ 12.7 

sented in Table 2, and regression coefficients are shown in Ta- 
ble 3. 

For L, thcrc was a significant grade X exposure interac- 
tion. The slope of the control group was significantly greater 
than the inhibited @ = 0.0372) and definite (p = 0.0046) 
groups. The slope of the definite group was significantly less 
than zero (~1 = 0.0019) (see Fig. 2). 

Thcrc were no statistically significant effects for L, and 1. 
The age X exposure interaction was significant for ,f The 

slope of the definite group was significantly greater than the 
control (J = 0.01 I I) group, and it was also significantly greater 
than zero 0) = 0.0107) (set Fig. 2). 

For SEE there were significant age X exposure and 
grade X exposure interactions. For age, the slope of the defi- 
nite group was significantly greater than the control (~9 = 
0.000X). inhibited 0, = 0.0161). and probable (~1 = 0.0007) 
groups. The slope of the definite group was significantly greater 
than zero (I) = U.0066) (see Fig. 2). For grade. the slope of the 
probable group was significantly less than the control 0~ = 
0.0044). inhibited (p = 0.0080). and definite @ = 0.0103) groups. 
and it was significantly less than zero (JJ = (X)$13). 

The effect of grade was significant for R, as the grade in- 
creased the mean reaction time decreased. The age X expo- 

17x I Iii6 
WJ I IlJh 
23’) I 1x8 

312 I I50 
I75 -16X 
lOI) 422 
IX6 5X33 
IO0 377 

0.0000 I SJIJOO 
(1.0000 i .i1000 
1l.0000 I 01)00 
0.0000 I .01)00 
0 1H105020 
0 Il.01 I I IO 
0 0.00762 I 
0 1~.013015 

20.Y4 I7X.Y7 
24.6s I ‘J7.h I 
23.71 222.1 
IS.16 I .3O.‘JU 

202 35s 
20X JJ.5 
210 71lh 
I Y’J JWJ 
I Y 176 
12 I’JI) 

74 2.M 

IS I ;i 

I7 67 
I ‘J 67 
20 (10 
‘I hi 

.J IS 
1 I (1 
0 Ii 
(3 I7 

sure interaction was also significant. The slope of the definite 
group was significantly greater than the control @ = O.OOSO), 
inhibited 0, = O.OOSS), and possible (11 = 0.0220) groups, and it 
was also significantly greater than Lero 0, = 0.0009). 

For SK the age x exposure interaction was significant. The 
slope of the definite group was significantly greater than the 
control o-) = (1.0004), inhibited (II = 0.005~1). and probable 0, = 
0.0016) groups, and it was significantly greater than zero (p = 
0.0012). The grade X exposure interaction was also signifi- 
cant The slope of the probable group was significantly less 
than the control 0, = 0.0076). inhibited (r, = 0.0077), and defi- 
nite (r> = O.Ol.lS) groups. and it was significantly less than zero 
@ = 0.0023). 

IIIS(‘l!SSIC)N 

The components of the performance model come from a 
family of exponential equations of the form 

c;(t) = A + B( 1 + ,)‘l(‘) 

which can be used to model other types of performance. If f is 
continuous the natural exponential form can be used: 

G(t) = A + BP,“(‘) 
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TABLE 2 
LINEAR MODEL SCJMMARY TABLE 

Expoaurc 

A% 
Grade 

Age x exposure 

Grade x exposure 

Exposure 

A_ee 
Grade 

Age x exposure 

Grade x exposure 

Expo\ure 
A@t! 

tirade 

Age X exposure 

Grade x exposure 

EXpOSW 

Age 
Grade 

Age x exposure 

Grade x exposure 

Exposure 

Age 
Grade 

Age x exposure 

Grade x exposure 

Expowrc 

Age 
Grade 

Azc X c~posure 

C;riKte x exposure 

Exptrsurc 

Age 

Grade 

Age x evposure 

Grade x exposure 

II? I .m 

212 0.00 

212 6.73 

212 (I.67 

?I? 3.25 

212 0.59 

?I2 0.18 

212 3.00 

?I? I.52 

212 32 

213 0.49 

212 l.h2 

212 0.01 

212 0.x4 

?I? 0.31 

212 2.71 

212 3.3s 

?I2 2.71 

212 2.66 

112 1.25 

212 5.06 

712 0.0x 

212 S.63 

212 5.11 

212 2.93 

212 I .Ji 

112 2.1 I 

212 7.64 

112 -3.32 

712 I .9? 

?I2 4.69 

21-2 0.00 

?I2 7.21 

?I? 5.23 

?I2 7.73 

0.2154 

0.9543 

0.010 

0.5727 

0.0227 

l).Qli 

il.6701 

I).Ofi4h 

l).2W!, 

W760 

ll.hX67 

0.2048 

t1.91411 

0.4708 

O.Xl6’1 

tl.OJh3 

0.06X5 

l1.100') 

Il.0494 

0.2922 

0.0021 

0.77 I7 

0.0037 

0.0020 

O.O.:JJ 

0.235 I 

O.I4XII 

0.0062 

0.02Oh 

0.1273 

IU~O.i-1 

0.9568 

0.0078 

0.0017 

0.04.5 I 

Aldridge (3) has used a natural exponential equation as a 
model of mastery learning. In either case, r represents a rate 
and A and B are scaling parameters. A, B. r. and h(t) can be 
positive, negative, or zero. 

Hyperbolic (40) and power (31) functions have also been 
used to fit learning curves. By equating these functions to 
L(t), one can show that the hyperbolic function is undefined 
when there is no learning, and that the power function is un- 
defined when there is one-trial learning. L(t) is defined in 
both of these circumstances. Bittner (7) used a quadratic poly- 
nomial to fit learning curves to estimate long-term individual 
and system performance. This polynomial provides an esti- 
mate of asymptotic performance unconfounded by learning. 
as does L(r), but it does not provide a learning rate. 

If the mean of a measurement is taken over several trials, a 
change in the mean could represent an overall shift that oc- 
curs at each trial or a change in the trend over trials. A change 
in the SD could represent a change in the variability around a 
trend or a change in the trend itself. Even if the initial trials 
are removed from a test, learning can still have an effect on 
the mean and SD if the learning rate is low or if the difference 
between initial performance and asymptotic performance is 
large. 

In the example, it was possible to separate the information 
contained in the mean and SD. There was an effect of educa- 
tion level on mean reaction time that reflected an effect on 

the initial performance level. and there was a significant age 
x exposure interaction for mean reaction time that reflected 
an increase in the fatigue rate. The age X exposure interac- 
tion was also significant for the SD of the reaction times, re- 
flecting an effect on the SEE. and the grade X exposure inter- 
action was significant for the SD, reflecting an effect on the 
initial performance level and the SEE. One can be more cer- 
tain that there was an actual effect on performance variability 
if the trends are taken into account. 

It should be noted that the focus of the analysis in the ex- 
ample was on the effect of exposure on the linear relation- 
ships between age and education level and the dependent 
variables. If analysis of covariance had been used. the focus 
would have been on the group means adjusted for the covari- 
ates. Such an analysis would have been inappropriate for sev- 
eral of the dependent variables because the assumption of ho- 
mogeneous slopes was violated. 

In the example analysis the definite poisonings showed an 
increase in the fatigue rate and in performance variability as 
their age increased, and their initial reaction times were 
higher if their education level was lower. This group also 
showed an increase in the mean and SD of the reaction times 
as age increased. A previous study did not find an effect of or- 
ganophosphate pesticides on reaction time (35). In their anal- 
ysis of the data used in the example. Steenland et al. (39) also 
found no effect. The negative results may be explained by 
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TABLE 3 
hSTlMATES OF THE KEGKESSION (‘OEFFICIENTS FOK I’HE I,C)UR EXPOSIJRF (;KOUPS 

FIG. 2. The effect of education level (grade) on the initial 
performance level (L,). and the effect of age on the fatigue rate (f) 
and performance variability [as measured by the standard error of the 
estimate (SEE)] in the definite exposure condition. 

smaller sample sizes or by different methods of analyzing the 
data. These investigators looked for differences in group 
means, or group means adjusted for covariates. 

At the present time the biological interpretation of the pa- 
rameters in the model is not clear. The reaction time task used 
hcrc involves the eyes. the peripheral and central nervous sys- 
tems. and striate muscle. The effect of a variable on a model 
parameter could reflect an action on one or more of these ar- 
eas. The two trends in the reaction time curves have been pro- 
visionally called learning and fatigue because these seem to be 
the likely processes underlying the trends. It is possible that 
other processes or a combination of processes may cause the 
trends, especially the one called fatigue. 

Following the interpretation of temporary work decrement 
by Kohl et al. (23), fatigue in the present reaction time model 
may, in part. rellect the influence of reactive inhibition. a re- 
sponse-decrementing process viewed by some to reside 
strictly in the ncuromotor apparatus, and by others to be a 
state of ncgativc motivation capable of supporting inhibitory 
associative relationships (14.20). Because the usual method of 
detecting this type of decrement-producing variable is to mea- 
sure its dissipation over time. it should be possible to design 
reaction time intervals to control the influence of reactive in- 
hibition. The fatigue component of the present reaction time 
model would then be expected to differentiate between long and 
short intertrial intervals. 

A second process capable of influencing fatigue in the re- 
action time response has been termed “inhibition of return” 
(33), an increased difficulty in directing attention to a prcvi- 
ously attended location. Because there is considerable evi- 
dence indicating slower reaction times to previously attended 
targets (32). this potentially combined perceptual-motor pro- 

ccss (2) may have influenced the present results indepen- 
dently of other types of inhibition. 

Regardless of the details of interpreting the reaction time 
decrement, future studies may find it useful to apply the 
present mathematical model to uncover local dccrementing 
trends in the reaction time response. Apart from addressing 
questions about the mechanisms controlling this response, the 
technique would permit more sensitive detection of untoward 
chemical effects on reaction time than has been possible prc- 
viously. 
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